
Syntax-based
decoding

JHU Machine Translation class
April 1, 2014

Administrative

• Homework 4 out, due April 14

• Final project proposals due today

Where	
 do	
 grammars	
 come	
 from?

• We	
 le0	
 off	
 on	
 Thursday	
 with	

–a	
 formalism	
 for	
 describing	
 the	
 rela:onship	
 between	

two	
 languages,	
 	
 	

–an	
 loosely-­‐sketched	
 algorithm	
 for	
 producing	

transla:ons	

• Ques:ons	
 for	
 today:	

–Where	
 do	
 synchronous	
 grammars	
 come	
 from?	

–How	
 do	
 we	
 decode	
 with	
 an	
 ngram	
 language	
 model?

3

Data-­‐driven	
 grammar	
 extrac:on

• Grammar	
 rules	
 are	
 not	
 wriGen	
 by	
 hand,	
 they	
 are	

extracted	
 from	
 bilingual	
 parallel	
 corpora

4

EnglishFrench

L' Espagne a refusé de confirmer que l'
Espagne avait refusé d' aider le Maroc.

Nous voyons que le gouvernement
français a envoyé un médiateur.

Force est de constater que la situation
évolue chaque jour.

!"#$%&'() '*+, -"./ 012 34"5 6+78

69$: 0;1<"= +)0$>", 6+)?$@"A B6C 7D(EFG.H
.69<I<J

6?"C 6KL +#$M12 E"#DF<NH 6+#O@"0J +#P<"7<J .

Spain declined to confirm that Spain
declined to aid Morocco.

We see that the French government has
sent a mediator.

We note that the situation is changing
every day.

Torture is still being practised on a wide
scale.

Arrest and detention without cause take
place routinely.

This is a time for vision and political
courage

.

EnglishArabic

.

我国 能源 原材料 工� 生� 大幅度 增� .

非国大 要求 阻止 更 多 被 拘留 人� 死亡 .

China's energy and raw materials
production up.

ANC calls for steps to prevent deaths in
police custody .

EnglishChinese

.

EnglishFrench

L' Espagne a refusé de confirmer que l'
Espagne avait refusé d' aider le Maroc.

Nous voyons que le gouvernement
français a envoyé un médiateur.

Force est de constater que la situation
évolue chaque jour.

!"#$%&'() '*+, -"./ 012 34"5 6+78

69$: 0;1<"= +)0$>", 6+)?$@"A B6C 7D(EFG.H
.69<I<J

6?"C 6KL +#$M12 E"#DF<NH 6+#O@"0J +#P<"7<J .

Spain declined to confirm that Spain
declined to aid Morocco.

We see that the French government has
sent a mediator.

We note that the situation is changing
every day.

Torture is still being practised on a wide
scale.

Arrest and detention without cause take
place routinely.

This is a time for vision and political
courage

.

EnglishArabic

.

我国 能源 原材料 工� 生� 大幅度 增� .

非国大 要求 阻止 更 多 被 拘留 人� 死亡 .

China's energy and raw materials
production up.

ANC calls for steps to prevent deaths in
police custody .

EnglishChinese

.

Hiero

• Consider	
 the	
 redundancy	
 in	
 this	
 phrase	
 table 
 
 
 

• What	
 generaliza:on	
 is	
 missing?

5

Spanish English

la bruja verde the green witch

la bruja roja the red witch

la bruja azúl the blue witch

Hiero

• Synchronous	
 grammar	
 rules  
 

• As	
 a	
 tree

6

X X

la Xbruja the witchX

greenverde

X	
 →	
 la	
 bruja	
 X(1)	
 |||	
 the	
 X(1)	
 witch 
X	
 →	
 verde	
 |||	
 green

Hiero-­‐style	
 SCFG	
 rules

• Most	
 common	
 type	
 of	
 SCFG	
 in	
 SMT	
 is	
 Hiero	

which	
 has	
 rules	
 w/one	
 non-­‐terminal	
 symbol	
 	

• Not	
 as	
 nice	
 as	
 linguis:cally	
 mo:vated	
 rules,	
 does	

not	
 capture	
 the	
 reordering	
 in	
 Urdu

X1 X1

与 X2 有 X3 have X2withX3

diplomatic	

relations

邦交
North	

Korea

北韩

Hiero

• Consider	
 the	
 redundancy	
 in	
 this	
 phrase	
 table 
 
 
 

• What	
 generaliza:on	
 is	
 missing?	

• Hiero	
 abandons	
 conven:onal	
 English	
 syntax	

• Relies	
 instead	
 on	
 evidence-­‐based	
 phrasal	

“subtrac:ons”

8

Spanish English

la bruja verde the green witch

la bruja roja the red witch

la bruja azúl the blue witch

Extrac:ng	
 Hiero	
 rules

9

澳
洲

是 与 北 韩 有 邦
交

的 少
数

国
家

之
一

Australia

is

one

of

the

few

countries

that

have

diplomatic

relations

with

North

Korea

X → 与 北 韩 有 邦交,
have diplomatic relations
with North Korea

X → 邦交,
diplomatic relations
X → 北 韩,  
	

 	

 North Korea

X → 与 X1 有 X2, 	

 have X2 with X1

X2

X1

Decoding

• We now have a way to obtain a synchronous
grammar

• Last week, we sketched the decoding algorithm,
which was based on parsing

• Today, we’ll cover it in more detail, and correct a
crucial omission (ngram language models)

Review (1)

• We’ve discussed how syntactic differences between languages
motivated reordering as a preprocessing step 
 
 
 
 
 
 
 

Ich werde Ihnen den Report
aushaendigen, damit Sie den
eventuell uebernehmen koennen.

Ich werde aushaendigen Ihnen
den Report, damit Sie koennen
uebernehmen den eventuell.

Review (2)

• We’ve also discussed synchronous grammar rules, which
describe the generation of sentences in pairs

12

Urdu English

S → NP① VP② NP① VP②
VP→ PP① VP② VP② PP①

VP→ V① AUX② AUX② V①

PP → NP① P② P② NP①
NP → hamd ansary Hamid Ansari

NP → na}b sdr Vice President

V → namzd nominated

P → kylye for

AUX → taa was

Review (3)

• ...and how we could extract those rules automatically from
text

13

X1 X1

与 X2 有 X3 have X2withX3

diplomatic	

relations

邦交
North	

Korea

北韩

Today

• How do we actually decode with these grammars?	

• The solution is the CKY / CYK algorithm	

• Outline	

• Parsing in one language 	

• Parsing in two languages with inversion transduction grammar
(ITG)	

• Decoding as parsing with synchronous context-free grammars
(SCFG) and integrated language models	

• Time-permitting: advanced topics

14

{CKY algorithm} {CYK algorithm}

6,090 ~ 13,700

Review: monolingual parsing

15

Using the CKY algorithm to find (the best)
structure for a sentence given a grammar

Formal definitions

• Formal languages are (possibly infinite) sets of strings that are
generated by a grammar	

• e.g., {a+} is a language of all strings with one or more as	

• Its grammar could be written as 
	

 A → Aa 
	

 A → a	

• We can view natural languages in this manner, too	

• e.g., the English language is the set of word sequences that
constitute valid English sentences	

• We believe there to be a grammar that generates those sentences	

• We don’t know what it is, but we have some guesses and
approximations

16

Parsing

• Given a sentence and a grammar, how
do we find its structure?	

• We’ll use the CKY algorithm (Cocke-
Kasami-Younger)	

• Basic idea: build small items before
larger ones

17

Fred	

 Jones	

 	

 was	

	

 worn	

 out

S → NP VP

VP → VBN PRT

PRT → RP

VP → VBD VP

NP → NNP NNP

NNP → Fred | Jones

VBD → was

VBN → worn

RP → out

grammarsentence

Fred	

 Jones	

 	

 was	

	

 worn	

 out

NNP NNP VBD VBN RP

NP

VP

PRT

VP

S

Parsing with CKY

18

S → NP VP

VP → VBN PRT

PRT → RP

VP → VBD VP

NP → NNP NNP

NNP → Fred | Jones

VBD → was

VBN → worn

RP → outFred	

 Jones	

 	

 was	

	

 worn	

 out

NNP NNP VBD VBN RP

NP

VP

PRT

VP

S

grammarsentence

• Dynamic programming maintains a 
chart of items	

• Each cell item represents the  
dynamic programming state	

• (NNP,1,1), (S,1,5)	

• The chart is the collection of all  
items	

• The score resolves alternate ways of constructing an item	

• We also store backpointers: the items and rule used to
construct each item

Implementation details

19

struct item {!
// d.p. state!
string nt;!
int i, j;!
// backpointer!
float score;!
Rule* rule;!
item* rhs1,!
!! rhs2;!

}! !

a.k.a. “predecessor”

CKY algorithm

20

input: words[1..N]!
for i in 1..N!
for each unary rule X ! words[i]!
add (X,i,i) to the chart!

for span in 1..N!
for i in 1..(N-span)!
j = i + span!
for k in i..j!
for rule X ! Y Z!
if (Y,i,k) and (Z,k,j)!
add (X,i,j) to the chart!

output: (S,1,N)

Parsing with CKY

21

Fred	

 Jones	

 	

 was	

	

 worn	

 out

NNP NNP VBD VBN RP

NP

VP

PRT

VP

S
Fred

Jones

was

worn

out

Fred Jones was worn out

1 2 3 4 5

4

3

2

1

5

NNP

NP NNP

VBD

VBN

RP
VPVPS PRT

item!
nt = “S”;!
i = 1, j = 5;!
score = -42.5;!
Rule = &rule(“S ! NP VP”)!
rhs1 = &item(NP,1,2);!
rhs2 = &item(VP,3,5);

• We can reconstruct the best
parse by following backpointers

Reconstructing the best parse

22

nodes.append(item(S,1,N))!
while nodes.size() > 0:!
item = nodes.pop()!
print item!
nodes.append(item.rhsr)!
nodes.append(item.rhsl) S → NP VP (1,5)	

	

 NP → NNP NNP (1,2)	

	

 	

 NNP → Fred (1,1)	

	

 	

 NNP → Jones (2,2)	

	

 VP → VBD VP (3,5)	

	

 	

 VBD → was (3,3)	

	

 	

 VP → VBN PRT (4,5)	

	

 	

 	

 VBN → worn (4,4)	

	

 	

 	

 PRT → RP (5,5)	

	

 	

 	

 	

 RP → out (5,5)

Fred NNP

Jones NP NNP

was VBD

worn VBN

out S VP VP RP 
PRT  

Fred Jones was worn out

nodes

(S,1,5)(VP,3,5) (NNP,2,2)(NP,1,2) (NNP,1,1)(VBD,3,3)(VP,4,5)(RP,5,5) (VBN,4,4)(PRT,5,5)

Parsing with CKY

23

Fred	

 Jones	

 	

 was	

worn	

 out

NNP NNP VBD VBN RP

NP

VP

PRT

VP

S

Fred	

 Jones	

 	

 was	

	

 worn	

 out from caring for his often screaming and
crying wife during the day but he couldn’t sleep at night for she in a stupor from the
drugs that didn’t ease the pain would set the house ablaze with a cigarette

Fred NNP

Jones NP NNP

was VBD

worn VBN

out S VP VP RP 
PRT  

Fred Jones was worn out

1 2 3 4 5

4

3

2

1

5

Parsing as (weighted) deduction

24

• Deductive reasoning:	

• axioms: statements that are true or false (“it is raining”)	

• inference rules: statements that are conditionally true (“If it
is raining and I am outside, I’ll get wet”)	

• goals: statements that are licensed by combinations of
axioms, inference rules, and other conclusions (“I am wet”)

axiom

Q

inference rule

P1 & P2 & ...
Q consequent

antecedent

(goal)

Parsing as (weighted) deduction

• input: words w[1..N]

25

Axioms

X → w[i]

for all (X → w[i])

Inference rules

X → w[i]	

(X, i, i)	

!
(B, i, j) (C, j, k) A → BC	

(A, i, k)

in bottom-up order
(smaller spans first)

Goal (S, 1, n)

Complexity

26

• Complexity of parsing is O(Gn3)	

• G	

- number of (binarized) rules in the grammar	

• n	

 - length of the sentence	

• All those rules were binary; what about longer rules?	

• e.g.,	

  
 
 
 

• We have to enumerate every split point!

DT NN

NP

JJ

CKY algorithm

27

input: words[1..N]!
for i in 1..N!
for each unary rule X ! words[i]!
add (X,i,i) to the chart!

for span in 1..N!
for i in 1..(N-span)!
j = i + span!
for k1 in i..j-1!
for k2 in k1..j!
for rule X ! W Y Z!
if (W,i,k1) and (Y,k1,k2) and (Z,k2,j)!
add (X,i,j) to the chart!

output: (S,1,N)

DT NN

NP

JJ
i.........k1.....k2........j

Binarization into Chomsky Normal Form

28

• In general, for a rule with k RHS items, complexity is O(nk+1)
(and cumbersome, since you have to explicitly add inner loops
to enumerate them)	

• Fortunately, we can binarize rules to make them all have a
rank of 2

DT NN

NP

JJ
DT

NP

JJ NN

JJ:NN

only one split pointtwo split points: O(n4)

new nonterminal
uniquely

identifies subtree

CKY algorithm

• In summary, monolingual parsing:	

• finds the best structure	

• works bottom-up, enumerating all
spans, from small to large, building
searching for applicable rules and
building new chart items	

• works with the binarized form of a
grammars (easily unbinarized
afterward) for a complexity of
O(Gn3)	

• all grammars are binarizable
29

Synchronous parsing

30

Synchronous parsing

31

• We can extend CKY to parse two languages at once!	

• Consider the following grammar:  
 
	

 	

 A → fat, gordos	

 	

 	

 	

 	

 (lexical)  
	

 	

 A → thin, delgados 
	

 	

 N → cats, gatos 
	

 	

 VP → eat, comen  
	

 	

 NP → A(1) N(2), N(2) A(1)	

 	

 	

 (inverted)  
	

 	

 S → NP(1) VP(2), NP(1) VP(2)	

 	

 (straight)	

• and the following sentence pair:  
	

  
	

 	

 fat cats eat / gatos gordos comen

Synchronous parsing

32

A → fat, gordos 
N → cats, gatos	

VP → eat, comen	

VP → eat, como	

NP → A(1) N(2), N(2) A(1)	

S → NP(1) VP(2), NP(1) VP(2)

comen

gordos

gatos

fat cats eat

(1,1,  
2,2)

• We now have to enumerate pairs
of spans 	

• instead of (i,j)...	

• ...we have (i,j) and (s,t)	

• For each of the bilingual blocks, we
attempt to match both  
straight and inverted rules

(2,2,  
1,1)

(3,3,  
3,3)

(1,2,  
1,2)

(3,3,3,3)

Relation to monolingual parsing

• Why do we combine like this?	

• Think about monolingual  
CKY: combine adjacent spans	

• These pieces are adjacent in both languages; it’s only when
we consider them together that reordering comes into play	

• Why can’t we do this?	

• It doesn’t make sense!	

• What about these?	

• Possible, but complex

33rank > 2gap

CKY for synchronous parsing

34

input: source[1..N], target[1..M]!
for span1 in 1..N!
for i in 1..(N-span1)!
j = i + span1!
for k in i..j!
for span2 in 1..M!
for s in 1..(M-span2)!
t = s + span2!
for u in s..t!
 for rule X ! [Y Z]!
 if (Y,i,k,s,u) and!
 (Z,k,j,u,v) then!
 add (X,i,j,s,t) to chart!

output: (S,1,N,1,M)

comen

gordos

gatos

fat cats eat

N
1 2 3

1

2

3
M

Synchronous parsing

35

• Complexity:  
O(GN3M3)	

 ≈ O(GN6)	

• Why?	

• We have to enumerate all valid
combinations of six variables	

• This can be seen in the six
nested loops of the algorithm

comen

gordos

gatos

fat cats eat

(1,1,  
2,2)

(2,2,  
1,1)

(3,3,  
3,3)

(1,2,  
1,2)

(3,3,3,3)

A → fat, gordos 
N → cats, gatos	

VP → eat, comen	

VP → eat, como	

NP → A(1) N(2), N(2) A(1)	

S → NP(1) VP(2), NP(1) VP(2)

Visualization of O(GN6) complexity

36

input: source[1..N], target[1..M]!
for span1 in 1..N!
for i in 1..(N-span1)!
j = i + span1!
for k in i..j!
for span2 in 1..M!
for s in 1..(M-span2)!
t = s + span2!
for u in s..t!
 for rule X ! [Y Z]!
 if (Y,i,k,s,u) and!
 (Z,k,j,u,v) then!
 add (X,i,j,s,t) to chart!

output: (S,1,N,1,M)

1
2

3
4
5

6
times all rules...

Synchronous binarization

• In the above, we considered two nonterminals (per side)	

• What if we want more (Zhang et al., 2006)?  
 
 
 
 

• Three nonterminals? No problem:  
 

• More?

37

Permutations

• The nonterminals in the right-hand side of a rule define a
permutation between the languages	

• we assume the source language nonterminals are in order
(wlog)	

• intermingled terminal symbols do not affect binarization
ability	

• Example:	

• permutation: 1 3 2

38

Synchronous binarization

• Bad news: synchronous grammars can’t be binarized in the
general case (Shapiro & Stephens, 1991; Wu, 1997) *	

• Famous examples: the (2,4,1,3) and (3,1,4,2) permutations  
 
 

• What makes these unbinarizable?	

• Crucial: parsing works by combining adjacent elements	

• No pair of alignments here is adjacent in both languages
simultaneously

39

(*) Technically, you can binarize any synchronous grammar, but you may increase the fan-out, which
mitigates the potential gains.

Synchronous binarization

• As the rank of a rule grows, the  
percentage of binarizable rules 
approaches 0 
 
 
 

• In summary:	

• We can’t binarize all rules	

• The first unbinarizable rule has rank 4

40

%
 r

ul
es

 b
in

ar
iz

ab
le

0

0.2

0.4

0.6

0.8

1

rule rank

1 2 3 4 5 6 7 8 9 10111213141516

• Empirically, we don’t observe that many non-binarizable rules
(Zhang et al., 2006):  
 
 
 
 
 
 

• ...and we can safely throw out the ones we do find	

• 99.7% of rules extracted were binarizable	

• many not were due to alignment errors
41

Silver lining

Decoding as parsing

42

Synchronous decoding

• Enough parsing; what we care about is decoding	

• Parsing is relevant, though, because we can view decoding as a
task where we are doing synchronous parsing but we don’t
happen to know the target side text	

• This works by parsing with a source-side projection of the
synchronous grammar rules	

• At the end, we can follow backpointers to discover the
most probable target side

43

Updated data structure

44

• Just like regular parsing, we  
combine items in pairs to produce  
new items over larger spans:  
 
 

• However, we also have to maintain
our guess of the target side 

(A,1,1) (N,2,2)	

(NP,1,2)

A → fat, gordos 
N → cats, gatos	

VP → eat, comen	

VP → eat, como	

NP → A(1) N(2), N(2) A(1)	

S → NP(1) VP(2), NP(1) VP(2)

Decoding

• Again, a bottom-up process

45

A (1,1)	

1.0

N (2,2)	

1.0

VP (3,3)	

0.9

NP (1,2)	

1.0

S (1,3)	

0.9

fat cats eat

A → fat, gordos 
N → cats, gatos	

VP → eat, comen	

VP → eat, como	

NP → A(1) N(2), N(2) A(1)	

S → NP(1) VP(2), NP(1) VP(2)

1.0	

1.0	

0.1	

0.9	

1.0	

1.0

VP (3,3)	

0.1 Legend

straight rule application

inverted rule application

Getting the translation

• Follow the backpointers	

• (S,1,3)	

• (NP,1,2)	

• (N,2,2) → gatos	

• (A,1,1) → gordos	

• (VP,3,3) → como	

• translation:  
	

 gatos gordos como 
* cats fat 1ps-eat

46

What happened?

• We forgot the language model	

• We’re inventing the target side (which is what decoding does),
so we need to incorporate it	

• How?	

• Stack-based decoding: we maintained the last word	

• Integration was easy because hypotheses always extended
to the right	

• Here, hypotheses are merged either straight or inverted

47

Language model integration

48

phrase-based

synchronous grammars

tengo
→am+ =

A (1,1)	

1.0

N (2,2)	

1.0+

NP → A(1) N(2), A(1) N(2)

N (1,2)	

1.0	

gordos gatos

=

A (1,1)	

1.0

N (2,2)	

1.0+

NP → A(1) N(2), N(2) A(1)

=

N (1,2)	

1.0	

gatos gordos

Language model integration

49

• We still maintain a chart of items, but now the items have to
contain the target side words	

• Just like regular parsing, we combine items in pairs to
produce new items over larger spans	

• When items are merged, we can use these words to
compute a language model probability	

• Formally, we are intersecting a context-free grammar (the
translation model) with a regular grammar (Bar-Hillel et al.,
1964; Wu, 1996)

Updated data structure

50

struct item {!
// d.p. state!
string nt;!
int i, j;!
string left_words;!
string right_words;!
// backpointer!
float score;!
Rule* rule;!
item* rhs1,!
!! rhs2;!

}! !

• With dynamic programming, we
only need a word on either side	

• (for bigram LMs; for the general
case, see Chiang (2007, §5.3.2))	

• Following Chiang, we represent
the elided middle portion with
a ★	

• The complete string can be
reconstructed by following the
backpointers

Decoding with an integrated LM

51

A (1,1)	

1.0	

gordos

N (2,2)	

1.0	

gatos

VP (3,3)	

0.9	

como

NP (1,2)	

~1.0 • P(gordos | gatos)	

gatos ★ gordos

S (1,3)	

~ 0.1 • P(comen | gordos)	

gatos ★ comen

fat cats eat

A → fat, gordos 
N → cats, gatos	

VP → eat, comen	

VP → eat, como	

NP → A(1) N(2), N(2) A(1)	

S → NP(1) VP(2), NP(1) VP(2)

1.0	

1.0	

0.1	

0.9	

1.0	

1.0

VP (3,3)	

0.1	

comen

Getting the translation

• Follow the backpointers	

• (S,1,3,gatos★comen)	

• (NP,1,2,gatos★gordos)	

• (N,2,2,gatos) → gatos	

• (A,1,1,gordos) → gordos	

• (VP,3,3,comen) → comen	

• translation:  
	

 gatos gordos comen 
 cats fat 3pp-eat

52

Pruning

53

• We have also not dealt much with ambiguity and competition
amongst hypotheses	

• In general, there are too many hypotheses to consider, so we
keep only the top k of them (per input span (i,j))	

• When considering a span (i,j) and a split point k, we have a
large number of ways to combine items	

• there can be any number of applicable rules	

• there can be up to k items located at span (i,k)	

• there can be up to k items located at span (k,j)

Applying a unary rule

54

• The naive way is to consider the full cross product

Cube pruning

55

• When considering a span (i,j) of a length-N sentence:	

• unary rules: there are rk items to compute (r the number of
rules, k the number of child items)	

• binary rules: there are Nrk2 items to compute (since there
are O(N) split points)	

• However, we’re only going to be keeping the top k of them!	

• this problem gets worse as k gets larger	

• We’d like to avoid computing all of these new items, which we
accomplish with cube pruning

Cube pruning

56

• We start with sorted lists of rules and the items they applied
to	

• Observation: 	

• the best item comes from the best rule and the best cell	

• the next-best item uses either the 2nd best rule or the
2nd-best cell

rule rhsl rhsr

1 1 1 1

2 2 7 3

3 4 9 4

...

best item 2nd-best

rule rhsl rhsr

1 1 1 1

2 2 7 3

3 4 9 4

...

3rd-best

rule rhsl rhsr

1 1 1 1

2 2 7 3

3 4 9 4

...

Applying a unary rule

57

• The Huang & Chiang (2005) way:

Cube pruning

• We haven’t discussed the language model, which complicates
this procedure by making it nonmonotonic	

• But that’s the basic idea

58

Summary

• Today, we have reviewed	

• Monolingual parsing	

• Synchronous (bilingual) parsing	

• Decoding as parsing with an intersected bigram language
model	

• We have also briefly touched on efficiency considerations
with cube pruning

59

Advanced topics

60

Advanced topics: implicit binarization

61

• We’d decoded in an ITG settings, where the rules all look like
this:  
	

 	

 X → boy, chico	

	

 	

 	

 (lexical)  
	

 	

 X → X(1) X(2), X(2) X(1)	

 (inverted)  
	

 	

 X → X(1) X(2), X(1) X(2)	

 (straight)	

• This is the closest thing to Chomsky Normal Form for
synchronous grammars	

• How do we decode with intermingled terminals and
nonterminals? 
 
	

 	

 X → the X(1) was X(2), el X(1) era X(2)

Advanced topics: implicit binarization

62

• One answer: binarize (terminals can always be binarized):  
 
 
 
 

• However, this is inefficient: 	

• it leads to a huge blowup in the number of nonterminals	

• it introduces a split point that has to be searched over
(avoidable in this case, but not always)

X → the X was X, el X era X   X → the X174, el X174	

X174 → X X295, X X295	

X295 → was X, era X

Advanced topics: implicit binarization

63

• Instead, we’d like to do implicit, Earley-style binarization

Advanced topics: spurious ambiguity

• Spurious ambiguity - multiple structures leading to the same
interpretation	

• Especially problematic in ITG with its weak grammar	

• This can be addressed in various ways	

• Grammar canonical forms

64

