

<section-header><text><text><text><page-footer>

Avi Rubin - CS 600.443

Secret Key Cryptography

- OTP achieves Perfect Secrecy but at a tremendous cost—the key must be as long as the total number of bits communicated.
- Secret keys must be a reasonable length.
 - E.g., would like keys of several hundred bits to be used for encrypting several hundred megabytes.
- For short keys, an infinitely powerful adversary *can* learn a great deal about the plaintext:
 - it can perform a trial decryption using every possible key.
- However, realistic adversaries are not likely to spend more than, say, 2¹⁰⁰ cycles trying to decrypt. That's 32 million years for a terahertz machine.
- Modern cryptography has spent a great deal of time formalizing and quantifying security against time-bounded adversaries.
 Avi Rubin - CS 600.443

Secret Key Encryption Alice and Bob have a trust relationship, i.e., they share a • secret key, k. A secret key encryption scheme is a pair of algorithms: ٠ 1. Encryption algorithm E takes a key k, a plaintext m and a random string r, and produces a ciphertext $c = E_k(m,r).$ 2. Decryption Algorithm D takes a key k and a ciphertext c and produces a plaintext. *E* and *D* must "match," i.e., for all *k*, *m*, and *r* $D_{k}(E_{k}(m,r))=m.$ 8 Avi Rubin - CS 600.443

Quantified Security

- Quantified Security: An encryption scheme is (T,ε) -secure if all adversaries that run in time at most time *T* guess correctly with probability at most ε better than chance (1/2).
- Important point: A secret key encryption scheme must be randomized in order to be secure against a chosen plaintext attack.

Avi Rubin - CS 600.443

Public Key Signatures

- Definition nearly the same as that of a MAC except that the signing and verification keys are different and the latter may be public.
- Security against choose message attack defined very similarly to previous definition of message authentication codes.
- Constructions based on the famous RSA problem.
- "Provable" schemes: Show that if all adversaries with considerable resources have only a very small chance of inverting RSA then all adversaries with similar resources have only a very small chance of forging a signature.

Avi Rubin - CS 600.443

Example: RSA	
 Key Generation for 1024 bit RSA: Generate two 512 bit primes p and q Set N := p*q Let R := be the set of all integers < N that do not have p or q as prime factor. One half of the trick: given p and q, it's easy to compute two integers d and e with the following special property: (x^d)^e mod N = x, for x in R. 	sa
 Set public verification key to (N,e) Set private signing key to (N,d) 	
Avi Rubin - CS 600.443	22

Avi Rubin - CS 600.443

- is approximately "N/log(N)."
- If "K" is a randomly chosen odd number,
 Prob("K is prime") = (2 / log(K)).
- if K is 512 bits, Prob("K is prime") = 2/177
- it takes about 89 tests to find one prime

So You Wonder...

- Why not make certain that p and q are primes?
 - For n of 256 bits, testing all x < 2¹²⁸ on a 4 gigaflops machine will take about 3x10¹⁹ years
- What's the problem if they are not really primes?
 - The algorithm fails the reverse transformation may get the wrong "thing"
 - Cracking private component may no longer be as hard

Avi Rubin - CS 600.443

Avi Rubin - CS 600.443

34

Combining Public and Private Key Schemes

- Public Key schemes are *much* more time consuming than private key schemes.
- Typically, if two parties do not share a secret key, they first engage in a "secret key agreement protocol" based on public key encryption and signatures.
- Once they have established a shared secret key, they use efficient secret key encryption and MAC schemes to protect their communication.

Avi Rubin - CS 600.443

A Simple taxonomy								
	Encryption	Authentication						
Symmetric key	Block ciphers: DES, AES Stream ciphers: RC4	HMAC MMH MAC						
Public key	RSA encryption El Gamal encryption	RSA DSA						
	Avi Rubin - CS 600	.).443						

Distribution of a contract
Alice prepares two version of a contract
one very favorable to Bob - contract 1
the other would bankrupt Bob - contract 2
Alice makes subtle changes to contract
e.g. replace a space with space-backspace-space characters
by making or not making change on 32 lines, 2³² different docs.
Alice compares hash documents for both docs with all changes
if hash output 64 bits, should find a match using 2³² different docs
Alice gets Bob to sign contract 1 of contract for which she has a contract 2 collision
Alice can convince a judge that Bob signed contract 2.

Data Encryption Standard (DES) (symmetric key)

 $Enc_{k}(M) =$ wild permutation, XOR's of M, S-boxes, and k

16 "rounds," 64-bit block input and output not clean and concise (like RSA and one-time pad)

Standard for encryption of unclassified data since 1977

56 bits yield valid concerns about vulnerability to "exhaustive key search"

Avi Rubin - CS 600.443

S 1											
Each row and column contain different numbers.											
	0	1	2	3	4	5	6	7	8	9 15	
0	14	4	13	1	2	15	11	8	3		
1	0	15	7	4	14	2	13	1	10		
2	4	1	14	8	13	6	2	11	15		
3	15	12	8	2	4	9	1	7	5		
Example: input: 100110 output: $8 = 1000$											
70 Avi Rubin - CS 600.443											

AES (cont)

- Evaluation (cont).
 - Algorithm and Implementation Characteristics
 - Flexibility (key size, block size, time/memory tradeoffs)
 - Hardware and software suitability
 - Simplicity of design
- Timetable
 - On August 20, 1998, at the First AES Candidate Conference, NIST announced the 15 AES candidates for Round 1 evaluation
 - Round 1, August 20, 1998 April 15, 1999
 - Second AES Candidate Conference was held on March 22-23, 1999, in Rome, Italy

87

Avi Rubin - CS 600.443

AES (cont.)

• Meanwhile

- tons of Crypto & Eurocrypt papers
- NIST performed statistical and efficiency testing on candidates
- several candidates losing chance

• Example test

- Time to encrypt 1 megabyte
- Time to decrypt 1 megabyte
- Time to generate 1000 key pairs (enc/dec)
- key setup time
- cycle round counting

Avi Rubin - CS 600.443

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Avi Rubin - CS 600.443

