Learning to Rank

Kevin Duh Johns Hopkins University June 2019

What is Ranking?

What is Learning to Rank?

Common in Search Engines

Learning to rank - Wikipedia

https://en.wikipedia.org/wiki/Learning_to_rank -

Learning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the ...

[PDF] Learning to Rank using Gradient Descent

research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf Learning to Rank using Gradient Descent that taken together, they need not specify a complete ranking of the training data). or even consistent.

Anatomy of a Search Engine

Anatomy of a Search Engine

Motivation

- In search engines, only the top results matter
- Machine learning approach:
 - Enables more **features** (signal sources)
 - Improves over Boolean search, vector space models like tf-idf

Features of a top search result?

jhu cs courses 2016

Word match?

URL match? Popular page?

Recently updated?

Johns Hopkins University Computer Science | Facebook

https://www.facebook.com/compscijhu -

Johns Hopkins University Computer Science, Baltimore. 407 likes · 5 talking about this. Computer Science at Johns Hopkins University (CS@JHU) is a...

600.318/418: Operating Systems - Johns Hopkins University srl.cs.jhu.edu/courses/600.418/index.html -

Computer science majors and graduate students will be admitted regardless of enrollment limits. ... This **course** provides an introduction to operating systems.

Department of Computer Science | Course Information

www.cs.jhu.edu/course-info +

CS Course Catalog – complete list of departmental courses with descriptions. Note that not all courses are offered every year. Course Area Designators – a chart ...

Johns Hopkins University • Free Online Courses and ...

www.class-central.com > Universities > Johns Hopkins University -

Discover free online **courses** taught by **Johns Hopkins University**. Watch videos, do assignments, earn a certificate while learning from some of the best Professors.

User intention match?

Not spam?

Clickthrough log?

7

Useful Features

- Based on Query (q) and Document (d)
 - Various Boolean search and vector space model results, applied to document text, URL, title
 - Click-through: e.g. How many times d is clicked given q vs. How many times d is skipped
 - Results after Query-expansion
- Based on Document only (static)
 - Popularity of page: #Likes, #inlinks, Pagerank
 - Domain structure: main page or subpage
- Many, many more

Re-cap: Goal is to improve top ranked results via many features

jhu cs courses 2016 C **URL match? Recently updated?** Word match? **Popular page?** Johns Hopkins University Computer Science | Facebook User intention https://www.facebook.com/compscijhu match? Johns Hopkins University Computer Science, Baltimore. 407 likes · 5 talking about this. Computer Science at Johns Hopkins University (CS@JHU) is a ... Not spam? 600.318/418: Operating Systems - Johns Hopkins University srl.cs.jhu.edu/courses/600.418/index.html -Computer science majors and graduate students will be admitted regardless of enrollment limits. ... This course provides an introduction to operating systems. **Clickthrough log?**

Department of Computer Science | Course Information

www.cs.jhu.edu/course-info -

CS Course Catalog – complete list of departmental courses with descriptions. Note that not all courses are offered every year. Course Area Designators – a chart ...

Johns Hopkins University • Free Online Courses and ...

www.class-central.com > Universities > Johns Hopkins University -

Discover free online **courses** taught by **Johns Hopkins University**. Watch videos, do assignments, earn a certificate while learning from some of the best Professors.

Challenge: How to weight features?

• If there's only a few, we can manually tune.

e.g. score = 3 x #wordmatch + 1 x #inlink

• If there are many, we rely on machine learning (i.e. Learning to Rank)

Summary so far

- 1. Ranking: Unordered set \rightarrow Ordered list
- 2. Search engines: only top results matter
- 3. Good ranking requires many features
- 4. Next: how to weight features

Problem Formulation

jhu cs courses 2016

1. Feature extraction2. Appl<query, doc1> \rightarrow vector x1F(x1) = 2<query, doc2> \rightarrow vector x2F(x2) = 2<query, doc3> \rightarrow vector x3F(x2) = 2

2. Apply ranking function & sort

- $F(x_1) = 3 \rightarrow Rank 2$
- $F(x_2) = 1 \rightarrow Rank 3 (worst)$
 - $F(x_3) = 4 \rightarrow Rank 1 (best)$

What function class for F()?

Assume linear weights: $F(x_i) = w^T x_i$

Learn weights w that replicate ranking on training set

Training Set

Query 1

<query, $doc_1 > \rightarrow vector x_1$ <query, $doc_2 > \rightarrow vector x_2$ <query, $doc_3 > \rightarrow vector x_3$ Labels for each query-doc pair label(x_1) = 3 label(x_2) = 1 label(x_3) = 4

<u>Query 2</u> <query, doc₁> \rightarrow vector x₁ <query, doc₂> \rightarrow vector x₂ <query, doc₃> \rightarrow vector x₃ <query, doc₄> \rightarrow vector x₄

Labels for each query-doc pair label $(x_1) = 3$ (Very relevant) label $(x_2) = 2$ (Relevant) label $(x_3) = 1$ (Slightly relevant) label $(x_4) = 0$ (Irrelevant)

Where does the label come from?

• Human annotation

- High quality, but expensive

- Click-through logs
 - Noisy, but cheap/abundant

Notation

query: $q^{(n)}$ n = 1, ..., Ndocument for query n: $d_i^{(n)}$ $i = 1, \ldots, I_n$ vector of D features per query-doc: $x_i^{(n)} \in \mathcal{R}^D$ label for each query-doc pair: $l_i^{(n)} \in \mathcal{Z}$ Training set: $\{q^{(n)}, \{x_i^{(n)}, l_i^{(n)}\}\}$ Ranking Function: $F(x_i^{(n)}) = w^T x_i^{(n)}$

Different training approaches

 How to optimize something on a set with a sort operation? Reduce to traditional regression/classification problems

Training Approach	Reduction
Point-wise	Document
Pair-wise	Two Documents
List-wise	All Documents per query

Point-wise Approach

Training set: $\{q^{(n)}, \{x_i^{(n)}, l_i^{(n)}\}\}$ Ranking Function: $F(x_i^{(n)}) = w^T x_i^{(n)}$

Find w that makes each F(x) equal to its label

Training Objective:
$$\sum_{n} \sum_{i} (F(x_i^{(n)}) - l_i^{(n)})^2$$

Training Objective:
$$\sum_{n} \sum_{i} (F(x_i^{(n)}) - l_i^{(n)})^2$$
$$\rightarrow \sum_{z} (F(x_z) - l_z)^2 \quad \text{where z ranges over all i, n}$$

Solve with linear regression!

Pair-wise Approach

Training set: $\{q^{(n)}, \{x_i^{(n)}, l_i^{(n)}\}\}$ Ranking Function: $F(x_i^{(n)}) = w^T x_i^{(n)}$

Find w that gives every pair the correct ranking Training Objective:

$$F(x_i^{(n)}) > F(x_j^{(n)}) \quad \forall i, j \text{ s.t. } l_i^{(n)} > l_j^{(n)}$$

Training Objective:

$$\begin{split} F(x_i^{(n)}) &> F(x_j^{(n)}) \quad \forall \quad i,j \quad \text{s.t.} \quad l_i^{(n)} > l_j^{(n)} \\ &\to F(x_i^{(n)}) - F(x_j^{(n)}) > 0 \quad \forall \quad i,j \quad \text{s.t.} \quad l_i^{(n)} > l_j^{(n)} \\ &\to w^T x_i^{(n)} - w^T x_j^{(n)} > 0 \quad \forall \quad i,j \quad \text{s.t.} \quad l_i^{(n)} > l_j^{(n)} \\ &\to w^T (x_i^{(n)} - x_j^{(n)}) > 0 \quad \forall \quad i,j \quad \text{s.t.} \quad l_i^{(n)} > l_j^{(n)} \\ &\to w^T (\delta_{ij}^{(n)}) > 0 \quad \forall \quad i,j \quad \text{s.t.} \quad l_i^{(n)} > l_j^{(n)} \end{split}$$

Solve with binary classification! Make a new sample out of every pair Give new label: Positive for i,j pairs Negative for j,i pairs

Disclaimer

- We've focused on very simple ranking functions (linear) for simplicity
- In practice, more complex functions (e.g. decision trees, neural nets) are common
- Recommend further reading:
 - Dawei Yin, et. al. "Ranking Relevance in Yahoo Search", Proceedings of KDD2016

Ranking Relevance in Yahoo Search

Dawei Yin[†], Yuening Hu[†], Jiliang Tang[†], Tim Daly Jr., Mianwei Zhou, Hua Ouyang, Jianhui Chen, Changsung Kang, Hongbo Deng, Chikashi Nobata, Jean-Marc Langlois, Yi Chang[†] Relevance Science, Yahoo! Inc. [†]{daweiy,ynhu,jlt,yichang}@yahoo-inc.com

query	methods	DCG1	DCG3	DCG5
all	LogisticRank	4.31	7.74	9.78
	GBRank	4.26 (-1.19%)	7.52 (-2.81%)*	9.51 (-2.81%)*
	LambdaMart	4.24 (-1.60%)	7.36 (-4.84%)*	9.21 (-5.83%)*
top	LogisticRank	5.69	9.67	12.08
	GBRank	5.56 (-2.22%)	9.25 (-4.29%)*	11.51 (-4.67%)*
	LambdaMart	5.59 (-1.72%)	9.08 (-6.04%)*	11.02 (-8.75%)*
torso	LogisticRank	3.88	7.23	9.26
	GBRank	3.88 (-1.77%)	7.065 (-2.30%)*	9.08 (-2.03%)*
	LambdaMart	3.81 (-1.88%)	6.97 (-3.64%)†	8.92 (-3.64%)*
tail	LogisticRank	2.91	5.65	7.16
	GBRank	2.99 (3.06%)	5.65 (0.01%)	7.19 (0.37%)
	LambdaMart	2.88 (-0.71%)	5.42 (-4.15%)†	6.91 (-2.78%)†

Table 1: Performance comparison of models using different learning algorithms. * denotes p-value<=0.01; † denotes p-value<=0.05.

Other applications of Learning to Rank

Other applications: Protein structure prediction

Other applications: Machine Translation

Summary

- 1. Ranking: Unordered set \rightarrow Ordered list
- 2. Search engines: only top results matter
- 3. Good ranking requires many features
- 4. Approaches to learn weights of features (reduction to classification/regression)

Lab: Build a learning-to-rank system

• https://github.com/kevinduh/tutorial-learning-to-rank