
Hashes and randomness
Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
to tell me briefly how you are using the slides. For original Keynote
files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Hash Function

Balls & Bins assumes uniformity & independence

Should mapping from keys to
buckets should be "random"?

How / in what sense do hash
functions provide those?

// library function returning
// a "truly" random integer
extern int truly_random();

Hash Function?

int hash(int x) {
 return truly_random();
}

Bad sign 2: doesn't depend on x

Bad sign 1: non-deterministic

int hash(int x) {
 int a = 349534879; // randomly chosen
 int b = 23479238; // randomly chosen

Hash Function

When did we choose and ?a b

E.g. The family where is prime &

 are uniform, independent draws from

ha,b(x) = (ax + b) mod p p
a, b {0, 1, . . . , p − 1}

 ...

 // return some function of x, a and b
}

Algorithm phases

Phase 1 Phase 2 Phase 3

Choose
algorithm

Random
interlude

Data arrives;
Execute!

Determines
where
randomness
is needed &
how much

Make random
draws.

Choose hash
functions.

Use hash
functions
chosen in
Phase 2.

Algorithm phases

Random variables
used in analysis
are random over
the choice of
hash functions

We make no
distributional
assumptions
about the input.

Phase 1 Phase 2 Phase 3

Choose
algorithm

Random
interlude

Data arrives;
Execute!

Not over
the input
data

Algorithm phases

Could remove the hash functions and instead make
distributional assumptions about the input itself

But the ability to work with any input data is gone

Phase 3

Data arrives
Execute!

