

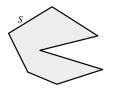
Computational Geometry: Convex Hulls

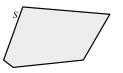
Outline

- Definitions
- Algorithms

Definition I

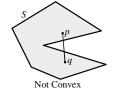
A set S is <u>convex</u> if for any two points $p,q \in S$, the line segment $pq \subset S$.

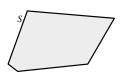




Definition I

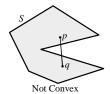
A set *S* is <u>convex</u> if for any two points $p,q \in S$, the line segment $pq \subset S$.

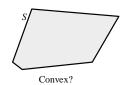




Definition I

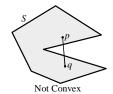
A set S is <u>convex</u> if for any two points $p,q \in S$, the line segment $pq \subset S$.

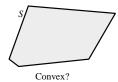




Definition II

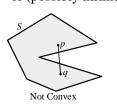
A set S is <u>convex</u> if it is the intersection of (possibly infinitely many) half-spaces.

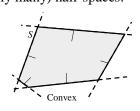




Definition II

A set *S* is <u>convex</u> if it is the intersection of (possibly infinitely many) half-spaces.





Outline

- Definitions
- Algorithms

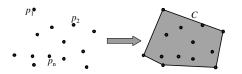
Convex Hull

Given a finite set of points $P = \{p_1, ..., p_n\}$, the <u>convex hull</u> of P is the smallest convex set C such that $P \subset C$.

Convex Hull

Definition:

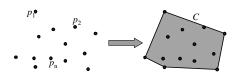
Given a finite set of points $P=\{p_1,...,p_n\}$, the <u>convex hull</u> of P is the smallest convex set C such that $P \subset C$.



Examples

Two Dimensions:

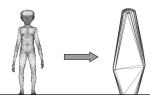
The convex hull of $P=\{p_1,...,p_n\}$ is a set of line segments with endpoints in P.

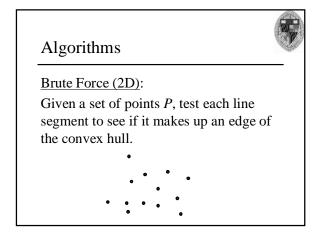


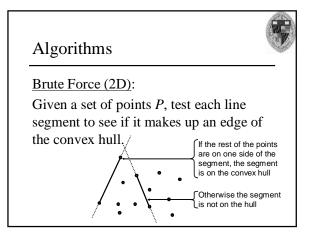
Examples

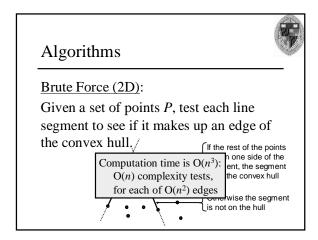
Three Dimensions:

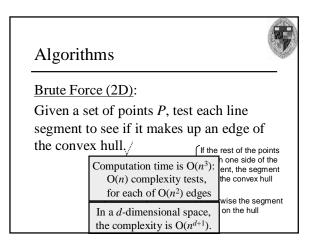
The convex hull of $P=\{p_1,...,p_n\}$ is a triangle mesh with vertices in P.

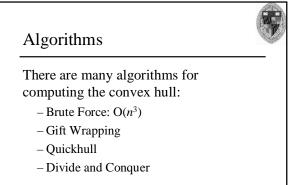


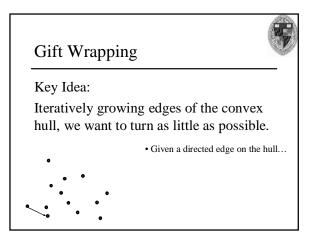












Gift Wrapping

Key Idea:

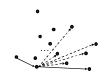
Iteratively growing edges of the convex hull, we want to turn as little as possible.

- Given a directed edge on the hull...
- Of all the vertices the next edge can can connect to...

Gift Wrapping

Key Idea:

Iteratively growing edges of the convex hull, we want to turn as little as possible.



- Given a directed edge on the hull...
- Of all the vertices the next edge can can connect to...
- Choose the one which turns least.

Gift Wrapping

Key Idea:

Iteratively growing edges of the convex hull, we want to turn as little as possible.

- Given a directed edge on the hull...
- Of all the vertices the next edge can can connect to...
- Choose the one which turns least.
- Repeat

Gift Wrapping

Key Idea:

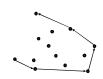
Iteratively growing edges of the convex hull, we want to turn as little as possible.

- \bullet Given a directed edge on the hull...
- Of all the vertices the next edge can can connect to...
- Choose the one which turns least.
- Repeat

Gift Wrapping

Key Idea:

Iteratively growing edges of the convex hull, we want to turn as little as possible.

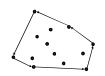


- Given a directed edge on the hull...
- Of all the vertices the next edge can can connect to...
- Choose the one which turns least.
- Repeat

Gift Wrapping

Key Idea:

Iteratively growing edges of the convex hull, we want to turn as little as possible.



- Given a directed edge on the hull...
- Of all the vertices the next edge can can connect to...
- Choose the one which turns least.
- Repeat

Algorithms

There are many algorithms for computing the convex hull:

- Brute Force: $O(n^3)$
- Gift Wrapping: $O(n^2)$
- Quickhull
- Divide and Conquer

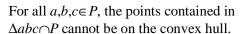
Quickhull

Key Idea:

For all $a,b,c \in P$, the points contained in $\triangle abc \cap P$ cannot be on the convex hull.

Quickhull

Key Idea:



Quickhull

Key Idea:

For all $a,b,c \in P$, the points contained in $\triangle abc \cap P$ cannot be on the convex hull.

Quickhull

Key Idea:

For all $a,b,c \in P$, the points contained in $\triangle abc \cap P$ cannot be on the convex hull.

• Given a line segment \overline{ab} ...

Quickhull

Key Idea:

For all $a,b,c \in P$, the points contained in $\triangle abc \cap P$ cannot be on the convex hull.

- Given a line segment \overline{ab} ...
- Find the point c, rightmost from \overline{ab} ...

Quickhull Key Idea:

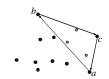
For all $a,b,c \in P$, the points contained in $\triangle abc \cap P$ cannot be on the convex hull.

- Given a line segment \overline{ab} ...
- Find the point c, rightmost from \overline{ab} ...
- If c doesn't exist, return ab ...

Quickhull

Key Idea:

For all $a,b,c \in P$, the points contained in $\triangle abc \cap P$ cannot be on the convex hull.



- Given a line segment \overline{ab} ...
- Find the point c, rightmost from \overline{ab} ...
- If c doesn't exist, return ab ...
- Discard the points in Δabc ...

Quickhull

For all $a,b,c \in P$, the points contained in $\triangle abc \cap P$ cannot be on the convex hull.

- Given a line segment \overline{ab} ...
- Find the point c, rightmost from \overline{ab} ...
- If c doesn't exist, return ab ...
- Discard the points in Δabc ...
- Repeat for left of \overline{bc} and \overline{ca} ...

Quickhull

Key Idea:

For all $a,b,c \in P$, the points contained in $\triangle abc \cap P$ cannot be on the convex hull.

- Given a line segment \overline{ab} ...
- •• Find the point c, rightmost from \overline{ab} ...
- If c doesn't exist, return ab ...
- Discard the points in $\triangle abc$...
- Repeat for left of \overline{bc} and \overline{ca} ...
- Repeat for left of $b\overline{c}$ and Repeat for left of $b\overline{a}$...

Quickhull

Key Idea:

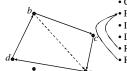
For all $a,b,c \in P$, the points contained in $\triangle abc \cap P$ cannot be on the convex hull.

- Given a line segment \overline{ab} ...
- Find the point c, rightmost from \overline{ab} ...
- If c doesn't exist, return \overline{ab} ...
- Discard the points in Δabc ...
- Repeat for left of $b\overline{c}$ and $c\overline{a}$...
- Repeat for left of $b\overline{a}$...

Quickhull

Key Idea:

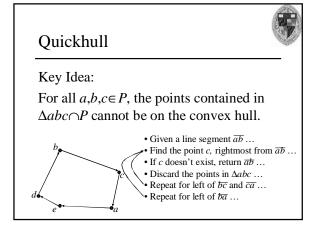
For all $a,b,c \in P$, the points contained in $\triangle abc \cap P$ cannot be on the convex hull.



- Given a line segment \overline{ab} ...
- Find the point c, rightmost from \overline{ab} ...
- If c doesn't exist, return \overline{ab} ...
- Discard the points in $\triangle abc$...
- Repeat for left of $b\overline{c}$ and $c\overline{a}$...
- Repeat for left ba

Quickhull Key Idea: For all $a,b,c \in P$, the points contained in $\triangle abc \cap P$ cannot be on the convex hull. • Given a line segment \overline{ab} ... • Find the point c, rightmost from \overline{ab} ... • If c doesn't exist, return \overline{ab} ... • Discard the points in $\triangle abc$... • Repeat for left of \overline{bc} and \overline{ca} ...

Repeat for left $ba \overline{\ldots}$



Algorithms

There are many algorithms for computing the convex hull:

- Brute Force: $O(n^3)$
- Gift Wrapping: $O(n^2)$
- **Quickhull**: $O(n\log n) O(n^2)$
- Divide and Conquer

Divide and Conquer

Key Idea:

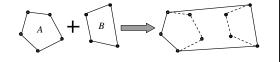
Finding the convex hull of small sets is easier than finding the hull of large ones.

Divide and Conquer

Key Idea:

Finding the convex hull of small sets is easier than finding the hull of large ones.

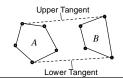
All we need is a fast way to merge hulls.



Divide and Conquer

Merging Hulls:

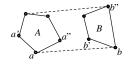
Need to find the tangents joining the hulls.



Divide and Conquer

Observation:

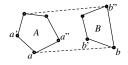
The edge \overline{ab} is a tangent if the two points about a and the two points about b are on the same side of \overline{ab} .



Divide and Conquer

Proof:

The edge \overline{ab} is a tangent if the points on both hulls are all on one side of it.

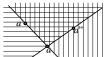


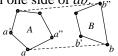
Divide and Conquer

Proof:

The edge \overline{ab} is a tangent if the points on both hulls are all on one side of it.

If a' and a'' are on the same side of \overline{ab} , then all of A must be on one side of \overline{ab}_{ab} ,

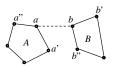




Divide and Conquer

Tangent Algorithm:

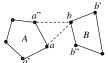
– Find an edge \overline{ab} between A and B that does not intersect the two hulls.



Divide and Conquer

Tangent Algorithm:

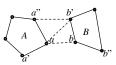
- Find an edge \overline{ab} between A and B that does not intersect the two hulls.
- While a' and a'' are not to the left of \overline{ab} , rotate a clock-wise.



Divide and Conquer

Tangent Algorithm:

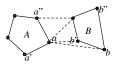
- Find an edge \overline{ab} between A and B that does not intersect the two hulls.
- While a' and a'' are not to the left of \overline{ab} , rotate a clock-wise.
- While b' and b" are not to the left of \overline{ab} , rotate b counter-clock-wise.



Divide and Conquer

Tangent Algorithm:

- Find an edge \overline{ab} between A and B that does not intersect the two hulls.
- While a' and a'' are not to the left of \overline{ab} , rotate a clock-wise.
- While b' and b'' are not to the left of \overline{ab} , rotate b counter-clock-wise.



Divide and Conquer

Tangent Algorithm:

- Find an edge \overline{ab} between A and B that does not intersect the two hulls.
- , While a' and a'' are not to the left of \overline{ab} , rotate a clock-wise.
- While b' and b'' are not to the left of \overline{ab} , rotate b counter-clock-wise.
- Repeat

Algorithms

There are many algorithms for computing the convex hull:

- Brute Force: $O(n^3)$
- Gift Wrapping: $O(n^2)$
- Quickhull: $O(n\log n) O(n^2)$
- Divide and Conquer: $O(n \log n)$