
1

Avi Rubin - CS 600.443
1

Cryptography outline

• open vs. closed system
design

• a brief look at historical
ciphers

• symmetric ciphers

• hash functions

• Detailed look at DES,
construction, modes of
operation, vulnerability

• the Advanced Encryption
Standard effort

• public key systems
– a brief look at number

theory

– the importance of primes
and how to find them

– RSA

– Diffie-Hellman

• key distribution

• basic public key
infrastructure

Avi Rubin - CS 600.443
2

Crypto that is not covered

• Stegonography

• secret sharing

• voting protocols

• zero-knowledge

• lesser-known protocols (e.g. Leighton-Micali)

• formal proofs

• key recover/escrow

• politics

2

Avi Rubin - CS 600.443
3

What is cryptology?

• Cryptography
methods to hide and authenticate information

•Cryptanalysis
methods to expose and substitute information

(malicious adversary -- not like that in error-correcting codes)

Avi Rubin - CS 600.443
4

An Important Distinction

Encryption = maintaining information secret/confidential

Authentication = proving and maintaining information integrity

3

Avi Rubin - CS 600.443
5

One Time Pad Encryption

Alice BobEve

Secret random key
k

Out of band

Ciphertext
c = m ⊕ k

c

Plaintext
m

c

Retrieve Plaintext
m = c ⊕ k

Secret random key
k

Avi Rubin - CS 600.443
6

Perfect Secrecy of OTP Encryption

• Regardless of the plain text, the ciphertext is
uniformly random.

• Theorem (Shannon):
– An adversary may have some a priori information about

the plaintext.

– However, even an infinitely powerful adversary cannot
gain any additional information about the plaintext
after seeing the ciphertext.

4

Avi Rubin - CS 600.443
7

Secret Key Cryptography

• OTP achieves Perfect Secrecy but at a tremendous
cost—the key must be as long as the total number of bits
communicated.

• Secret keys must be a reasonable length.
– E.g., would like keys of several hundred bits to be used for

encrypting several hundred megabytes.

• For short keys, an infinitely powerful adversary can learn a
great deal about the plaintext:
– it can perform a trial decryption using every possible key.

• However, realistic adversaries are not likely to spend more
than, say, 2100 cycles trying to decrypt. That’s 32 million
years for a terahertz machine.

• Modern cryptography has spent a great deal of time
formalizing and quantifying security against time-bounded
adversaries.

Avi Rubin - CS 600.443
8

Secret Key Encryption

• Alice and Bob have a trust relationship, i.e., they share a
secret key, k.

• A secret key encryption scheme is a pair of algorithms:
1. Encryption algorithm E takes a key k, a plaintext m and a

random string r, and produces a ciphertext

c = Ek(m,r).

2. Decryption Algorithm D takes a key k and a ciphertext c and
produces a plaintext.

• E and D must “match,” i.e., for all k, m, and r

 Dk(Ek(m,r)) = m.

5

Avi Rubin - CS 600.443
9

Secret Key Encryption

Alice BobEve

Secret random key
k

Out of band

Ciphertext
c = Ek(m,r)

c

Plaintext
m

c

Retrieve Plaintext
m =Dk(c)

Secret random key
k

Randomness
r

Avi Rubin - CS 600.443
10

Block Ciphers

Ek

m

c

For every k, BC is a
Permutation from
Strings of length n to
Strings of length n.

Dk

m

Examples:

DES, |k| = 56,
 |m| = 64

AES, |k| = 128,192, 256;
 |m| = 128,192,256

6

Avi Rubin - CS 600.443
11

Cipher Block Chaining

⊕ ⊕ ⊕

m1 m2 m3

c1 c2 c3c0

IV

E E E

ci = Ek(mi ⊕ ci-1);
c0 = IV

Avi Rubin - CS 600.443
12

Security Against Chosen Plaintext Attack

c1,c2,c3,…

w1,w2

d is encryption of w1
or w2, with prob. 1/2

Eve now tries to correctly
guess whether d is an
encryption of w1 or w2.

Alice BobEve
m1, m2,m3,…

k k

Security Challenge for Eve: Distinguish between the encryptions
of two plaintext of her choosing.

Ek(mi,ri) = ci

r1,r2,r3,..

d

7

Avi Rubin - CS 600.443
13

Quantified Security

• Quantified Security: An encryption scheme is
(T,ε)-secure if all adversaries that run in time at
most time T guess correctly with probability at
most ε better than chance (1/2).

• Important point: A secret key encryption scheme
must be randomized in order to be secure against a
chosen plaintext attack.

Avi Rubin - CS 600.443
14

Security of OTP and CBC

• Theorem: (infinity,0)-security of OTP
– No adversary can distinguish encryptions of chosen

plaintext with prob better than 1/2 no matter how much
time they spend

• Equivalent to Shannon theorem.

• Theorem: CBC with random IV is secure.
– If the block cipher is difficult to distinguish from a

perfect block cipher for a time bounded adversary

– Then the encryptions of chosen plaintexts are difficult
to distinguish for a similarly bounded adversary even
after a chosen plaintext attack.

8

Avi Rubin - CS 600.443
15

Message Authentication

• Alice and Bob have a trust relationship, i.e., they share a
secret key k.

• A message authentication code is two algorithms: one to
generate an authentication tag and one to verify it:
1. MAC takes a key k and a message m and returns a tag t.

 t = MACk(m)

2. VMAC takes a key k, the message m and the tag t and says
“accept” or “reject.”

• MAC and VMAC must “match,” i.e., for all k, and m,
VMACk(m,t) = “valid” if t = MACk(m), and

 = “invalid” otherwise.

Avi Rubin - CS 600.443
16

Secret Key Authentication

Alice BobEve

Secret random key
k

Out of band

MAC tag
t = MACk(m)

m,t

Plaintext
m

m,t

VMACk(m,t) = “valid”

Secret random key
k

?

9

Avi Rubin - CS 600.443
17

Security Against Chosen Plaintext Attack

Alice BobEve
m1, m2,m3,…

k k

Security Challenge for Eve: forge a valid message, tag pair

MACk(mi) = ti
t1,t2,t3,…

m’,t’

VMACk(m’,t’)
=? “valid”

Eve attempts to compute
a valid tag for a new message

Avi Rubin - CS 600.443
18

MAC Security

• A MAC scheme is secure if even adversaries with
significant computing resources have only a small
chance of computing a forgery.

• Hence, Bob can trust that messages with a valid
tags were sent by Alice.

• Security can be quantified in terms of time
devoted by adversary and chance of successful
forgery.

• Lots of constructions of MACs. About an order of
magnitude faster than encryption.

10

Avi Rubin - CS 600.443
19

Public Key Signatures

• A public (asymmetric) key signature scheme has three
components:
1. A key generator G.

• Input: length n.
• Output: Secret signing key, sk, and public verification key, vk of

length n.

2. A signature algorithm S—uses the secret signing key
• Input the signing key sk, & a message m
• Output: a signature s = Ssk(m,r).

3. A verification algorithm V—uses the public verification key
• Input: the verification key vk, a message and a purported signature s
• Output: “valid” or “invalid.”

• S and V must be well “matched,” i.e.,
 Vvk(m,s) = “valid” if s = Ssk(m,r), and
 = “invalid” otherwise.

Avi Rubin - CS 600.443
20

Public Key Signatures

Alice BobEve

Out of band

Signature
s = Ssk(m)

m,s

Plaintext
m

m,s

Vvk(m,s) = “valid”

Public verification key
vk

?

G(n)=sk,vk

Secret signature key
sk

sk

11

Avi Rubin - CS 600.443
21

Public Key Signatures

• Definition nearly the same as that of a MAC except that
the signing and verification keys are different and the latter
may be public.

• Security against choose message attack defined very
similarly to previous definition of message authentication
codes.

• Constructions based on the famous RSA problem.

• “Provable” schemes: Show that if all adversaries with
considerable resources have only a very small chance of
inverting RSA then all adversaries with similar resources
have only a very small chance of forging a signature.

Avi Rubin - CS 600.443
22

Example: RSA

• Key Generation for 1024 bit RSA:
– Generate two 512 bit primes p and q
– Set N := p*q
– Let R := be the set of all integers < N that do not have p or q as a

prime factor.
– One half of the trick: given p and q, it’s easy to compute two

integers
d and e

 with the following special property:
(xd)e mod N = x, for x in R.

– Set public verification key to (N,e)
– Set private signing key to (N,d)

12

Avi Rubin - CS 600.443
23

RSA, continued

• Given m in R, & signing key (N,d), the RSA signature s is
computed as

s = md mod N
• Given a message and its signature (m,s), & verification key

(N,e), an RSA signature is (publicly) verified by checking:
 se mod N =? m

• If s is a valid signature then s will pass the test:
 se mod N = (md)e mod N = m

• The second half of the trick: Given the public key (N,e) its
not feasible to compute the signing key (N,d).
– So, adversary can’t sign messages.

Avi Rubin - CS 600.443
24

How Many Prime Numbers Are There
Anyway?

• The number of Prime numbers not exceeding “N”
is approximately “N/log(N).”

• If “K” is a randomly chosen odd number,
– Prob(“K is prime”) = (2 / log(K)).

• if K is 512 bits, Prob(“K is prime”) = 2/177

• it takes about 89 tests to find one prime

13

Avi Rubin - CS 600.443
25

Primes

• RSA relies on prime numbers

• Where do we get prime numbers?

• Could a list of primes be published?

• Are there enough primes in the world to make
exhaustive search hard?

• How do you know if a number is really prime?

Avi Rubin - CS 600.443
26

How to Find Big Prime Numbers?

• How to verify/test if a number K is prime?

• How many K’s do we have to test before we can
hit a prime?
– try about (log (N) / 2) different random odd numbers.

14

Avi Rubin - CS 600.443
27

Fermat’s Theorem

• Given, a 0<a<n and n is prime, then:
a(n-1) mod n = 1

Examples

– a = 4, n = 5, 4(5-1) = 44 = 256 = (255+1) mod 5= 1

– a = 2, n = 5, 2(5-1) = 24 = 16 = (15+1) mod 5 = 1

Avi Rubin - CS 600.443
28

Fermat’s Test

• Given n, randomly choose an a; compute a(n - 1)

• If a(n - 1) mod n ≠ 1
– then n is NOT a prime so select another n;

• If a (n - 1) mod n = 1, for n of 100 digits, there is 1
in 1013 chance that n is still NOT a prime
– n is a Fermat-Pseudo-Prime

– Try test for many different values of a

15

Avi Rubin - CS 600.443
29

How Likely is Fermat Pseudo Prime?

• If a = 2

• For numbers under 1010, (~100 bits),
– there 455,052,512 real primes,

– 14,888 Fermat-Pseudo-Primes.

• Probability = 0.005%.
– So Fermat pseudo primes are hard to find

– A lot of processing to find prime number in general

– So, key generation is slow

– Precomputation of primes is possible

Avi Rubin - CS 600.443
30

Probabilistic Primality Testing

Given a randomly
chosen large odd
number K

NO,
definitely
not a prime.

YES,
probably
a prime.Fermat-Pseudo-Prime

or Real Prime

Fermat’s
Test

16

Avi Rubin - CS 600.443
31

Fermat, Euler, Miller Tests

Fermat’s
Test

Euler’s
Test

Miller’s
Test

K

NO NO NO

Avi Rubin - CS 600.443
32

Some More Rigorous Tests

• Euler and Miller Tests are much more rigorrous
than the Fermat Test.

• There are:
– very few Fermat-Pseudo-Primes

– far fewer Euler-Pseudo-Primes

– even far fewer Miller-Pseudo-Primes

• In practice, if a K can pass all three tests, with
extremely high probability, it is a real prime

17

Avi Rubin - CS 600.443
33

So You Wonder...

• Why not make certain that p and q are primes?
– For n of 256 bits, testing all x < 2128 on a 4 gigaflops

machine will take about 3x1019 years

• What’s the problem if they are not really primes?
– The algorithm fails - the reverse transformation may get

the wrong “thing”

– Cracking private component may no longer be as hard

Avi Rubin - CS 600.443
34

Public Key Signatures

• Main idea of Public Key cryptography: Alice can use
public information to send authentic messages to Bob.
– That is, Alice and Bob don’t need to establish a secret key or a

trust relationship ahead of time.

• Attempt 1:
– Alice runs the key generator to get (a-sk, a-vk).

– She puts her name and the verification key (Alice, a-vk) in a public
key “telephone book” and keeps the signature key a-sk secret.

– Now, Alice can send a signed message (m,s) to anyone, say, Bob.

– Bob can then retrieve the verification key a-vk from the directory
and use it to verify that the message came from Alice, that is, s
could have only been generated from m using the secret key
associated with a-vk.

18

Avi Rubin - CS 600.443
35

Public Key Signatures

Alice BobEve

s = Sa-sk(m)

m,s

m

m,s

Va-vk(m,s) = “valid” for Alice
?

G(n)=a-sk,a-vk

Alice,a-vk
Alice,a-vk

Alice,a-vk

a-sk

Avi Rubin - CS 600.443
36

Public Key Signatures, cont’d

• Not quite good enough. What if Eve generates (e-
sk, e-vk) and places (Alice, e-vk) in the directory.
Then everyone will think that messages signed by
Eve were signed by Alice.

19

Avi Rubin - CS 600.443
37

Public Key Signatures

Eve BobEve

s = Se-sk(m)

m,s

m

m,s

Ve-vk(m,s) = “valid” for Alice
?

G(n)=e-sk,e-vk

Alice,e-vk
Eve,e-vk

Alice,e-vk

a-sk

Avi Rubin - CS 600.443
38

Certificate Authorities

• Attempt 2: First establish trust with the directory,
D.
– Suppose that both Alice and Bob have the verification

key d-vk of the directory D, and through some out of
band means they trust that d-vk is indeed the
verification key of D.

– Moreover, suppose that the directory has verified
Alice’s indentification info and her verification key.

– Suppose the directory computes the signature of: “D
certifies Alice’s verification key is a-vk” and calls it D-
cert-of-Alice, short for Alice’s public key certificate.

– The directory entry for Alice is now: {Alice, a-vk, D-
cert-of-Alice}.

20

Avi Rubin - CS 600.443
39

Certificate Authority

• Attempt 2, con’t:
– Now Bob’s verification procedure of a signed message

purportedly from Alice takes three steps:
1. Retrieve Alice’s public key and Alice’s public key certificate

from the directory

2. Run V on Alice’s public key certificate using the directory’s
verification key: Vd-vk(D-cert-of-Alice).
• Since Bob trusts that d-vk is really the verification key of D and that

D has verified the “binding” of Alice’s indentification info to her
key, if the certificate is valid, then Dan trusts that the verification
key a-vk in the certificate is really Alice’s.

3. Run V on Alice’s message and signature using a-vk.
• If it is valid, then Bob trusts that the message came from Alice.

Avi Rubin - CS 600.443
40

Public Key Signatures

Alice BobEve

s = Sa-sk(m)

m,s

m

m,s

Va-vk(m,s) = “valid” for Alice

G(n)=a-sk,a-vk

Alice,a-vk
Alice,a-vk

Alice,a-vk

CA, ca-sk

ca-vk ca-vk

Cert(Alice,a-vk)

Cert(Alice,a-vk)

Vca-vk(Alice,a-vk,cert(Alice,a-vk)) = “valid” for D

21

Avi Rubin - CS 600.443
41

Public Key Infrastructure

• Main Idea of Public Key Cryptography-II:
– Suppose two parties A & B have no prior trust relationship

– Suppose both A & B have a trust relationship with C.

– Then A & B can bootstrap a trust relationship using their mutual
trust of C.

• Big difficulty with Public Key cryptography: Revocation
– A CA may want to revoke a key for a large number of reasons:

computer penetration, employee leaves,…

– Revocation is a fact of life.

– Difficult to achieve revocation which is: efficient, accurate, simple,
and scalable.

Avi Rubin - CS 600.443
42

Trust Relationships

A B
k k

Private Key Crypto

Direct trust through
Shared key

A B

Public Key Crypto

Direct trust through
Know key, etc.

Direct trust through
Know key, etc.

ca-vk ca-vk

CA

A,a-vk,cert(A,a-vk)

B,b-vk,cert(B,b-vk)

ca-sk

Bootstrapped trust

22

Avi Rubin - CS 600.443
43

Certification Hierarchy

IPRA: Internet Policy Registration Authority
PCA: Policy Certification Authority
CA: Certification Authority

IPRA

C=US, S=MDT-Mobile

HIGH
ASSURANCE PERSONARESIDENTIAL MID-LEVEL

ASSURANCE

Verizon

USER

USER

USERUSER
USER

USER

USER
USERUSER

USER

U of MD JHU

C=US, S=MD,
L=Baltimore

PERSONA

IPRA:

CA:

PCA:

Avi Rubin - CS 600.443
44

Policy Decisions for Certification

• CA issues
– Number, names, and locations of CAs
– Protection of the CA’s private key
– Identification of principals
– Naming: Roles, titles, and authorizations
– Lifetime of certificates
– Generation, use, and protection of principals’ keys
– Frequency of CRL update

• Other issues
– Requirements for display and verification
– Record retention
– Storage of encrypted data
– Emergency access to keys

23

Avi Rubin - CS 600.443
45

Variations on Strict Hierarchies

• Cross certification among CAs
– More efficient look up
– Allows continued operation if higher point in common is

compromised
– Becomes unwieldy when over used

• Bottom up “islands of trust”
– Intended to solve start up problems
– May lead to policy divergence later

• Web of trust
– Users exchange keys like business cards
– Multiple paths is the norm
– Judgments about transitivity left to the user

Avi Rubin - CS 600.443
46

Public Key Encryption

• A public key encryption scheme has three components:
1. A key generator G.

• Input: length n.
• Output: a public encryption key, ek, and a private decryption key dk

of length n.

2. An encryption algorithm E—uses the public encryption key
• Input: the encryption key ek, random bits r, & a message m,
• Output: a ciphertext c = Eek(m,r).

3. A decryption algorithm D—uses the private decryption key
• Input: the decryption key dk, and a ciphertext c.
• Output: a message m = Ddk(c)

• E and D must be well “matched,” i.e., for all r and m,
 Ddk(Eek(m,r)) = m.
• Definition of security against chosen plaintext attack

similar to the definition for secret key encryption.

24

Avi Rubin - CS 600.443
47

Public Key Encryption

Alice BobEve

c = Ea-ek(m,r)

c

m, r

c

Da-dk(c) = m

G(n)=a-ek,a-dk

Alice,a-ek
Alice,a-ek

Alice,a-ek

a-dk

Avi Rubin - CS 600.443
48

Combining Public and Private Key
Schemes

• Public Key schemes are much more time
consuming than private key schemes.

• Typically, if two parties do not share a secret key,
they first engage in a “secret key agreement
protocol” based on public key encryption and
signatures.

• Once they have established a shared secret key,
they use efficient secret key encryption and MAC
schemes to protect their communication.

25

Avi Rubin - CS 600.443
49

A Simple taxonomy

RSA

DSA

RSA encryption

El Gamal encryption

HMAC

MMH MAC

Block ciphers: DES, AES

Stream ciphers: RC4
Symmetric

key

Public
key

Encryption Authentication

Avi Rubin - CS 600.443
50

Pseudo-random number generators

Problems:
• getting many truly random bits is slow
• getting many shared truly random bits is more awkward
• getting “good randomness” is important for many crypto
algorithms

Solution:
• theory: pseudo-random strings that are “polynomial time
indistinguishable” from truly random strings
• practice: use DES, hash functions generate bits from a
random seed (FIPS 186)

26

Avi Rubin - CS 600.443
51

Digital Fingerprints: One-Way Hash
Functions

* Cryptographically “compress” any message, M, to a fixed sized
string, H(M).

* Design goal is to make it computationally infeasible
to find any M1 and M2 with H(M1) = H(M2).

* What good are one-way functions?
1. Encrypting passwords UNIX, OPIE
2. Constructing digital signatures
3. Message integrity and authentication
3. Part of many other cryptographic applications:

– Pseudo-random generators
– Identification protocols
– Coin flipping by telephone
– Digital timestamping

Avi Rubin - CS 600.443
52

OPIE (a.k.a S/KEY)

• Initialization - on secure machine
– user enters password, pw and n

– User computes:

pwn = f(f(f(...f(pw))))...) n times
where f is a one-way function

– User sends pwn to server

– Server stores pwn

27

Avi Rubin - CS 600.443
53

Opieinit (cont.)

Client #1 Server

pw0 = user password

pw1 = f(pw0)

pw2 = f(pw1)

pw3 = f(pw2)

pw4 = f(pw3)

...

pwn = f(pwn-1) -----> client #1,pwn= f(pwn-1)

Avi Rubin - CS 600.443
54

OPIE (cont.)

• To authenticate

– Server knows fn(pw)

– Client known pw

Client -> Server : “I wish to authenticate”

Server -> Client : n

Client computes fn-1(pw)

Client -> Server : fn-1(pw)

Server computes f(fn-1(pw))

28

Avi Rubin - CS 600.443
55

Example OPIE one-time passwords

464: DAN MAP FAIR CLAN HOVE BOO
465: TOP JAM CULT MOLT LAWN SEEN
466: SLID RODE JIG SLUG HUE COIN
467: SWAG IT AMES ELI WAST TIP
468: TIP SMOG EGAN MAP VIEW AJAR
469: EEL STAG SKIT AID DONE SLY
470: SKI APT BAND KIND BAD AD
471: BOB FREY HIDE FUSS GARY LAP
472: FIRE HUCK MIND DUE REEL KUDO
473: AGO AWRY WIT HAY BULK RAW
474: TIM KNOT KEY HASH FUM PAP
475: LYNN FIVE LILY JUG FARM AVON
476: COL COOT COLD FOOL NAGY MESH
477: NOON CHEN NAIL GAB SEEM GALA

Avi Rubin - CS 600.443
56

Birthday attacks
• Alice prepares two version of a contract

– one very favorable to Bob - contract 1

– the other would bankrupt Bob - contract 2

• Alice makes subtle changes to contract
– e.g. replace a space with space-backspace-space characters

– by making or not making change on 32 lines, 232 different docs.

• Alice compares hash documents for both docs with all
changes
– if hash output 64 bits, should find a match using 232 different docs

• Alice gets Bob to sign contract 1 of contract for which she
has a contract 2 collision

• Alice can convince a judge that Bob signed contract 2.

29

Avi Rubin - CS 600.443
57

Lessons

• Use has function with long output 160 bits would
require 280 documents

• Always make some cosmetic change to a
document before signing

• Compress before signing
– eliminates redundancy

• Hash message, append hash to message, hash
again.
– hash value is the two hash results concatenated together

– this method never proven secure or insecure

Avi Rubin - CS 600.443
58

Structure of MD4, MD5, and SHA

original message 1000 ... 000 64-bit original length

1. Pad message to a multiple of 512 bits:

2. Compute digest of padded message in 512-bit chunks:

 constant

digest

 padded message

digest

digest

 message digest

...

...
first 512 bits

second 512 bits

last 512 bits

128 bits for MD4, MD5;
160 bits for SHA

30

Avi Rubin - CS 600.443
59

Data Encryption Standard (DES)
(symmetric key)

Enck(M) =
wild permutation, XOR’s of M, S-boxes, and k

16 “rounds,” 64-bit block input and output
not clean and concise (like RSA and one-time pad)

Standard for encryption of unclassified data since 1977

56 bits yield valid concerns about vulnerability to
“exhaustive key search”

Avi Rubin - CS 600.443
60

DES—The Data Encryption Standard

P
64-bit

message

P
64-bit

message

DES

Encrypt

DES

Decrypt

K
56-bit
key

K
56-bit
key

C
64-bit ciphertext

Benefits:
• Publicly known

 • Reasonably fast
 • FIPS specification
 • Widely used
 • Extensively analyzed
 • No major defects found

Drawbacks:
 • Key size is marginal.
 • Was not designed for software.

Implementation Issues:
• Blocks are independent.

 • Key distribution needed.

31

Avi Rubin - CS 600.443
61

DES Top View

Permutation

Permutation

Swap

Round 1

Round 2

Round 16

Generate keys
Initial Permutation

48-bit K1

48-bit K2

48-bit K16

Swap 32-bit halves

Final Permutation

64-bit Output

48-bit K164-bit Input
56-bit Key

…...

Avi Rubin - CS 600.443
62

DES — 16 Round Structure

64 Bit Input

64 Bit Output

Initial Permutation

Reverse Initial Permutation

K16

f+

f

K1

+

f

K15

+

L0 R0

L1 = R0

L15 = R14

L16 = R15

R1 = L0 ⊕ f(R0, K1)

R15 = L14 ⊕ f(R14, K15)

R16 = L15 ⊕ f(R15, K16)

Repeat
for rounds
2 through

14

32

Avi Rubin - CS 600.443
63

Cipher Iterative Action

48 bits

32 bits

32 bits 32 bits

32 bits 32 bits

E

S-Boxes

P

48 bits
Ki

One Round
Encryption

Mangler
Function

Avi Rubin - CS 600.443
64

A Single Round of DES

E

+

P

R (32 BITS)

R EXPANDED (48 BITS) K (48 BIT KEY SEGMENT)

S1 S2 S3 S4 S5 S6 S7 S8

32 BITS

33

Avi Rubin - CS 600.443
65

Bits Expansion (32-to-48)

…….

……..

 1 2 3 4 5 32
Input:

Output

 0 0 1 0 1 1

 1 2 3 4 5 6 7 8 48

1 0 0 1 0 1 0 1 1 0

Avi Rubin - CS 600.443
66

Bit Permutation (32-to-32)

…….

……..

 1 2 3 4 32

22 6 13 32 3

Input:

Output

 0 0 1 0 1

 1 0 1 1 1

1 bit

34

Avi Rubin - CS 600.443
67

Per-Round Key Generation

28 bits 28 bits

48 bits
Ki

One
round

Circular Left Shift Circular Left Shift

28 bits 28 bits

Permutation
with Discard

Initial Permutation of DES key

C i-1 D i-1

C i D i

Round 1,2,9,16:
 single shift
Others: two bits

Avi Rubin - CS 600.443
68

Mangler Function

4444444 4

6666666 6

+ + +++ ++ +

6666666 6

S8S1 S2 S7S3 S4 S5 S6

4444444 4

Permutation

The permutation produces
“spread” among the
chunks/S-boxes!

35

Avi Rubin - CS 600.443
69

S-Box (Substitute and Shrink)

• 48 bits ==> 32 bits. (8*6 ==> 8 *4)

• 2 bits used to select amongst 4 permutations for
the rest of the 4-bit quantity

2 bits
row

Si

i = 1,…8.

I1
I2
I3
I4
I5
I6

O1
O2
O3
O4

4 bits
column

an integer between
0 and 15.

Avi Rubin - CS 600.443
70

S1

0 1 2 3 4 5 6 7 8 9…. 15

0 14 4 13 1 2 15 11 8 3

1 0 15 7 4 14 2 13 1 10

2 4 1 14 8 13 6 2 11 15

3 15 12 8 2 4 9 1 7 5

Each row and column contain different numbers.

Example: input: 100110 output: 8 = 1000

36

Avi Rubin - CS 600.443
71

S/Box criteria

• Mostly unpublished

• Several revealed
– No S/Box is a linear affine function of its inputs (no

linear system of equations to express output bits in
terms of input bits)

– change one input bit => change two output bits
(maximize diffusion)

– minimize difference between number of 1s and 0s. E.g.
hold one bit constant and change other 5 bits, and
output has similar number of 1s and 0s.

• Almost any change results in insecure cipher

Avi Rubin - CS 600.443
72

Electronic Code Book (ECB)

ENC ENC ENC ENC

pad64 64 64 46

C-1 C-2 C-3 C-4

M-1 M-2 M-3 M-4

37

Avi Rubin - CS 600.443
73

ECB problem #1

ENC ENC ENC ENC

pad64 64 64 46

C-1 C-2 C-3 C-4

M-1 M-2 M-3 M-4

(M-1 == M-3) => will (C-1 == C-3)
ECB preserves the patterns in plaintext too well!

Avi Rubin - CS 600.443
74

ECB Problem #2

• Lack the basic protection against integrity attacks
on the ciphertext at message level (I.e., multiple
cipher blocks)

• Without additional integrity protection
– cipher block substitution and rearrangement attacks

– fabrication of information

38

Avi Rubin - CS 600.443
75

Cipher Block Chaining (CBC)

(M-1 == M-3) very unlikely leads to (C-1 == C-3)

ENC ENC ENC ENC

pad64 64 64 46

C-1 C-2 C-3 C-4

M-1 M-2 M-3 M-4

IV
Initialization
Vector

Avi Rubin - CS 600.443
76

CBC Decryption

DEC DEC DEC DEC

C-1 C-2 C-3 C-4

M-1 M-2 M-3 M-4

IV

39

Avi Rubin - CS 600.443
77

CBC - properties

• Patterns in plaintext are concealed

• an error is only propagated one block

• can do random access decryption
– one block look backwards required

• can use last block as integrity check on message

• need to keep track of length and padding

Avi Rubin - CS 600.443
78

Output Feedback Mode (OFB)

ENC ENC ENC ENC

C-1 C-2 C-3 C-4

M-1 M-2 M-3 M-4

IV Random Number Generator

40

Avi Rubin - CS 600.443
79

OFB Properties

• Allow pre-computing of pseudorandom stream
(One-Time Pad); Xor can be implemented very
efficiently

• No error propagation problem as in CBC

• Allow in-time encrypt/decrypt due to bit-wise
computation (versus the fixed block)

• Loss of sync implies loss of data

Avi Rubin - CS 600.443
80

Attacks on DES

• Exhaustive search
– look for 255 keys on average

– specialized hardware

– Wiener attack: $1 million and three months per key

– Gilmore’s machine $250,000, 3 days on average

• Linear cryptanalyses 247 known plaintext pairs

• Differential cryptanalyses 243 chosen plaintext
pairs

• Double DES no more secure than single DES
– meet in the middle attack

41

Avi Rubin - CS 600.443
81

Triple DES (3-DES)

C

M

M

Key1

DES

Encrypt

DES

Decrypt

DES

Encrypt

Key1 or Key3

Key2

Key1 or Key3

Key1

Key2

DES

Encrypt

DES

Decrypt

DES

Decrypt

Avi Rubin - CS 600.443
82

DESX

• Uses 3 keys
• Requires one round of DES
• Effective key length (exhaustive search cost)

• believed to be around 112

DESX: ciphertext = k1 xor EncDESk2(message xor
k3)

42

Avi Rubin - CS 600.443
83

RC4

RC4 is a stream cipher with a key schedule
algorithm:

Initialization: (state array S)
For i=0…N-1

S[I]=i

J=0

Scrambling:
For i=0…N-1

j = j+S[i]+K[i mod m], (key has m bytes)

Swap(S[i],S[j])

Avi Rubin - CS 600.443
84

RC4

• After key setup, comes PRG (independent of key):
Initialization:
i=0

J=0

Generation loop:
i=i+1

j=j+S[i]

Swap(S[i],S[j])

Output z = S[S[i] + S[j]]

5

1 5

S 12

43

Avi Rubin - CS 600.443
85

RC4

• After key setup, comes PRG (independent of key):
Initialization:
i=0

J=0

Generation loop:
i=i+1

j=j+S[i]

Swap(S[i],S[j])

Output z = S[S[i] + S[j]]

12

1 5

S 5

17

3

Avi Rubin - CS 600.443
86

AES

DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

[Docket No. 970725180-8168-02]
RIN No. 0693-ZA16

 REQUEST FOR COMMENTS ON CANDIDATE ALGORITHMS FOR
THE ADVANCED ENCRYPTION STANDARD (AES)

• Evaluation criteria
– Security
– Cost

• no licensing (worldwide, non-exclusive, royalty-free basis)
• Computational efficiency
• Memory requirements

44

Avi Rubin - CS 600.443
87

AES (cont)

• Evaluation (cont).
– Algorithm and Implementation Characteristics

• Flexibility (key size, block size, time/memory tradeoffs)
• Hardware and software suitability
• Simplicity of design

• Timetable
– On August 20, 1998, at the First AES Candidate

Conference, NIST announced the 15 AES candidates
for Round 1 evaluation

– Round 1, August 20, 1998 - April 15, 1999
– Second AES Candidate Conference was held on March

22-23, 1999, in Rome, Italy

Avi Rubin - CS 600.443
88

AES (cont.)

• Timetable (cont.)
– Summer, 1999 finalists announced

– 3rd AES conference April 10-14 in NYC.

• Candidates
– must submit code

– must have no intellectual property problems

– must submit full specification

August 9, 1999 - NIST Announces the AES Finalist
Candidates for Round 2:
 MARS, RC6TM, Rijndael,Serpent, and Twofish

45

Avi Rubin - CS 600.443
89

AES (cont.)

• Meanwhile
– tons of Crypto & Eurocrypt papers
– NIST performed statistical and efficiency testing on

candidates
– several candidates losing chance

• Example test
– Time to encrypt 1 megabyte
– Time to decrypt 1 megabyte
– Time to generate 1000 key pairs (enc/dec)
– key setup time
– cycle round counting

Avi Rubin - CS 600.443
90

Candidates

• CAST-256 Entrust Technologies, Inc.
(represented by Carlisle Adams)

• CRYPTON Future Systems, Inc.
(represented by Chae Hoon Lim)

• DEAL Richard Outerbridge, Lars
Knudsen

• DFC CNRS - Centre National pour la
Recherche Scientifique - Ecole
Normale Superieure (represented by
Serge Vaudenay)

• E2 NTT - Nippon Telegraph and
Telephone Corporation (represented by
Masayuki Kanda)

• FROG TecApro Internacional S.A.
(represented by Dianelos Georgoudis)

• LOKI97 Lawrie Brown, Josef Pieprzyk,
Jennifer Seberry

• HPC Rich Schroeppe

• MAGENTA Deutsche Telekom AG
(represented by Dr. Klaus Huber)

• MARS IBM (represented by Nevenko
Zunic)

• RC6 RSA Laboratories (represented by
Matthew Robshaw)

• RIJNDAEL Joan Daemen, Vincent
Rijmen

• SAFER+ Cylink Corporation
(represented by Charles Williams)

• SERPENT Ross Anderson, Eli Biham,
Lars Knudsen

• TWOFISH Bruce Schneier, John
Kelsey, Doug Whiting, David Wagner,
Chris Hall, Niels Ferguson

46

Avi Rubin - CS 600.443
91

AES (cont.)

• Performance
– benchmarks on all sorts of hardware and O/S

– Specify compilers and options

Avi Rubin - CS 600.443
92

How fast is makeKey?

47

Avi Rubin - CS 600.443
93

How fast to en/de crypt?

Avi Rubin - CS 600.443
94

Side by side comparison

48

Avi Rubin - CS 600.443
95

Class file size in Java

Avi Rubin - CS 600.443
96

Heap usage in Java

49

Avi Rubin - CS 600.443
97

More info on AES

• AES home page
– http://www.nist.gov/aes

• many papers

• explanation of benchmarks

• discussion of each cipher

• history of selection process

• conference information

Avi Rubin - CS 600.443
98

Cryptography take aways

• A few problems are believed to be intractable:
– Factoring is hard
– Inverting RSA is hard
– Computing discrete logarithms is hard
– ….

• These beliefs are based on years of study and attempts to find fast
solutions

• A crypto primitive or protocol should come with a proof that says this
primitive or protocol is as hard to break as it is to factor or invert
RSA,…

• The proof means that the security of the primitive or protocol is
reduced to the security of a well-known, highly studied problem

• A primitive or protocol without such a proof has no guarantees—there
is very little accumulated evidence that it is secure

50

Avi Rubin - CS 600.443
99

Other Crypto Issues

• Key Agreement Protocols
• Pseudo random generators, Pseudo random

functions
• One-way functions, Trapdoor functions
• Secure multiparty computation
• Zero-Knowledge proofs
• Models of adversaries/Definitions of security
• ……

Avi Rubin - CS 600.443
100

Key distribution

• Needham and Schroeder protocol
– Symmetric key only

– Assumptions:
• “Trusted” third party, T

• Two principles, A and B

• long-term shared keys between principles and TTP
(KAT, KBT)

• Nobody reveals his/her secret key

– Goals:
• A and B wish to have KAB

• Nobody else should know KAB

• A and B believe that only they share the secret key

51

Avi Rubin - CS 600.443
101

Needham and Schroeder

1. A -> T: A, B

T

BA

1
2

3

4

5

5. A -> B: {N+1} KAB

4. B -> A: {N} KAB

3. A -> B: { A, KAB }KBT

2. T -> A: {B, KAB, { A, KAB }KBT
} KAT

Avi Rubin - CS 600.443
102

Problems

• NS is intended to distribute short-term keys

• However, if a key is broken
– can replay message 3 and force B to use old,

compromised key

• B never proves knowledge of the key.

• How would you fix both these problems?

52

Avi Rubin - CS 600.443
103

Kerberos

• Based on Needham and Schroeder

• Users authenticate by being able to decrypt ticket
for tgt

• Early version susceptible to offline dictionary
attack

• Tickets are issued for services

• Tickets expire

• Widely deployed and used system

• DCE is based on Kerberos

Avi Rubin - CS 600.443
104

DH setting

• Alice
• Bob
• No previous contact between them
• Both have a computer
• Eve hears every single message between them

Can Alice and Bob communicate information to
produce a secret key that Eve doesn’t know?

(take a vote in the class)

53

Avi Rubin - CS 600.443
105

Diffie-Hellman Key Exchange

Known to
Alice

Known to
BobPublic

A Bp, g

gA mod p

gB mod p

gB mod p

gA mod p

(gB)A mod p

= gAB mod p

(gA)B mod p

= gAB mod p

gA mod p

gB mod p

Choose secret
values A, B

Compute and
exchange public

values gA, gB

Compute shared
secret gAB

Avi Rubin - CS 600.443
106

Play in the middle attack

• Alice and Bob pick random secrets ai and bi

• Problem is lack of authentication.

• Play-in-the-middle attack:

• Authentication and key exchange have to be
tightly connected.

• One approach is to use public keys

Bob

54

Avi Rubin - CS 600.443
107

Key Exchange:
Establishing a (symmetric) Session Key

k

pubkeyBob

privkeyBob

 Alice
 Bob

pubkeyAlice

privkeyAlice

k

Using cryptography

55

Avi Rubin - CS 600.443
109

Important principles

• Don’t design your own crypto algorithm
– Use standards whenever possible

• Make sure you understand parameter choices

• Make sure you understand algorithm interactions
– E.g. the order of encryption and authentication

• Turns out that authenticate then encrypt is risky

• Be open with your design
– Solicit feedback

– Use open algorithms and protocols

– Open code? (jury is still out)

Avi Rubin - CS 600.443
110

Building systems with cryptography

• Use quality libraries
– SSLeay, lim (from Lenstra), Victor Shoup’s library,

RSAREF, cryptolib

– Find out what cryptographers think of a package before
using it

• Code review like crazy

• Educate yourself on how to use library
– Caveats by original designer and programmer

56

Avi Rubin - CS 600.443
111

Common issues that lead to pitfalls

• Generating randomness

• Storage of secret keys

• Virtual memory (pages secrets onto disk)

• Protocol interactions

• Poor user interface

• Poor choice of key length, prime length, using
parameters from one algorithm in another

Avi Rubin - CS 600.443
112

Example: Web cookies

• Cookies were designed to offload server state to browsers
• Someone made a design choice

– Use cookies to authenticate and authorize users
– E.g. Amazon.com shopping cart, WSJ.com

• New design choice means
– Cookies must be protected

• Against forgery (integrity)
• Against disclosure (confidentiality)

• Cookies not robust against web designer mistakes
– Were never intended to be

Many security problems arise out of a technology built
for one thing applied to something else incorrectly.

57

Avi Rubin - CS 600.443
113

Sensus

• Created by Lorrie Craner and based on Fujioka, Okamoto, Ohta (FOO)

• Participants
– Voter

– Voter agent (totally trusted component, runs locally)

– validator - ensure one vote per person

– tallier - count ballots and report results

Not designed for Internet voting in public elections.

Avi Rubin - CS 600.443
114

Blind signatures

• Need validator to sign m
• Validator should not know value of m
• Voter must be able to verify blind signature
• Assume RSA scheme

– n = pq, where p and q are large primes

• Analogy of envelope with carbon paper in it
• Public exponent of validator is e, signing exponent is d

58

Avi Rubin - CS 600.443
115

Blind Signatures (Chaum)

• All arithmetic is mod n
• Blinding (performed by voter):

– choose a random blinding factor r
– compute and present for signing: m x re where m is the message

• Signing (performed by validator):
– compute (m x re)d

– this is equal to r x md

• Unblinding (performed by voter):
– compute r x md /r = md

Avi Rubin - CS 600.443
116

Validator

• Public key pair: ve, vd

• Registered Voter List (RVL)
– voter IDs

– voter public keys

– whether voter ballot has been validated (dynamically
updated)

se, sd ballot seal key
ie, id voter key pair
ve, vd validator key pair
te, td talier key pair
K blinding factor

59

Avi Rubin - CS 600.443
117

Tallier

• public key pair: te, td

• ve (validators public key)

• T: election tally

• Receipt List (RL)
– list of receipts sent out

– corresponding sealed ballots

– decyption keys

– recipt numbers

se, sd ballot seal key
ie, id voter key pair
ve, vd validator key pair
te, td talier key pair
K blinding factor

Avi Rubin - CS 600.443
118

Voter agent

• V: a voted ballot

• ID, voter ID number

• ballot seal key pair: se, sd

• m = Vse (sealed vote)

• k = large random number for blinding

• voter key pair: ie, id

• talliers and validator public keys: te, ve

• b = m kve (blinded, sealed ballot)

se, sd ballot seal key
ie, id voter key pair
ve, vd validator key pair
te, td talier key pair
K blinding factor

60

Avi Rubin - CS 600.443
119

The Sensus Polling Protocol

Validator Voter agent Tallier

1

5

4

3

2

Avi Rubin - CS 600.443
120

The Sensus protocol

• Voter agent sends validator, sealed with ve
b: blinded, sealed ballot
ID: ID number
bid: b, signed with id, voter private key

• Validator unseals with vd and
verifies that b = (bid) ie , checks the signature on b
updates RVL (registered voters list)
signs b

sends bvd to voter agent, after sealing with ie
• Net result is that validator signs b

se, sd ballot seal key
ie, id voter key pair
ve, vd validator key pair
te, td talier key pair
K blinding factor

61

Avi Rubin - CS 600.443
121

Sensus (cont.)

• Voter agent unseals with id
unblinds bvd by dividing by k
obtains mvd which is m, signed by validator
verifies that (mvd)ve = m

sends (mvd, Vse) to tallier, sealed with te
• tallier unseals with td and

verifies: Vse = (mvd)ve

signs Vse to produce (Vse)td = receipt
updates RL with a receipt # and sealed ballot
sends (Vse)td , receipt # to voter agent

se, sd ballot seal key
ie, id voter key pair
ve, vd validator key pair
te, td talier key pair
K blinding factor

Avi Rubin - CS 600.443
122

Sensus (cont.)

• Voter agent verifies receipt
checks that Vse = ((Vse)td)te

sends ballot secret key, sd, and receipt number to tallier

• tallier
opens Vse with sd

updates RL and T

se, sd ballot seal key
ie, id voter key pair
ve, vd validator key pair
te, td talier key pair
K blinding factor

62

Avi Rubin - CS 600.443
123

Evaluation of Sensus

• Accuracy
– altered, eliminated, and invalid votes can be detected and corrected

• Democracy
– if voters abstain, validator may submit ballots for them
– these invalid ballots may be detected, but not corrected

• Privacy
– not possible to link a ballot to the voter who cast it
– does not prevent a voter from proving how he or she voted

• Could potentially solve with last-vote-counts process

• Verifiability
– voters can verify that their ballots were counted correctly and protest anonymously

Avi Rubin - CS 600.443
124

Why inadequate for Internet voting

• Assumes communication occurs over an anonymous
channel

• Machines (along with secrets on them) are secure
– No Trojans, viruses, worms
– Trusted O/S, applications, bug-free platform

• Assumes no subliminal channels in RSA
– Depends on the implementation (no random padding)

• Assumes network is highly available
• Assumes there is a national registry of identities and public

keys.
– Assumption: election PKI is available in all places where it is adopted

63

Chaum’s receipt system

Avi Rubin - CS 600.443
126

Properties

• Uses visual cryptography

• Generates receipts that only voter verifies

• Can check that receipt exists in final tally

• Cannot show anyone how you voted

• Requires some widely available public keys

• Requires trustees who perform mixing function

64

Avi Rubin - CS 600.443
127

Encoding the ballot

• Two laminated sheets held together

Avi Rubin - CS 600.443
128

Ballots

• How ballots are generated
– pick one layer at random
– encode choices in other ballot
– swap random number of equivalent pixel groups

• (i.e.rotate grey boxes to change pixel locations)

– which ones were swapped is the “key” kept by trustees
– keep one layer
– serial number printed on ballot to help voter lookup in tally

• Ways to cheat:
– print an incorrect layer
– use same serial number for 2 different receipts
– skip a ballot in the tally
– But, odds of getting caught are 50% per ballot
– If enough voters check, say n, 1 in 2^n chance of getting away

with it.

65

Avi Rubin - CS 600.443
129

Tallying

Avi Rubin - CS 600.443
130

Tallying (cont.)

• Uses analogy of Russian dolls
– xor tricks used to break up ballot into layers, each

encrypted with a trustee’s private key

– Each trustee only sees dolls at its layer

– After m trustees decrypt their layer, the actual ballot is
revealed.

– All ballots can be printed on a web site along with all
receipts

• but not corresponding to each other

– Voters can check that their ballot counted

