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ABSTRACT

We report insights from translating Spanish conversational
telephone speech into English text by cascading an automatic
speech recognition (ASR) system with a statistical machine
translation (SMT) system. The key new insight is that the in-
formal register of conversational speech is a greater challenge
for ASR than for SMT: the BLEU score for translating the
reference transcript is 64%, but drops to 32% for translating
automatic transcripts, whose word error rate (WER) is 40%.
Several strategies are examined to mitigate the impact of ASR
errors on the SMT output: (i) providing the ASR lattice, in-
stead of the 1-best output, as input to the SMT system, (ii)
training the SMT system on Spanish ASR output paired with
English text, instead of Spanish reference transcripts, and (iii)
improving the core ASR system. Each leads to consistent and
complementary improvements in the SMT output. Compared
to translating the 1-best output of an ASR system with 40%
WER using an SMT system trained on Spanish reference tran-
scripts, translating the output lattice of a better ASR system
with 35% WER using an SMT system trained on ASR output
improves BLEU from 32% to 38%.

Index Terms— Speech Recognition, Natural Language
Processing, Machine Translation, Human Language Technol-
ogy, Spoken Language Translation

1. INTRODUCTION

As component technologies for automatic speech recognition
(ASR) and statistical machine translation (SMT) indepen-
dently become more effective, capabilities such as automatic
spoken language translation (SLT) are starting to be feasi-
ble. The VERBMOBIL project [1] led to some of the early
work in SLT, investigating speech translation for thematically
constrained tasks such as travel planning and appointment
scheduling. The NESPOLE! project, inspired by its prede-
cessor C-STAR, focused on e-commerce applications of SLT.
The DARPA TRANSTAC program broadened the SLT task
to a wider range of tactical human-human communication,
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albeit with the constraint of real-time performance on hand-
held computing platforms. Examples of forays into “open
domain” SLT include the DARPA GALE program [2] and the
European Quaero project,1 whose numerous participants in-
vestigated translation of broadcast news and of slightly less
formal speech, which was labeled broadcast conversations.

A characteristic of the SLT tasks tackled over the last two
decades is the increasing spontaneity of the speech, and tech-
nology has evolved to cope with the concomitant increase
in difficulty. Many VERBMOBIL and NESPOLE! systems
used task-specific grammars for ASR and interlingua-based
approaches for translation. In contrast, all the GALE and
Quaero systems required large vocabulary continuous speech
recognition systems with generic language models for ASR,
and wide coverage SMT systems for translation.

Said differently, the speech in tasks like travel planning
and e-commerce is machine-directed and limited-domain.
Broadcast news is human-directed but very well enunciated.
Broadcast conversations are more spontaneous, but still in-
tended for a public audience by the speaker. Along the axis of
spontaneity, the next challenge is to develop SLT systems for
conversational human-human speech. This is one of the goals
of the DARPA BOLT program,2 and the focus of this paper.

We investigate the task of translating conversational tele-
phone speech from the Spanish FISHER corpus (LDC2010S01
and LDC2010T04) into English text. We employ a cascade of
an ASR and an SMT system, and quantify the relative effec-
tiveness of the ASR and SMT components in dealing with the
informal register of conversational speech. We measure the
impact of ASR errors on SMT performance, and investigate
several ways to mitigate the impact by tighter coupling of the
ASR and SMT systems. The key findings we present are that
(i) the ASR component bears the brunt of the difficulty in
translating conversational speech, not the SMT component,
and as a result (ii) ASR improvement and improved coupling
of the ASR-SMT components can significantly improve SLT
for conversational speech. The three mitigation strategies
we investigate cumulatively improve the BLEU score from
31.8% to 38.0% (or reduce TER resp. from 60.4% to 53.8%).

1http://www.quaero.org/
2http://www.darpa.mil/Our_Work/I2O/Programs/



2. PRIOR WORK IN SPEECH TRANSLATION

A finite state transducer (FST) based approach to SLT is
proposed in [3], wherein FST-based ASR and SMT systems
are composed to form a source-language speech to target-
language text transducer. Given a spoken utterance in the
source language, Viterbi decoding is used to find the most
likely sentence in the target language. The approach is tested
on a limited-domain task with a small vocabulary. A Bayes
optimal tight coupling of ASR and SMT is described in [4],
and assumptions (monotone alignment) and approximations
(for summing over the hidden source-language transcript) are
proposed that lead to a solution similar to [3].

Several papers note that lexical reordering is what makes
full integration of ASR and SMT difficult in the FST frame-
work. So an ASR lattice with acoustic- and language-model
scores is passed in [5, 6] to an SMT system capable of lexical
reordering (cf. e.g., [7]). Confusion networks are used as an
alternative ASR-SMT interface by numerous researchers, in-
cluding [8, 9, 10, 11]. Tighter integration of ASR and SMT is
achieved in [12] by translating the n-best ASR outputs, con-
solidating the resulting translations, and rescoring them us-
ing a log-linear model with additional features from the ASR
output that are not easy to utilize in the SMT system. The
difficulty of the speech in these papers ranges from limited-
domain tasks (e.g., travel reservations) to broadcast news.

Research to improve core ASR for SMT has also received
considerable attention [13, 14, 15]. A comprehensive survey
of speech translation research appears in the recent review
article [16].

This paper contributes to this considerable body of
work by investigating translation of conversational telephone
speech (CTS) and studies the impact of the informal register
of conversational speech on the component systems.

Some findings reported here are as expected, e.g., translat-
ing ASR lattices instead of the 1-best output usually improves
the SMT output. Other findings are somewhat surprising, e.g.,
the imperfect ASR output differs systematically enough from
the perfect transcripts that an SMT system trained on the ASR
output compensates for some of the imperfections.

Perhaps the most noteworthy insight is that the informal
register of CTS does not impact the SMT task as hard as it im-
pacts the ASR task — the SMT output is of respectable qual-
ity when the reference transcripts are translated (64% BLEU),
but degrades considerably (32%-38% BLEU) when ASR out-
put is translated. This suggests that improving core ASR qual-
ity is as critical to improving translation of CTS as tighter
ASR-SMT integration, if not more critical.

3. CORPUS AND EXPERIMENTAL SETUP

We use a Spanish-English parallel corpus [17] that we re-
cently created by translating the reference transcripts of the
Spanish FISHER corpus (LDC2010T04) into English. The

819 conversations in the 160 hour (2M word) corpus have
been partitioned into a 1.8M word training set (ca 750 con-
versations), and three held-out sets of 48K-50K words (20
conversations) each, named dev, dev2 and test. One English
translation is available for each utterance in the training set,
and four translation for each utterance in the held-out sets.

The primary contributions of [17] are (i) describing the
process of creating the parallel text corpus and (ii) demon-
strating the utility of in-domain SMT training data over out-
of-domain data (e.g., newswire and parliamentary discourse).
The primary contribution of this paper is quantifying the im-
pact of the informal register of conversational speech on ASR
and SMT, and its implications for ASR-SMT integration.

For the work reported here, we have used the training par-
tition of [17] to train the ASR and SMT systems, the dev par-
tition to tune ASR meta-parameters (e.g., LM order and scale)
and SMT model combination parameters via MERT [18], and
the dev2 partition to evaluate ASR and SMT performance.
The test partition is set aside for evaluating future work.

3.1. ASR System Development

We use the Kaldi speech recognition tools [19] to build our
Spanish ASR systems. The speech is represented by 13-dim
PLP coefficients, plus their first and second derivatives. A
standard GMM-HMM system is trained with triphone acous-
tic models, and used to initialize the training of another tri-
phone system with LDA+MLLT features. This is followed
by speaker adapted training (SAT) with fMLLR transforms.
This SAT system is comparable to the one used in [17], and
is our baseline. The dictionary is composed of the Spanish
CALLHOME lexicon (LDC96L16), augmented automatically
using pronunciation rules provided with that lexicon to cover
all the words in the ASR training transcripts and the most fre-
quent words in the Spanish Gigaword corpus (LDC2011T12),
to yield a dictionary of 64K words. The Spanish language
model used throughout this paper is a Kneser-Ney trigram es-
timated from the FISHER Spanish training transcripts.

To study the impact of ASR improvements on SMT, we
bootstrap a speaker adapted subspace GMM system from the
SAT models, yielding the second best ASR system used in
this work, the SGMM system. The best system, which we re-
fer to as the bMMI system, results from discriminative training
of the SGMM system via the boosted MMI criterion.

When processing test data, full decoding and lattice gen-
eration is performed with the SAT and SGMM systems, but
the bMMI system is used only to rescore the SGMM lattices.

Finally, recall that the SMT system is trained on paral-
lel text whose Spanish side is the same as the reference tran-
scripts used for acoustic model training. To train an SMT
system on ASR output, we carry out 10-fold jack-knifing: we
divide the FISHER training set into 10 roughly equal parts,
and automatically transcribe each part using a complete ASR
system trained as described above on the remaining 9 parts.



The 1-best output, which thus contains realistic ASR errors,
comprises the Spanish side of the new parallel text.

3.2. SMT System Development

We use the Joshua toolkit [20] to build our Spanish-English
SMT system. Joshua uses hierarchical phrase-based trans-
lation models, and supports lattice input.3 The parallel text
is the Spanish transcripts in the training set of [17] paired
with their English translations. The English language model
is derived by interpolating two 5-gram language models,
one estimated from the English side of the parallel text,
and another from the transcripts of the English FISHER
corpus (LDC2004T19 and LDC2005T19). We follow a
standard Joshua recipe (available at joshua-decoder.
org) for SMT system training, which entails tokeniza-
tion/normalization of the text, followed by word-alignment
and phrase table extraction from the parallel text, language
model estimation from the English texts, and MERT tuning
[18] on the dev set.

Now, the SMT phrase tables are conventionally extracted
from Spanish reference transcripts. But we ultimately wish
to use them to translate ASR output. Clearly, fully matched
SMT training would require a large parallel corpus of Spanish
ASR outputs paired with English translations of the Spanish
speech, which may not always be available. But it is reason-
able to assume having a matched “tuning” set.

Therefore, as a first mitigating step, we tune the SMT sys-
tem on the type of data it must translate; i.e., for translating 1-
best ASR output on dev2, we use a system whose the MERT
step is performed using the Spanish 1-best ASR output on
dev. Similarly, for translating Spanish lattices from dev2, we
perform MERT on dev using Spanish lattices.

We also conduct a contrastive experiment in which the to-
kenization, word alignment and phrase table extraction steps
in the SMT training pipeline are also performed using the
Spanish 1-best outputs (instead of the reference transcripts)
paired with the reference English translations. The intuition
is that if the ASR output contains systematic errors relative to
the reference transcripts, then the SMT system could learn to
overcome them.

3.3. ASR and SMT Evaluation Metrics

Standard metrics and scoring tools are used throughout this
paper. ASR output is evaluated against the reference tran-
scripts using the NIST sclite tool, albeit without the benefit of
a GLM file tailored for dev and dev2. SMT output is evaluated
using BLEU-n4r4 and the NIST TER scripts, with lower-case,
punctuated reference English translations.

3Kaldi word lattices are deterministic by design but permit epsilon arcs,
and store separate acoustic- and language-model scores on each arc. Joshua
requires epsilon-free lattices and treats arc weights like local probabilities.
Therefore, weight-pushing and epsilon-removal is carried out on the Kaldi
lattices using the Google OpenFST tools before passing them on to Joshua.

ASR System Dataset 1-best WER Lattice WER
SAT dev 41.2% 19.2%
SAT dev2 39.8% 18.6%

SGMM dev 38.1% 12.8%
SGMM dev2 37.0% 12.4%
bMMI dev 35.9% 13.5%
bMMI dev2 34.5% 12.9%

Table 1. WER improvements going from SAT to SGMM to
bMMI models. This also improves BLEU and TER, as seen
by comparing the corresponding rows of Tables 3, 4 and 5.

Count Correct Word ASR Output
54 sı́ si
53 si sı́
47 mm mhm
41 qué que
41 y sı́
36 [noise] [laughter]
32 las la
32 que qué
29 mhm mm
29 mja mhm

Table 2. The 10 most frequent substitution errors on dev sug-
gest that an SMT system could learn to translate incorrect
Spanish words to the correct English word.

4. CONVERSATIONAL SPEECH TRANSLATION

4.1. ASR System Evaluation

We begin by evaluating the performance of the Spanish ASR
system on dev and dev2, as summarized in Table 1.

Note from the table that the WER on dev2 improves from
39.8% to 34.5% as the acoustic models are improved, and
one hopes that this improvement will lead to improved SMT
output. This possibility is investigated in Section 4.2.3.

Note also that the most accurate path in the lattice has a
“Lattice WER” that is a factor of 2-3 lower, and one hopes
that the SMT system will benefit from the presence of such
alternatives when translating entire lattices. This possibility
is investigated in Section 4.2.1.

Finally, the ten most frequent substitution errors on the
dev data are listed in Table 2. One may ascribe some, such as
sı́ ↔ si (which both translate to yes) and qué ↔ que (which
both translate to what), to inconsistent transcription conven-
tions. But others represent systematic ASR errors. If such er-
rors were present in the Spanish (parallel) text used for SMT
training, the SMT system could potentially learn to overcome
them by correctly translating the incorrect ASR output. This
possibility is investigated in Section 4.2.2.



Train on Tune on Translate BLEU TER
Transcript Transcript Transcript 64.3% 28.5%
Transcript Oracle Oracle 40.8% 49.4%
Transcript Lattice Lattice 32.0% 59.7%
Transcript 1-best 1-best 31.8% 60.4%
1-best 1-best 1-best 33.7% 58.0%
1-best Lattice Lattice 34.0% 56.8%

Table 3. SMT performance on dev2 as a function of different
SMT training and tuning choices, when translating the ASR
output of the SAT system with 39.8% WER.

4.2. SMT System Evaluation

We begin by translating the Spanish reference transcripts
from dev2 using an SMT system trained and tuned on Span-
ish reference transcripts. We then translate the ASR 1-best
output from the SAT system using the same SMT system,
albeit tuned on 1-best output of the SAT system on dev. The
resulting SMT performance is reported in Table 3.

It is clear that Spanish CTS, per se, is not too difficult
to translate: the BLEU score is 64.3%. However, it drops
dramatically to 31.8% when translating the 1-best output of
the SAT system, whose WER is 39.8% (cf. Table 1).

4.2.1. Translating ASR Lattices Instead of 1-Best Outputs

Recall from Table 1 that the most accurate path in lattices gen-
erated by the SAT system has a much lower WER (18.6%).
Therefore, a natural step is to pass on the entire ASR lattice
as the SMT input. The result of this exercise, also shown in
Table 3, is a modest SMT improvement (32.0% BLEU).

Table 3 also shows that if an oracle were to select and
pass on the most accurate transcript available in the lattice,
then the improvement would be much more dramatic (40.8%
BLEU). This suggests further research on tighter ASR-SMT
integration and SMT-guided rescoring of ASR lattices.

4.2.2. SMT Training on ASR Output Instead of Reference

Inspired by the observations in Table 2, we carry out the 10-
fold decoding of the speech in the training set, and use the
1-best output as the Spanish side of the parallel text for SMT
training. The SMT models are tuned on dev, as before, and
used to translate the ASR output on dev2. The resulting per-
formance is shown in the lower block of Table 3.

Clearly, for both 1-best translation and lattice translation,
the SMT system trained on ASR output is better: BLEU im-
proves 31.8% to 33.7% (resp. 32.0% to 34.0%), and TER
reduces from 60.4% to 58.0% (resp. 59.7% to 56.8%).

While Table 2 inspired this investigation, the ASR output
differs from reference transcripts in other systematic ways,
e.g., sentence segmentation and punctuation. These improve-
ments should therefore not be attributed solely to overcoming
substitution errors. Further investigations are underway.

Train on Tune on Translate BLEU TER
Transcript Transcript Transcript 64.3% 28.5%
Transcript Oracle Oracle 44.0% 46.3%
Transcript Lattice Lattice 34.4% 57.1%
Transcript 1-best 1-best 34.7% 57.0%
1-best 1-best 1-best 36.3% 55.5%
1-best Lattice Lattice 36.7% 54.4%

Table 4. SMT performance on dev2 as a function of different
SMT training and tuning choices, when translating the ASR
output of the SGMM system with 37.0% WER.

Train on Tune on Translate BLEU TER
Transcript Transcript Transcript 64.3% 28.5%
Transcript Oracle Oracle 44.1% 46.2%
Transcript Lattice Lattice 36.6% 55.6%
Transcript 1-best 1-best 34.9% 57.3%
1-best 1-best 1-best 37.2% 54.4%
1-best Lattice Lattice 38.0% 53.8%

Table 5. SMT performance on dev2 as a function of different
SMT training and tuning choices, when translating the ASR
output of the bMMI system with 34.5% WER.

4.2.3. Improving ASR to Improve SMT

All the results of Table 3 are based on using an ASR sys-
tem with SAT acoustic models. We next study how these re-
sults change as the ASR system is incrementally improved,
first by replacing the SAT models with SGMMs, and then
with bMMI-trained SGMMs. Past experience with the GALE
SLT tasks may lead one to suspect that small improvements in
ASR of the kind shown in Table 1 will not lead to substantial
SMT improvements. But the results of Tables 4 and 5 show a
pleasantly surprising improvement on the results of Table 3.

As the WER is reduced from 39.8% to 37.0% to 34.5%,
BLEU for 1-best translation increases from 33.7% to 36.3%
to 37.2%, while BLEU for lattice translation goes up from
34.0% to 36.7% to 38.0%. TER reduces commensurately.

5. CONCLUDING REMARKS

The cumulative impact of the three error mitigating steps of
Section 4.2 is a BLEU improvement from 31.8% to 38.0%.
The largest part is from improving core ASR, the next from
modified SMT training, and the rest from translating lattices.

Yet, the BLEU score for translating the oracle-best ASR
output is even higher: 44.1%. This gap suggests that research
is still needed to better integrate the ASR and SMT systems.

Finally, the large gap between the BLEU score for trans-
lating the oracle-best ASR output versus the reference tran-
script (44.1% v/s 64.3%) suggests that ASR performance is
still a dominant hurdle in the path towards high quality trans-
lation of conversational telephone speech.
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