
Multilingual Dependency Parsing

using Bayes Point Machines

Kevin Duh

University of Washington

Joint work with:

Simon Corston-Oliver, Anthony Aue (Microsoft Research),

Eric Ringger (Brigham Young U.)

2

Motivation / Project Goal

Project goal:

Build a trainable dependency parser that is easily

portable to many languages (given annotated training

data)

Sentence in

Source Language
Sentence in

Target LanguageMT

parser

Application: Microsoft Research’s Machine Translation System:

3

Outline

1. Intro to Dependency Parsing

2. Dependency Parsing as “Structured

Classification”

3. Parser architecture

4. Training by Bayes Point Machines

5. Experiments

4

Constituency vs. Dependency Parsing

I like

adjective..

verb NounPhrasepnoun

S

peppers

noun

hot

(root) I like peppers.. hot

Dependency parse:
 - relationships between words

 - arrow indicates head-child relations

 - e.g. “hot” modifies “peppers”

 - e.g. “peppers” is argument of “like”

Constituency parse:
 - indicates phrase structures

 - context free grammar rules

5

Dependency Parsing for

different languages

! Projective dependency parses

! Non-projective: (crossing arrows)

! Free word-order languages (e.g. Czech, Arabic) have more non-
projective trees

! Czech treebank: 25% sentences, 2% dependencies, (Nivre, 2005)

(root) I like NLP..

(root) I saw a.. man yesterday suspicious-lookingwas who

6

Why Dependency Parsing?

! Some NLP systems need only word-to-word

relationship information, e.g.:

! Machine translation [Quirk et.al., ACL 05]

! Information extraction [Bunescu&Mooney, HLT05]

! Question answering [Punyakanok et.al, AIMath04]

! Ease of annotation

! No grammar building

! Native speakers can do the job

7

Outline

1. Intro to Dependency Parsing

2. Dependency Parsing as “Structured

Classification”

3. Parser architecture

4. Training by Bayes Point Machines

5. Experiments

8

“Structured classification”

! Conventional classification problem:

! Structured classification problem:

! Popular solutions:

! Graphical models

! M^3 Nets (Taskar), Structured SVM (Joachims)

F()x y
x : vector of input features

y : scalar output

F()x y
x : vector of input features

y : complex set of outputs (e.g. vector, parse)

 values in output may be interdependent

9

Dependency Parsing as

Structured Classification

! Input: features of a sentence

! Output: a whole dependency parse

! Structure constraints: parse is a directed

acyclic graph (tree) spanning all words

F() (root) I like NLP..I like NLP..

(root) I like NLP..
Malformed parse

10

A Solution to Structured

Classification

! x: input sentence

! GEN(x): generates all possible parses of x

! F(x,y): function that scores a parse

! ArgMax: choose output with the best parse

y!GEN(x)

ŷ=arg max F(x, y)

11

Challenges

! How to define and learn F(x,y)?

! How to efficiently compute ArgMax?

y!GEN(x)

ŷ=arg max F(x, y)

12

Outline

1. Intro to Dependency Parsing

2. Dependency Parsing as “Structured

Classification”

3. Parser architecture

1. Defining F(x,y)

2. ArgMax implementation (Decoder)

4. Training by Bayes Point Machines

5. Experiments

13

Defining F(x,y): decomposition

!
"" yj)(i,

j)score(i, maxarg
GEN(x)yy!GEN(x)

arg max F(x, y)

I

like NLP

(root)

21

7

3

0

2

90
41

(root) I like NLP

(root) I like NLP..

7

9

4

Total: 20

(root) I like NLP. .

4 2

1

Total: 7

Input: sentence and scores of edges Output: parse with max F(x,y)

Decompose by edges

14

Defining F(x,y): edge scores

y!GEN(x)

argmax w "h(i,j)
(i,j)!y

#!
"" yj)(i,

j)score(i, maxarg
GEN(x)y

-h(i,j): feature vector of pair word i and word j

-- define based on linguistic knowledge

-- specify different features for different languages

-w: weights

-- trained by machine learning methods (discriminatively)

15

Parser Architecture:

3 components

y!GEN(x)

argmax w "h(i,j)
(i,j)!y

#

Decoder
Weights

(to be trained)

Features

16

Decoder/ARGMAX

! Requirements:
! Must search all possible parses for a given sentence

! Must search fast

! ArgMax will be invoked multiple times in discriminative
training

! (Preferably) Don’t do exhaustive search, don’t enumerate
malformed parse

! We used:
! Eisner’s decoder for projective trees [Eisner, ACL96]

! Chu-Liu-Edmonds decoder for non-projective [McDonald,
et.al. HLT2005]

17

Outline

1. Intro to Dependency Parsing

2. Dependency Parsing as “Structured

Classification”

3. Parser architecture

4. Training by Bayes Point Machines

1. Version Space

2. BPM: Bayesian averaging of classifiers

5. Experiments

18

Weight space/Feature space

Duality and Version Space
x: feature space w: weight space

y(w’x1)>0

y(w’x2)>0

y(w’x3)>0

y(w’x4)>0

Version Space

Point in weight space

 <=> hyperplane in feature space

Point in feature space

 <=> hyperplane in weight space

(defines a halfspace)

19

SVM & Center-of-Mass

solutions in Version Space

Wcm

Wsvm

Version Space 1 Version Space 2

The SVM solution is the center of the largest ball enclosed by version space

The Center-of-Mass solution is the “middle” point of the version space

One may argue that Wcm is better than Wsvm in some situations 20

Bayes Point Machines (Herbrich, 2001)

! Motivation:

! Bayesian averaging of classifiers

! Find the Center-of-Mass solution (Wcm)

! Main Idea:

1. Approximate Wcm by sampling the version space

2. Sampling is achieved by running perceptron training on

randomly shuffled data

3. Each perceptron gives a w, which is then combined to form the

BPM solution

21

BPM Equations

! Ideal Bayesian averaging to achieve Wcm:

! In practice…

! version space is large => take finite sample of w

! assume uniform prior p(w)

wBPM = Ep(w |D)[w] !
1

K
wk

k=1

K

"

wBPM = Ep(w |D)[w] = p(wk | D)wk

k

|V (D)|

!

22

BPM

Pseudo-

code

INPUT:

xi : set of training points, i = 1,...,N

yi !{"1,1} : labels of xi

OUTPUT:

w: discriminatively trained weight vector

Linear model: ŷi = sign(w # xi)

0. for k = 1:K

1. Initialize wk =0; Randomly shuffle training data

2. for i = 1 :N

3. ŷi = sign(wk # xi)

4. if ŷi $ yi

5. wk = wk + yixi

6. Repeat until convergence

7. end

8. w =
1

K
wk

k=1

K

%

23

Bayes Point Machine

Pros & Cons

! Pros:
! Good generalization

! Online learning

! Easy to implement

! Parallel computation

! Cons:
! Sampling scheme is only approximate

! Computation grows with number of perceptrons

24

Outline

1. Intro to Dependency Parsing

2. Dependency Parsing as “Structured
Classification”

3. Parser architecture

4. Discriminative Training of Parameters

5. Experiments
1. Data & Features

2. Evaluation on English, Czech, Arabic,
Chinese

25

Data

Penn Treebank241640k1MEnglish

Prague Dependency

Treebank (v1)

750773k1.6MCzech

Chinese Treebank (v5)208014k527kChinese

Prague Arabic

Dependency Treebank

(v1)

4492100116kArabic

SourceTest

Sent

Train SentTokensLanguage

26

Features

! Extract for every given pair of dependencies in
Training Set:
! ParentToken

! ChildToken

! ParentPOS

! ChildPOS

! POS of intervening words

! Backoff features:
! Czech/English: first five characters “stem”

! Arabic: stem from a morphological analyzer

! Chinese: first character “stem”

! Combinations of above to achieve “polynomial
kernels”

27

Evaluation

Evaluation Measures:

 - Dependency Accuracy

 - Root Accuracy/F1

 - Complete Accuracy

Report dependency acc with/without punctuation

What’s best depends on application, e.g.:

 - If used for semantic analysis, no need for punctuation

 - If used for sentence simplification, need punctuation

(root) I like NLP..

28

Comparison to state-of-the-art

37.693.790.8Bayes Point

Machines

37.594.290.9MIRA

(McDonald, 05)

36.594.090.6Perceptron

Complete

Accuracy

Root

Accuracy

Dependency

Accuracy

ENGLISH

! BPM better than MIRA in Complete Acc,

worse in Dependency/Root Acc.

29

BPM vs. Perceptrons

83.7

83.8

-

Czech

90.582.677.4Worst Perceptron

90.883.177.9Best Perceptron

91.283.878.4Bayes Point Machine

EnglishChineseArabic

Dependency Accuracy

Observation:

 BPM result is always better than the best perceptron

 => averaging classifiers works!

30

Comparing results across

languages

35.193.790.0English

29.288.383.3Czech

17.566.271.2Chinese

9.8090.079.9Arabic

CMRADALanguage

37.693.790.8English

30.175.583.6Czech

18.266.273.3Chinese

10.287.879.8Arabic

CMRADALanguage

With Punctuation Without Punctuation

What makes accuracy vary for different languages?

 - language characteristics (e.g. inflectional morphology leading to data sparsity)

 - annotation scheme

 - training data size

31

Comparing results across

languages: Data reduction exp.

Observations:

 - At all sample sizes, English wins

 => reasons: (1) homogeneous data (2) POS tagset encodes morphology

-Czech has worse results, but improves with more data (not shown)

-Why does Chinese and Arabic have similar results?
32

Summary/Conclusions

! View Dependency Parsing as “Structured

Classification”

! Bayes Point Machine training

! Bayesian averaging of classifiers => Wcm

! As simple to implement as the perceptron, yet competitive

with large margin methods

! Results in four different languages

! Further work on cross-language comparison needed

y!GEN(x)

arg max F(x, y)
y!GEN(x)

argmax w "h(i,j)
(i,j)!y

#

33

Thank you!

! Questions?

34

Data (more)
English:

 - Penn Treebank

 - Extract dependencies by Yamada&Matsumoto (IWPT03) heuristics

 - POS: use human-annotation for training, Toutanova’s tagger for test

Czech:

 - Prague Dependency Treebank (v1)

 - use human-annotated POS & auto-tagged morphological info in train/test

Chinese:

 - Chinese treebank (v5)

 - Extract dependencies using heuristics

 - POS: use human-annotation for training, Toutanova’s tagger for test

 (tagger has 92.0% token accuracy, 63.8% sentence accuracy on devset)

Arabic:

 - Prague Arabic Dependency Treebank (v1)

 - use human-annotated POS & auto-tagged morphological info in train/test

