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Administrative

• Homework 4 out, due April 14 

• Final project proposals due today



Where	  do	  grammars	  come	  from?

• We	  le0	  off	  on	  Thursday	  with	  
–a	  formalism	  for	  describing	  the	  rela:onship	  between	  
two	  languages,	  	  	  

–an	  loosely-‐sketched	  algorithm	  for	  producing	  
transla:ons	  

• Ques:ons	  for	  today:	  
–Where	  do	  synchronous	  grammars	  come	  from?	  
–How	  do	  we	  decode	  with	  an	  ngram	  language	  model?
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Data-‐driven	  grammar	  extrac:on

• Grammar	  rules	  are	  not	  wriGen	  by	  hand,	  they	  are	  
extracted	  from	  bilingual	  parallel	  corpora
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EnglishFrench

L' Espagne a refusé de confirmer que l' 
Espagne avait refusé d' aider le Maroc.

Nous voyons que le gouvernement 
français a envoyé un médiateur.   

Force est de constater que la situation 
évolue chaque jour. 

!"#$%&'( ) '*+, -"./ 012 34"5 6+78 

69$: 0;1<"= +)0$>", 6+)?$@"A B6C 7D( EFG.H 
.69<I<J 

6?"C 6KL +#$M12 E"#DF<NH 6+#O@"0J +#P<"7<J .

Spain declined to confirm that Spain 
declined to aid Morocco.

We see that the French government has 
sent a mediator.

We note that the situation is changing 
every day.

Torture is still being practised on a wide 
scale.

Arrest and detention without cause take 
place routinely.

This is a time for vision and political 
courage 

. . . . . .

EnglishArabic

. . . . . .

我国 能源 原材料 工� 生� 大幅度 增� .

非国大 要求 阻止 更 多 被 拘留 人� 死亡 .

China's energy and raw materials 
production up.

ANC calls for steps to prevent deaths in 
police custody .

EnglishChinese

. . . . . .
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. . . . . .



Hiero

• Consider	  the	  redundancy	  in	  this	  phrase	  table 
 
 
 

• What	  generaliza:on	  is	  missing?
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Spanish English

la bruja verde the green witch

la bruja roja the red witch

la bruja azúl the blue witch



Hiero

• Synchronous	  grammar	  rules  
 

• As	  a	  tree

6

X X

la Xbruja the witchX

greenverde

X	  →	  la	  bruja	  X(1)	  |||	  the	  X(1)	  witch 
X	  →	  verde	  |||	  green



Hiero-‐style	  SCFG	  rules

• Most	  common	  type	  of	  SCFG	  in	  SMT	  is	  Hiero	  
which	  has	  rules	  w/one	  non-‐terminal	  symbol	  	  

• Not	  as	  nice	  as	  linguis:cally	  mo:vated	  rules,	  does	  
not	  capture	  the	  reordering	  in	  Urdu

X1 X1

与 X2 有 X3 have X2withX3

diplomatic	

relations

邦交
North	

Korea

北韩



Hiero

• Consider	  the	  redundancy	  in	  this	  phrase	  table 
 
 
 

• What	  generaliza:on	  is	  missing?	  
• Hiero	  abandons	  conven:onal	  English	  syntax	  
• Relies	  instead	  on	  evidence-‐based	  phrasal	  
“subtrac:ons”
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Spanish English

la bruja verde the green witch

la bruja roja the red witch

la bruja azúl the blue witch



Extrac:ng	  Hiero	  rules
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澳
洲

是 与 北 韩 有 邦
交

的 少
数

国
家

之
一

Australia

is

one

of

the

few

countries

that

have

diplomatic

relations

with

North

Korea

X → 与 北 韩 有 邦交, 
have diplomatic relations 
with North Korea

X → 邦交,    
diplomatic relations
X → 北 韩,  
	
 	
 North Korea

X → 与 X1 有 X2, 	

        have X2 with X1

X2 

X1



Decoding

• We now have a way to obtain a synchronous 
grammar 

• Last week, we sketched the decoding algorithm, 
which was based on parsing 

• Today, we’ll cover it in more detail, and correct a 
crucial omission (ngram language models)



Review (1)

• We’ve discussed how syntactic differences between languages 
motivated reordering as a preprocessing step 
 
 
 
 
 
 
 

Ich werde Ihnen den Report 
aushaendigen, damit Sie den  
eventuell uebernehmen koennen.

Ich werde aushaendigen Ihnen   
den Report, damit Sie  koennen 
uebernehmen den eventuell.



Review (2)

• We’ve also discussed synchronous grammar rules, which 
describe the generation of sentences in pairs
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Urdu English

S → NP①  VP② NP①  VP②
VP→ PP① VP② VP② PP① 

VP→ V① AUX② AUX② V① 

PP → NP①  P② P②   NP①
NP → hamd ansary Hamid Ansari

NP → na}b sdr Vice President

V → namzd nominated

P → kylye for

AUX → taa was



Review (3)

• ...and how we could extract those rules automatically from 
text
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X1 X1

与 X2 有 X3 have X2withX3

diplomatic	

relations

邦交
North	

Korea

北韩



Today

• How do we actually decode with these grammars?	


• The solution is the CKY / CYK algorithm	


• Outline	


• Parsing in one language 	


• Parsing in two languages with inversion transduction grammar 
(ITG)	


• Decoding as parsing with synchronous context-free grammars 
(SCFG) and integrated language models	


• Time-permitting: advanced topics

14

{CKY algorithm} {CYK algorithm}

6,090 ~ 13,700



Review: monolingual parsing
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Using the CKY algorithm to find (the best) 
structure for a sentence given a grammar 



Formal definitions

• Formal languages are (possibly infinite) sets of strings that are 
generated by a grammar	


• e.g., {a+} is a language of all strings with one or more as	


• Its grammar could be written as 
	
 A → Aa 
	
 A → a	


• We can view natural languages in this manner, too	


• e.g., the English language is the set of word sequences that 
constitute valid English sentences	


• We believe there to be a grammar that generates those sentences	


• We don’t know what it is, but we have some guesses and 
approximations
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Parsing

• Given a sentence and a grammar, how 
do we find its structure?	


• We’ll use the CKY algorithm (Cocke-
Kasami-Younger)	


• Basic idea: build small items before 
larger ones
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Fred	
  Jones	
 	
 was	
	
 worn	
 out

S → NP VP

VP → VBN  PRT

PRT → RP

VP → VBD  VP

NP → NNP  NNP

NNP → Fred | Jones

VBD → was

VBN → worn

RP → out

grammarsentence

Fred	
  Jones	
 	
 was	
	
 worn	
 out

NNP NNP VBD VBN RP

NP

VP

PRT

VP

S



Parsing with CKY
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S → NP VP

VP → VBN  PRT

PRT → RP

VP → VBD  VP

NP → NNP  NNP

NNP → Fred | Jones

VBD → was

VBN → worn

RP → outFred	
  Jones	
 	
 was	
	
 worn	
 out

NNP NNP VBD VBN RP

NP

VP

PRT

VP

S

grammarsentence



• Dynamic programming maintains a 
chart of items	


• Each cell item represents the  
dynamic programming state	


• (NNP,1,1), (S,1,5)	


• The chart is the collection of all  
items	


• The score resolves alternate ways of constructing an item	


• We also store backpointers: the items and rule used to 
construct each item

Implementation details
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struct item {!
// d.p. state!
string nt;!
int i, j;!
// backpointer!
float score;!
Rule* rule;!
item* rhs1,!
!! rhs2;!

}! !

a.k.a. “predecessor”



CKY algorithm
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input: words[1..N]!
for i in 1..N!
for each unary rule X ! words[i]!
add (X,i,i) to the chart!

for span in 1..N!
for i in 1..(N-span)!
j = i + span!
for k in i..j!
for rule X ! Y Z!
if (Y,i,k) and (Z,k,j)!
add (X,i,j) to the chart!

output: (S,1,N)



Parsing with CKY
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Fred	
  Jones	
 	
 was	
	
 worn	
 out

NNP NNP VBD VBN RP

NP

VP

PRT

VP

S
Fred

Jones

was

worn

out

Fred Jones was worn out

1 2 3 4 5

4

3

2

1

5

NNP

NP NNP

VBD

VBN

RP
VPVPS PRT

item!
nt = “S”;!
i = 1, j = 5;!
score = -42.5;!
Rule = &rule(“S ! NP VP”)!
rhs1 = &item(NP,1,2);!
rhs2 = &item(VP,3,5);



• We can reconstruct the best 
parse by following backpointers

Reconstructing the best parse
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nodes.append(item(S,1,N))!
while nodes.size() > 0:!
item = nodes.pop()!
print item!
nodes.append(item.rhsr)!
nodes.append(item.rhsl) S → NP  VP (1,5)	


	
 NP → NNP NNP (1,2)	

	
 	
 NNP → Fred (1,1)	

	
 	
 NNP → Jones (2,2)	

	
 VP → VBD  VP (3,5)	

	
 	
 VBD → was (3,3)	

	
 	
 VP → VBN  PRT (4,5)	

	
 	
 	
 VBN → worn (4,4)	

	
 	
 	
 PRT → RP (5,5)	

	
 	
 	
 	
 RP → out (5,5)

Fred NNP

Jones NP NNP

was VBD

worn VBN

out S VP VP RP 
PRT  

Fred Jones was worn out

nodes

(S,1,5)(VP,3,5) (NNP,2,2)(NP,1,2) (NNP,1,1)(VBD,3,3)(VP,4,5)(RP,5,5) (VBN,4,4)(PRT,5,5)



Parsing with CKY
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Fred	
 Jones	
 	
 was	
worn	
 out

NNP NNP VBD VBN RP

NP

VP

PRT

VP

S

Fred	
 Jones	
 	
 was	
	
 worn	
 out from caring for his often screaming and 
crying wife during the day but he couldn’t sleep at night for she in a stupor from the 
drugs that didn’t ease the pain would set the house ablaze with a cigarette

Fred NNP

Jones NP NNP

was VBD

worn VBN

out S VP VP RP 
PRT  

Fred Jones was worn out

1 2 3 4 5

4

3

2

1

5



Parsing as (weighted) deduction
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• Deductive reasoning:	


• axioms: statements that are true or false (“it is raining”)	


• inference rules: statements that are conditionally true (“If it 
is raining and I am outside, I’ll get wet”)	


• goals: statements that are licensed by combinations of 
axioms, inference rules, and other conclusions (“I am wet”)

axiom

Q

inference rule

P1 & P2 & ...
Q consequent

antecedent

(goal)



Parsing as (weighted) deduction

• input: words w[1..N]
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Axioms
_______	

X → w[i] 

for all (X → w[i])

Inference rules

X → w[i]	

(X, i, i)	


!
(B, i, j)  (C, j, k)  A → BC	


(A, i, k)

in bottom-up order 
(smaller spans first)

Goal (S, 1, n)



Complexity
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• Complexity of parsing is O(Gn3)	


• G	
- number of (binarized) rules in the grammar	


• n	
 - length of the sentence	


• All those rules were binary; what about longer rules?	


• e.g.,	
  
 
 
 

• We have to enumerate every split point!

DT NN

NP

JJ



CKY algorithm
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input: words[1..N]!
for i in 1..N!
for each unary rule X ! words[i]!
add (X,i,i) to the chart!

for span in 1..N!
for i in 1..(N-span)!
j = i + span!
for k1 in i..j-1!
for k2 in k1..j!
for rule X ! W Y Z!
if (W,i,k1) and (Y,k1,k2) and (Z,k2,j)!
add (X,i,j) to the chart!

output: (S,1,N)

DT NN

NP

JJ
i.........k1.....k2........j



Binarization into Chomsky Normal Form
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• In general, for a rule with k RHS items, complexity is O(nk+1) 
(and cumbersome, since you have to explicitly add inner loops 
to enumerate them)	


• Fortunately, we can binarize rules to make them all have a 
rank of 2

DT NN

NP

JJ
DT

NP

JJ NN

JJ:NN

only one split pointtwo split points: O(n4)

new nonterminal 
uniquely 

identifies subtree



CKY algorithm

• In summary, monolingual parsing:	


• finds the best structure	


• works bottom-up, enumerating all 
spans, from small to large, building 
searching for applicable rules and 
building new chart items	


• works with the binarized form of a 
grammars (easily unbinarized 
afterward) for a complexity of 
O(Gn3)	


• all grammars are binarizable
29



Synchronous parsing

30



Synchronous parsing
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• We can extend CKY to parse two languages at once!	


• Consider the following grammar:  
 
	
 	
 A → fat, gordos	
 	
 	
 	
 	
 (lexical)  
	
 	
 A → thin, delgados 
	
 	
 N → cats, gatos 
	
 	
 VP → eat, comen  
	
 	
 NP → A(1) N(2), N(2) A(1)	
 	
 	
 (inverted)  
	
 	
 S → NP(1) VP(2), NP(1) VP(2)	
 	
 (straight)	


• and the following sentence pair:  
	
  
	
 	
 fat cats eat / gatos gordos comen



Synchronous parsing
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A → fat, gordos 
N → cats, gatos	

VP → eat, comen	

VP → eat, como	

NP → A(1) N(2), N(2) A(1)	


S → NP(1) VP(2), NP(1) VP(2)

comen

gordos

gatos

fat cats eat

(1,1,  
2,2)

• We now have to enumerate pairs 
of spans 	


• instead of (i,j)...	


• ...we have (i,j) and (s,t)	


• For each of the bilingual blocks, we 
attempt to match both  
straight and inverted rules

(2,2,  
1,1)

(3,3,  
3,3)

(1,2,  
1,2)

(3,3,3,3)



Relation to monolingual parsing

• Why do we combine like this?	


• Think about monolingual  
CKY: combine adjacent spans	


• These pieces are adjacent in both languages; it’s only when 
we consider them together that reordering comes into play	


• Why can’t we do this?	


• It doesn’t make sense!	


• What about these?	


• Possible, but complex

33rank > 2gap



CKY for synchronous parsing
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input: source[1..N], target[1..M]!
for span1 in 1..N!
for i in 1..(N-span1)!
j = i + span1!
for k in i..j!
for span2 in 1..M!
for s in 1..(M-span2)!
t = s + span2!
for u in s..t!
  for rule X ! [Y Z]!
    if (Y,i,k,s,u) and!
       (Z,k,j,u,v) then!
      add (X,i,j,s,t) to chart!

output: (S,1,N,1,M)

comen

gordos

gatos

fat cats eat

N
1 2 3

1

2

3
M



Synchronous parsing
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• Complexity:  
O(GN3M3)	
 ≈ O(GN6)	


• Why?	


• We have to enumerate all valid 
combinations of six variables	


• This can be seen in the six 
nested loops of the algorithm

comen

gordos

gatos

fat cats eat

(1,1,  
2,2)

(2,2,  
1,1)

(3,3,  
3,3)

(1,2,  
1,2)

(3,3,3,3)

A → fat, gordos 
N → cats, gatos	

VP → eat, comen	

VP → eat, como	

NP → A(1) N(2), N(2) A(1)	


S → NP(1) VP(2), NP(1) VP(2)



Visualization of O(GN6) complexity
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input: source[1..N], target[1..M]!
for span1 in 1..N!
for i in 1..(N-span1)!
j = i + span1!
for k in i..j!
for span2 in 1..M!
for s in 1..(M-span2)!
t = s + span2!
for u in s..t!
  for rule X ! [Y Z]!
    if (Y,i,k,s,u) and!
       (Z,k,j,u,v) then!
      add (X,i,j,s,t) to chart!

output: (S,1,N,1,M)

1
2

3
4
5

6
times all rules...



Synchronous binarization

• In the above, we considered two nonterminals (per side)	


• What if we want more (Zhang et al., 2006)?  
 
 
 
 

• Three nonterminals?  No problem:  
 

• More?

37



Permutations

• The nonterminals in the right-hand side of a rule define a 
permutation between the languages	


• we assume the source language nonterminals are in order 
(wlog)	


• intermingled terminal symbols do not affect binarization 
ability	


• Example:	


• permutation: 1 3 2

38



Synchronous binarization

• Bad news: synchronous grammars can’t be binarized in the 
general case (Shapiro & Stephens, 1991; Wu, 1997) *	


• Famous examples: the (2,4,1,3) and (3,1,4,2) permutations  
 
 

• What makes these unbinarizable?	


• Crucial: parsing works by combining adjacent elements	


• No pair of alignments here is adjacent in both languages 
simultaneously

39

(*) Technically, you can binarize any synchronous grammar, but you may increase the fan-out, which 
mitigates the potential gains.



Synchronous binarization

• As the rank of a rule grows, the  
percentage of binarizable rules 
approaches 0 
 
 
 

• In summary:	


• We can’t binarize all rules	


• The first unbinarizable rule has rank 4

40
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• Empirically, we don’t observe that many non-binarizable rules 
(Zhang et al., 2006):  
 
 
 
 
 
 

• ...and we can safely throw out the ones we do find	


• 99.7% of rules extracted were binarizable	


• many not were due to alignment errors
41

Silver lining



Decoding as parsing

42



Synchronous decoding

• Enough parsing; what we care about is decoding	


• Parsing is relevant, though, because we can view decoding as a 
task where we are doing synchronous parsing but we don’t 
happen to know the target side text	


• This works by parsing with a source-side projection of the 
synchronous grammar rules	


• At the end, we can follow backpointers to discover the 
most probable target side

43



Updated data structure
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• Just like regular parsing, we  
combine items in pairs to produce  
new items over larger spans:  
 
 

• However, we also have to maintain 
our guess of the target side 

(A,1,1)  (N,2,2)	


(NP,1,2)

A → fat, gordos 
N → cats, gatos	

VP → eat, comen	

VP → eat, como	

NP → A(1) N(2), N(2) A(1)	


S → NP(1) VP(2), NP(1) VP(2)



Decoding

• Again, a bottom-up process
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A (1,1)	

1.0

N (2,2)	

1.0

VP (3,3)	

0.9

NP (1,2)	

1.0

S (1,3)	

0.9

fat cats eat

A → fat, gordos 
N → cats, gatos	

VP → eat, comen	

VP → eat, como	

NP → A(1) N(2), N(2) A(1)	


S → NP(1) VP(2), NP(1) VP(2)

1.0	

1.0	

0.1	

0.9	

1.0	

1.0

VP (3,3)	

0.1 Legend

straight rule application

inverted rule application



Getting the translation

• Follow the backpointers	


• (S,1,3)	


• (NP,1,2)	


• (N,2,2) → gatos	


• (A,1,1) → gordos	


• (VP,3,3) → como	


• translation:  
	
 gatos gordos como 
*  cats      fat     1ps-eat

46



What happened?

• We forgot the language model	


• We’re inventing the target side (which is what decoding does), 
so we need to incorporate it	


• How?	


• Stack-based decoding: we maintained the last word	


• Integration was easy because hypotheses always extended 
to the right	


• Here, hypotheses are merged either straight or inverted

47



Language model integration
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phrase-based

synchronous grammars

tengo 
→am+ =

A (1,1)	

1.0

N (2,2)	

1.0+

NP → A(1) N(2),  A(1) N(2)

N (1,2)	

1.0	


gordos gatos

=

A (1,1)	

1.0

N (2,2)	

1.0+

NP → A(1) N(2), N(2) A(1)

=

N (1,2)	

1.0	


gatos gordos



Language model integration
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• We still maintain a chart of items, but now the items have to 
contain the target side words	


• Just like regular parsing, we combine items in pairs to 
produce new items over larger spans	


• When items are merged, we can use these words to 
compute a language model probability	


• Formally, we are intersecting a context-free grammar (the 
translation model) with a regular grammar (Bar-Hillel et al., 
1964; Wu, 1996)



Updated data structure
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struct item {!
// d.p. state!
string nt;!
int i, j;!
string left_words;!
string right_words;!
// backpointer!
float score;!
Rule* rule;!
item* rhs1,!
!! rhs2;!

}! !

• With dynamic programming, we 
only need a word on either side	


• (for bigram LMs; for the general 
case, see Chiang (2007, §5.3.2))	


• Following Chiang, we represent 
the elided middle portion with 
a ★	


• The complete string can be 
reconstructed by following the 
backpointers



Decoding with an integrated LM
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A (1,1)	

1.0	


gordos

N (2,2)	

1.0	


gatos

VP (3,3)	

0.9	


como

NP (1,2)	

~1.0 • P(gordos | gatos)	


gatos ★ gordos

S (1,3)	

~ 0.1 • P(comen | gordos)	


gatos ★ comen

fat cats eat

A → fat, gordos 
N → cats, gatos	

VP → eat, comen	

VP → eat, como	

NP → A(1) N(2), N(2) A(1)	


S → NP(1) VP(2), NP(1) VP(2)

1.0	

1.0	

0.1	

0.9	

1.0	

1.0

VP (3,3)	

0.1	


comen



Getting the translation

• Follow the backpointers	


• (S,1,3,gatos★comen)	


• (NP,1,2,gatos★gordos)	


• (N,2,2,gatos) → gatos	


• (A,1,1,gordos) → gordos	


• (VP,3,3,comen) → comen	


• translation:  
	
 gatos gordos comen 
   cats      fat    3pp-eat
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Pruning
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• We have also not dealt much with ambiguity and competition 
amongst hypotheses	


• In general, there are too many hypotheses to consider, so we 
keep only the top k of them (per input span (i,j))	


• When considering a span (i,j) and a split point k, we have a 
large number of ways to combine items	


• there can be any number of applicable rules	


• there can be up to k items located at span (i,k)	


• there can be up to k items located at span (k,j)



Applying a unary rule
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• The naive way is to consider the full cross product



Cube pruning

55

• When considering a span (i,j) of a length-N sentence:	


• unary rules: there are rk items to compute (r the number of 
rules, k the number of child items)	


• binary rules: there are Nrk2 items to compute (since there 
are O(N) split points)	


• However, we’re only going to be keeping the top k of them!	


• this problem gets worse as k gets larger	


• We’d like to avoid computing all of these new items, which we 
accomplish with cube pruning



Cube pruning
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• We start with sorted lists of rules and the items they applied 
to	


• Observation: 	


• the best item comes from the best rule and the best cell	


• the next-best item uses either the 2nd best rule or the 
2nd-best cell

rule rhsl rhsr

1 1 1 1

2 2 7 3

3 4 9 4

...

best item 2nd-best

rule rhsl rhsr

1 1 1 1

2 2 7 3

3 4 9 4

...

3rd-best

rule rhsl rhsr

1 1 1 1

2 2 7 3

3 4 9 4

...



Applying a unary rule
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• The Huang & Chiang (2005) way:



Cube pruning

• We haven’t discussed the language model, which complicates 
this procedure by making it nonmonotonic	


• But that’s the basic idea
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Summary

• Today, we have reviewed	


• Monolingual parsing	


• Synchronous (bilingual) parsing	


• Decoding as parsing with an intersected bigram language 
model	


• We have also briefly touched on efficiency considerations 
with cube pruning
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Advanced topics
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Advanced topics: implicit binarization
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• We’d decoded in an ITG settings, where the rules all look like 
this:  
	
 	
 X → boy, chico	
	
 	
 	
 (lexical)  
	
 	
 X → X(1) X(2), X(2) X(1)	
 (inverted)  
	
 	
 X → X(1) X(2), X(1) X(2)	
 (straight)	


• This is the closest thing to Chomsky Normal Form for 
synchronous grammars	


• How do we decode with intermingled terminals and 
nonterminals? 
 
	
 	
 X → the X(1) was X(2), el X(1) era X(2)



Advanced topics: implicit binarization
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• One answer: binarize (terminals can always be binarized):  
 
 
 
 

• However, this is inefficient: 	


• it leads to a huge blowup in the number of nonterminals	


• it introduces a split point that has to be searched over 
(avoidable in this case, but not always)

X → the X was X, el X era X   X → the X174, el X174	


X174 → X X295, X X295	


X295 → was X, era X



Advanced topics: implicit binarization
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• Instead, we’d like to do implicit, Earley-style binarization



Advanced topics: spurious ambiguity

• Spurious ambiguity - multiple structures leading to the same 
interpretation	


• Especially problematic in ITG with its weak grammar	


• This can be addressed in various ways	


• Grammar canonical forms
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