Security and Privacy in Cloud Computing

Ragib Hasan
Johns Hopkins University
en.600.412 Spring 2010
Verifying Computations in a Cloud

Scenario

User sends her data processing job to the cloud.

Clouds provide dataflow operation as a service (e.g., MapReduce, Hadoop etc.)

Problem: Users have no way of evaluating the correctness of results
DataFlow Operations

Properties
High performance, in-memory data processing
Each node performs a particular function
Nodes are mostly independent of each other

Examples
MapReduce, Hadoop, System S, Dryad
How do we ensure DataFlow operation results are correct?

Goals
• To determine the malicious nodes in a DataFlow system
• To determine the nature of their malicious action
• To evaluate the quality of output data

Du et al., RunTest: Assuring Integrity of Dataflow Processing in Cloud Computing Infrastructures, AsiaCCS 2010
Possible Approaches

• Re-do the computation

• Check memory footprint of code execution

• Majority voting

• Hardware-based attestation

• Run-time attestation
RunTest: Randomized Data Attestation

Idea

– For some data inputs, send it along multiple dataflow paths
– Record and match all intermediate results from the matching nodes in the paths
– Build an attestation graph using node agreement
– Over time, the graph shows which node misbehave (always or time-to-time)
Attack Model

• Data model:
 – Input deterministic DataFlow (i.e., same input to a function will always produce the same output)
 – Data processing is stateless (e.g., selection, filtering)

• Attacker:
 – Malicious or compromised cloud nodes
 – Can produce bad results always or some time
 – Can collude with other malicious nodes to provide same bad result
Attack Model (scenarios)

Parameters
- b_i = probability of providing bad result
- c_i = probability of providing the same bad result as another malicious node

Attack scenarios
- **NCAM**: $b_i = 1$, $c_i = 0$
- **NCPM**: $0 < b_i < 1$, $c_i = 0$
- **FTFC**: $b_i = 1$, $c_i = 1$
- **PTFC**: $0 < b_i < 1$, $c_i = 0$
- **PTPC**: $0 < b_i < 1$, $0 < c_i < 1$
Integrity Attestation Graph

Definition:

– Vertices: Nodes in the DataFlow paths
– Edges: Consistency relationships.
– Edge weight: fraction of consistent output of all outputs generated from same data items
Consistency Clique

Complete subgraph of an attestation graph which has
- 2 or more nodes
- All nodes always agree with each other (i.e., all edge weights are 1)
How to find malicious nodes

Intuitions

– Honest nodes will always agree with each other to produce the same outputs, given the same data

– Number of malicious nodes is less than half of all nodes
Finding Consistency Clique: BK Algorithm

Goal: find the **maximal clique** in the attestation graph

Technique:

Apply Bron-Kerbosh algorithm to find the maximal clique(s) (see better example at Wikipedia)

Any node not in a maximal clique of size $k/2$ is a malicious node

Note: BK algorithm is NP-Hard

Authors proposed 2 optimizations to make it run quicker
Identifying attack patterns

NCAM

PTFC/NCPM

FTFC

PTFC
Inferring data quality

Quality = 1 − (c/n)

– where

• n = total number of unique data items
• c = total number of duplicated data with inconsistent results
Evaluation

• Extended IBM System S

• Experiments:
 – Detection rate
 – Sensitivity to parameters
 – Comparison with majority voting
Evaluation

NCPM (b=0.2, c=0)

Different misbehavior probabilities
Discussion

• Threat model

• High cost of Bron-Kerbosch algorithm (O(3^{n/3}))

• Results are for building attestation graphs per function

• Scalability

• Experimental evaluation
Further Reading
