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Motivation / Project Goal

Project goal:

Build a trainable dependency parser that is easily

portable to many languages (given annotated training

data)

Sentence in

Source Language
Sentence in

Target LanguageMT

parser

Application: Microsoft Research’s Machine Translation System:
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1. Intro to Dependency Parsing

2. Dependency Parsing as “Structured

Classification”

3. Parser architecture

4. Training by Bayes Point Machines

5. Experiments
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Constituency vs. Dependency Parsing

I like

adjective..

verb NounPhrasepnoun

S

peppers

noun

hot

(root) I like peppers.. hot

Dependency parse:
 - relationships between words

 - arrow indicates head-child relations

 - e.g. “hot” modifies “peppers”

 - e.g. “peppers” is argument of “like”

Constituency parse:
 - indicates phrase structures

 - context free grammar rules
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Dependency Parsing for

different languages

! Projective dependency parses

! Non-projective: (crossing arrows)

! Free word-order languages (e.g. Czech, Arabic) have more non-
projective trees

! Czech treebank: 25% sentences, 2% dependencies, (Nivre, 2005)

(root) I like NLP..

(root) I saw a.. man yesterday suspicious-lookingwas who . .. ..
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Why Dependency Parsing?

! Some NLP systems need only word-to-word

relationship information, e.g.:

! Machine translation [Quirk et.al., ACL 05]

! Information extraction [Bunescu&Mooney, HLT05]

! Question answering [Punyakanok et.al, AIMath04]

! Ease of annotation

! No grammar building

! Native speakers can do the job
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“Structured classification”

! Conventional classification problem:

! Structured classification problem:

! Popular solutions:

! Graphical models

! M^3 Nets (Taskar), Structured SVM (Joachims)

F()x y
x : vector of input features

y : scalar output

F()x y
x : vector of input features

y : complex set of outputs (e.g. vector, parse)

     values in output may be interdependent
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Dependency Parsing as

Structured Classification

! Input: features of a sentence

! Output: a whole dependency parse

! Structure constraints: parse is a directed

acyclic graph (tree) spanning all words

F() (root) I like NLP..I like NLP..

(root) I like NLP..
Malformed parse
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A Solution to Structured

Classification

! x: input sentence

! GEN(x): generates all possible parses of x

! F(x,y): function that scores a parse

! ArgMax: choose output with the best parse

y!GEN(x)

ŷ=arg max  F(x, y)
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Challenges

! How to define and learn F(x,y)?

! How to efficiently compute ArgMax?

y!GEN(x)

ŷ=arg max  F(x, y)

12

Outline

1. Intro to Dependency Parsing

2. Dependency Parsing as “Structured

Classification”
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4. Training by Bayes Point Machines

5. Experiments



13

Defining F(x,y): decomposition

!
"" yj)(i,

j)score(i,  maxarg
GEN(x)yy!GEN(x)

arg max  F(x, y)

I

like NLP

(root)

21
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3

0

2

90
41

(root) I like NLP

(root) I like NLP..

7

9

4

Total: 20

(root) I like NLP. .

4 2

1

Total: 7

Input: sentence and scores of edges Output: parse with max F(x,y)

Decompose by edges
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Defining F(x,y): edge scores

y!GEN(x)

argmax   w "h(i,j)
(i,j)!y

#!
"" yj)(i,

j)score(i,  maxarg
GEN(x)y

-h(i,j): feature vector of pair word i and word j

-- define based on linguistic knowledge

-- specify different features for different languages

-w: weights

-- trained by machine learning methods (discriminatively)
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Parser Architecture:

3 components

y!GEN(x)

argmax   w "h(i,j)
(i,j)!y

#

Decoder
Weights 

(to be trained)

Features
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Decoder/ARGMAX

! Requirements:
! Must search all possible parses for a given sentence

! Must search fast

! ArgMax will be invoked multiple times in discriminative
training

! (Preferably) Don’t do exhaustive search, don’t enumerate
malformed parse

! We used:
! Eisner’s decoder for projective trees [Eisner, ACL96]

! Chu-Liu-Edmonds decoder for non-projective [McDonald,
et.al. HLT2005]
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Weight space/Feature space

Duality and Version Space
x: feature space w: weight space

y(w’x1)>0

y(w’x2)>0

y(w’x3)>0

y(w’x4)>0

Version Space

Point in weight space

 <=> hyperplane in feature space

Point in feature space

 <=> hyperplane in weight space

(defines a halfspace)
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SVM & Center-of-Mass

solutions in Version Space

Wcm

Wsvm

Version Space 1 Version Space 2

The SVM solution is the center of the largest ball enclosed by version space

The Center-of-Mass solution is the “middle” point of the version space

One may argue that Wcm is better than Wsvm in some situations 20

Bayes Point Machines (Herbrich, 2001)

! Motivation:

! Bayesian averaging of classifiers

! Find the Center-of-Mass solution (Wcm)

! Main Idea:

1. Approximate Wcm by sampling the version space

2. Sampling is achieved by running perceptron training on

randomly shuffled data

3. Each perceptron gives a w, which is then combined to form the

BPM solution
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BPM Equations

! Ideal Bayesian averaging to achieve Wcm:

! In practice…

! version space is large => take finite sample of w

! assume uniform prior p(w)

wBPM = Ep(w |D )[w] !
1

K
wk

k=1

K

"

wBPM = Ep(w |D )[w] = p(wk | D)wk

k

|V (D )|

!

22

BPM

Pseudo-

code

INPUT:

xi : set of training points, i = 1,...,N

yi !{"1,1} :  labels of xi

OUTPUT:

w: discriminatively trained weight vector

Linear model: ŷi = sign(w # xi )

0. for k  = 1:K

1.     Initialize wk =0; Randomly shuffle training data

2.     for i = 1 :N

3.         ŷi = sign(wk # xi )

4.         if  ŷi $ yi

5.              wk = wk + yixi

6.     Repeat until convergence

7. end

8. w = 
1

K
wk

k=1

K

%
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Bayes Point Machine

Pros & Cons

! Pros:
! Good generalization

! Online learning

! Easy to implement

! Parallel computation

! Cons:
! Sampling scheme is only approximate

! Computation grows with number of perceptrons
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Outline

1. Intro to Dependency Parsing

2. Dependency Parsing as “Structured
Classification”

3. Parser architecture
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1. Data & Features

2. Evaluation on English, Czech, Arabic,
Chinese
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Data

Penn Treebank241640k1MEnglish

Prague Dependency

Treebank (v1)

750773k1.6MCzech

Chinese Treebank (v5)208014k527kChinese

Prague Arabic

Dependency Treebank

(v1)

4492100116kArabic

SourceTest

Sent

Train SentTokensLanguage
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Features

! Extract for every given pair of dependencies in
Training Set:
! ParentToken

! ChildToken

! ParentPOS

! ChildPOS

! POS of intervening words

! Backoff features:
! Czech/English: first five characters “stem”

! Arabic: stem from a morphological analyzer

! Chinese: first character “stem”

! Combinations of above to achieve “polynomial
kernels”
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Evaluation

Evaluation Measures:

 - Dependency Accuracy

 - Root Accuracy/F1

 - Complete Accuracy

Report dependency acc with/without punctuation

What’s best depends on application, e.g.:

 - If used for semantic analysis, no need for punctuation

 - If used for sentence simplification, need punctuation

(root) I like NLP..
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Comparison to state-of-the-art

37.693.790.8Bayes Point

Machines

37.594.290.9MIRA

(McDonald, 05)

36.594.090.6Perceptron

Complete

Accuracy

Root

Accuracy

Dependency

Accuracy

ENGLISH

! BPM better than MIRA in Complete Acc,

worse in Dependency/Root Acc.

29

BPM vs. Perceptrons

83.7

83.8

-

Czech

90.582.677.4Worst Perceptron

90.883.177.9Best Perceptron

91.283.878.4Bayes Point Machine

EnglishChineseArabic

Dependency Accuracy

Observation:

 BPM result is always better than the best perceptron 

 => averaging classifiers works!
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Comparing results across

languages

35.193.790.0English

29.288.383.3Czech

17.566.271.2Chinese

9.8090.079.9Arabic

CMRADALanguage

37.693.790.8English

30.175.583.6Czech

18.266.273.3Chinese

10.287.879.8Arabic

CMRADALanguage

With Punctuation Without Punctuation

What makes accuracy vary for different languages?

 - language characteristics (e.g. inflectional morphology leading to data sparsity)

 - annotation scheme

 - training data size
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Comparing results across

languages: Data reduction exp.

Observations:

 - At all sample sizes, English wins

   => reasons: (1) homogeneous data (2) POS tagset encodes morphology

-Czech has worse results, but improves with more data (not shown)

-Why does Chinese and Arabic have similar results?
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Summary/Conclusions

! View Dependency Parsing as “Structured

Classification”

! Bayes Point Machine training

! Bayesian averaging of classifiers => Wcm

! As simple to implement as the perceptron, yet competitive

with large margin methods

! Results in four different languages

! Further work on cross-language comparison needed

y!GEN(x)

arg max  F(x, y)
y!GEN(x)

argmax   w "h(i,j)
(i,j)!y

#
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Thank you!

! Questions?
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Data (more)
English: 

 - Penn Treebank

 - Extract dependencies by Yamada&Matsumoto (IWPT03) heuristics        

 - POS: use human-annotation for training, Toutanova’s tagger for test

Czech:

 - Prague Dependency Treebank (v1)

 - use human-annotated POS & auto-tagged morphological info in train/test

Chinese:

 - Chinese treebank (v5)

 - Extract dependencies using heuristics

 - POS: use human-annotation for training, Toutanova’s tagger for test 

   (tagger has 92.0% token accuracy, 63.8% sentence accuracy on devset)

Arabic:

 - Prague Arabic Dependency Treebank (v1)

 - use human-annotated POS & auto-tagged morphological info in train/test


