Boyer-Moore

Ben Langmead

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
|@ @ | to tell me briefly how you are using the slides. For original Keynote

files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Can we improve on the naive algorithm?

P: word
I: There would have been a time for such a word

u doesn’t occurin P, so skip next two alignments

P: word
[: There would have been a time for such a word
-------- WOPd - - e >
skip!
skip!

Boyer-Moore

Learn from character comparisons to skip pointless alignments

1. When we hit a mismatch, move P along until
the mismatch becomes a match “Bad character rule”

2. When we move P along, make sure
characters that matched in the last

: . . “Good suffix rule”
alignment also match in the next alignment

3. Try alignments in one direction, but do
character comparisons in opposite direction For longer skips

P: word

I: There would have been a time for such a word
--------- o Sy S

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Boyer-Moore: Bad character rule

Upon mismatch, skip alignments until (a) mismatch becomes
a match, or (b) P moves past mismatched character.

(c) If there was no mismatch, don't skip

Step 1:

Step 2:

Step 3:

Step 4:

(etc)

T: GCTTOTGCTACCTTTTGCGCGCGCGCGGAA
P: COTTTTGC Case (a)

T}GCTTCTGCKDCCTTTTGCGCGCGCGCGGAA

P: ‘CCTTTTGC Case (b)
& A ...

I:n GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P: CCTTTTGC Case (c)
T
P

: GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
CCTTTTGC
<-

Boyer-Moore: Bad character rule

I: GCTTCTGCTACCTTTTGCGCGCGCGCGGAA

Step 1:
P: CCTTTTGC
Step 2: 73GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
Cop CCTTTTGC
Step 3: T?GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P . i CCTTTTGC
t 1 TTTTTT

Up to step 3, we skipped 8 alignments

5 characters in T were never looked at

Boyer-Moore: Good suffix rule

Let t = substring matched by inner loop; skip until (a) there
are no mismatches between P and tor (b) P moves past t

Fo----- 1

I CGTGCCTACQTTACTTACTTACTTACGCGAA

Step 1:
P- CTTACTTAC
bo-menn--- L. g
Step 2: T CGTGCCTACTTACOTTACTTACTTACGCGAA
- p CTTACQTTAC
Step 3: T CGTGCCTACTTACTTACTTACTTACGCGAA

CTTACTTAC

9

Boyer-Moore: Good suffix rule

Let t = substring matched by inner loop; skip until (a) there
are no mismatches between P and tor (b) P moves past t

Fo----- 1

I CGTGCCTACQTTACTTACTTACTTACGCGAA

Step 1:
P. CTTACTTAC o . o
t occurs in its entirety to the left within P
Fommmmmm- - L. 1
Step 2: I[: CGTGCCTACTTAOQTTACTTACTTACGCGAA
P CTTACTTAC
prefix of P matches a suffixof t
Step 3: I[: CGTGCCTACTTACTTACTTACTTACGCGAA

P: CTTACTTAC

Case (a) has two subcases according to whether t occurs in its

entirety to the left within P (as in step 1), or a prefix of P matches a
suffixof t (as in step 2)

Boyer-Moore: Putting it together

How to combine bad character and good suffix rules?

T: GTTATAGCTGAT(GCGGCGTAGCGGCGAA
P: + GTAGCGGCG

bad char says skip 2, says skip 7

Take the maximum! (7)

Boyer-Moore: Putting it together

Use bad character or good suffix rule, whichever skips more

T: GTTATAGCOGATCGCGGCGTAGCGGCGAA

Step 1:
P P: G@G CG (ﬁ' G bc: 6, gs: 0 bad character

Step 2: T: GTTATAGCTGAT(OGCGGCGTAGCGGCGAA

P GTAG(C)GGCG bc:0, 05:2 good suffix
Step 3: T: GTTATAGCTGAT(OGCGGCGTAGCGGCGAA

P . GTAGCGGCG be:2, gs: 7 good suffix
Step 4: I: GTTATAGCTGATCGCGGCGTAGCGGCGAA

P GTAGCGGCG

11 characters of T we ignored

NN NN
I. GTTATAGCTGATCGCGGCGTAGCGGCGAA

Step 1:
P: GTAGCGGCG
Step 2: I: GTTATAGCTGATCGCGGCGTAGCGGCGAA
P GTAGCGGCG
Step 3: I: GTTATAGCTGATCGCGGCGTAGCGGCGAA

P: GTAGCGGCAG

Step 4 I:. GTTATAGCTGATCGCGGCGTAGCGGCGAA
P GTAGCGGCG

EEEEEN NN EEEEENN
Skipped 15 alignments

Boyer-Moore: Preprocessing

Pre-calculate skips for all possible mismatch scenarios!
For bad character rule and P =TCGC:

p
T|C|G|C

—| QY| N[>

Boyer-Moore: Preprocessing

Pre-calculate skips for all possible mismatch scenarios!
For bad character rule and P =TCGC:

P
T | C C
AlO|1]2]3
Clol-lol -1 T-AAT)CAATAGC
2 e T ol 711 - 101 PIcGc
- 10| 2

This can be constructed efficiently. See Gusfield 2.2.2.

Boyer-Moore: Preprocessing

As with bad character rule, good suffix rule skips can be
precalculated efficiently. See Gusfield 2.2.4 and 2.2.5.

For both tables, the calculations only consider P. No
knowledge of T is required.

We'll return to preprocessing soon!

Boyer-Moore: Good suffix rule

We learned the weak good suffix rule; there is also a strong good suffix rule

------ 1

|.
T: CTTGCCTACTTACTTACT
P;CTTACiTAC
T

Weak: CITTACTTAC
guaranteedf StronggCTTACTTAC
mismatch!

Strong good suffix rule skips more than weak, at no additional penalty

Strong rule is needed for proof of Boyer-Moore’s O(n + m) worst-case time.
Gusfield discusses proof(s) in first several sections of ch. 3

Aside: Big-O notation

For review, see Jones & Pevzner 2.8

O(n?)
“big oh of n squared”

Asymptotic upper bound on worst-case growth

Boyer-Moore: Worst case

Boyer-Moore, with refinements in Gusfield, is O(n + m) time

Given n < m, can simplify to O(m)

Is this better than naive?

For naive, worst-case # char comparisonsisn(m-n+1)

Boyer-Moore: O(m), naive: O(nm)

Reminder: |[P|=n |T|=m

Boyer-Moore: Best case

What's the best case?

P: bbbb
[: aa

Every alignment yields immediate mismatch and bad
character rule skips n alignments

How many character comparisons? floor(m / n)

Naive vs Boyer-Moore

As m & n grow, # characters comparisons grows with...

Pl=n [T|=m

Naive matching | Boyer-Moore

Worst case M-*N M

Best case m m/n

Performance comparison

Simple Python implementations of naive and Boyer-Moore:

Naive matching

Boyer-Moore

character
comparisons

wall clock time

character

. wall clock time
comparisons

P:“tomorrow”

T: Shakespeare’s
complete works

5,906,125

2.90s

785,855 1.54 s

P: 50 nt string
from Alu repeat*®

T: Human
reference (hg19)
chromosome 1

307,013,905

137 s

32,495,111 55s

* GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGLGGGE

17 matches
| T|=5.59M

336 matches
| T|=249 M

Boyer-Moore implementation

http://j.mp/CG_BoyerMoore

def boyer _moore(p, p_bm, t):
""" Do Boyer-Moore matching
i=20
occurrences = []

while i < len(t) - len(p) + 1: # left to right

shift = 1
mismatched = False

if p[j] != t[i+]]:

mismatched = True
break

for j in range(len(p)-1, -1, -1):

right to left

skip_bc = p_bm.bad_character_rule(j, t[i+]j])
skip_gs = p_bm.good_suffix_rule(j)
shift = max(shift, skip _bc, skip gs)

if not mismatched:
occurrences.append(i)
skip_gs = p_bm.match_skip()
shift = max(shift, skip _gs)
i += shift
return occurrences

http://j.mp/CG_BoyerMoore

Preprocessing: Boyer-Moore

P

Make lookup tables T
for bad character &
good suffix rules

Boyer-Moore

Results

Preprocessing: Naive algorithm

p T

N

Naive exact matching

Results

Preprocessing: Boyer-Moore

Preprocessing: trade one-time cost for reduced work
overall via reuse

Boyer-Moore preprocesses P into lookup tables that are
reused

reused for each alignment of Pto T;

If you later give me T, | reuse the tables to match P to T

If you later give me T3, | reuse the tables to match P to T3

Cost of preprocessing is amortized over alignments & texts

