
























difficult to maintain. Instead, we require a systematic 
approach that permits us to combine a number of 
possibly competing requirements and that also insulates 
higher-level code from detailed information about the 
manipulator. Our approach is described more fully in [52]. 
Essentially, we formulate the problem of determining the 
manipulator-joint positions q(t) that will achieve a desired 
manipulator position and orientation as a quadratic 
optimization problem: 

min IIA(t) · q(t) - b(t)II 

subject to constraints 

C(t) · q(t) :o=: d(t),

where A(t) and b(t) are derived from the relative weights 
of different goals to be achieved, propagated through the 
kinematic equations of the manipulator. C(t) and d(t) are 
used to express constraints that must be obeyed, also 
propagated through the kinematic equations of the 
manipulator. We solve this problem in a discretized form, 

min IIA(t) · q(t) - b(t)II , 

subject to 

C(t) · q(t) '.'S d(t)

for multiple time steps t;- This scheme has proved to be 
both flexible and efficient. We achieve typical solution 
times of 50-65 ms on a slow (33-MHz '486) PS/2®. It has 
paid off substantially in simplicity of debugging and has 
been adapted to several very different manipulator designs 
( e.g., [55, 57]). 

The prototype LARS system has been used in vivo 
by our clinical collaborators at Johns Hopkins for 
both cholecystectomies (gall bladder removals) and 
nephrectomies (kidney removals). The reaction of the 
surgeons has been enthusiastic, and we are considering 
appropriate further steps to exploit the system's 
capabilities. 

Our present main focus is on applications that exploit 
the ability of the LARS system to accurately and quickly 
align an instrument on the basis of information obtained 
from images, as well as its flexibility and programmability. 
The sequence in Figure 13 illustrates the ability of the 
system, using information obtained by processing video 
images from the laparoscopic camera, to place a surgical 
instrument on a designated target. Figure 13(a) shows the 
experimental setup, consisting of the surgical robot 
holding a Storz therapeutic laparoscope, a rubber 
simulation of patient anatomy, and a small target to be 
grasped by a surgical instrument inserted into the working 
channel of the laparoscope. In this picture, the robot is 
draped as it would be in surgery. The figure illustrates 
force-compliant manual guidance of the robot. The robot 
enters this mode whenever the surgeon depresses two 
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In vivo video display with superimposed control menus. Shows 

typical video display (in this case, of a plastic simulated stomach) 

seen by the surgeon when using the system. The menus on the 

left-hand side of the screen correspond to control modes or robot 

functions. The "snapshot" images on the right-hand side 

correspond to previously saved robot views. Typically, the surgeon 

selects desired functions or robot positions by using the 

instrument-mounted joystick to position a cursor over the desired 

menu item and then "clicking" a button. (Reprinted with 

permission from [29].) 

buttons on opposite sides of the carrier of the surgical 
instrument. Figure 13(b) shows the display monitor 
after the surgeon has designated the target, using the 
instrument-mounted joystick to place cursor crosshairs 
on the image of the target. Figure 13(c) shows the 
scene just after the computer has located the target 
by multiresolution correlation. This view shows the 
correlation window tree [58]. Normally, this display is used 
for debugging and would be suppressed in production use. 
Figure 13( d) shows insertion of the instrument into the 
working channel. Figure 13( e) shows the scene during the 
pickup operation. The target appears to be off-center, but 
it is lined up with the working channel of the scope. 

We are extending the image-based navigation 
capabilities to include the ability to acquire fluoroscopic 
and other intraoperative images, register them with 
preoperative plans, and accurately place an instrument 
or therapy-delivery device (such as an injector for a 
radioactive pellet). Applications that we are exploring 
include percutaneous therapy of soft-tissue lesions, 
minimally invasive biopsy and treatment of bone tumors, 
and precise percutaneous spinal surgery. 

Another possible area of work is the integration of the 
existing software and system capabilities with either a less 
expensive LARS manipulator or one of several low-cost 
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vendor manipulators specifically designed for camera 

positioning. Advantages of this approach include 

significant functional improvement of existing camera­

pointing systems at low additional cost, and support for 

more sophisticated laparoscopic surgical applications 

requiring coordinated control of several manipulators. 

In one feasibility test [ 55], we constructed a simple 

robot with a passive "wrist" similar to that used in 

many camera-pointing systems (e.g., [28, 59]). We are 
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also considering possible application of LARS in a 

number of "remote surgery'' applications. 

Image processing and modeling 

The extraction of anatomical models from 3D images 

(e.g., CT and MRI scans), their quantitative analysis, and 

their registration to the anatomy or to other images, are 

essential components of many CIS applications. Such 
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models are necessary for preoperative diagnosis and 

planning, for intraoperative guidance and execution, 

and for postoperative follow-up. Our goal is to develop 

novel, general-purpose algorithms and techniques with 

broad applicability, both within the context of specific 

applications, such as orthopaedics and craniofacial surgery, 

and in nonmedical applications with similar needs, such as 

anthropology [60, 61]. 

One typical project of this nature is the development of 

automatic methods for simplifying complex 3D anatomical 

models. We have developed an automatic, adaptive, 

hierarchical simplification algorithm for polyhedral 

models, called "Superfaces" [62, 63). The key attributes 

of this simplification algorithm are that it preserves the 

topology of the original model, guarantees a provable 

approximation error bound, does not require any a priori 

knowledge of anatomy, and permits local substitution of 

higher-resolution models in areas of particular interest. 

Although a detailed description is beyond the scope of 

this survey, the basic steps are as follows: 

• Step 1 Superf ace creation

A "greedy" face-merging procedure is used to partition

the original model into quasi-planar regions called

superfaces. Figure 14(a) shows a typical output for a

skull model. Each colored patch corresponds to a

superface. Figure 14(b) is a closeup of the area in the

box in Figure 14(a). It shows the individual polygonal

faces of the original model. The face merging is

controlled so that a number of key properties are

guaranteed. The most important is that every vertex of

every original face subsumed into a superface is

guaranteed to lie within a specified distance of a plane

associated with the superface.

• Step 2 Border straightening

The boundaries between the superfaces are simplified

by selecting a subset of vertices shared by adjacent

superfaces to be endpoints for "superedges."

• Step 3 Superface triangulation

Triangulation points are determined for each superface

(i.e., points about which the polygon can be broken into

triangles). If necessary, a large superface may be resplit

into two or more smaller superfaces, each with its own

boundary and triangulation points. The algorithm

usually stops here, without actually generating triangles;

however, an explicit triangulated model data structure

can be produced from the superface boundaries and

triangulation points if this is required.

The method is computationally fast and produces 

reasonably good simplifications. For example, the 

algorithm simplified a polyhedral model consisting of 

196 200 polygonal faces, obtained from a CT scan of a 

plastic skull, to a simplified model with only 6320 
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Figure 14 

Phase I ( creation of superfaces) of superfaces algorithm. Each 

colored patch corresponds to a quasi-planar "superface": (a) the 
superfaces obtained by simplifying a model of a plastic skull; (b) a 

close-up of the output for the area in the box of (a), showing the 

individual polygonal faces of the original model. 

polygonal superfaces, while guaranteeing that every vertex 

of the original model was within one voxel-diameter6 

of some facet of the simplified model. Since many 

graphical and geometric algorithms perform calculations 

on one triangle at a time, one way of estimating the 

computational savings that may be achieved from the use 

ll A "voxel" is essentially the 3D equivalent of a 2D pixel. 
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Superfaces model simplification. The original model (a) has 196 200 
polygonal faces, yielding 349 800 triangles. The simplified model 
(b) has the same topology, but only 14686 superfaces, yielding
128 040 triangles.

of simplified models is to compare the number of triangles 
associated with an original polyhedron and the number 
associated with the corresponding superfaces model. 
In the example just cited, the triangulated form of the 
original polyhedral

1 

model had 349800 triangles, while the 
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simplified model had 78 002 triangles. If the allowable 
error bound is reduced from one to one-half voxel, the 
algorithm produces a simplified model with 14686 
superfaces and 128040 triangles. Figure 15(a) shows the 
original model, while 15(b) shows the simplified model 
with 14686 superfaces. Similar experiments have shown 
triangle reductions ranging from 4:1 to 12:1 on skull 
models, and up to 20:1 for skin, while maintaining a one­
voxel error bound, with average errors about 10% of the 
error bound. We are considering a number of ways to 
extend and exploit this approach. 

A second project is the registration of images from 
different imaging modalities, possibly taken at different 
times, such as preoperative CT scans and intraoperative 
X-ray images. Image registration consists of "aligning" the
images so as to have a common reference frame. The
aligned images can be used to monitor the progress of a
disease, to monitor a procedure, to execute a preoperative
plan, or to calibrate a robotic device. A number of
researchers (e.g., [64-69]) have addressed this problem in
various contexts, and it is a current topic of considerable
research activity in many groups. We expect to draw upon
and extend much of this work, while also focusing on
characterization of uncertainties associated with imaging
and sensor-alignment errors, computational efficiency, and
robustness of registration algorithms in the presence of
misalignments. One approach that we are pursuing
(similar in some respects to that of [65]) compares
observed X-ray images to predicted X-ray images
calculated from CT data. In the visualization shown in
Figure 16, edges from simulated projection X-ray images
computed from preoperative CT data for a cadaver femur
are shown in yellow. from an actual X-ray are
shown in blue. Edge elements appearing at the same place
in both images are shown in red. The overlaid image
appears red where the two images are both bright.

Another approach we have taken (similar in some 
respects to that of [66]) generates a model of the surface 
of the anatomy from 3D CT data and compares 2D 
silhouettes of this 3D preoperative surface model with 
2D contours detected from the intraoperative X-ray data 
(multiple X-rays may be used). In this approach, tentative 
2D correspondences between points from the projected 
surface model and the detected X-ray contours are 
automatically generated by means of an algorithm that 
finds the shortest distance between a point and a 
polygonal curve. The coordinates of the corresponding 
pairs of points are given in the coordinate systems 
associated with the X-ray views. 

The object of the registration process is to find the pose 
of the X-ray source with respect to the 3D anatomy from 
the planar X-ray information and the 3D surface model 
of the anatomy derived from CT data. At each iteration 
of the registration algorithm, an incremental combined 
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Registered CT and X-ray images. In this visualization, edges from 
simulated X-ray images based on a predicted X-ray camera model 
and preoperative CT data are shown in green. Edges from an actual 

X-ray are shown in blue. Edge elements that appear at the same

place in both images are shown in red. The overlaid image appears

red where the two images are both bright. The dots are small steel

spheres imbedded in the test fixture that holds the bone.

rotation and translation of the CT model with respect to 

the assumed X-ray source position is computed so as to

minimize the objective function, which is the sum of 3D 

distances between the 3D model surface points and 3D 

lines joining the X-ray contours and the optical center of 

the X-ray system. Several computational methods (linear, 

nonlinear, and statistically robust) have been used and 

compared for computing the optimal registration. The 

process of finding correspondences and computing an 

optimal pose of the X-ray source is repeated until a 

prespecified registration accuracy (value of the objective 

function) is obtained, or until the registration is no longer 

improved. Experiments on simulated data have shown 

that, with random initial displacements, a registration of 

the perspective projection of the 3D surface to the actual 

X-ray data can be obtained with maximum errors of

1-2 mm. The computational expense for the registration

was typically 20 seconds of CPU time on an IBM RISC

System/6000 58K workstation.
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Model-based 2D-3D registration using contours: (a) the predicted 

2D projected contour of a CT-derived polygonal model of a knee 
(red) superimposed on contours extracted from an actual X-ray 

image of the knee (green). The gray lines represent tentative 
pairings between points on the contours. (b) is a comparable image 
obtained after the X-ray camera pose estimate has been refined. 

Figure 17(a) shows a 2D silhouette of the CT model 

superimposed on the contours extracted from an actual 

X-ray image of the knee part of a femur. The silhouette

of the CT model is shown in red, whereas the extracted

X-ray contours are shown in green. The gray lines between

the red and green curves show tentative assignments of

corresponding points, which are automatically computed

by means of a closest-point finder. Figure l 7(b) shows

improved alignment of the projected CT model to the

X-ray image after registration.

Conclusion 

Computers and computer-controlled devices have 

enormous potential to augment the ability of human 
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clinicians to plan and carry out surgical procedures. For 

this potential to be realized, close cooperation among 

engineers, computer scientists, and users is essential. This 

summary has provided a brief overview of the strategy of 

the Computed-Integrated Surgery group at the IBM 

Thomas J. Watson Research Center, and has provided 

a few examples of our activities in implementing our 

strategy. This is a relatively young field, and much is yet 

to be done if this technology is to have its full impact on 

health care; however, we are excited by the prospects and 

look forward to exploring the possibilities. 
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