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Abstract

This paper describes methods for propogating systems of con-
strained variables, which may represent geometric uncertainties,
sensing errors, disturbance forces, or other variations, through
equations describing coordinate transformations in the task do-
main and for projecting the resulting large linear system onto a
lower-dimensional space representing specific variations of interest
for a particular problem. We have implemented a system based
on these methods. We describe the mathematical representation,
briefly describe two projection algorithms, and present a number
of examples applying our implementation to robot task planning
problems.

Introduction and Problem Statement

Many problems in robot task planning involve propagation of
systems of constrained variables through equations describing
coordinate transformations in the task domain {Lozano-Perez
and Taylor 1988}. Examples include modelling of measurement
and motion uncertainty, part tolerances, free motion analysis
and stability of subassemblies in the presence of disturbing
forces. Similar examples may be found in other geometric do-
mains (such as mechanical design automation) as well.

Characteristically, the constrained variables correspond to small
values and the problems are readily linearized. The constraints
themselves may be expressed as statistical covariances {e.g.,
Smith and Cheeseman 1986, Durrant-White 1987} or as ine-
qualities {Taylor 1976, Brooks 1982}. The principal advan-
tages of covariance methods is the relative simplicity of the rules
for combining multiple constrained variables and their consist-
ency with standard gaussian models of uncertainties. On the
other hand, these methods are less successful if the actual
probability distributions of the variations are not well charac-
terized by first and second moments. Furthermore, they cannot
easily represent non-probabilistic constraints on the variations,
such as the fact that two bodies cannot interpenetrate. This
paper follows {Taylor 1976} in using inequality constraints to
model physical uncertainties and sensory information. Ine-
qualities provide a straightforward means of modelling non-
probabilistic constraints and do not depend on knowledge of
probability distributions. They are also compatible with ge-
ometric methods for constructing configuration spaces. Al-
though planners that use such “worst case’ analysis tend to be
more conservative than those that rely on covariances, con-
servatism may be warranted if the objective is to produce robust
strategies.

The total number of residual degrees-of-freedom is usually quite
small relative to the total number of free variables in the system.
For example, consider a subassembly consisting of a stack of
five parts. Each part is subject to small manufacturing pertur-
bations affecting how it is attached to the part below, which can
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be modelled by six free scalar variables, with inequalities ex-
pressing the possible range of variation. The total possible var-
iation between the base of the stack and its top corresponds to
six-dimensional polytope, which is the projection of a
30-dimensional polytope corresponding to the individual free
variables. If only, say, positional displacements are required,
the we project onto a three dimensional polyhedron.

In many cases, it is very desirable for the planning software to
analyze this lower dimension polytope corresponding to the
constrained region. In other cases, it is sufficient to solve a
(non-linear) optimization problem over the region. However,
if many such problems must be solved, it is sometimes more ef-
ficient to enumerate the constraints corresponding to the lower
dimensional polytope only once and then solve the problems in
a lower dimensional space.

Representation of Variations

Following {Taylor 1976}, we treat a coordinate transformation,
T, as a nominal transformation °T, and a perturbation AT

T='T« AT _ ~
= trans(oR, 0p) o trans( AR, Ap)

Thus, if ;,, is a vector in coordinate system a, then the same
vector in coordinate system b is given by

vb='ol-‘ab';a - - -
R, » (AR, » v, + Ap) + p,,

For a reasonably.-small AR, we can approximate AR v by
v+ a x v, where aisasmall vector. Similarly, we represent
R Ap by a vector, ¢, giving

- o - o - - -
Vo= Ry o Vo F P+ 0y XV, F 6y

By doing some algebra and dropping second order terms in a
and ¢, we derive expressions for the product of two transf-
ormations

Tac = Tab * Tbc
o= - -
= trans(o'rac’ pﬂC' aﬂC’ eac)
0. 0, 0.
Rac = Rab d Rbc

Poc = 0 Rab . OBbc + OBab (1)

0p 1
A

R
Al
R

-0 - o - -
€gc = Rab « ( @y X Py t+ ebc) + €
0 0 - - -
= ( Py X Rab) o ay + ORab * 6+ €y

where the vector-matrix cross product is defined by
v x R=[%R, - »R, | nR, - wR, | ¥R, — n,R,]

and for the inverse of a transformation
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Ty=T ' = AT+ °T"!
= trans(OTi,,v, Op,»,,v, [~ 79 einy)

0 Oyy—1

R,, = 'R . @
0 Og-1 =

Piny = — R °p

Rjgy = = (OR . a)

= ax (R« %)~ R

Generally, we represent « and ‘e as sums of vectors multiplied
by free scalar variables corresponding to small degrees-of-
freedom: :

"y

a = E aa;

i=1

=S es, ®
L=t :

Thus, for example, we compute Zz,,c in (1). as

)

ab nbbc
S ) OR_l - -
QXge = Oap; Rpe * 8y + OpeRpcj
j=1

i=1

The specific interpretation of the o, and e, varies depending on
the situation. Typical interpretations include manufacturing
tolerances on parts, possible small motions between loosly fit-
ting parts, and sensor uncertainty.

Constraints

Following {Taylor 1976}, we use linear constraints on the scalar
variables «; and ¢; to express bounds and relationships between
them. Often, simple intervals suffice. For instance, if the robot
joint positioning error in (4) , below, is + 0.005°, we get

T

180

m

180

~ 0.005 < A6, < 0.005

For a more complex example, consider the situation in
Figure 1. If T, is the transformation between a feed tray, f and
a small part p, then the constraint that the upper right hand

corner, ¢, of p must lie within the feeder nest is expressed by the
pair of constraints

(Tfp.cl) o x < w/2 (Tgec)ey<h/2

For T, = trans(1, 0, :xﬁ,, ;,P) this resolves to

(:xﬂ,xc,+:f,,)-x5wf/2—-c1-x

(:xfpxc1+2fp)-yshf/2—c,-y

Similar constraints may be applied to the other three corners of
the part.

Kinematic chains

Expressions for the variation in open-loop kinematic chains are
easily computed from repeated application of formulas (1) and
(2) . For example, consider the planar-type manipulator shown
in Figure 2. Each revolute axis of this robot is characterized
by
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T, = trans(l, 0, :xw‘j, 0)‘ . trans(ORj, 0, AG,-;, 0)
o trans(l, dj;(, 0, ¢)

= trans(ORj, dx, a;, ¢

4)

a;="R ", +0460z
¢="R, . (°Rj—‘ 0n +A0, xdx+ ¢)

where °R; = Rot(i, 6, , Af; is the uncertainty in the joint rota-

tion angle 6, d; is the nominal link length, e,; is the link
“twist” uncertainty, and ¢; is the link displacement uncertainty.

The position of the end-effector, relative to the robot’s base, is
given by :

trans(l, h0;) o« Ty e T, e Ty o trans(l, — dﬁ, 0, Adﬁ)

where Ay, d, and Ad, are as shown in Figure 2. Multiplying this
out gives us linear expressions for « and ¢ . The resulting ex-
pressions for a typical joint configuration of the robot are
shown in the figure, along with inequalities bounding all the free
variables for a typical design.

Graphs

. More generally, we are concerned with kinematic graphs which

may contain cycles and redundent paths. In generai, we com-
pute T, as follows:

1. . Compute each acyclic path from a to b. v
2. For each such path compute the corresponding open-chain

transformation
My
Yo = H ij
j=1

3.  Foreach k > 1, we create equality constraints
dnt e T, = trans(, 0, 0, 0)

If §R,, and 2{),,,, are identical for all &, we_cah use the simpler
constraints:

10~ k0 =1
16— =0

4.  For each free variable o, or ¢, in any ,T,, add any additional
constraints affecting that free variable. These constraints
may be explicitly stated (see ‘“Constraints”, above) or may
arise from cycles in the kinematic graph.

5. Add any addional constraints affecting any new free vari-
ables £, appearing in constraints introduced in the previous
step. Repeat the process until no new free variables are
introduced.

The resulting linear system may then be solved to find all feasi-
ble values of a,, and e,. The set of such solutions is a six di-
mensional polytope corresponding to the projection of all the
constraints onto ( o, €,;)

Polytope Projection Algorithms )

We have developed two efficient algorithms for computing the
projection of a high dimensional polytope defined by inequality
constraints. into a lower dimensional space {Rajan & Taylor
1987}. The efficiency is important because as the dimension-
ality increases.the complexity of the polytopes increases dra-
matically. A polytope built from » constraints in d~dimensional



space will have O(n%?) vertices. Hence, a brute-force algorithm
that projects all the vertices of the higher dimensional potytope
can be very slow.

The first algorithm is inspired in part by earlier work in Robotics
on determination of the shape of a convex object by repeated
probes by a Robot. It has been shown that the number of probes
required to completely characterize a polytope is the sum of the
number of its vertices and faces {Cole and Yap 1983 ,Dobkins
et. al. 1986}. For our case, the solution of a linear programming
problem provides us with a plane which touches the projected
polytope. Each probe reveals a vertex on the polytope and
provides a linear half-space which bounds the polytope. The
convex hull of the vertices lies within the projected polytope.
Further probing is done parallel to the faces of this convex huil.
Each additional probe either discovers a new vertex of the
projected polytope or confirms a face of the polytope and when
all faces are confirmed, we have the polytope we seek. In ad-
dition, the projected polytope lies within the intersection of the
half-spaces from the probe. If we only want an approximation
to the projected polytope, we can stop when the inscribing
polytope formed by the convex hull of vertices and the circum-
scribing polytope formed by the intersection of half-spaces are
close enough.

The second algorithm uses a dual of the standard gift wrapping
method for convex hulls to determine the polytope in the lower
dimensional space. It projects only those edges and facets of
the higher dimensional polytope which lie on the boundary of
the projection. We have developed a criterion for determining
if a particular facet lies on the boundary. The complexity of this
algorithm is also proportional to the number of vertices of the
lower dimensional polytope.

The facets and vertices of the projected polytope (once it is
computed) can be related straightforwarldy to the constraints
defining the higher dimensional polytope. This information may
be used by a planning system in a variety of ways. For exampie,
it may identify particular tolerances that must be tightened in
order to meet a functional requirement.

Implementation

We have implemented a complete system for representing large
graphs of uncertain spatial relationships, for setting up and ma-
nipulating the corresponding systems of linear equations, and
for computing projected polytopes in two dimensions, using the
first algorithm described above. We are presently extending the
implementation to three and higher dimensions. The polytope
projection algorithm is implemented in C++ {Stroustrup,
1987} and the rest of the system is implemented in AML/X
{Nackman et al,, 1986}. The examples below illustrate typical
experiments we have performed with the system.

Example: Robot kinematic error

Figure 3 shows projections of the kinematic uncertainty of the
robot and joint configuration from Figure 2 onto (e, ¢,) and
(a,, £,). Similarly, Figure 4 shows projections of the kinematic
repeatability onto (g, ¢,) and (a,, £,). The repeatability is com-
puted by computing T, fOr two different motion com-
mands to the same spot, and then computing

—1
Trpr = lTlabgripper . 2Tlabgr1pper

Since only the Af, and Ad, are different in Tz and

2T ieogrimper » the contributions of the a,, and the ¢ cancel out.
Figure 4(d) shows the AML/X code fragment used to generate
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the polytope projections and is intended to convey some of the
flavor of the user interface to the implemented system. Essen-
tially, this code works by attaching a “marker” coordinate sys-
tem to the robot, moving it to a test point, releasing it and then
making another move. The standard graph search algorithm is
then called to find the relation between the marker and the ro-
bot gripper.

The solutions to the linear programming subproblems provide
useful information in addition to the projected polytopes. For
example, the point of maximum radial error in Figure 3(a) is
(0.222, — 0.647) . By examining the corresponding vertex of
the 22-variable linear programming problem, we can learn the
relative sensitivity of this radial error to each variable at this
point, and (possibly) use the information as input to a planner
or design optimization system. In this case, the radial error is
most sensitive to changes in g, . and a,,,,, which correspond
to twists in the robot links.

Example: Grasping Uncertainty

Consider the situation shown in Figure 5, in which the robot
has just picked up part p from the feeder shown in Figure 1
with a small suction device at the end of its last joint. The
grasping affixment -- i.e., the relation between the package and
the suction gripper ~-- is given by:

-1
Tp=Tg + Ty Ty

where T, is the robot kinematic transformation relative to the
laboratory coordinate system, T, gives the feeder location rela-
tive to the lab, and T, locates the part relative to the feeder.
Assuming that the feeder is nominally located at
trans(l, vector(400,0,0)) , and the part is 5 mm thick, then the
equations and constraints for T, and T, are given in Figure 1
and Figure 2, respectively. Assume that the feeder is gnaran-
teed to lie flat on the table, but that its position on the table may
vary by 20 pm and that its orientation about the z axis may
vary by as much as + 1° Thus,

Ty = trans(1, vector(400,0,0), «y, ,;, —e,/)

where |e,,| < 0.020 , e, | <0020, |e,| <0.020, and
fay,] <1°. If we multiply everything out, we get a system
with 30 bounded scalar variables, together with the eight addi-
tional constraints shown in Figure 1. Figure 5 shows the
projected polytopes for (e, &;,,) and (a,,,, €,,) . An analysis
of the linear programming solutions shows that most of this er-
ror comes from the relatively loose fit of the part in the feeder
tray.

Example: Sensing uncertainty

Consider the situation illustrated in Figure 6, in which the ro-
bot has moved over a viewing station, where a vision algorithm
locates two corners of the part. If the relation between the part
and the vision station is given by

€

Typ = trans(l, h;, a,,

)

then we can model the vision step with constraints of the form:
(T, e ) e x — ¢l <8,
|(Tvp * ck) ¢y~ cky' < svis

for each corner k, where 8, is a property of the vision algorithm.
Multiplying this out gives



[Cayy % e + €,) o x — g | €8,

l(avpx-ék+;,¢)-§—ckyl <0,

Figure 7(a) shows the corresponding polytopes for (e, ¢€,,,)
and (a,,,, &,,) . Figure 7(b) shows an updated projection of
(€g.0 &,) - Now, the principal sources of grasping uncertainty
are uncertainties in the robot’s positioning, in the position of the
vision station, and .in the precision of the vision algorithm,
rather than the loose fit of the part in its feeder. Furthermore,
the subproblem solutions can tell us how sensitive the remaining
uncertainty is to improvements in, say, 0.

Example: Placement uncertainty after sensing

Finally, we move the robot to place the part on a workpiece
clamped to the same holder that was used to-hold the camera,
as shown in Figure 6. The relation between the part and the
workpiece is given by

- _1
pr = Tgp1 M T[g . Tlh * Thw

This relation gives a system of 49 bounded variables, with 16
additional constraints corresponding to the. feeder-part re-
lationship and the vision step. Projections of this system onto
(€gp.00 Egpy) AN (g, €4,,) are shown in Figure 7(c).

Example: Frictional stability

During the planning of a robot assembly task we would like to
know how stable a particular assembly of rigid bodies is. If the
contact between the bodies is described by the laws of friction,
we can determine the stable region from the laws of statics.
{Rajan et. al. 1987, M. E. Erdmann 1984}. As the assembly
becomes more complex, the task of determining if it is stable
becomes more difficult, and can be done using Linear Pro-
gramming {Boneschanger et al 1988}. However, for task plan-
ning it is useful have the full region of stability.

Consider an assembly of two dimensional TV-tray resting on a
a rigid stand, as shown in Figure 8(a). We would like to know

what external force f,,, = (f,,,,, fou,) Without disturbing the sta-
bility of the structure. When the assembly becomes unstable
we would like to know what kind of motion it will manifest. The
four points of contact have frictional contact, and the reaction
forces must lie within the cone of friction. If the reaction force

at point of contact i, located at ;,-, is f, = (fi,, f;,) then we have
following set of constraints:

: If Lxl < l‘ff;'y
In addition, the normal reaction has to be positive. This gives a
set of inequality constraints:

20

iy 2

When the system is stable, the total force and torque on each
rigid body in the assembly has to be zero. This gives a set of
equality constraints:

f .+, +0,+w,=0

Ty X Loy + Ty X £+ Ty X fp 47, X W, =0

~f, - +f+f4+wW,=0

ey X — Ty x D+ Ty X fa+ry X £, + 1, x W, =0
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where ;v,, v;, denote the gravitational forces on the tray and the
stand respectively, and r, and r, denote their centers-of gravity.
In Figure 8(b) we show the stable region for this assembly to-
gether with the boundary showing the kinds of instability it
manifests at each boundary. The nature of instability at each
boundary can be inferred from the constraints which become
relevant at each point on the boundary. For example, the sen-
sitivity analysis shows that the only relevant constraint corre-
sponding to the top edge of Figure 8(b) is f,, > 0, revealing
that this boundary corresponds to the kind of instability shown
in the figure.

Conclusions and Future Work

We are presently debugging a three-dimensional version of the
polytope projection algorithm and expect to implement higher
dimensional versions as well. So far we have run the two-
dimensional projection system on a moderate number of prob-
lems similar to the examples shown here. The implementation
works surprisingly well even for large numbers of free variables
and constriants. The largest example from this paper runs in
about two minutes on an IBM RT/PC, despite considerable
debugging trace output. We are considering modifications to
further improve efficiency. One such improvement would be
stopping when a sufficiently good approximation to the actual
polytope has been found.

When we have used the system interactively, we have found
that display of the fuil polytope is quite useful in giving a good
intuition of the variations associated with a robotic task. In this
regard, the sensitivity analysis coming from the linear program-
ming subproblems is quite valvable in identifying relevant
sources of error and their relative importance. Indeed, this
analysis led to the discovery of several “bugs” in earlier versions
of the robotic assembly example used above, when the pre-
dicted placement precision was demonstrated to be very differ-
ent than one of us (Taylor) had expected intuitively. Other
potential uses of the system include mechanical design and
analysis of tolerences, robot task planning, sensor “fusion”’,
subassembly stability, and similar engineering analysis tasks.
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give bounds on the various link and control error paramcters.
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Positioning uncertainties for the robot configuration in Figure 2: (a) p?lylope
and projected constraints for (e, ¢,) : (b) polytope and projected constraints for
(a., ¢,) (Note that the a, axis on the plot has becn expanded 100 times)

Figure 3.
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rob: bind scara(),
marker. bind node();

H4 define robot

#4 attach marker to robot
#8 carry marker to target
## remember where it is

link(marker, gripper, null__ x{);
rob.mv(xf(null_rot, vec( < 400.,0,5 > )))
affix(marker, lab);
unfix(marker, gripper); ## drop it
rob.mv(xf(null_rot, vec( < 400,0,5 > })); #4# make another move
compuie__projecied__polyrope(niarker. gripper, <. 4.5 > ); ## [ .
compute__projected__polytope(marker, gripper, <'4,5 > ), ## [ ]
(d)
Figure 4. Repeatability polytopes for robot configuration in Figure 2. (a) Equations for
a,, and ¢, (b) polytope and projected constraints for {¢.. €,) 5 (c) polytope and
projected constraints for (a,,¢,} (Note that the a, axis on the plot has been
expanded 100 times); (d) AMLX code fragment used 10 generate example
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(b}
Figure S. Grasping uncertainty:  (a} the robot is picking up the part from the .f:eder tray:

{b) plots of (e, .. €gpy) a0 (a8, )
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Figure 6. Vision and Assembly Stations: The graph on the left shows the relationship
between the various transformations,
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Figure 7. Projected uncertainties after vision: (a) (e,,..¢,,) and (a,,.¢,) : (b) a
updated projection of (e, . €4,,) -+ (€) (25,4 €,.,) and (@, . €,.,) alter the part
is moved to the workpiece.
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Frictional Stability: (a) forces on a 2D “tv table™:(b) stable region for
raras Jery) - The sketches illustrate what happens when the constraints are
violated.

Figure 8.




