Syntax-based
decoding

JHU Machine Translation class
April 1, 2014

Administrative

* Homework 4 out, due April 14

* Final project proposals due today

Where do grammars come from?

* We left off on Thursday with

—a formalism for describing the relationship between
two languages,

—an loosely-sketched algorithm for producing
translations

* Questions for today:
—Where do synchronous grammars come from?

—How do we decode with an ngram language model?

Data-driven grammar extraction

* Grammar rules are not written by hand, they are
extracted from bilingual parallel corpora

Arabic English
s Torture is still being practised on a wide
eely Bl e Guslas S Y cudaille ch:aFl)e

Qg

Arrest and detention without cause take
place routinely.

sl delailly 5yl sl eds olag

This is a time for vision and political
couraae

Chinese

English

FeE BER R Tl £

- KIREE 18K

China's energy and raw materials
production up.

FEER ZX PHIE B % # 88 AR SET .

ANC calls for steps to prevent deaths in
police custody .

* Consider the redundancy in this phrase table

Spanish English

la bruja verde the green witch
la bruja roja the red witch
la bruja azdul the blue witch

* What generalization is missing?

* Synchronous grammar rules

X = la bruja X(1) | | | the X(1) witch
X = verde ||| green

* As a tree
/X\ /X\
la bruja X the X witch

verde green

Hiero-style SCFG rules

* Most common type of SCFG in SMT is Hiero
which has rules w/one non-terminal symbol

* Not as nice as linguistically motivated rules, does
not capture the reordering in Urdu

/XI\ /XI\
5 Xo B X3 have X3 with Xj
s 13 diplomatic North

relations Korea

* Consider the redundancy in this phrase table

Spanish English

la bruja verde the green witch
la bruja roja the red witch
la bruja azdul the blue witch

* What generalization is missing?
* Hiero abandons conventional English syntax

* Relies instead on evidence-based phrasal
“subtractions”

Extracting Hiero rules

Australia

is

one |

of

,mm‘ﬁzlti%ﬁiﬂﬂ’l

the |

few |

countries | |
that | |

have | |

diplomatic

relations

with |

North |

Korea |

X - 5 4 % & %,

have diplomatic relations
with North Korea

X — FZ,
diplomatic relations

X — Jb &5,

North Korea

X =5 X, B X,
have X, with X,

9

Decoding

* We now have a way to obtain a synchronous
grammar

* Last week, we sketched the decoding algorithm,
which was based on parsing

* Joday, we'll cover it In more detail, and correct a
crucial omission (ngram language models)

* We've discussed how syntactic differences between languages
motivated reordering as a preprocessing step

lch werde |hnen den Report
aushaendigen, damit Sie den
eventuell uebernehmen koennen.

lch werde aushaendigen Ihnen
den Report, damit Sie koennen
uebernehmen den eventuell.

Review (2)

* We've also discussed synchronous grammar rules, which
describe the generation of sentences in pairs

Urdu English
S— NP® VPO NP®D VP
VP— PP VP@ VP® PP
VP— VO AUX® AUXQ VD
PP - NPOD PQ@ P@ NPD
NP — hamd ansary Hamid Ansari
NP — nab sar Vice President
V- namzd nominated
P— kylye for

AUX — taa was

Review (3)

* ...and how we could extract those rules automatically from

text
X, X,
/\ /\
3 X2 B X have X3 with X
Jk &% 32> diplo‘matic Nclrth

relations Korea

* How do we actually decode with these grammars?

* The solution is the CKY / CYK algorithm

{CKY algorithm} | {CYK algorithm}

. :
Outline 6,090 ~ 13,700

* Parsing in one language

GOUS[Q

* Parsing in two languages with inversion transduction grammar

(ITG)

* Decoding as parsing with synchronous context-free grammars
(SCFG) and integrated language models

* Time-permitting: advanced topics

Review: monolingual parsing

Using the CKY algorithm to find (the best)
structure for a sentence given a grammar

15

Formal definitions

* Formal languages are (possibly infinite) sets of strings that are
generated by a grammar

* e.g., {at} is a language of all strings with one or more as

* [ts grammar could be written as
A — Aa
A —a

* We can view natural languages in this manner, too

* e.g., the English language is the set of word sequences that
constitute valid English sentences

* We believe there to be a grammar that generates those sentences

* We don’t know what it is, but we have some guesses and
approximations

* Given a sentence and a grammar, how
do we find s structure!?

« We'll use the CKY alg¥Pithm (Cocke-
Kasami-Younger)
e Basic jdea: build smal iten}{P before
lar ones
gﬁ PRT

/" \ |

NNP NNP VBD VBN RP

Fred Jones was worn out

sentence

S — NPVP
VP = VBN PRT

PRT
VP

RP

—

N T T S

RP

VBD VP
NNP NNP
Fred | Jones
was

worn

out

grammar

Parsing with CKY

NNP

Fred

NNP VBD

Jones was

sentence

S_
VP
VP
/NP\ />?\T
|

VBN RP

worn out

S—> NPVP
VP - VBN PRT

PRT
VP
NP

NNP

VBD

VBN
RP

—

N T T S

RP

VBD VP
NNP NNP
Fred | Jones
was

worn

out

grammar

Implementation details

* Dynamic programming maintains a
chart of items

* Each cell item represents the
dynamic programming state

* (NNPI,1), (§1,5)

* The chart is the collection of all
items

struct item {
// d.p. state
string nt;
int 1, Jj;
// backpointer
float score;
Rule* rule;
item* rhsl,

rhs2;

}

* The score resolves alternate ways of constructing an item

* We also store backpointers: the items and rule used to

a.k.a. “predecessor”

construct each item

CKY algorithm

input: words[1l..N]
for 1 in 1..N
for each unary rule X -» words[1i]

add (X,1,1) to the chart
for span in 1..N
for 1 in 1l..(N-span)
j = 1 + span
for k 1in 1..]
for rule X » Y Z
if (Y,1,k) and (Z,k,])
add (X,1,]) to the chart
output: (S,1,N)

20

Parsing with CKY

S_
VP
VP
/NP\ PRT
NNP NNP VBD VBN RL
i o vas worn ou

I 2 3 4 5
Fred | NNP I
Jones [NP)
4
was : 3
worn 4
Fred | Jones| was | worn | out
item
nt = ”S";
i1 =1, J = 5;
score = -42.5;
Rule = &rule(”S » NP VP")
rhsl = &item(NP,1,2);
rhs2 = &item(VP,3,5);

Reconstructing the best parse

Fred | NNP
* We can reconstruct the best
. . Jones [NP
parse by following backpointers L
was :
nodes.append(item(S,1,N)) worn
while nodes.size() > O0: :
item = nodes.pop|() out | S -
print item . Fred | Jones | was | worn | out
nodes.append(item.rhsr)
nodes.append(item.rhsl) S — NP VP (1,5)

NP — NNP NNP (1,2)
NNP — Fred (1,1)
NNP — Jones (2,2)
VP = VBD VP (3,5)
VBD — was (3,3
(EES)) (BN HNNF |, 1) VP VBN PRT (45
VBN — worn (4,4)
PRT — RP (5,5)
RP — out (5,5)

nodes

Parsing with CKY

/ /X

NNP NNP VBD VBN

Fred Jones was

Fred

NNP

Jones

NP

was

worn

out

VP

VP

PRT

Fred

Jones

was

worn

out

worn out from caring for his often screaming and

Ui h~h W DN

crying wife during the day but he couldn’t sleep at night for she in a stupor from the
drugs that didn’t ease the pain would set the house ablaze with a cigarette

Parsing as (weighted) deduction

* Deductive reasoning:
* axioms: statements that are true or false (“it is raining”)

* inference rules: statements that are conditionally true (“If it
is raining and | am outside, I'll get wet”)

* goals: statements that are licensed by combinations of
axioms, inference rules, and other conclusions (| am wet”)

Pl &P2& ...
N 2
(goal)

24

Parsing as (weighted) deduction

* input: words w|[l..N]

Axioms X — wli] for all (X = wli])

X = wili]
(X, i, i)

in bottom-up order

Inference rules
(smaller spans first)

(B.i,j) (C,j.k) A— BC
(A, i, k)

Goal (S, I, n)

25

Complexity

« Complexity of parsing is O(Gn?3)
* G - number of (binarized) rules in the grammar
*n - length of the sentence

* All those rules were binary; what about longer rules!?

°e.g.,
NP

/TN

DT JJ NN

* We have to enumerate every split point!

26

CKY algorithm

input: words[1l..N]
for 1 in 1..N
for each unary rule X » words[1i]
add (X,1,1) to the chart

for span in 1..N NP
for 1 i1in 1..(N-span)
j = 1 + span /l\

DT NN
for k;y in 1..3-1 . J |

for k; in ki..]
for rule X » W Y Z
if (Ww,1,kl) and (Y,k1l,k2) and (Z,k2,7])
add (X,1,]) to the chart
output: (S,1,N)

27

Binarization into Chomsky Normal Form

* In general, for a rule with k RHS items, complexity is O(nk*')
(and cumbersome, since you have to explicitly add inner loops
to enumerate them)

* Fortunately, we can binarize rules to make them all have a
rank of 2

NP

NP uniquely
/I\ » /\ identifies subtree
DT JJ:NN
DT JJ NN /\

NN

only one split point

new nonterminal

two split points: O(n?)

28

CKY algorithm

* In summary, monolingual parsing:
* finds the best structure

* works bottom-up, enumerating all
spans, from small to large, building
searching for applicable rules and
building new chart items

* works with the binarized form of a
grammars (easily unbinarized
afterward) for a complexity of

O(Gn?)

* all grammars are binarizable

VBD

VEN

S VP VP

RP

Fred | Jones | was | worn

NP

DT J:NN

. NN

Ui A W N -

29

Synchronous parsing

Synchronous parsing

* We can extend CKY to parse two languages at once!

* Consider the following grammar:

A — fat, gordos (lexical)
A — thin, delgados

N — cats, gatos

VP — eat,comen

NP = A() N®, N@ A0 (inverted)
S — NP(OVPA, NPOVP® (straight)

* and the following sentence pair:

fat cats eat / gatos gordos comen

31

Synchronous parsing

A — fat, gordos

* We now have to enumerate pairs
N — cats, gatos

of >pans VP — eat, comen
* instead of (i,))... VP = eat, como
NP — A() N@ N@ A
* ...we have (i,j) and (s,t) S — NP(OVP@, NP VPQ@)

* For each of the bilingual blocks, we
attempt to match both comen
straight and inverted rules

(3,3,3,3)

gordos

gatos

fat cats eat

32

Relation to monolingual parsing

* Why do we combine like this? . .
o

* These pieces are adjacent in both languages; it’s only when
we consider them together that reordering comes into play

* Why can’t we do this? ..

* |t doesn’t make sense!

* Think about monolingual
CKY: combine adjacent spans

* What about these! .

gap rank > 2 ¥

* Possible, but complex . . .

CKY for synchronous parsing

input: source[l..N], target[l..M]
for span; in 1..N
for 1 in 1..(N-span;)
j = 1 + span:
for k in 1..]
for span; in 1..M
for s 1n 1..(M-spany)
t = s + span;
for u i1n s..t
for rule X » [Y Z] | 2 3
if (Y,1,k,s,u) and
(Z,k,]j,u,v) then
add (X,1,3j,s,t) to chart
output: (S,1,N,1,M)

comen

gordos

gatos

fat cats eat

34

Synchronous parsing

* Complexity:
O(GN3M3) = O(GNS®)

* Why!?

* We have to enumerate all valid
combinations of six variables

* This can be seen in the six
nested loops of the algorithm

A — fat, gordos

N — cats, gatos

VP — eat,comen

VP — eat,como

NP = A() N@ N@ A)

S — NP()VP®), NP() VPO

(3,3,3,3)

comen

gordos

gatos

fat cats eat

35

Visualization of O(GN?®) complexity

input: source[l..N], target[l..M]
for span; in 1..N
for 1 in 1..(N-span;)
j = 1 + span:
for k in 1..]
for span; in 1..M
for s 1n 1..(M-spany)
t = s + span;
for u i1n s..t

times all rules... for rule X » [Y Z]

if (Y,1,k,s,u) and
(Z,k,]j,u,v) then

N —

3
4
5

add (X,1,3j,s,t) to chart

output: (S,1,N,1,M)

36

Synchronous binarization

* In the above, we considered two nonterminals (per side)

* What if we want more (Zhang et al., 2006)?

S — NP1 yp2) ppB) Np(l) pp(3) yp(2)
NP — Powell, Baoweier
VP — held a meeting, juxing le huitan
PP — with Sharon, yu Shalong

* Three nonterminals! No problem:

S — VNP-PP VP or S w— NP %P-VP
Vaerr— NP PP Vipvp — PP VP

* More!?

37

* The nonterminals in the right-hand side of a rule define a
permutation between the languages

* we assume the source language nonterminals are in order

(wlog)
* intermingled terminal symbols do not affect binarization
ability
* Example: S — NP1 yvp2 ppB) Np() pp3) vp(2)

* permutation: | 3 2

38

Synchronous binarization

* Bad news: synchronous grammars can’t be binarized in the
general case (Shapiro & Stephens, 1991;Wu, 1997) *

* Famous examples: the (2,4,1,3) and (3,1,4,2) permutations

* What makes these unbinarizable?
* Crucial: parsing works by combining adjacent elements

* No pair of alignments here is adjacent in both languages
simultaneously

(*) Technically, you can binarize any synchronous grammar, but you may increase the fan-out, which
mitigates the potential gains. 39

Synchronous binarization

* As the rank of a rule grows, the .
percentage of binarizable rules o -
<
N
approaches 0 > 08
e
S 04
2
P
0.2 I
, In._
oln Summar)/: | 234567 8 910111213141516

rule rank

* We can’t binarize all rules

* The first unbinarizable rule has rank 4

40

Silver lining

* Empirically, we don’t observe that many non-binarizable rules
(Zhang et al., 2006):

1e+07 100 5
® 8e+06 18 5
2 6e+06 160 &
5 4e+06 140 ¢S
#* 2e+06 120 €
0 : bl — . N PR PP P PR e 0 8-

0 5 10 15 20 25 30 35 40

Figure 6: The solid-line curve represents the distribution of all rules against permutation lengths. The
dashed-line stairs indicate the percentage of non-binarizable rules in our initial rule set while the dotted-line
denotes that percentage among all permutations.

* ...and we can safely throw out the ones we do find
* 99.7% of rules extracted were binarizable

* many not were due to alignment errors

41

Decoding as parsing

Synchronous decoding

* Enough parsing; what we care about is decoding

* Parsing is relevant, though, because we can view decoding as a
task where we are doing synchronous parsing but we don'’t
happen to know the target side text

* This works by parsing with a source-side projection of the
synchronous grammar rules

* At the end, we can follow backpointers to discover the
most probable target side

43

Updated data structure

* Just like regular parsing, we
combine items in pairs to produce
new items over larger spans:

A — fat, gordos

N — cats, gatos

VP — eat, comen

(A 1,1) (N,2,2) VP — eat, como

— (NP12) NP — A() N@. N@ A()

S — NP VP@, NP() VPO
* However, we also have to maintain

our guess of the target side

44

* Again, a bottom-up process

A — fat, gordos | O
N — cats, gatos 1.0
VP — eat, comen 0.1
VP — eat, como 0.9

NP = A() N@. N@ A0 1.0

NP (1,2) S — NPOVP@, NP VP2 .0

1.0

VP (3,3)
0| Legend

straight rule application

VP (3,3)
0.9 - === inverted rule application

fat cats eat ;

Getting the translation

* Follow the backpointers

* (S,1,3)
* (NP 1,2)
* (N,2,2) — gatos NPI ((;’2)
* (A,1,1) = gordos VP (3,3)
* (VP3,3) = como 0.1
) . VP (3,3)
translation: 0.9

gatos gordos como
* cats fat |ps-eat

fat cats eat

46

What happened!?

* We forgot the language model

* We're inventing the target side (which is what decoding does),
so we need to incorporate it

* How!
* Stack-based decoding: we maintained the last word

* Integration was easy because hypotheses always extended
to the right

* Here, hypotheses are merged either straight or inverted

47

Language model integration

phrase-based

<s>1 n _ <s>lam
@00 - @@0
synchronous grammars
A (1,1) N (2,2) A() I NQ2)
1.0 1.0 1.0 1.0

NP — A N<2> 2 Al NP — A() N@, A(h N®@

N (1,2)
1.0

N (1,2)
1.0

gatos gordos gordos gatos

48

Language model integration

 We still maintain a chart of items, but now the items have to
contain the target side words

* Just like regular parsing, we combine items in pairs to
produce new items over larger spans

* When items are merged, we can use these words to
compute a language model probability

* Formally, we are intersecting a context-free grammar (the

translation model) with a regular grammar (Bar-Hillel et al,,
1964;Wu, 1996)

49

Updated data structure

* With dynamic programming, we struct item {
only need a word on either side // d.p. state
string nt;
* (for bigram LMs; for the general int i, J;
case, see Chiang (2007, §5.3.2)) string left_words;
string right words;
* Following Chiang, we represent // backpointer
the elided middle portion with float score;
D ¢ Rule* rule;
item* rhsl,
* The complete string can be rhs2;

reconstructed by following the #
backpointers

50

Decoding with an integrated LM

S (I,3)
~ 0.] * P(comen | gordos)
gatos % comen

NP (1,2)
~1.0 ¢ P(gordos | gatos)
gatos K gordos

VP (3,3)
0.1

comen

VP (3,3)
0.9

como

fat cats eat

A — fat, gordos 1 0
N — cats, gatos 1.0
VP — eat, comen 0.1
VP — eat, como 0.9

NP = A N@ NOAD 1.0
S — NPOVP@, NP VP2 .0

51

Getting the translation

| S (1,3
* Follow the backpointers 0l p(co(me,: | guapos)

gatos % comen

* (S,1,3,gatoskcomen)

* (NP 1,2,gatosxgordos) NP (1,2)
~1.0 * P(guapos | gatos)
* (N,2,2,gatos) — gatos gatos K guapos

VP (3,3)
0.1

comen

* (A,1,l,gordos) — gordo:s

* (VB 3,3,comen) — comen

. lation: A (1,1) VP (3.3)
translation: 10 0.9
gatos gordos comen guapos como

cats fat 3pp-eat
fat cats eat

52

* We have also not dealt much with ambiguity and competition
amongst hypotheses

* In general, there are too many hypotheses to consider, so we
keep only the top k of them (per input span (i,j))

* When considering a span (i,j) and a split point k, we have a
large number of ways to combine items

* there can be any number of applicable rules
* there can be up to k items located at span (i,k)

* there can be up to k items located at span (k,))

53

Applying a unary rule

* The naive way is to consider the full cross product

O i
8§ — 8
o)) -’ =

S 8 2
S T o
v O

B L B
—_— — -—
0 o0 0
O O O

X X X
1 4 7

X — {(cong X, from X)) 1 |21/5.1/82| [X,5,8; from the x the scheme| : 2.1

X — (cong Xg,since Xg) 6 |7.7 [10.613.1 X, 5,8; from the x the scheme]| : 5.5

)
X — (cong Xq, from the X)) 2 |5.5/85/[11.5 _ (X5 8;from the * the plan| : 5.1
)
) X, 5,8; since the x the scheme| : 7.7

X — (cong X, through Xq) 10 |11.1(14.3[17.3

54

Cube pruning

* When considering a span (i,j) of a length-N sentence:

* unary rules: there are rk items to compute (r the number of
rules, k the number of child items)

* binary rules: there are Nrk? items to compute (since there
are O(N) split points)

* However, we're only going to be keeping the top k of them!
* this problem gets worse as k gets larger

* We'd like to avoid computing all of these new items, which we
accomplish with cube pruning

55

Cube pruning

* We start with sorted lists of rules and the items they applied
to

e Observation:
* the best item comes from the best rule and the best cell

* the next-best item uses either the 2nd best rule or the

2nd-best cell
| rule rhsl rhsr rule | rhsl rhsr
P e]]

2 2 7 3 | 2 7 3

3 4 9 4 3 4 9 4

best item 2nd-best 3rd-best

56

Applying a unary rule

* The Huang & Chiang (2005) way:

KT} oy) —) rery
= 9 = 2. = 9
g G T ke U € g
q & R g 8 2 5 8 B
D Q. Q. D Q. Q. N oW Q.
v O Q U U v U
B DR TR Y Y _ T -
pa— pe— - -~ pe— —_— - pu— -
o o o0 o o0 oo O o0 oo
O O O O O O O O O
< X X M P& P X X X

i
s
~J
-
e
~
(-
N
~)

X — (cong Xg, from Xz) 1 [2.1 21(5.1 88 [21]5.1 |68
X — (cong Xg, from the X5) 2 5:5

X — (cong Xp,since X5) 6
X — (cong X, through Xr7) 10

57

Cube pruning

* We haven'’t discussed the language model, which complicates
this procedure by making it nonmonotonic

* But that’s the basic idea

58

* Today, we have reviewed
* Monolingual parsing
* Synchronous (bilingual) parsing

* Decoding as parsing with an intersected bigram language
model

* We have also briefly touched on efficiency considerations
with cube pruning

59

Advanced topics

Advanced topics: implicit binarization

* We'd decoded in an ITG settings, where the rules all look like
this:
X — boy, chico (lexical)
X = X X)X X0 (inverted)
X = X)) X@) X X@) (straight)

* This is the closest thing to Chomsky Normal Form for
synchronous grammars

* How do we decode with intermingled terminals and
nonterminals?

X = the X was X@) el X(1) era X2

6l

Advanced topics: implicit binarization

* One answer: binarize (terminals can always be binarized):

X = the X was X, el X era X X — the Xj74, el X|74

=)

* it leads to a huge blowup in the number of nonterminals

Xi74 = X X295, X X295

Xo95 = was X, era X
* However, this is inefficient:

* it introduces a split point that has to be searched over
(avoidable in this case, but not always)

62

Advanced topics: implicit binarization

* Instead, we'd like to do implicit, Earley-style binarization

63

Advanced topics: spurious ambiguity

* Spurious ambiguity - multiple structures leading to the same
Interpretation

* Especially problematic in ITG with its weak grammar
* This can be addressed in various ways

e Grammar canonical forms

64

