
Boyer-Moore
Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
to tell me briefly how you are using the slides. For original Keynote
files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Can we improve on the naïve algorithm?

There would have been a time for such a wordT:
P: word

word

There would have been a time for such a wordT:
P: word

word
word
 word
 word

skip!
skip!

u doesn’t occur in P, so skip next two alignments

Boyer-Moore

1. When we hit a mismatch, move P along until
the mismatch becomes a match 

2. When we move P along, make sure
characters that matched in the last
alignment also match in the next alignment 

3. Try alignments in one direction, but do
character comparisons in opposite direction 

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

“Bad character rule”

“Good suffix rule”

For longer skips

There would have been a time for such a wordT:
P: word

word

Learn from character comparisons to skip pointless alignments  

Boyer-Moore: Bad character rule

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 1:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 2:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 3:

(etc)

Case (a)

Case (b)

Upon mismatch, skip alignments until (a) mismatch becomes
a match, or (b) P moves past mismatched character.
 

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 4:

Case (c)

(c) If there was no mismatch, don't skip

Boyer-Moore: Bad character rule

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 1:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 2:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 3:

Up to step 3, we skipped 8 alignments

5 characters in T were never looked at  

Boyer-Moore: Good suffix rule

Let t = substring matched by inner loop; skip until (a) there
are no mismatches between P and t or (b) P moves past t

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 1:

t

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 2:

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 3:

t

Boyer-Moore: Good suffix rule

Let t = substring matched by inner loop; skip until (a) there
are no mismatches between P and t or (b) P moves past t

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 1:

t

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 2:

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 3:

t

Case (a) has two subcases according to whether t occurs in its
entirety to the left within P (as in step 1), or a prefix of P matches a
suffix of t (as in step 2)

 t occurs in its entirety to the left within P

prefix of P matches a suffix of t

Boyer-Moore: Putting it together

How to combine bad character and good suffix rules?

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

bad char says skip 2, good suffix says skip 7

Take the maximum! (7)

Boyer-Moore: Putting it together

Use bad character or good suffix rule, whichever skips more 

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 1:
bc: 6, gs: 0

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 2:
bc: 0, gs: 2

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 3:
bc: 2, gs: 7

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 4:

good suffix

good suffix

bad character

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 1:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 2:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 3:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 4:

11 characters of T we ignored

Skipped 15 alignments

Boyer-Moore: Preprocessing

Pre-calculate skips for all possible mismatch scenarios!
For bad character rule and P = TCGC: 

T C G C
A
C - -
G -
T -

P

Σ

Boyer-Moore: Preprocessing

Pre-calculate skips for all possible mismatch scenarios!
For bad character rule and P = TCGC: 

T C G C
A 0 1 2 3
C 0 - 0 -
G 0 1 - 0
T - 0 1 2

P

Σ
T:
P:

A A T C A A T A G C
T C G C

This can be constructed efficiently. See Gusfield 2.2.2. 

Boyer-Moore: Preprocessing

As with bad character rule, good suffix rule skips can be
precalculated efficiently. See Gusfield 2.2.4 and 2.2.5.

We’ll return to preprocessing soon!

For both tables, the calculations only consider P. No
knowledge of T is required.

Boyer-Moore: Good suffix rule

We learned the weak good suffix rule; there is also a strong good suffix rule 

T:
P:

C T T G C C T A C T T A C T T A C T
C T T A C T T A C

t

C T T A C T T A C
C T T A C T T A C

Weak:

Strong:

Strong good suffix rule skips more than weak, at no additional penalty

guaranteed
mismatch!

Strong rule is needed for proof of Boyer-Moore’s O(n + m) worst-case time.
Gusfield discusses proof(s) in first several sections of ch. 3

Aside: Big-O notation

For review, see Jones & Pevzner 2.8

O(n2)

“big oh of n squared”

Asymptotic upper bound on worst-case growth

Boyer-Moore: Worst case

Boyer-Moore, with refinements in Gusfield, is O(n + m) time

Is this better than naïve?

Boyer-Moore: O(m), naïve: O(nm)

Given n < m, can simplify to O(m)

For naïve, worst-case # char comparisons is n(m - n + 1)

Reminder: |P| = n |T| = m

Boyer-Moore: Best case

What’s the best case?

How many character comparisons? floor(m / n)

aaT:
P: bbbb

bbbb bbbb bbbb bbbb bbbb bbbb
 bbbb bbbb bbbb bbbb bbbb

Every alignment yields immediate mismatch and bad
character rule skips n alignments

|P| = n |T| = m Naïve matching Boyer-Moore

Worst case

Best case

m·n

Naive vs Boyer-Moore

m

m / nm

As m & n grow, # characters comparisons grows with...

Performance comparison

Naïve matching Boyer-Moore

character
comparisons wall clock time

character
comparisons wall clock time

P: “tomorrow”

T: Shakespeare’s
complete works

P: 50 nt string
from Alu repeat*

T: Human
reference (hg19)
chromosome 1

Simple Python implementations of naïve and Boyer-Moore:

* GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

336 matches
| T | = 249 M

17 matches
| T | = 5.59 M

5,906,125 2.90 s 785,855 1.54 s

307,013,905 137 s 32,495,111 55 s

Boyer-Moore implementation

http://j.mp/CG_BoyerMoore

def boyer_moore(p, p_bm, t):
 """ Do Boyer-Moore matching """
 i = 0
 occurrences = []
 while i < len(t) - len(p) + 1: # left to right
 shift = 1
 mismatched = False
 for j in range(len(p)-1, -1, -1): # right to left
 if p[j] != t[i+j]:
 skip_bc = p_bm.bad_character_rule(j, t[i+j])
 skip_gs = p_bm.good_suffix_rule(j)
 shift = max(shift, skip_bc, skip_gs)
 mismatched = True
 break
 if not mismatched:
 occurrences.append(i)
 skip_gs = p_bm.match_skip()
 shift = max(shift, skip_gs)
 i += shift
 return occurrences

http://j.mp/CG_BoyerMoore

Preprocessing: Boyer-Moore

Boyer-Moore

P

T

Results

Make lookup tables
for bad character &

good suffix rules

Preprocessing: Naïve algorithm

Naïve exact matching

P T

Results

Preprocessing: Boyer-Moore

Preprocessing: trade one-time cost for reduced work
overall via reuse

Boyer-Moore preprocesses P into lookup tables that are
reused

If you later give me T2, I reuse the tables to match P to T2

reused for each alignment of P to T1

If you later give me T3, I reuse the tables to match P to T3

...

Cost of preprocessing is amortized over alignments & texts

