Security and Privacy in Cloud Computing

Ragib Hasan
Johns Hopkins University
en.600.412 Spring 2010

Lecture 2
02/01/2010
Threats, vulnerabilities, and enemies

Goal

Learn the cloud computing threat model by examining the assets, vulnerabilities, entry points, and actors in a cloud

Technique

Apply different threat modeling schemes
Assignment for next class

- **Format**:
 - **Summary**: A brief overview of the paper, 1 paragraph (5 / 6 sentences)
 - **Pros**: 3 or more issues
 - **Cons**: 3 or more issues
 - **Possible improvements**: Any possible suggestions to improve the work

- **Due**: 2.59 pm 2/8/2010
- **Submission**: By email to rhasan7@jhu.edu (text only, no attachments please)
Threat Model

A threat model helps in analyzing a security problem, design mitigation strategies, and evaluate solutions.

Steps:

- Identify attackers, assets, threats and other components
- Rank the threats
- Choose mitigation strategies
- Build solutions based on the strategies
Threat Model

Basic components

- Attacker modeling
 - Choose what attacker to consider
 - Attacker motivation and capabilities

- Assets / Attacker Goals

- Vulnerabilities / threats
Recall: Cloud Computing Stack

Clients

User Interface | Machine Interface

Application

Components | Services

Platform

Compute | Network | Storage

Infrastructure

Servers
Recall: Cloud Architecture

Client

SaaS / PaaS Provider

Cloud Provider (IaaS)
Who is the attacker?

Insider?
• Malicious employees at client
• Malicious employees at Cloud provider
• Cloud provider itself

Outsider?
• Intruders
• Network attackers?
Attacker Capability: Malicious Insiders

• At client
 – Learn passwords/authentication information
 – Gain control of the VMs

• At cloud provider
 – Log client communication
Attacker Capability: Cloud Provider

• What?
 – Can read unencrypted data
 – Can possibly peek into VMs, or make copies of VMs
 – Can monitor network communication, application patterns
Attacker motivation: Cloud Provider

• Why?
 – Gain information about client data
 – Gain information on client behavior
 – Sell the information or use itself

• Why not?
 – Cheaper to be honest?

• Why? (again)
 – Third party clouds?
Attacker Capability: Outside attacker

• What?
 – Listen to network traffic (passive)
 – Insert malicious traffic (active)
 – Probe cloud structure (active)
 – Launch DoS
Attacker goals: Outside attackers

• Intrusion

• Network analysis

• Man in the middle

• Cartography
Assets
Assets (Attacker goals)

• Confidentiality:
 – Data stored in the cloud
 – Configuration of VMs running on the cloud
 – Identity of the cloud users
 – Location of the VMs running client code
Assets (Attacker goals)

- Integrity
 - Data stored in the cloud
 - Computations performed on the cloud
Assets (Attacker goals)

• Availability
 – Cloud infrastructure
 – SaaS / PaaS
Threats
Organizing the threats using STRIDE

• **S**poofing identity
• **T**ampering with data
• **R**epudiation
• **I**nformation disclosure
• **D**enial of service
• **E**levation of privilege
Typical threats

<table>
<thead>
<tr>
<th>Threat type</th>
<th>Mitigation technique</th>
</tr>
</thead>
</table>
| Spoofing identity | • Authentication
 | • Protect secrets
 | • Do not store secrets |
| Tampering with data | • Authorization
 | • Hashes
 | • Message authentication codes
 | • Digital signatures
 | • Tamper-resistant protocols |
| Repudiation | • Digital signatures
 | • Timestamps
 | • Audit trails |

[STRIDE]
Typical threats (contd.)

<table>
<thead>
<tr>
<th>Threat type</th>
<th>Mitigation technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information disclosure</td>
<td>• Authorization</td>
</tr>
<tr>
<td></td>
<td>• Privacy-enhanced protocols</td>
</tr>
<tr>
<td></td>
<td>• Encryption</td>
</tr>
<tr>
<td></td>
<td>• Protect secrets</td>
</tr>
<tr>
<td></td>
<td>• Do not store secrets</td>
</tr>
<tr>
<td>Denial of service</td>
<td>• Authentication</td>
</tr>
<tr>
<td></td>
<td>• Authorization</td>
</tr>
<tr>
<td></td>
<td>• Filtering</td>
</tr>
<tr>
<td></td>
<td>• Throttling</td>
</tr>
<tr>
<td></td>
<td>• Quality of service</td>
</tr>
<tr>
<td>Elevation of privilege</td>
<td>• Run with least privilege</td>
</tr>
</tbody>
</table>

[STRIDE]
Summary

• A threat model helps in designing appropriate defenses against particular attackers

• Your solution and security countermeasures will depend on the particular threat model you want to address
Further Reading
Frank Swiderski and Window Snyder, “Threat Modeling“, Microsoft Press, 2004

The STRIDE Threat Model