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Abstract
In this year’s IWSLT evaluation campaign (TALK task), we
applied three adaptation techniques: (1) training data se-
lection based on information retrieval approach, (2) sub-
sentence segmentation, and (3) language model adaptation
using source-side of the test set. We also applied a sequen-
tial labeling method based on conditional random fields for
restoring punctuation markers in the ASR input condition.
We present and discuss these techniques in this paper, based
on the automatic evaluation results.

1. Introduction
Recent advances in statistical machine translation (SMT) re-
search are based on large-scale bilingual and monolingual
language resources in the target domains (mainly news and
parliament). On the other hand, for other resource-poor do-
mains, building a good SMT system using only the limited
language resources is not easy. Then the problem of domain
adaptation arises: can out-of-domain large-scale language
resources compensate for limited in-domain resources?

This year’s IWSLT TALK task supplied a limited in-
domain resource (less than 0.9M tokens) compared to oth-
ers (260M tokens total). In such a condition, a simplest ap-
proach that uses all corpora equally for the translation model
may introduce some biases towards out-of-domain vocabu-
lary and linguistic expression. Thus, we tried three adapta-
tion approach in a standard phrase-based SMT framework:

(1) training data selection for the translation model based
on information retrieval (IR) [1]

(2) bilingual sentence segmentation into (pseudo-)caption
units

(3) language model adaptation using source-side of the
test set [2].

An important aspect in IWSLT evaluation is the trans-
lation of automatic speech recognition (ASR) results. It in-
troduces two problems to SMT: ASR errors and the lack of
punctuation. The first problem is one of the most challenging
problem in MT and other spoken language processing appli-
cations; ASR errors usually bring more errors in the language
processing pipeline. A common approach for the ASR error

problem is the use of multiple ASR candidates in n-bests or
lattices. The second problem is also important in MT, be-
cause MT outputs should be human-readable and therefore
require appropriate punctuation. Our system this year tack-
les the second problem of punctuation restoration.

The remainder of this paper presents and discusses our
approaches in detail.

2. Domain Adaptation
2.1. IR-based training data selection

Out-of-domain resources are expected to include domain-
independent vocabulary and linguistic expressions that can
be useful to compensate for an insufficient amount of re-
sources in the target domain. However, using much larger
amount of out-of-domain data might be harmful to domain-
specific translation. We then selectively use the out-of-
domain data according to their similarity to the target do-
main, by the following IR-based method [1].

First we collect all n-grams in the in-domain bitext for
both sides of the language pair. For each language, a hash
table is created where the key represents the n-gram and the
value represents the count of this ngram in the training data.
Then, an out-of-domain sentence is selected if it contains an
ngram in this hash, and the hash value is decremented. We no
longer retrieve matches if the hash value becomes zero, sim-
ilar to the Joshua subsampling technique [3]. The rationale
for this is to have a balanced coverage of ngrams. This proce-
dure is performed independently for each language side, and
the union of the selected sentences forms the IR bitext (i.e.
we take the sentence pair if at least one side is retrieved).
Note this method differs from the original IR approach [4] in
two important aspects: (1) we sample based on training not
test data, and (2) this allows us to sample on both sides of
the language pair rather than just the source side. We think
working with the training data is a practically efficient solu-
tion and allows for new IR approaches.

2.2. Bilingual Sub-sentence Segmentation

Another possible problem in the talk translation is a mis-
match in transcript style: transcripts of TED talks are seg-
mented into sub-sentence units (captions) and each line in
TED transcripts is not a complete sentence. Indeed, the
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Figure 1: LM weight optimization using source side.

number of tokens in each aligned line is 29 on average in
the supplied out-of-domain bitext, but it is 10 in the in-
domain bitext. We try to fill this gap by segmenting out-of-
domain transcripts into similar sub-sentence units based on
in-domain resources.

First we restore sentences from in-domain sub-sentences,
based on punctuations: periods (.) and question marks
(?). Then we train a linear support vector machine (SVM)1

classifying sub-sentence boundaries in both language sides,
using length-based, word-based, and class-based features.
Here, there are too many sub-sentence boundary candi-
dates, so we limit them to ones which satisfy a con-
straint same as Moses phrase extraction constraint over
grow-diag-final word alignment. By this constraint,
we only consider small number of boundary candidates that
are consistent with word alignment. The length-based fea-
tures consist of lengths of current sub-sentence units and
original sentences in both language sides. The word- and
class-based features are unigrams and bigrams of words and
word classes around the boundary candidate. The word
classes are detemined by mkcls.

2.3. LM Mixture Weight Optimization towards Test Set

The third problem that we focus on is the language model
(LM). A common method for LM adaptation is weighted in-
terpolation of multiple LMs from different resources. The
weights are determined by the perplexity on some held-out
data in the target language, or, in recent SMT framework,
they can be optimized through system-wide optimization
like minimum error rate training (MERT). In the last year’s
IWSLT evaluation, the FBK team optimized the weights of
the target-side LMs using the source side input sentences
with promising results [2]. Although their LM weight op-
timization was sentence-by-sentence, we simply determine
one set of LM weights for the whole test set according to the
test set perplexity, using SRILM’s compute-best-mix.
The procedure is illustrated in Figure 1.

1We used LIBOCAS (http://cmp.felk.cvut.cz/˜xfrancv/ocas/html/).

Table 1: Features for punctuation restoration. li is a punctu-
ation labels for the i-th word wi and ci is the word class of
wi.

word-based feature class-based feature
(wi, li) (ci, li)

(wi+1, li) (ci+1, li)

(wi, wi+1, li) (ci, ci+1, li)

(wi−1, wi, li) (ci−1, ci, li)

(wi−2, wi−1, wi, li) (ci−2, ci−1, ci, li)

(wi−1, wi, wi+1, li) (ci−1, ci, ci+1, li)

(wi, wi+1, wi+2, li) (ci, ci+1, ci+2, li)

(wi−2, wi−1, wi, wi+1, li) (ci−2, ci−1, ci, ci+1, li)

(wi−1, wi, wi+1, wi+2, li) (ci−1, ci, ci+1, ci+2, li)

(ci−2, ci−1, ci, ci+1, ci+2, li)

3. Punctuation Restoration

An important problem on this year’s task is punctuation
restoration for the ASR inputs. We tackle the problem as a
sequential labeling problem like part-of-speech tagging and
sentence boundary detection, using conditional random fields
(CRFs)2 [5, 6]. We define four punctuation labels for ASR
1-best words: PERIOD (.), COMMA (,), QUESTION (?),
and NO PUNC (no punctuation marks), which represent the
punctuation mark following the words. Features used on the
i-th word wi with its label li are listed in Table 1, where
ci represents the word class of wi determined by mkcls.
Once the labeling model is trained, we can restore punctua-
tion marks in ASR 1-best results by applying the model.

Lu and Ng [7] proposed more sophisticated CRF-based
punctuation restoration 3. Our method is almost the same as
their baseline by linear-chain CRFs, with a small difference
in features.

4. Experiment

4.1. Resources

4.1.1. In-domain and Out-of-domain Corpora

We used TED (in-domain), Europarl, UN, and News Com-
mentary (out-of-domain, hereafter OOD) corpora for train-
ing4. For the out-of-domain corpora, we applied IR-based
sentence selection described in 2.1 and retrieved 364,330
sentences (hereafter IR). IR was further segmented into
sub-sentence units by the segmenter described in 2.2, and
899,502 sub-sentences were obtained (hereafter IR-seg).
Corpus statistics are summarized in Table 2, and the data flow
is illustrated in Figure 2.

2We used CRF++ (http://crfpp.sourceforge.net/).
3We independently developed the CRF-based method prior to its publi-

cation.
4We found some problematic sentences in 109 corpus, so we completely

omitted it.



Table 2: Corpus statistics.
Corpus #sentences #tokens (En) #tokens (Fr)
In-domain
TED 83,923 841,107 893,381
Out-of-domain
OOD 9,041,376 262,633,459 300,994,876
(Europarl) 1,726,535 47,955,610 52,722,393
(UN) 7,230,217 212,612,925 245,848,393
(News) 84,624 2,064,924 2,424,090
IR 364,330 8,561,030 9,466,005
IR-seg 899,502 8,561,030 9,466,005

TED

IR

IR-seg

OOD
(Europarl+UN+News)

n-gram hash

sub-sentence segmenter

IR-based selection (2.1)

Sub-sentence segmentation (2.2)

Figure 2: Data flow in the experiment.

4.1.2. Preprocessing

We used tokenizer.perl in the WMT baseline system5,
with a slight modification for quotation marks6. To avoid un-
derflow in word alignment, long sentence pairs whose num-
ber of tokens in either language side exceeded 64 were fil-
tered out.

4.2. Baseline System

Our baseline system almost followed the WMT baseline sys-
tem, using the corpora above. The word alignment was esti-
mated by mgizapp-0.6.3 with grow-diag-final-and heuristics
or berkeleyaligner unsupervised-2.1 (experimentally chosen
according to the cross-validation performance below). The
LMs were word 4-gram models trained using SRILM-1.5.9:
four corpus-wise LMs from TED, Europarl, UN, and News.
The decoder was moses-2010-04-26 and its parameters were
optimized to the development set (only Reference, no ASR)
by mert-moses-new.pl.

5http://www.statmt.org/wmt10/baseline.html
6tokenizer.perl replaces ‘ (left quotation mark) with ’ (right quo-

tation mark) but we didn’t change them.

4.3. Results

4.3.1. Development Cross Validation Results and Selected
Configurations

We tested various combinations of the adaptation approach
described so far in our development phase; The supplied de-
velopment set was divided into two non-overlapping sets7

and used for cross validation.
Table 3 shows the cross validation results of several con-

figurations, varying i) training data of phrase table, ii) target
for LM mixture weight optimization, and iii) word alignment
method. Metrics are BLEU, TER, and BLEU - TER + 1 (B-
T+1). We chose the best one as our primary configuration,
and three contrastive configurations to the primary.

4.3.2. Results

Official automatic evaluation results for our primary and con-
trastive runs and additional results in BLEU, TER, and B-
T+1 are shown in Table 4. The evaluation on ASR was based
on automatic sentence segmentation tool supplied by the or-
ganizers [8]. Our primary run was the best among our sub-
mitted runs but not among all methods compared in 4.3.1.

Through our significance test [9], differences among
most methods were not significant – significant differences
were observed only between the methods with out-of-domain
data (OOD, IR, and IR-seg) and those with only TED data.

4.3.3. Evaluation of Punctuation Restoration

To investigate the effect of our punctuation restoration, we
conducted additional experiment using original ASR results
(i.e., without punctuation) as decoder inputs. We compared
the BLEU scores in three different conditions: 1) case+punc:
with true casing and punctuation, 2) case+no punc: with true
casing but without punctuation, 3) no case+no punc: with-
out casing and punctuation.

The results are shown in Table 5. The case+punc re-
sults show our method successfully restored correct punc-
tuation markers. Even in punctuation insensitive evaluation
(case+no punc and no case+no punc), our method achieved
significant improvement in TER. On the other hand, the im-
provement in BLEU was not significant in case-insensitive
conditions. These differences may come from shift errors
– shift errors were reduced by the punctuation restoration
(0.107 in case+no punc and 0.115 in no case+no punc)
from those without punctuation (0.116 and 0.126, respec-
tively). This suggests punctuation markers are useful to re-
duce shift errors (i.e., constraining reordering) in SMT, and
restoring punctuation markers in ASR results is important in
spoken language translation.

7One was composed of docids 69, 129, 453, and 531 (644 sentences),
and the other was composed of 326, 327, 328, 332, 335, 340, and 359 (663
sentences). They were chosen to balance the number of sentences between
sets.



Table 3: 2-fold cross validation results in BLEU, TER, and BLEU-TER+1 (B-T+1) on supplied development set (with true casing
and punctuation). Scores in bold represent the best ones. Rows in gray represents the methods tested after the official evaluation
period.

phrase table LM mixture word Reference (cross validation)Run
training data weight target alignment BLEU TER B-T+1

primary TED+IR test (source) berkeley 0.2540 0.6548 0.5992
TED+IR test (source) mgiza 0.2504 0.6548 0.5956

contrastive-2 TED+IR dev (target) berkeley 0.2482 0.6611 0.5871
TED+IR dev (target) mgiza 0.2482 0.6603 0.5879
TED+IR MERT berkeley 0.2504 0.6591 0.5913
TED+IR MERT mgiza 0.2410 0.6694 0.5716

TED+OOD test (source) berkeley 0.2564 0.6544 0.6020
contrastive-1 TED+OOD test (source) mgiza 0.2561 0.6582 0.5979

TED+OOD dev (target) berkeley 0.2554 0.6556 0.5998
TED+OOD dev (target) mgiza 0.2539 0.6570 0.5969
TED+OOD MERT berkeley 0.2494 0.6594 0.5900
TED+OOD MERT mgiza 0.2521 0.6637 0.5884
TED+IR-seg test (source) berkeley 0.2445 0.6615 0.5830

contrastive-3 TED+IR-seg test (source) mgiza 0.2466 0.6602 0.5864
TED+IR-seg dev (target) berkeley 0.2492 0.6566 0.5926
TED+IR-seg dev (target) mgiza 0.2479 0.6624 0.5855
TED+IR-seg MERT berkeley 0.2478 0.6630 0.5848
TED+IR-seg MERT mgiza 0.2426 0.6636 0.5790

TED test (source) berkeley 0.2407 0.6698 0.5709
TED test (source) mgiza 0.2351 0.6761 0.5590
TED dev (target) berkeley 0.2426 0.6637 0.5789
TED dev (target) mgiza 0.2310 0.6776 0.5534
TED MERT berkeley 0.2324 0.6761 0.5563
TED MERT mgiza 0.2300 0.6832 0.5468



Table 4: Official and additional automatic evaluation results in BLEU and TER, and BLEU-TER+1 (B-T+1) (with true casing
and punctuation). Scores in bold represent the best ones. Rows in gray represents the methods tested after the official evaluation
period.

phrase table LM weight word Reference ASR 1-bestRun
training data mixture target alignment BLEU TER B-T+1 BLEU TER B-T+1

primary TED+IR test (source) berkeley 0.2598 0.5784 0.6814 0.1623 0.6923 0.4700
TED+IR test (source) mgiza 0.2572 0.5765 0.6807 0.1603 0.6905 0.4698

contrastive-2 TED+IR dev (target) berkeley 0.2594 0.5788 0.6806 0.1621 0.6922 0.4699
TED+IR dev (target) mgiza 0.2623 0.5749 0.6874 0.1617 0.6899 0.4718
TED+IR MERT berkeley 0.2599 0.5866 0.6733 0.1645 0.6967 0.4678
TED+IR MERT mgiza 0.2541 0.5826 0.6715 0.1587 0.6945 0.4642

TED+OOD test (source) berkeley 0.2541 0.5832 0.6709 0.1603 0.6939 0.4664
contrastive-1 TED+OOD test (source) mgiza 0.2504 0.5817 0.6687 0.1591 0.6931 0.4660

TED+OOD dev (target) berkeley 0.2551 0.5853 0.6698 0.1611 0.6937 0.4674
TED+OOD dev (target) mgiza 0.2537 0.5796 0.6741 0.1592 0.6937 0.4655
TED+OOD MERT berkeley 0.2464 0.5998 0.6466 0.1575 0.7030 0.4545
TED+OOD MERT mgiza 0.2587 0.5938 0.6649 0.1636 0.7071 0.4565
TED+IR-seg test (source) berkeley 0.2633 0.5770 0.6863 0.1627 0.6929 0.4698

contrastive-3 TED+IR-seg test (source) mgiza 0.2562 0.5788 0.6774 0.1612 0.6933 0.4679
TED+IR-seg dev (target) berkeley 0.2597 0.5748 0.6849 0.1608 0.6920 0.4688
TED+IR-seg dev (target) mgiza 0.2615 0.5758 0.6857 0.1619 0.6925 0.4694
TED+IR-seg MERT berkeley 0.2539 0.5844 0.6695 0.1598 0.6964 0.4634
TED+IR-seg MERT mgiza 0.2530 0.5843 0.6687 0.1559 0.6980 0.4579

TED test (source) berkeley 0.2515 0.5876 0.6639 0.1555 0.7012 0.4543
TED test (source) mgiza 0.2464 0.5921 0.6543 0.1538 0.7017 0.4521
TED dev (target) berkeley 0.2513 0.5945 0.6568 0.1556 0.7066 0.4490
TED dev (target) mgiza 0.2480 0.5954 0.6526 0.1553 0.7051 0.4502
TED MERT berkeley 0.2482 0.5913 0.6569 0.1535 0.7027 0.4508
TED MERT mgiza 0.2295 0.6011 0.6284 0.1414 0.7066 0.4348

Table 5: Results with and without punctuation restoration (PR) by primary configuration. Results are from three conditions:
case+punc: with true casing and punctuation, case+no punc: with true casing but without punctuation, no case+no punc:
without casing and punctuation. The results in bold are statistically significant (∗∗: p < .01, ∗: p < .05).

case+punc case+no punc no case+no punc
BLEU TER B-T+1 BLEU TER B-T+1 BLEU TER B-T+1

w/ PR 0.1623∗∗ 0.6923∗ 0.4700∗∗ 0.1735 0.7243∗∗ 0.4492 0.1850 0.7059∗∗ 0.4791∗
w/o PR 0.1428 0.7029 0.4399 0.1719 0.7407 0.4312 0.1802 0.7270 0.4532



5. Discussion
Among three adaptation approaches, the performance of IR-
based adaptation (TED+IR) was comparable with the use of
all out-of-domain data (TED+OOD), using only 4% of bi-
texts. We expected the IR-based adaptation worked better,
but could not achieve significant improvements. The prob-
lem is further discussed in our technical paper [1].

The LM weight optimization toward test set was a bit
better than the others in development, but did not in test. It
may be related to data similarity among the data sets but is
not clear in current results.

The sub-sentence segmentation did not work in most
cases, while we expected that it can help to reduce word
alignment ambiguity in training translation models by short-
ening sentences (as suggested in [10]). One possibility we
think is that our sub-sentence segmentation was naive and
not sufficient for decreasing alignment ambiguity. Another
possibility is that word alignment is easier between English
and French, compared to distant languages like English and
Japanese.

In summary, the results suggests our current phrase table
and LM adaptation methods do not clearly work and need
further studies in various conditions.

6. Conclusion
We applied three adaptation methods to this year’s TALK
task. They sometimes work, but sometimes do not. For more
effective adaptation methods, we need further studies on how
adaptation works, from detailed analyses such as the com-
parison among corpus-, document-, and sentence-wise adap-
tation.
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