Syntax-based decoding

JHU Machine Translation class
April 1, 2014

Administrative

- Homework 4 out, due April 14
- Final project proposals due today

Where do grammars come from?

- We left off on Thursday with
-a formalism for describing the relationship between two languages,
-an loosely-sketched algorithm for producing translations
- Questions for today:
-Where do synchronous grammars come from?
-How do we decode with an ngram language model?

Data－driven grammar extraction

－Grammar rules are not written by hand，they are extracted from bilingual parallel corpora

Arabic

فالتعذيب لا يزال يمارس على نطاق واسع
وتتم عمليات الاعتقال والاحتجاز دون سبب بصورة روتينية
وحان وقت التحلى بالبصيرة والشجاعة السياسية ．

Chinese

我国 能源 原材料 工业 生产 大幅度 增长。

非国大 要求 阻止 更 多 被 拘留 人员 死亡。

English
Torture is still being practised on a wide scale．

Arrest and detention without cause take place routinely．
This is a time for vision and political courage

English

China＇s energy and raw materials production up．
ANC calls for steps to prevent deaths in police custodv．

Hiero

- Consider the redundancy in this phrase table

Spanish
English
la bruja verde the green witch
la bruja roja the red witch
la bruja azúl the blue witch

- What generalization is missing?

Hiero

- Synchronous grammar rules
$X \rightarrow$ la bruja $X_{(1)}\| \|$ the $X_{(1)}$ witch
$X \rightarrow$ verde \|\| green
- As a tree

green

Hiero-style SCFG rules

- Most common type of SCFG in SMT is Hiero which has rules w/one non-terminal symbol
- Not as nice as linguistically motivated rules, does not capture the reordering in Urdu

North relations Korea

Hiero

- Consider the redundancy in this phrase table

Spanish	English
la bruja verde	the green witch
la bruja roja	the red witch
la bruja azúl	the blue witch

- What generalization is missing?
- Hiero abandons conventional English syntax
- Relies instead on evidence-based phrasal "subtractions"

Extracting Hiero rules

$X \rightarrow$ 与 北 韩 有 邦交， have diplomatic relations with North Korea
$X \rightarrow$ 邦交，
diplomatic relations
$X \rightarrow$ 北 韩，
North Korea
$X \rightarrow$ 与 X_{1} 有 X_{2} ， have X_{2} with X_{1}

Decoding

- We now have a way to obtain a synchronous grammar
- Last week, we sketched the decoding algorithm, which was based on parsing
- Today, we'll cover it in more detail, and correct a crucial omission (ngram language models)

Review (I)

- We've discussed how syntactic differences between languages motivated reordering as a preprocessing step

Ich werde Innen den Report aushaendigen, damit Sie den eventuell uebernehmen koennen.

Ich werde aushaendigen Ihnen den Report, damit Sie koennen uebernehmen den eventuell.

Review (2)

- We've also discussed synchronous grammar rules, which describe the generation of sentences in pairs

	Urdu	English
$\mathrm{S} \rightarrow$	$\mathrm{NP}(1) \mathrm{VP}(2)$	$\mathrm{NP}(1) \mathrm{VP}(2)$
$\mathrm{VP} \rightarrow$	$\mathrm{PP}(1) \mathrm{VP}(2)$	$\mathrm{VP}(2) \mathrm{PP}(1)$
$\mathrm{VP} \rightarrow$	$\mathrm{V}(1) \mathrm{AUX}(2)$	$\mathrm{AUX}(2) \mathrm{V}(1)$
$\mathrm{PP} \rightarrow$	$\mathrm{NP}(1) \mathrm{P}(2)$	$\mathrm{P}(2) \mathrm{NP}(1)$
$\mathrm{NP} \rightarrow$	hamd ansary	Hamid Ansari
$\mathrm{NP} \rightarrow$	na\}b sdr	Vice President
$\mathrm{V} \rightarrow$	namzd	nominated
$\mathrm{P} \rightarrow$	kylye	for
$\mathrm{AUX} \rightarrow$	taa	was

Review (3)

- ...and how we could extract those rules automatically from text

have X_{3} with X_{2}

diplomatic North relations Korea

Today

- How do we actually decode with these grammars?
- The solution is the CKY / CYK algorithm
- Outline

\{CKY algorithm $\}$	$\{$ CYK algorithm $\}$
6,090	$\sim 13,700$

- Parsing in one language

Google

- Parsing in two languages with inversion transduction grammar (ITG)
- Decoding as parsing with synchronous context-free grammars (SCFG) and integrated language models
- Time-permitting: advanced topics

Review: monolingual parsing

Using the CKY algorithm to find (the best) structure for a sentence given a grammar

Formal definitions

- Formal languages are (possibly infinite) sets of strings that are generated by a grammar
- e.g., $\{a+\}$ is a language of all strings with one or more as
- Its grammar could be written as

$$
A \rightarrow A a
$$

$$
A \rightarrow a
$$

- We can view natural languages in this manner, too
- e.g., the English language is the set of word sequences that constitute valid English sentences
- We believe there to be a grammar that generates those sentences
- We don't know what it is, but we have some guesses and approximations

Parsing

- Given a sentence and a grammar, how do we find Sts structure?
- We'll use the CKY alg 6 Pithm (Cocke-Kasami-Younger) $\bigwedge_{\text {Vp }}$
- Basic jea: build smal/item民 before largen ones

Fred Jones was worn out sentence

$$
S \rightarrow N P V P
$$

$$
\mathrm{VP} \rightarrow \text { VBN PRT }
$$

$$
\mathrm{PRT} \rightarrow \mathrm{RP}
$$

$$
\mathrm{VP} \rightarrow \mathrm{VBD} V P
$$

$$
N P \rightarrow N N P N N P
$$

NNP \rightarrow Fred \mid Jones
VBD \rightarrow was
VBN \rightarrow worn
RP \rightarrow out

Parsing with CKY

$$
\begin{aligned}
\mathrm{S} & \rightarrow \mathrm{NP} \text { VP } \\
\mathrm{VP} & \rightarrow \text { VBN PRT } \\
\mathrm{PRT} & \rightarrow \mathrm{RP} \\
\mathrm{VP} & \rightarrow \mathrm{VBD} \mathrm{VP} \\
\mathrm{NP} & \rightarrow \text { NNP NNP } \\
\text { NNP } & \rightarrow \text { Fred } \mid \text { Jones } \\
\text { VBD } & \rightarrow \text { was } \\
\text { VBN } & \rightarrow \text { worn } \\
\mathrm{RP} & \rightarrow \text { out }
\end{aligned}
$$

Implementation details

- Dynamic programming maintains a chart of items
- Each cell item represents the dynamic programming state
-(NNP, I, I), (S, I,5)
- The chart is the collection of all items

```
struct item {
    // d.p. state
    string nt;
    int i, j;
    // backpointer
    float score;
    Rule* rule;
    item* rhs1,
        rhs2;
}
```

- The score resolves alternate ways of constructing an item
- We also store backpointers: the items and rule used to construct each item

a.k.a. "predecessor"

CKY algorithm

input: words[1..N]
for i in 1..N
for each unary rule $X \rightarrow$ words[i] add (X,i,i) to the chart
for span in 1..N

```
for i in 1..(N-span)
    j = i + span
```

 for \(k\) in i..j
 for rule \(X \rightarrow Y\) Z
 if (\(Y, i, k\)) and (\(Z, k, j)\)
 add (X,i,j) to the chart
 output: ($\mathrm{S}, 1, \mathrm{~N}$)

Parsing with CKY

I		2	3	4	5
Fred	NNP				
Jones	NP	NNP			
was			VBD		
worn				VBN	
out	$S=$	$-=-=\frac{\text { VP }}{}$	VP	RP PRT	5
	Fred	Jones	was	worn	out

item

```
nt = "S";
i = 1, j = 5;
score = -42.5;
Rule = &rule("S -> NP VP")
rhs1 = &item(NP,1,2);
rhs2 = &item(VP, 3,5);
```


Reconstructing the best parse

- We can reconstruct the best parse by following backpointers
nodes.append(item(S,1,N))
while nodes.size() > 0:
item = nodes.pop()
print item
nodes.append(item.rhsr)
nodes.append(item.rhsl)

nodes

Fred	NNP				
Jones	$N P$	NNP			
was	!		VBD		
worn	'			VBN	
out	S		$\rightarrow \mathrm{VP}$	VP	$\begin{gathered} \text { RP } \\ \text { PRT } \end{gathered}$
	Fred	Jones	was	worn	out

$$
\begin{aligned}
& S \rightarrow N P \operatorname{VP}(1,5) \\
& \text { NP } \rightarrow \text { NNP NNP }(1,2) \\
& \text { NNP } \rightarrow \text { Fred }(1,1) \\
& \text { NNP } \rightarrow \text { Jones }(2,2) \\
& \mathrm{VP} \rightarrow \mathrm{VBD} \operatorname{VP}(3,5) \\
& \text { VBD } \rightarrow \text { was }(3,3) \\
& \mathrm{VP} \rightarrow \mathrm{VBN} \text { PRT }(4,5) \\
& \text { VBN } \rightarrow \text { worn }(4,4) \\
& \text { PRT } \rightarrow \text { RP }(5,5) \\
& \text { RP } \rightarrow \text { out }(5,5)
\end{aligned}
$$

Parsing with CKY

Parsing as (weighted) deduction

- Deductive reasoning:
- axioms: statements that are true or false ("it is raining")
- inference rules: statements that are conditionally true ("If it is raining and I am outside, I'll get wet'')
- goals: statements that are licensed by combinations of axioms, inference rules, and other conclusions ("I am wet")

Parsing as (weighted) deduction

- input: words w[I..N]
$\left.\begin{array}{|c|c|l|}\hline \text { Axioms } & \overline{\overline{X \rightarrow w[i]}} & \text { for all }(X \rightarrow w[i]) \\ \hline \text { Inference rules } & \frac{X \rightarrow w[i]}{(X, i, i)} & \\ \hline \text { Goal } & (B, i, j) & (C, j, k) A \rightarrow B C \\ \text { in bottom-up order } \\ \text { (smaller spans first) }\end{array}\right)$

Complexity

- Complexity of parsing is $\mathrm{O}\left(\mathrm{Gn}^{3}\right)$
- G - number of (binarized) rules in the grammar
- n - length of the sentence
- All those rules were binary; what about longer rules?
- e.g.,

- We have to enumerate every split point!

CKY algorithm

input: words[1..N]
for i in 1..N
for each unary rule $\mathrm{X} \rightarrow$ words[i]
add (X,i,i) to the chart
for span in $1 . . \mathrm{N}$
for i in 1..(N-span)

$$
j=i+\operatorname{span}
$$

$$
\text { for } k_{1} \text { in i..j-1 }
$$

$$
\text { for } k_{2} \text { in } k_{1} . . j
$$

i.........k।.....k2........j
for rule $\mathrm{X} \rightarrow \mathrm{W} \mathrm{Y}$ Z
if ($W, i, k 1$) and ($Y, k 1, k 2$) and ($2, k 2, j)$ add (X,i,j) to the chart
output: ($\mathrm{S}, 1, \mathrm{~N}$)

Binarization into Chomsky Normal Form

- In general, for a rule with k RHS items, complexity is $\mathrm{O}\left(\mathrm{n}^{\mathrm{k+1}}\right)$ (and cumbersome, since you have to explicitly add inner loops to enumerate them)
- Fortunately, we can binarize rules to make them all have a rank of 2

two split points: $\mathrm{O}\left(\mathrm{n}^{4}\right)$

CKY algorithm

- In summary, monolingual parsing:
- finds the best structure
- works bottom-up, enumerating all spans, from small to large, building searching for applicable rules and building new chart items
- works with the binarized form of a grammars (easily unbinarized afterward) for a complexity of $\mathrm{O}\left(\mathrm{Gn}^{3}\right)$

- all grammars are binarizable

Synchronous parsing

Synchronous parsing

- We can extend CKY to parse two languages at once!
- Consider the following grammar:

$$
\begin{array}{ll}
A \rightarrow \text { fat, gordos } & \text { (lexical) } \\
A \rightarrow \text { thin, delgados } & \\
N \rightarrow \text { cats, gatos } & \\
V P \rightarrow \text { eat, comen } & \text { (inverted) } \\
N P \rightarrow A^{(1)} N^{(2)}, N^{(2)} \mathbf{A}^{(1)} & \text { (straight) }
\end{array}
$$

- and the following sentence pair:
fat cats eat / gatos gordos comen

Synchronous parsing

- We now have to enumerate pairs of spans
- instead of (i,j)...
- ...we have (i,j) and (s, t)
- For each of the bilingual blocks, we attempt to match both straight and inverted rules

$$
\begin{aligned}
& \mathrm{A} \rightarrow \text { fat, gordos } \\
& \mathrm{N} \rightarrow \text { cats, gatos } \\
& \mathrm{VP} \rightarrow \text { eat, comen } \\
& \mathrm{VP} \rightarrow \text { eat, como } \\
& \mathrm{NP} \rightarrow \mathrm{~A}^{(1)} \mathrm{N}^{(2)}, \mathrm{N}^{(2)} \mathrm{A}^{(1)} \\
& \mathrm{S} \rightarrow \mathrm{NP}^{(1)} \mathrm{VP}^{(2)}, \mathrm{NP}^{(1)} \mathrm{VP}^{(2)}
\end{aligned}
$$

Relation to monolingual parsing

-Why do we combine like this?

- Think about monolingual CKY: combine adjacent spans

- These pieces are adjacent in both languages; it's only when we consider them together that reordering comes into play
-Why can't we do this?
- It doesn't make sense!

-What about these?
- Possible, but complex

gap

rank > 2

CKY for synchronous parsing

input: source[1..N], target[1..M] for span_{1} in $1 . . N$

```
for i in 1..(N-span1)
    j = i + span_
        for k in i..j
```

 for \(\operatorname{span}_{2}\) in 1...M
 for s in 1..(M-span2)
 \(t=s+\operatorname{span}_{2}\)
 for \(u\) in s..t
 for rule \(X \rightarrow\) [Y Z]
 if (Y,i,k,s,u) and
 (Z,k,j,u,v) then
 add (X,i,j,s,t) to chart
 output: (S,1,N,1,M)

| comen | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |

if (Y,i,k,s,u) and ($\mathrm{Z}, \mathrm{k}, \mathrm{j}, \mathrm{u}, \mathrm{v}$) then add (X,i,j,s,t) to chart

Synchronous parsing

- Complexity: $\mathrm{O}\left(\mathrm{GN}^{3} \mathrm{M}^{3}\right) \approx \mathrm{O}\left(\mathrm{GN}^{6}\right)$
-Why?
- We have to enumerate all valid combinations of six variables
- This can be seen in the six nested loops of the algorithm

$$
A \rightarrow \text { fat, gordos }
$$

$$
N \rightarrow \text { cats, gatos }
$$

$$
\mathrm{VP} \rightarrow \text { eat, comen }
$$

$$
\text { VP } \rightarrow \text { eat, como }
$$

$$
N P \rightarrow \mathbf{A}^{(1)} \mathbf{N}^{(2)}, \mathbf{N}^{(2)} \mathbf{A}^{(1)}
$$

$$
\mathrm{S} \rightarrow \mathbf{N P}^{(I)} \mathrm{VP}^{(2)}, \mathbf{N P}^{(I)} \mathrm{VP}^{(2)}
$$

comen	$(3,3,3, B)$	$(3,3$, $3,3)$	
gordos	$(1,1$, $2,2)$	$(1,2$, $1,2)$	
gatos		$(2,2$, $1,1)$	
	fat	cats	eat

Visualization of $\mathrm{O}\left(\mathrm{GN}^{6}\right)$ complexity

input: source[1..N], target[1..M]
l for span_{1} in $1 . . \mathrm{N}$
2 for i in 1..(N-span $\left.{ }_{1}\right)$
$j=i+\operatorname{span}_{1}$
3 for k in i..j
for span_{2} in $1 . . M$
for s in 1..(M-span $)_{2}$
$t=s+\operatorname{span}_{2}$
6 for u in s..t for rule $X \rightarrow[Y Z]$
if (Y,i,k,s,u) and (Z, k, j, u, v) then
add (X,i,j,s,t) to chart
output: ($\mathrm{S}, 1, \mathrm{~N}, 1, \mathrm{M}$)

Synchronous binarization

- In the above, we considered two nonterminals (per side)
- What if we want more (Zhang et al., 2006)?

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP}^{(1)} \mathrm{VP}^{(2)} \mathrm{PP}^{(3)}, \mathrm{NP}^{(1)} \mathrm{PP}^{(3)} \mathrm{VP}^{(2)} \\
& \mathrm{NP} \rightarrow \text { Powell, Baoweier } \\
& \mathrm{VP} \rightarrow \text { held a meeting, juxing le huitan } \\
& \mathrm{PP} \rightarrow \text { with Sharon, yu Shalong }
\end{aligned}
$$

- Three nonterminals? No problem:
- More?

Permutations

- The nonterminals in the right-hand side of a rule define a permutation between the languages
- we assume the source language nonterminals are in order (wlog)
- intermingled terminal symbols do not affect binarization ability
- Example:

$$
\mathrm{S} \rightarrow \quad \mathrm{NP}^{(1)} \mathrm{VP}^{(2)} \mathrm{PP}^{(3)}, \mathrm{NP}^{(1)} \mathrm{PP}^{(3)} \mathrm{VP}^{(2)}
$$

- permutation: | 32

Synchronous binarization

- Bad news: synchronous grammars can't be binarized in the general case (Shapiro \& Stephens, I99I;Wu, 1997) *
- Famous examples: the $(2,4, I, 3)$ and $(3, I, 4,2)$ permutations

-What makes these unbinarizable?
- Crucial: parsing works by combining adjacent elements
- No pair of alignments here is adjacent in both languages simultaneously
(*) Technically, you can binarize any synchronous grammar, but you may increase the fan-out, which mitigates the potential gains.

Synchronous binarization

- As the rank of a rule grows, the percentage of binarizable rules approaches 0
- In summary:

- We can't binarize all rules
- The first unbinarizable rule has rank 4

Silver lining

- Empirically, we don't observe that many non-binarizable rules (Zhang et al., 2006):

Figure 6: The solid-line curve represents the distribution of all rules against permutation lengths. The dashed-line stairs indicate the percentage of non-binarizable rules in our initial rule set while the dotted-line denotes that percentage among all permutations.

- ...and we can safely throw out the ones we do find
- 99.7% of rules extracted were binarizable
- many not were due to alignment errors

Decoding as parsing

Synchronous decoding

- Enough parsing; what we care about is decoding
- Parsing is relevant, though, because we can view decoding as a task where we are doing synchronous parsing but we don't happen to know the target side text
- This works by parsing with a source-side projection of the synchronous grammar rules
- At the end, we can follow backpointers to discover the most probable target side

Updated data structure

- Just like regular parsing, we combine items in pairs to produce new items over larger spans:

$\underline{(A, I, I)(N, 2,2)}$
 (NP, I,2)

- However, we also have to maintain our guess of the target side

A \rightarrow fat, gordos
$N \rightarrow$ cats, gatos
VP \rightarrow eat, comen
VP \rightarrow eat, como
$N P \rightarrow A^{(1)} N^{(2)}, N^{(2)} A^{(1)}$
$S \rightarrow \mathrm{NP}^{(1)} \mathrm{VP}{ }^{(2)}, \mathrm{NP}^{(1)} \mathrm{VP}{ }^{(2)}$

Decoding

- Again, a bottom-up process

$$
\begin{array}{ll}
\mathrm{A} \rightarrow \text { fat, gordos } & 1.0 \\
\mathrm{~N} \rightarrow \text { cats, gatos } & 1.0 \\
\mathrm{VP} \rightarrow \text { eat, comen } & 0.1 \\
\mathrm{VP} \rightarrow \text { eat, como } & 0.9 \\
\mathrm{NP} \rightarrow \mathrm{~A}^{(1)} \mathrm{N}^{(2)}, \mathrm{N}^{(2)} \mathrm{A}^{(1)} & 1.0 \\
\mathrm{~S} \rightarrow \mathrm{NP}^{(1)} \mathrm{VP}^{(2)}, \mathrm{NP}^{(1)} \mathrm{VP}^{(2)} & 1.0
\end{array}
$$

Legend

_- straight rule application
-- - - inverted rule application

Getting the translation

- Follow the backpointers

$$
\begin{aligned}
& \text { - (S, l, 3) } \\
& \text { - (NP, I, 2) } \\
& \text { - }(\mathrm{N}, 2,2) \rightarrow \text { gatos } \\
& \text { - }(\mathrm{A}, \mathrm{l}, \mathrm{l}) \rightarrow \text { gordos }
\end{aligned}
$$

- (VP,3,3) \rightarrow como
- translation: gatos gordos como
* cats fat Ips-eat

What happened?

- We forgot the language model
- We're inventing the target side (which is what decoding does), so we need to incorporate it
- How?
- Stack-based decoding: we maintained the last word
- Integration was easy because hypotheses always extended to the right
- Here, hypotheses are merged either straight or inverted

Language model integration

phrase-based

$$
\begin{gathered}
\text { <s> I } \\
\text { OOO }
\end{gathered}+\underset{\substack{\text { tengo } \\
\rightarrow \mathrm{am}}}{ }=\begin{gathered}
\text { <s> I am } \\
\text { OOO }
\end{gathered}
$$

synchronous grammars

$$
\begin{array}{cc}
\begin{array}{c}
\mathrm{A}(1, \mathrm{I}) \\
1.0
\end{array}+\begin{array}{c}
\mathrm{N}(2,2) \\
1.0
\end{array} & \mathrm{~A}(1, \mathrm{I}) \\
1.0
\end{array}+\begin{gathered}
\mathrm{N}(2,2) \\
1.0 \\
\mathrm{NP} \rightarrow \mathrm{~A}^{(1)} \mathrm{N}^{(2)}, \mathrm{N}^{(2)} \mathrm{A}^{(1)} \\
= \\
\mathrm{NP} \rightarrow \mathrm{~A}^{(1)} \\
\mathrm{N}(1,2) \\
1.0 \\
\text { (2) }, \mathrm{A}^{(1)} \\
\text { gatos gordos }
\end{gathered}
$$

Language model integration

- We still maintain a chart of items, but now the items have to contain the target side words
- Just like regular parsing, we combine items in pairs to produce new items over larger spans
- When items are merged, we can use these words to compute a language model probability
- Formally, we are intersecting a context-free grammar (the translation model) with a regular grammar (Bar-Hillel et al., I964;Wu, I996)

Updated data structure

- With dynamic programming, we only need a word on either side
- (for bigram LMs; for the general case, see Chiang (2007, §5.3.2))
- Following Chiang, we represent the elided middle portion with a \star
- The complete string can be reconstructed by following the backpointers

```
struct item {
    // d.p. state
    string nt;
    int i, j;
    string left_words;
    string right_words;
    // backpointer
    float score;
    Rule* rule;
    item* rhs1,
    rhs2;
}
```


Decoding with an integrated LM

$$
\begin{array}{ll}
\mathrm{A} \rightarrow \text { fat, gordos } & 1.0 \\
\mathrm{~N} \rightarrow \text { cats, gatos } & 1.0 \\
\mathrm{VP} \rightarrow \text { eat, comen } & 0.1 \\
\mathrm{VP} \rightarrow \text { eat, como } & 0.9 \\
\mathrm{NP} \rightarrow \mathrm{~A}^{(1)} \mathrm{N}^{(2)}, \mathrm{N}^{(2)} \mathrm{A}^{(1)} & 1.0 \\
\mathrm{~S} \rightarrow \mathrm{NP}^{(1)} \mathrm{VP}^{(2)}, \mathrm{NP}^{(1)} \mathrm{VP}^{(2)} & 1.0 \\
& \\
& \\
& \\
& \\
\end{array}
$$

Getting the translation

- Follow the backpointers
- (S, I , 3, gatos \star comen)
- (NP, I, 2,gatos \star gordos)
- (N,2,2,gatos) \rightarrow gatos
- (A, I, I, gordos) \rightarrow gordos
- $(\mathrm{VP}, 3,3$, comen $) \rightarrow$ comen
- translation:
gatos gordos comen
cats fat 3pp-eat

Pruning

- We have also not dealt much with ambiguity and competition amongst hypotheses
- In general, there are too many hypotheses to consider, so we keep only the top k of them (per input span (i,j))
- When considering a span (i,j) and a split point k, we have a large number of ways to combine items
- there can be any number of applicable rules
- there can be up to k items located at span (i,k)
- there can be up to k items located at span (k,j)

Applying a unary rule

- The naive way is to consider the full cross product

Cube pruning

- When considering a span (i, j) of a length-N sentence:
- unary rules: there are rk items to compute (r the number of rules, k the number of child items)
- binary rules: there are Nrk^{2} items to compute (since there are $\mathrm{O}(\mathrm{N})$ split points)
- However, we're only going to be keeping the top k of them!
- this problem gets worse as k gets larger
- We'd like to avoid computing all of these new items, which we accomplish with cube pruning

Cube pruning

- We start with sorted lists of rules and the items they applied to
- Observation:
- the best item comes from the best rule and the best cell
- the next-best item uses either the $2 n d$ best rule or the 2nd-best cell

	rule	rhsl	rhsr
1	1	1	1
2	2	7	3
3	4	9	4
\ldots			

best item

	rule	rhsl	rhsr
1	1	1	1
2	2	7	3
3	4	9	4
\ldots			

2nd-best

	rule	rhsl	rhsr
1	1	1	1
2	2	7	3
3	4	9	4
\ldots			

3rd-best

Applying a unary rule

－The Huang \＆Chiang（2005）way：

등	$\frac{\sqrt{\pi}}{2}$	$\begin{aligned} & \tilde{\ddot{U}} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 区 } \\ & \text { E } \\ & \text { U } \end{aligned}$	$\frac{\text { 즐 }}{}$	$\begin{aligned} & \tilde{U} \\ & \frac{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { U } \\ & \text { U } \end{aligned}$	$\frac{\pi}{2}$
\pm	$\stackrel{1}{\square}$	\pm	\pm	\pm	\cong	\pm	\pm
	\ddagger	\ddagger	\pm	\＃	\ddagger	\pm	F
${ }^{\infty}$	－	${ }_{0}^{\infty}$	－	－	－	－	－
－	㐅	㐅	㐅	㐅	㐅	\times	－

	14		147			147		
$X \rightarrow\left\langle\right.$ cong $X_{\text {过 }}$ ，from $\left.X_{\text {过 }}\right\rangle$	2.1	5.1	2.1	5.1	8.2	2.1	5.1	8.2
$X \rightarrow\left\langle\right.$ cong $X_{\square \square}$, from the $\left.X_{\square}\right\rangle 2$	5.5		5.5	8.5		5.5	8.5	
$X \rightarrow\left\langle\right.$ cong $X_{\square \square}$ ，since $\left.X_{\square}\right\rangle$ ， 6						7.7		
$X \rightarrow\left\langle\operatorname{cong} X_{\square}\right.$ ，through $\left.X_{\square}\right\rangle 10$								

Cube pruning

- We haven't discussed the language model, which complicates this procedure by making it nonmonotonic
- But that's the basic idea

Summary

- Today, we have reviewed
- Monolingual parsing
- Synchronous (bilingual) parsing
- Decoding as parsing with an intersected bigram language model
- We have also briefly touched on efficiency considerations with cube pruning

Advanced topics

Advanced topics: implicit binarization

- We'd decoded in an ITG settings, where the rules all look like this:

$$
\begin{array}{ll}
X \rightarrow \text { boy, chico } & \text { (lexical) } \\
X \rightarrow X^{(1)} X^{(2)}, X^{(2)} X^{(1)} & \text { (inverted) } \\
X \rightarrow X^{(1)} X^{(2)}, X^{(1)} X^{(2)} & \text { (straight) }
\end{array}
$$

- This is the closest thing to Chomsky Normal Form for synchronous grammars
- How do we decode with intermingled terminals and nonterminals?

$$
X \rightarrow \text { the } X^{(1)} \text { was } X^{(2)} \text {, el } X^{(1)} \text { era } X^{(2)}
$$

Advanced topics: implicit binarization

- One answer: binarize (terminals can always be binarized):
$\mathbf{X} \rightarrow$ the \mathbf{X} was \mathbf{X}, el \mathbf{X} era \mathbf{X}
$X \rightarrow$ the X_{174}, el X_{174}

$$
\begin{aligned}
& X_{174} \rightarrow \mathbf{X} X_{295}, \mathbf{X} X_{295} \\
& X_{295} \rightarrow \text { was } \mathbf{X}, \text { era } \mathbf{X}
\end{aligned}
$$

- However, this is inefficient:
- it leads to a huge blowup in the number of nonterminals
- it introduces a split point that has to be searched over (avoidable in this case, but not always)

Advanced topics: implicit binarization

- Instead, we'd like to do implicit, Earley-style binarization

Advanced topics: spurious ambiguity

- Spurious ambiguity - multiple structures leading to the same interpretation
- Especially problematic in ITG with its weak grammar
- This can be addressed in various ways
- Grammar canonical forms

