Multilingual Dependency Parsing using Bayes Point Machines

Kevin Duh University of Washington

Joint work with:

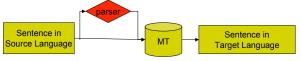
Simon Corston-Oliver, Anthony Aue (Microsoft Research), Eric Ringger (Brigham Young U.)

Motivation / Project Goal

Project goal:

Build a trainable dependency parser that is easily portable to many languages (given annotated training data)

Application: Microsoft Research's Machine Translation System:



Outline

- 1. Intro to Dependency Parsing
- 2. Dependency Parsing as "Structured Classification"
- 3. Parser architecture
- 4. Training by Bayes Point Machines
- 5. Experiments

Constituency parse: - indicates phrase structures

- context free grammar rules

Dependency parse:

- relationships between words

- arrow indicates head-child relations
- e.g. "hot" modifies "peppers"
 e.g. "peppers" is argument of "like"

Dependency Parsing for different languages

Projective dependency parses

• Non-projective: (crossing arrows)

- Free word-order languages (e.g. Czech, Arabic) have more nonprojective trees
 - Czech treebank: 25% sentences, 2% dependencies, (Nivre, 2005)

- Some NLP systems need only word-to-word relationship information, e.g.:
 - Machine translation [Quirk et.al., ACL 05]
 - Information extraction [Bunescu&Mooney, HLT05]
 - Question answering [Punyakanok et.al, AIMath04]
- Ease of annotation
 - No grammar building
 - Native speakers can do the job

Outline

- 1. Intro to Dependency Parsing
- 2. Dependency Parsing as "Structured Classification"
- 3. Parser architecture
- 4. Training by Bayes Point Machines
- 5. Experiments

"Structured classification"

- Conventional classification problem:
 - $x \longrightarrow F() \longrightarrow y \quad x:$

→ y x : vector of input features y : scalar output

Structured classification problem:

x

- x : vector of input features
 y : complex set of outputs (e.g. vector, parse) values in output may be interdependent
- Popular solutions:
 Graphical models
 M^A3 Nets (Taskar), Structured SVM (Joachims)

Dependency Parsing as Structured Classification

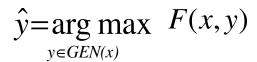
- Input: features of a sentence
- Output: a whole dependency parse



• Structure constraints: parse is a directed acyclic graph (tree) spanning all words

(root)	4	like	NLP	Malformed pars

Challenges



- How to define and learn F(x,y)?
- How to efficiently compute ArgMax?

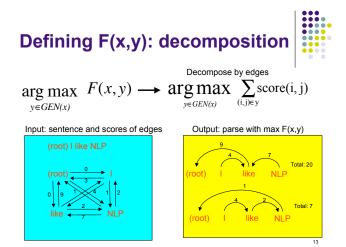
A Solution to Structured Classification

 $\hat{y} = \underset{y \in GEN(x)}{\operatorname{arg max}} F(x, y)$

- x: input sentence
- GEN(x): generates all possible parses of x
- F(x,y): function that scores a parse
- ArgMax: choose output with the best parse

Outline

- 1. Intro to Dependency Parsing
- 2. Dependency Parsing as "Structured Classification"
- 3. Parser architecture
 - 1. Defining F(x,y)
 - 2. ArgMax implementation (Decoder)
- 4. Training by Bayes Point Machines
- 5. Experiments



Defining F(x,y): edge scores

14

 $\underset{y \in GEN(x)}{\operatorname{argmax}} \sum_{(i,j) \in y} \operatorname{score}(i,j) \longrightarrow \underset{y \in GEN(x)}{\operatorname{argmax}} \sum_{(i,j) \in y} w \cdot h(i,j)$

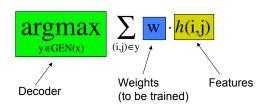
-h(i,j): feature vector of pair word i and word j

-- define based on linguistic knowledge -- specify different features for different languages

-w: weights

-- trained by machine learning methods (discriminatively)

Parser Architecture: 3 components



Decoder/ARGMAX

16

Requirements:

- · Must search all possible parses for a given sentence
- Must search fast •
 - ArgMax will be invoked multiple times in discriminative training
 - (Preferably) Don't do exhaustive search, don't enumerate malformed parse
- We used:

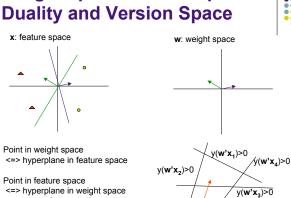
15

17

- Eisner's decoder for projective trees [Eisner, ACL96]
- Chu-Liu-Edmonds decoder for non-projective [McDonald, • et.al. HLT2005]

Outline

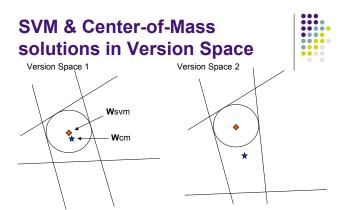
- 1. Intro to Dependency Parsing
- Dependency Parsing as "Structured 2. Classification"
- Parser architecture 3
- **Training by Bayes Point Machines** 4.
 - 1. Version Space
 - 2. BPM: Bayesian averaging of classifiers
- Experiments 5.



sion Space

Weight space/Feature space

<=> hyperplane in weight space (defines a halfspace)



The SVM solution is the center of the largest ball enclosed by version space. The Center-of-Mass solution is the "middle" point of the version space. One may argue that Wcm is better than Wsvm in some situations ¹⁹

Ideal Bayesian averaging to achieve Wcm:

version space is large => take finite sample of w

 $w_{BPM} = E_{p(w|D)}[w] = \sum_{k}^{|V(D)|} p(w_k \mid D) w_k$

 $w_{BPM} = E_{p(w|D)}[w] \approx \sum_{k=1}^{K} \frac{1}{K} w_k$

Bayes Point Machines (Herbrich, 2001)

- Motivation:
 - Bayesian averaging of classifiers
 - Find the Center-of-Mass solution (Wcm)
- Main Idea:
 - Approximate Wcm by sampling the version space
 - 2. Sampling is achieved by running perceptron training on randomly shuffled data
 - 3. Each perceptron gives a ${\bf w},$ which is then combined to form the BPM solution

INPUT: x_i : set of training points, i = 1, ..., N $y_i \in \{-1, 1\}$: labels of x_i

20

OUTPUT:

4.

w: discriminatively trained weight vector Linear model: $\hat{y}_i = sign(w \cdot x_i)$

Pseudo-

```
code
```

BPM

0. for k = 1:K
 1. Initialize w_k=0; Randomly shuffle training data

```
2. for i = 1 : N

3. \hat{y}_i = sign(w_i \cdot x_i)
```

- $\hat{y}_i = sign(w_k \cdot x_i)$
- if $\hat{y}_i \neq y_i$
- 5. $w_k = w_k + y_i x_i$
- 6. Repeat until convergence 7 end

8. w =
$$\frac{1}{K} \sum_{k=1}^{K} w_k$$

22

assume uniform prior p(w)

- Pros:
 - Good generalization
 - Online learning

BPM Equations

In practice...

- Easy to implement
- Parallel computation
- Cons:
 - Sampling scheme is only approximate
 - Computation grows with number of perceptrons

21

Outline

- 1. Intro to Dependency Parsing
- 2. Dependency Parsing as "Structured Classification"
- 3. Parser architecture
- 4. Discriminative Training of Parameters
- 5. Experiments
 - 1. Data & Features
 - 2. Evaluation on English, Czech, Arabic, Chinese

Data

Language	Tokens	Train Sent	Test Sent	Source
Arabic	116k	2100	449	Prague Arabic Dependency Treebank (v1)
Chinese	527k	14k	2080	Chinese Treebank (v5)
Czech	1.6M	73k	7507	Prague Dependency Treebank (v1)
English	1M	40k	2416	Penn Treebank

25

- Extract for every given pair of dependencies in Training Set:
 - ParentToken
 - ChildToken
 - ParentPOS

Features

- ChildPOS
- POS of intervening words
- Backoff features:
 - Czech/English: first five characters "stem"
 - · Arabic: stem from a morphological analyzer
 - Chinese: first character "stem"
- Combinations of above to achieve "polynomial kernels"

Evaluation

Evaluation Measures:

- Dependency Accuracy
- Root Accuracy/F1
- Complete Accuracy

Report dependency acc with/without punctuation What's best depends on application, e.g.:

- If used for semantic analysis, no need for punctuation

(root)

Т

like

NLP

- If used for sentence simplification, need punctuation

27

BPM vs. Perceptrons

Dependency Accuracy

	Arabic	Chinese	Czech	English
Bayes Point Machine	78.4	83.8	-	91.2
Best Perceptron	77.9	83.1	83.8	90.8
Worst Perceptron	77.4	82.6	83.7	90.5

Observation:

BPM result is always better than the best perceptron => averaging classifiers works!

Comparison to state-of-the-art

26

• BPM better than MIRA in Complete Acc, worse in Dependency/Root Acc.

ENGLISH	Dependency Accuracy	Root Accuracy	Complete Accuracy
Perceptron	90.6	94.0	36.5
MIRA (McDonald, 05)	90.9	94.2	37.5
Bayes Point Machines	90.8	93.7	37.6

28

Comparing results across languages

iout Punctu	uation	
	-	

RA	СМ	Language	DA	RA	СМ
90.0	9.80	Arabic	79.8	87.8	10.2
66.2	17.5	Chinese	73.3	66.2	18.2
88.3	29.2	Czech	83.6	75.5	30.1
93.7	35.1	English	90.8	93.7	37.6

What makes accuracy vary for different languages?

- language characteristics (e.g. inflectional morphology leading to data sparsity) - annotation scheme

With

- training data size

With Punctuation

DA

79.9

71.2

83.3

90.0

Language

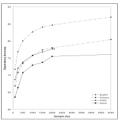
Arabic

Chinese

Czech

English

Comparing results across languages: Data reduction exp.



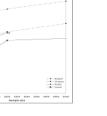
Observations:

- At all sample sizes, English wins

=> reasons: (1) homogeneous data (2) POS tagset encodes morphology -Czech has worse results, but improves with more data (not shown) -Why does Chinese and Arabic have similar results?

Thank you!

• Questions?



Summary/Conclusions

32

· View Dependency Parsing as "Structured Classification"

arg max F(x, y) arg max $\sum_{i=1}^{n} w \cdot h(i,j)$ $y \in GEN(x)$

- Bayes Point Machine training
 - Bayesian averaging of classifiers => Wcm
 - As simple to implement as the perceptron, yet competitive with large margin methods
- Results in four different languages
 - Further work on cross-language comparison needed

33

31

Data (more)

English: - Penn Treebank

- Extract dependencies by Yamada&Matsumoto (IWPT03) heuristics
- POS: use human-annotation for training, Toutanova's tagger for test

Chinese:

- Chinese treebank (v5)
- Extract dependencies using heuristics
- POS: use human-annotation for training, Toutanova's tagger for test (tagger has 92.0% token accuracy, 63.8% sentence accuracy on devset)

Czech:

- Prague Dependency Treebank (v1) - use human-annotated POS & auto-tagged morphological info in train/test

Arabic

- Prague Arabic Dependency Treebank (v1) - use human-annotated POS & auto-tagged morphological info in train/test

24