
The JHU Machine Translation Systems for WMT 2018

Philipp Koehn Kevin Duh Brian Thompson
Johns Hopkins University

{phi,brian.thompson}@jhu.edu kevinduh@cs.jhu.edu

Abstract
We report on the efforts of the Johns Hopkins
University to develop neural machine transla-
tion systems for the shared task for news trans-
lation organized around the Conference for
Machine Translation (WMT) 2018. We devel-
oped systems for German–English, English–
German, and Russian–English. Our novel
contributions are iterative back-translation and
fine-tuning on test sets from prior years.

1 Introduction

We carried out two relatively independent ef-
forts on German–English language directions and
Russian–English, using the Marian and Sockeye
neural machine translation toolkits, respectively.

The German–English systems outperformed
last year’s best result (37.0 vs. 35.1 (+1.9) for
German–English, 29.1 vs. 28.3 (+0.8) for Eng-
lish–German), but fell short against this year’s best
performing systems (45.3 vs. 48.4 (-3.1) and 43.4
vs. 48.3 (-4.9), respectively)1. The best mod-
els this year used the Transformer model instead
of the recurrent neural networks that our models
are based on. Our novel contributions are iterative
back-translation and fine-tuning on prior test sets.

For Russian–English, we carried out extensive
hyperparameter search, with different numbers of
layers, embedding and hidden state sizes, and
drop-out settings.

2 German–English and English–German

The systems for the German–English language
pairs were developed with the Marian toolkit
(Junczys-Dowmunt et al., 2018). We developed
models with both shallow and deep architectures,
based on recurrent neural networks. We ensem-
bled 4 independent runs and reranked with right-
to-left models (output in reverse order). We saw

1Scores reported at http://matrix.statmt.org/

improvements with iterative back-translations and
fine tuning on test sets from previous years, as well
as use of the Paracrawl corpus (unfiltered).

A big challenge for system development are
long training times (a month on a single GTX
1080ti GPU) which limited our ability to exploit
the Paracrawl corpus. Because of this, we also
started system development almost a year ago, us-
ing the training data from last year for the most
part. All scores reported in this Section are on
newstest2017 with case-sensitive BLEU.

2.1 Shallow System Development

We started with shallow systems similar to Edin-
burgh’s submission two years ago (Sennrich et al.,
2016a). It uses byte pair encoding with a vocab-
ulary of 50,000 (Sennrich et al., 2016c) and back-
translation of the news2016 monolingual corpus
(Sennrich et al., 2016b), about twice the size of
the original training data.

For each training run, we compare different
ways to obtain a single best model.

• Use the single model that performed best on
the dev set (newstest2016).

• Use checkpoint ensembling to obtain the 4 or
8 best models, and decode the test set with an
ensemble of these models.

• Merge the models obtained by checkpoint en-
sembling into a single model.

For German–English, we achieved slightly bet-
ter results with an ensemble of independent mod-
els rather than a merged model (about +0.2
BLEU), while for English–German they perform
similarly. Ensembling of either kind clearly out-
performs the single best model.

We then built ensembles of the resulting sys-
tems for the 4 independent runs. This gives gains



Shallow German–English
single ensemble merged

4 8 4 8
run 1 31.8 32.3 32.5 32.2 32.3
run 2 32.4 32.6 32.8 32.5 32.7
run 3 32.8 32.8 32.7 32.5 32.5
run 4 32.2 32.9 32.9 32.7 32.7
ensemble 33.2 33.2 33.3
r2l rerank 33.7

Shallow English–German
single ensemble merged

4 8 4 8
run 1 25.9 26.2 26.2 26.1 26.1
run 2 25.5 26.1 26.1 25.9 25.9
run 3 25.6 25.6 25.7 25.6 25.7
run 4 25.3 25.7 25.8 25.8 25.8
ensemble 26.4 26.4 26.5
r2l rerank 27.3

Deep German–English
single ensemble merged

4 8 4 8
run 1 34.5 34.6 34.4 35.1 35.1
run 2 34.2 34.3 34.2 34.3 34.3
run 3 34.5 34.3 34.3 34.5 34.5
run 4 34.0 34.3 34.3 34.9 34.6
ensemble 34.9 35.6 35.6
r2l rerank 35.7

Deep English–German
single ensemble merged

4 8 4 8
run 1 27.7 28.0 28.1 27.8 27.9
run 2 27.7 27.8 27.7 27.8 27.7
run 3 28.0 27.8 27.9 27.8
run 4 26.1 27.5 27.8 27.8 27.9
ensemble 28.3 28.3 28.3
r2l rerank 28.9

Table 1: Shallow and deep systems for German-English with Marian. 4 independent training runs, with
checkpoint ensemble, and merging the checkpoint ensemble into a single model (averaging parameters).
Ensemble of the runs, with right-to-left reranking (4 independent right-to-left runs).

of about +0.5 over the merged checkpoint ensem-
bles. Notable, the ensemble over the single sys-
tems yields essentially the same quality.

The final improvement is right-to-left rerank-
ing (Liu et al., 2016) where we built also 4 inde-
pendent systems on the data sets with the output
word order reversed. This gave improvements of
+0.5 for German–English and +0.9 for English–
German. For detailed results, see Table 1.

2.2 Deep System Development

System development for deep models is essen-
tially the same as for shallow models. We used the
same data sets, also carried out 4 independent runs
for each language direction, carried out checkpoint
ensembling for each run, combined the resulting
models in a ensemble and performed reranking
with right-to-left models.

The models are similar to Edinburgh’s submis-
sion from last year (Sennrich et al., 2017). They
use 4 alternating encoder layers and 4 decoder
layers, LSTM cells, dropout, layer normalization,
tied embeddings, and Adam optimization.

Detailed results are also in Table 1. Merging
the checkpoint models worked better for German–

English, and about the same for English–German,
compared to decoding with the multiple models.
Ensembling the 4 independent runs yielded solid
gains (about +0.5), but reranking helped substan-
tially only for English–German (+0.6).

2.3 Iterative Backtranslation

The back-translated data was generated with a sin-
gle shallow system trained on the parallel data.
Since we obtained much better performance by
using this back-translated data, employed deep
model architecture and ensembled independent
runs, we have now a much better system to back-
translate data.

Note that this second round of backtranslation
uses monolingual data in both languages. Starting
with a German–English system (trained on paral-
lel data), we translate monolingual German news
text. We then use this synthetic parallel corpus to
build a English–German system (in addition to the
provided parallel data). We now use this English–
German system to translate monolingual English
text, yielding again a synthetic parallel corpus to
be used in the final system.

We carried out the same system development



Iterative Deep German–English
single ensemble merged

4 8 4 8
run 1 35.5 35.6 35.6 35.6 35.6
run 2 35.3 35.6 35.6 35.7 35.6
run 3 35.6 35.6 35.5 35.6 35.7
run 4 35.1 35.5 35.4 35.6 35.7
ensemble 36.1 36.1 36.1
r2l rerank 36.5

Iterative Deep English–German
single ensemble merged

4 8 4 8
run 1 28.5 28.5 28.5 28.5 28.5
run 2 28.1 28.2 28.3 28.3 28.3
run 3 27.8 28.1 28.3 28.3 28.4
run 4 28.6 28.5 28.6 28.7 28.4
ensemble 29.1 29.0 28.9
r2l rerank 29.4

Table 2: System development with deep models us-
ing iterative back-translation.

as for the shallow and deep models. See Table 2
for details. Table 3 shows how the quality of the
back-translation impacts the final system’s perfor-
mance. This table is also reported in our paper on
iterative back-translation (Hoang et al., 2018).

2.4 Use of Paracrawl Corpus
For German–English only, we added the
Paracrawl corpus without any filtering to the
training data used up to this point (parallel data
plus iterative back-translated monolingual data).
We only completed one training run, and obtained
36.3 BLEU (ensembled 4 checkpoints) as opposed
to 35.6–35.7 for models without Paracrawl.

We trained this model for more than 2 months
on a single GTX1080ti GPU. The best dev score
(newstest2016) after 2 weeks was 43.0, after 4
weeks 43.3, after 6 weeks 43.7, and after 10 weeks
43.8. So, it seems to be necessary to train such a
model for at least a month and a half.

Adding this model to the ensemble gives a score
of 36.6. Weighting the Paracrawl model as much
as all the 4 models without gives slightly higher
score than equal weights (36.5 for equal weights).

2.5 Fine Tuning on Prior Test Sets
Finally, we fine tuned the model of one of the four
iterative backtranslation runs towards the test sets

German–English
back final

no back-translation - 29.6
10k iterations 10.6 29.6 (+0.0)
100k iterations 21.0 31.1 (+1.5)
convergence 23.7 32.5 (+2.9)
re-back-translation 27.9 33.6 (+4.0)
+ deep ensemble 36.1 (+6.2)

English–German
back final

no back-translation - 23.7
10k iterations 14.5 23.7 (+0.0)
100k iterations 26.2 25.2 (+1.5)
convergence 29.1 25.9 (+2.2)
re-back-translation 34.8 27.0 (+3.3)
+ deep ensemble 29.0 (+5.3)

Table 3: Impact of the quality of the back-
translation system on the final system performace.
Note that the back-translation systems run in the
opposite direction and are not comparable to the
numbers in the same row. The deep ensemble
scores reported here match results in Table 2.

German–English
Setup BLEU

iterative back runs 1–4 35.6–35.7
run with Paracrawl 36.3
ensemble 36.6
+ fine-tuned 37.0

Table 4: Final refinements: a model trained with
the unfiltered Paracrawl corpus, an ensemble of
the 4 iterative back-translation models, plus the

from previous years. We trained for 3 epochs with
a learning rate of 0.0003. Adding the resulting
model to the ensemble gives an additional gain of
+0.4, resulting in a final score of 37.0.

3 Russian–English

3.1 Data

We use the provided bitext for training neural ma-
chine translation systems (NMT) in a constrained
setting. The bitext is first pre-processed via
Joshua’s2 normalize.pl, followed by tokenize.pl
and lowercase.pl. The training data is additionally
filtered to sentences less than 80 tokens, result-

2http://joshua.incubator.apache.org/

http://joshua.incubator.apache.org/


ing in 37M sentence pairs (777M English tokens,
725M Russian tokens). We use newstest2016
(2998 sentence pairs) as the development set for
early-stopping during NMT training. For contin-
ued training experiments, we further used a con-
catenation of newstests from 2012 to 2016 (14822
sentence pairs). We did not exploit any addi-
tional monolingual data, either by itself or via
back-translation. After tokenization and lower-
casing, the training data consists of 4.6M Rus-
sian and 3.7M English vocabulary types. We ran
BPE3independently for each language, with 50K
merge operations each.

All results in this section are reported on
newstest2017 (3001 sentence pairs), which is
treated as the initial test set. Unless otherwise
specified, we report BLEU scores from multi-
bleu.perl directly computed on lower-cased tok-
enized English reference.

3.2 Setup
In this task, we use Sockeye version 1.18.14

(Hieber et al., 2018) as our NMT engine. We ex-
plored a three-step approach to model building:

1. Hyperparameter search: First, we trained
multiple NMT models using different hyper-
parameter settings (e.g. #layers, embedding
size) on the 37M-sentence training bitext.

2. Continued training: Second, we attempted to
improve the independent models in Step 1 via
continued training on the newstest2012-2016
data, which more closely matches the test set
in terms of domain.

3. Ensembles: Finally, we took the best models
in Step 2 and performed ensemble decoding.

All our NMT systems above are sequence-to-
sequence models using LSTM units. For training,
we use the ADAM optimizer, with training set per-
plexity as the objective. The initial learning rate is
set to 0.0003, and reduces by a factor of 0.5 after
3 checkpoints without improvement of develop-
ment perplexity (”plateau-reduce” scheduler). The
checkpoint is computed at a frequency of every
10k batches; with a batch size of 128 sentences,
this corresponds to 1280k sentences, or 1/29th of
the training data. After 8 checkpoints without im-
provements, the training is deemed to have con-
verged. Most training runs converged between 30

3https://github.com/rsennrich/subword-nmt/
4https://github.com/awslabs/sockeye

to 100 checkpoints, which corresponds to 1 to 3
epochs over the training data. We then use the
checkpoint with the best validation perplexity as
the chosen model for each run. For decoding, we
use beam search with the default beam size of 5.

3.3 Hyperparameter Search
We searched over four types of hyperparameters:

• The number of stacked LSTM layers in the
encoder and decoder: layer={1, 2, 3}

• The dimension of the word embeddings in
source and target: embed={500, 1000}

• The number of hidden units in each LSTM:
embed={500, 1000}

• The dropout rate for the embedding layer:
dropout={0.1, 0.3}

The goal is to quantify how sensitive the results
are to hyperparameter settings, and to find the best
model for submission. We train systems for a sam-
ple of 9 different hyperparameter settings from the
3× 2× 2× 2 = 24 total combinations, and sum-
marize their results in Table 5. For convenience of
exposition, we label these models with id a-i.

Observation 1: We observe there is a large vari-
ance of test-bleu scores among models a-i, ranging
from 31.1 for model a (best) to 27.3 for model i
(worst). This suggests that hyperparameter search
is very important for building strongly performing
systems, even for settings that are not too different.

For example, compare the smallest model (e),
which has 80M trainable weights, to the sec-
ond smallest model (a), which has 85M trainable
weights: the only difference between the two is
one extra layer and 5M extra weights, yet the test-
bleu changes from 29.5 (e) to 31.1 (a). Simi-
larly, compare model c (137M weights) to model
g (141M weights): they differ only in one extra
layer, yet test-bleu varies as much as 30.1 (c) to
27.9 (g). The largest model (f), which has 200M
trainable weights, ranks in the middle in terms of
test-bleu among the 9 models.

While it may be tempting to extract ”suggested
hyperparameter settings” from Table 5, we recom-
mend a more robust strategy is to perform hyper-
parameter search to the extent possible.

Observation 2: We find that perplexity corre-
lates well with bleu when ranking models in hy-
perparameter search. To a large extent, mod-
els a-d, which have the best training perplexities

https://github.com/rsennrich/subword-nmt/
https://github.com/awslabs/sockeye


Hyperparameter Setting Results
id layer embed hidden dropout test-bleu step train-ppl dev-ppl dev-bleu
a 2 500 500 .1 31.1 91 5.20 9.13 27.7
b 2 1000 500 .3 30.3 61 5.53 9.48 26.8
c 2 1000 500 .1 30.1 58 5.37 9.39 27.3
d 1 1000 1000 .3 29.9 57 5.37 8.98 27.2
e 1 500 500 .1 29.5 72 5.68 10.36 26.2
f 3 1000 1000 .1 28.2 28 6.37 10.35 25.8
g 3 1000 500 .1 27.9 32 5.99 11.15 25.2
h 1 1000 500 .1 27.4 36 6.28 11.92 24.7
i 1 1000 500 .3 27.3 34 6.67 12.25 24.4
a’ 2 500 500 .1 29.1 110 5.26 8.86 27.1
e’ 1 500 500 .1 28.0 109 5.78 10.1 25.3

Table 5: Hyperparameter search results. The model with id=a is a sequence-to-sequence model with 2
layer of LSTMs in both the encoder and decoder, 500-dimensional source and target word embeddings
(embed), 500 hidden units in each of the LSTM, and 0.1 dropout rate at the embedding layer. This
model achieved 31.1 BLEU (test-bleu) on the test set (newstest2017) and comes from 91th step (or
checkpoint) of the training run, which achieved a training set perplexity (train-ppl) of 5.20, a develop-
ment set perplexity (dev-ppl) of 9.13, and a development set BLEU score (dev-bleu) of 27.7. All models
with id a-j are trained on the BPE bitext with 50k merge operations in Russian and 50k merge operations
in English, and are ranked in this table in terms of test-bleu. The last two rows represent additional
experiments with model a’ and e’, which is similar to model a and e but are trained on BPE bitext with
30k merge operations in Russian and 50k merge operations in English.

(train-ppl) and development perplexities (dev-
ppl), also achieve the best BLEU scores (dev-
bleu, test-bleu). This suggests that for hyperpa-
rameter search purposes, optimizing and validat-
ing based on perplexity is a sufficiently good sur-
rogate for BLEU, which is expensive to compute.

Observation 3: The last two rows of Table 5
experiments with a different number of BPE op-
erations for the source side (Russian). Models
a’ and e’ are similar to models a and e, except
that they use 30k merge operations rather than the
50k we used in all other experiments. The goal
is to test the impact of subword units in hyper-
parameter search. The train-ppl and dev-ppl of
these 30k models are better than or on-par with
the 50k counterparts, but the BLEU scores appear
to be worse. It is somewhat difficult to conclude
with only these two datapoints, but we think that
perhaps hyperparameter search with different sub-
word units need to be conducted separately. Even
on the same dataset, hyperparameters that work
well in one version of the BPE data may not nec-
essarily work well in another version of BPE.

Observation 4: It appears that the better models
(a-e) seem to have trained longer; their final check-

points are chosen at a relative high number of
steps. For example, model (a) comes from check-
point 91, which corresponds to 3 epochs over a
37M sentence dataset. In Figure 1, we plot the
development BLEU for each of the training runs
over time. Our models train for a maximum of 5
days; this is when the learning rate becomes mi-
nuscule and the training process determines con-
vergence. We observe that BLEU continuously
improves (while at a slower pace), even towards
the end of the training process. This suggests that
it might be possible to extract further BLEU gains
by adjusting the learning rate and convergence cri-
teria, encouraging the training to continue longer.

3.4 Continued Training

The training bitext comes from multiple domains,
while the focus of the test set is news. One may
treat this problem as domain adaptation. Here, we
experiment with continued training5 (Luong and
Manning, 2015). The idea is:

Phase 1: Train a model until convergence on the
multi-domain training bitext, as done in Sec 3.3.

Phase 2: Use the model weights from Phase 1

5Also called fine-tuning by some works.



Figure 1: The 9 curves represent the change in
BLEU scores when training each of models in Ta-
ble 5. (y-axis: dev-bleu, x-axis: time in hours)
Note that BLEU improves rapidly in the first 20
hours. The rate of improvement slows down but
the improvement does not stop: BLEU continually
improves even at hour 100 (4 days of training).

id base 3 epochs ∆ 9 epochs ∆

a 31.1 31.7 0.6 28.4 -2.7
b 30.3 31.5 1.2 27.8 -2.5
c 30.1 31.3 1.2 27.3 -2.8
d 29.9 31.3 1.4 27.8 -2.1
e 29.5 30.3 0.8 27.8 -1.7
g 27.9 29.2 1.3 25.9 -2.0
h 27.4 29.2 1.8 25.4 -2.0
i 27.3 29.2 1.9 26.1 -1.2

Table 6: Continued Training test-bleu on
newstest2017. Base is the baseline number for
each model from Table 5. The BLEU scores for
continued training after 3 or 9 epochs are shown,
along with their difference ∆ against base. Con-
tinued training with few epochs improve results.

to initialize a new training process on adaptation
data. This new training process usually only pro-
ceeds for a few steps. This is the Continued Train-
ing model, and can be used to decode the test set.

In Phase 2, we use newstest2012-2016 as the
adaptation training data. Part of it overlaps with
the dev data (newstest2016), so the training pro-
cedure may constantly improve both train-ppl and
dev-ppl, and never decide to converge. We there-
fore impose a hard-stop to prevent overfitting.

First, we experimented with stopping continued
training after 3 epochs over the adaptation data.
This corresponds to 350 batch updates (batch size
is 128 sentences). ADAM is used as the optimizer,
and the learning rate is fixed at a constant 0.0003.

The test-bleu scores are shown in Table 6. We
observe that continued training is very effective,
improving BLEU scores for all models by 0.6 to

ensemble test-bleu ∆

a+b+c+d+e+f (6) 33.63 1.93
a+b+c+d+e (5) 33.57 1.87
a+b+c+d (4) 33.13 1.43
a+b+c (3) 33.13 1.43
a+b (2) 32.89 1.19

Table 7: Ensemble decoding test-bleu on
newstest2017. We use the models from Table 6.
The difference ∆ is gain with respect to the best
single model (a), with BLEU 31.7.

1.9 points. For example, model (a) improves from
31.1 to 31.7, and model (b) improves from 30.3
to 31.5 on the newstest2017 test set. However,
if we train on adaptation data for too long, the re-
sults degrade. When continued training runs for 9
epochs (1150 batch updates), model (a) degrades
to 28.4 The degradation is consistent for all mod-
els. This suggests that learning rate and amount of
batch updates are important hyperparameters.

3.5 Ensembles

Finally, we performed ensemble decoding with the
best continued training models obtained in the pre-
vious step. Table 7 shows a 6-model ensemble im-
proves 1.93 BLEU over the best single model (a).
This reaffirms the effectiveness of ensembles.

3.6 Final Russian–English Results

We submitted the 6-model ensemble in Table 7
as our final system in the official evaluation. As
shown before, this model achieved 33.63 BLEU
via multi-beu.perl on a tokenized and lowercased
version of newstest2017. We also computed
the official NIST-BLEU with the detokenized ver-
sions: it achieves 0.3195 (cased) and 0.3309 (low-
ercased) on newstest2017.

This result is only slightly improves upon our
2017 Moses SMT submission (Ding et al., 2017),
which achieves 0.3129 (cased) and 0.3246 (lower-
cased) NIST-BLEU. We were interested in explor-
ing the effectiveness of NMT under constrained
data conditions (e.g. without backtranslation on
large monolingual data) and standard sequence-
to-sequence setups (e.g. withough reranking with
left-to-right features or SMT/NMT hybrids). We
imagine that these enhancements are needed if fur-
ther gains are to be desired; unfortunately we may
need to pay the cost of forgoing the simplicity of
standard sequence-to-sequence NMT models.



References
Shuoyang Ding, Huda Khayrallah, Philipp Koehn,

Matt Post, Gaurav Kumar, and Kevin Duh. 2017.
The jhu machine translation systems for wmt 2017.
In Proceedings of the Second Conference on Ma-
chine Translation, Volume 2: Shared Task Papers,
pages 276–282, Copenhagen, Denmark. Association
for Computational Linguistics.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2018. The sockeye neural machine translation
toolkit at amta 2018. In Annual Meeting of the As-
sociation for Machine Translation in the Americas
(AMTA).

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza
Haffari, and Trevor Cohn. 2018. Iterative back-
translation for neural machine translation. In Pro-
ceedings of the 2nd Workshop on Neural Machine
Translation and Generation, pages 18–24. Associa-
tion for Computational Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Lemao Liu, Masao Utiyama, Andrew Finch, and
Eiichiro Sumita. 2016. Agreement on target-
bidirectional neural machine translation. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
411–416, San Diego, California. Association for
Computational Linguistics.

Minh-Thang Luong and Christopher Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In Proceedings of the Inter-
national Workshop on Spoken Language Translation
(IWSLT), pages 76–79.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield, An-
tonio Valerio Miceli Barone, and Philip Williams.
2017. The university of edinburgh’s neural MT
systems for wmt17. In Proceedings of the Sec-
ond Conference on Machine Translation, Volume 2:
Shared Task Papers, pages 389–399, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Edinburgh neural machine translation sys-
tems for wmt 16. In Proceedings of the First
Conference on Machine Translation, pages 371–
376, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016c. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.


