Boyer-Moore

Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Can we improve on the naïve algorithm?

P: word

U doesn't occur in P, so skip next two alignments

P: word
T: There would have been a time for such a word
word ------word
word skip!
word skip!
word

Boyer-Moore

Learn from character comparisons to skip pointless alignments

1.	When we hit a mismatch, move <i>P</i> along until the mismatch becomes a match	"Bad character rule"				
2.	When we move <i>P</i> along, make sure characters that matched in the last alignment also match in the next alignment	"Good suffix rule"				
3.	Try alignments in one direction, but do character comparisons in <i>opposite</i> direction	For longer skips				
<pre>P: word T: There would have been a time for such a word</pre>						

Boyer, RS and Moore, JS. "A fast string searching algorithm." *Communications of the ACM* 20.10 (1977): 762-772.

Boyer-Moore: Bad character rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or (b) *P* moves past mismatched character. (c) If there was no mismatch, don't skip

Step 1:	$T: \mathbf{G} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{G} \mathbf{C} \mathbf{T} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{G} \mathbf{C} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} G$	G C G G A A Case (a)
Step 2:	T: GCTTCTGCTACCTTTGCGCGCGCGCGCGCGCGCGCGCGCG	G C G G A A Case (b)
Step 3:	T: GCTTCTGCTACCTTTTGCGCGCGCGCG P:	G G G A A Case (c)
Step 4:	<i>T</i> : GCTTCTGCTACCTTTTGCGCGCGCG <i>P</i> : CCTTTTGC	C G G A A
(etc)		

Boyer-Moore: Bad character rule

Up to step 3, we skipped 8 alignments

5 characters in *T* were never looked at

Boyer-Moore: Good suffix rule

Let *t* = substring matched by inner loop; skip until (a) there are no mismatches between *P* and *t* or (b) *P* moves past *t*

Boyer-Moore: Good suffix rule

Let *t* = substring matched by inner loop; skip until (a) there are no mismatches between *P* and *t* or (b) *P* moves past *t*

Case (a) has two subcases according to whether *t* occurs *in its entirety* to the left within *P* (as in step 1), or a *prefix* of *P* matches a *suffix* of *t* (as in step 2)

Boyer-Moore: Putting it together

How to *combine* bad character and good suffix rules?

bad char says skip 2, good suffix says skip 7

Take the maximum! (7)

Boyer-Moore: Putting it together

Use bad character or good suffix rule, whichever skips more

Step 1:	<i>T</i> : G T T A T A G CTG A T C G C G G C G T A <i>P</i> : GTA G C G G C <u>G</u>	G C G G C G A A bc : 6 , <u>gs</u> : 0	bad character
Step 2:	T: GTTATAGCTGATCGCGGCGGCGTA P: GTAGCGGCG	G C G G C G A A bc: 0, gs: 2	good suffix
Step 3:	$T: \mathbf{G} \mathbf{T} \mathbf{T} \mathbf{A} \mathbf{T} \mathbf{A} \mathbf{G} \mathbf{C} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} G$	G C G G C G A A bc: 2, gs: 7	good suffix
Step 4:	<i>T</i> : GTTATAGCTGATCGCGGCGTA <i>P</i> : GTA	G C G G C G A A G C G G C G	

Boyer-Moore: Preprocessing

Pre-calculate skips for all possible mismatch scenarios! For bad character rule and *P* = TCGC:

Ρ

Boyer-Moore: Preprocessing

Pre-calculate skips for all possible mismatch scenarios! For bad character rule and P = TCGC:

This can be constructed efficiently. See Gusfield 2.2.2.

Boyer-Moore: Preprocessing

As with bad character rule, good suffix rule skips can be precalculated efficiently. See Gusfield 2.2.4 and 2.2.5.

For both tables, the calculations only consider *P*. No knowledge of *T* is required.

We'll return to preprocessing soon!

Boyer-Moore: Good suffix rule

We learned the *weak* good suffix rule; there is also a *strong* good suffix rule

Strong good suffix rule skips more than weak, at no additional penalty

Strong rule is needed for proof of Boyer-Moore's O(n + m) worst-case time. Gusfield discusses proof(s) in first several sections of ch. 3

Aside: Big-O notation

For review, see Jones & Pevzner 2.8

O(*n*²)

"big oh of n squared"

Asymptotic upper bound on worst-case growth

Boyer-Moore: Worst case

Boyer-Moore, with refinements in Gusfield, is O(n + m) time

Given *n* < *m*, can simplify to O(*m*)

Is this better than naïve?

For naïve, worst-case # char comparisons is n(m - n + 1)

Boyer-Moore: O(*m*), naïve: O(*nm*)

Reminder: |P| = n |T| = m

Boyer-Moore: Best case

What's the best case?

- P: bbbb

Every alignment yields immediate mismatch and bad character rule skips *n* alignments

How many character comparisons?

floor(m / n)

Naive vs Boyer-Moore

As *m* & *n* grow, # characters comparisons grows with...

$$|P| = n \quad |T| = m$$

Naïve matching
Boyer-Moore

Worst case
 $\mathbf{M} \cdot \mathbf{n}$

Best case
 \mathbf{m}
 \mathbf{m} / \mathbf{n}

Performance comparison

Simple Python implementations of naïve and Boyer-Moore:

	Naïve matching		Boyer-Moore		
	# character comparisons	wall clock time	# character comparisons	wall clock time	
P: "tomorrow" T: Shakespeare's complete works	5,906,125	2.90 s	785,855	1.54 s	17 matches <i>T</i> = 5.59 M
P : 50 nt string from Alu repeat* T : Human reference (hg19) chromosome 1	307,013,905	137 s	32,495,111	55 s	336 matches <i>T</i> = 249 M

* GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

Boyer-Moore implementation

```
http://j.mp/CG_BoyerMoore
```

```
def boyer_moore(p, p_bm, t):
    """ Do Boyer-Moore matching
                                 .....
    i = 0
    occurrences = []
    while i < len(t) - len(p) + 1: # left to right</pre>
        shift = 1
        mismatched = False
        for j in range(len(p)-1, -1, -1): # right to left
            if p[j] != t[i+j]:
                skip_bc = p_bm.bad_character_rule(j, t[i+j])
                skip_gs = p_bm.good_suffix_rule(j)
                shift = max(shift, skip_bc, skip_gs)
                mismatched = True
                break
        if not mismatched:
            occurrences.append(i)
            skip_gs = p_bm.match_skip()
            shift = max(shift, skip gs)
        i += shift
    return occurrences
```

Preprocessing: Boyer-Moore

Preprocessing: Naïve algorithm

Preprocessing: Boyer-Moore

Preprocessing: trade one-time cost for reduced work overall via *reuse*

Boyer-Moore preprocesses *P* into lookup tables that are *reused*

reused for each alignment of *P* to T_1

If you later give me T₂, I reuse the tables to match P to T₂

If you later give me T_3 , I *reuse* the tables to match P to T_3

•••

Cost of preprocessing is *amortized* over alignments & texts