Cryptography outline

open vs. closed system * public key systems
design — abrief look at number

a brief look at historical theory

ciphers — the importance of primes
o and how to find them

symmetric ciphers _ RSA

hash functions — Diffie-Hellman

Detailed look at DES, key distribution

construction, modes of « basic public key

operation, vulnerability infrastructure

the Advanced Encryption

Standard effort

Avi Rubin - CS 600.443

Crypto that is not covered

+ Stegonography

* secret sharing

* voting protocols

 zero-knowledge

* lesser-known protocols (e.g. Leighton-Micali)
 formal proofs

* key recover/escrow

* politics

Avi Rubin - CS 600.443

What is cryptology?

* Cryptography
methods to hide and authenticate information

*Cryptanalysis
methods to expose and substitute information

(malicious adversary -- not like that in error-correcting codes)

Avi Rubin - CS 600.443

An Important Distinction

Encryption = maintaining information secret/confidential

Authentication = proving and maintaining information integrity

Avi Rubin - CS 600.443

One Time Pad Encryption

—— .
p—— ——
- -~
- -~
- -~
- ~

- Out of band S~

Vs ~»
Secret random key Secret random key
k k

Plaintext
m
Ciphertext
c=maeKk

- c i c -
Retrieve Plaintext

m=c®k

Avi Rubin - CS 600.443

Perfect Secrecy of OTP Encryption

» Regardless of the plain text, the ciphertext is
uniformly random.

* Theorem (Shannon):

— An adversary may have some a priori information about
the plaintext.

— However, even an infinitely powerful adversary cannot
gain any additional information about the plaintext
after seeing the ciphertext.

Avi Rubin - CS 600.443

Secret Key Cryptography

* OTP achieves Perfect Secrecy but at a tremendous
cost—the key must be as long as the total number of bits
communicated.

+ Secret keys must be a reasonable length.
— E.g., would like keys of several hundred bits to be used for
encrypting several hundred megabytes.
 For short keys, an infinitely powerful adversary can learn a
great deal about the plaintext:
— it can perform a trial decryption using every possible key.
» However, realistic adversaries are not likely to spend more
than, say, 2!% cycles trying to decrypt. That’s 32 million
years for a terahertz machine.

* Modern cryptography has spent a great deal of time
formalizing and quantifying security against time-bounded

adversaries. o 7
Avi Rubin - CS 600.443

Secret Key Encryption

* Alice and Bob have a trust relationship, i.e., they share a
secret key, k.
* A secret key encryption scheme is a pair of algorithms:

1. Encryption algorithm E takes a key £, a plaintext m and a
random string r, and produces a ciphertext

c=E(mr).
2. Decryption Algorithm D takes a key & and a ciphertext ¢ and
produces a plaintext.

* FEand D must “match,” i.e., for all £, m, and r
Dy(E,(m,r)) = m.

Avi Rubin - CS 600.443

Secret Key Encryption

———
— —-——_
- -~
- ~
- ~

PU e Out of band S~<a

Secret random key Secret random key
k k

Plaintext

m
Randomness

r

Ciphertext
c=E/(m,r

Retrieve Plaintext
m =Dy(c)

Avi Rubin - CS 600.443

Block Ciphers

For every k, BC is a
Permutation from
Strings of length n to

k Strings of length n.
l Examples:
¢ DES, |K| = 56,
|m| =64

AES, |K| = 128,192, 256;
Im| = 128,192,256

Avi Rubin n§’S 600.443

Cipher Block Chaining

WY m1 m3

c0 c1 c2 c3

¢, = Ek(m, ® c.4);
c, =1V

Avi Rubin - CS 600.443

Security Against Chosen Plaintext Attack

Security Challenge for Eve: Distinguish between the encryptions
of two plaintext of her choosing.

c1,c2,c3,...
R

E,(mi,ri) = ci

w1,w2
4—

d is encryption of w1 d

or w2, with prob. 1/2
Eve now tries to correctly

guess whether d is an
encryption of w1 or w2.

Avi Rubin - CS 600.443

Quantified Security

¢ Quantified Security: An encryption scheme is
(T,¢)-secure if all adversaries that run in time at
most time 7 guess correctly with probability at
most € better than chance (1/2).

* Important point: A secret key encryption scheme
must be randomized in order to be secure against a
chosen plaintext attack.

Avi Rubin - CS 600.443

Security of OTP and CBC

¢ Theorem: (infinity,0)-security of OTP

— No adversary can distinguish encryptions of chosen
plaintext with prob better than 1/2 no matter how much
time they spend

* Equivalent to Shannon theorem.

e Theorem: CBC with random IV 1is secure.

— If the block cipher is difficult to distinguish from a
perfect block cipher for a time bounded adversary

— Then the encryptions of chosen plaintexts are difficult
to distinguish for a similarly bounded adversary even
after a chosen plaintext attack.

Avi Rubin - CS 600.443

Message Authentication

» Alice and Bob have a trust relationship, i.e., they share a
secret key k.

* A message authentication code is two algorithms: one to
generate an authentication tag and one to verify it:
1. MAC takes a key k and a message m and returns a tag t.

t=MAC,(m)
2. VMAC takes a key k, the message m and the tag t and says
“accept” or “reject.”

* MAC and VMAC must “match,” i.e., for all k, and m,
VMAC,(m,t) = “valid” ift=MAC,(m), and

= “invalid” otherwise.

Avi Rubin - CS 600.443

Secret Key Authentication

e ————
- -
- S~
-~

-=" Out of band ~<

Vs ~»
Secret random key Secret random key
k k

Plaintext

m

MAC tag
t=MAC,(m

m,t m,t

?

VMAC, (m,t) = “valid”
16

Avi Rubin - CS 600.443

Security Against Chosen Plaintext Attack

Security Challenge for Eve: forge a valid message, tag pair

- m1, m2,m3,... i -
<—

MAC, (mi) = ti t1,12,13,...
Eve attempts to compute
a valid tag for a new message
m’,t’
_—

VMAC, (m’,t)
=? “valid”

17
Avi Rubin - CS 600.443

MAC Security

* A MAC scheme is secure if even adversaries with
significant computing resources have only a small
chance of computing a forgery.

* Hence, Bob can trust that messages with a valid
tags were sent by Alice.

» Security can be quantified in terms of time
devoted by adversary and chance of successful
forgery.

» Lots of constructions of MACs. About an order of
magnitude faster than encryption.

Avi Rubin - CS 600.443

Public Key Signatures

* A public (asymmetric) key signature scheme has three
components:
1. A key generator G.
 Input: length n.

* Output: Secret signing key, sk, and public verification key, vk of
length n.

2. A signature algorithm S—uses the secret signing key
 Input the signing key sk, & a message m
* Output: a signature s = S (m,r).
3. A verification algorithm V—uses the public verification key
* Input: the verification key vk, a message and a purported signature s
* Output: “valid” or “invalid.”
e S and V must be well “matched,” i.e.,
V., (m,s) =“valid” if s =S (m,r), and
= “invalid” otherwise.

Avi Rubin - CS 600.443

Pubhc Key Signatures

-——— -
- -—
-— -

Secret signature key Public verification key
sk vk
Plaintext
m
Signature
s= Ssk(m)

?
V., (m,s) = “valid”
20

Avi Rubin - CS 600.443

10

Public Key Signatures

Definition nearly the same as that of a MAC except that
the signing and verification keys are different and the latter
may be public.

Security against choose message attack defined very
similarly to previous definition of message authentication
codes.

Constructions based on the famous RSA problem.
“Provable” schemes: Show that if all adversaries with
considerable resources have only a very small chance of

inverting RSA then all adversaries with similar resources
have only a very small chance of forging a signature.

21
Avi Rubin - CS 600.443

Example: RSA

Key Generation for 1024 bit RSA:
— Generate two 512 bit primes p and q
— Set N :=p*q
— Let R = be the set of all integers <N that do not have p or q as a
prime factor.

— One half of the trick: given p and q, it’s easy to compute two

integers
dande
with the following special property:
(x9* mod N =x, for x in R.

— Set public verification key to (N,e)
— Set private signing key to (N,d)

22
Avi Rubin - CS 600.443

11

RSA, continued

Given m in R, & signing key (N,d), the RSA signature s is
computed as

s=m!modN
Given a message and its signature (m,s), & verification key
(N,e), an RSA signature is (publicly) verified by checking:
s*mod N=?m
If s is a valid signature then s will pass the test:
s¢ mod N = (m9)® mod N =m

The second half of the trick: Given the public key (N,e) its
not feasible to compute the signing key (N,d).
— So, adversary can’t sign messages.

23
Avi Rubin - CS 600.443

How Many Prime Numbers Are There
Anyway?
The number of Prime numbers not exceeding “N”
is approximately “N/log(N).”
If “K” 1s a randomly chosen odd number,
— Prob(“K is prime”) = (2 / log(K)).
if K is 512 bits, Prob(“K is prime”) = 2/177
it takes about 89 tests to find one prime

24
Avi Rubin - CS 600.443

12

Primes

* RSA relies on prime numbers
* Where do we get prime numbers?
* Could a list of primes be published?

 Are there enough primes in the world to make
exhaustive search hard?

* How do you know if a number is really prime?

25
Avi Rubin - CS 600.443

How to Find Big Prime Numbers?

* How to verify/test if a number K is prime?
* How many K’s do we have to test before we can
hit a prime?
— try about (log (N)/2) different random odd numbers.

26
Avi Rubin - CS 600.443

13

Fermat’s Theorem

* Given, a 0<a<n and n 1s prime, then:
a®™Dmodn=1
Examples
—a=4,n=5,46-D=4% =256 = (255+1) mod 5= 1
_a=2,n=5,26D=24=16=(15+1) mod 5 =1

27
Avi Rubin - CS 600.443

Fermat’s Test

« Given n, randomly choose an a; compute a("- 1

e Ifa(®» D modn=1
— then n is NOT a prime so select another n;

« Ifa(n-1)modn=1, for n of 100 digits, there is 1
in 1013 chance that n is still NOT a prime
— n is a Fermat-Pseudo-Prime

— Try test for many different values of a

28
Avi Rubin - CS 600.443

14

How Likely 1s Fermat Pseudo Prime?

e [fa=2
 For numbers under 1019, (~100 bits),
— there 455,052,512 real primes,
— 14,888 Fermat-Pseudo-Primes.
* Probability = 0.005%.
— So Fermat pseudo primes are hard to find
— A lot of processing to find prime number in general
— So, key generation is slow
— Precomputation of primes is possible

29
Avi Rubin - CS 600.443

Probabilistic Primality Testing

NO,

. definitely
Given a randomly not a prime.
chosen large odd F ,

ermat’s
number K
o Test
YES,
probably

Fermat-Pseudo-Prime / a prime.
or Real Prime

30
Avi Rubin - CS 600.443

15

Fermat, Euler, Miller Tests

NO NO

Fermat’s Euler’s Miller’s

° "I Test Test Test

31
Avi Rubin - CS 600.443

NO

Some More Rigorous Tests

Euler and Miller Tests are much more rigorrous
than the Fermat Test.

There are:
— very few Fermat-Pseudo-Primes
— far fewer Euler-Pseudo-Primes

— even far fewer Miller-Pseudo-Primes

In practice, if a K can pass all three tests, with
extremely high probability, it is a real prime

32
Avi Rubin - CS 600.443

16

So You Wonder...

* Why not make certain that p and q are primes?
— For n of 256 bits, testing all x <2!2% on a 4 gigaflops
machine will take about 3x10!° years
* What’s the problem if they are not really primes?

— The algorithm fails - the reverse transformation may get
the wrong “thing”

— Cracking private component may no longer be as hard

33
Avi Rubin - CS 600.443

Public Key Signatures

* Main idea of Public Key cryptography: Alice can use
public information to send authentic messages to Bob.
— That is, Alice and Bob don’t need to establish a secret key or a
trust relationship ahead of time.
« Attempt 1:
— Alice runs the key generator to get (a-sk, a-vk).

— She puts her name and the verification key (Alice, a-vk) in a public
key “telephone book™ and keeps the signature key a-sk secret.

— Now, Alice can send a signed message (m,s) to anyone, say, Bob.

— Bob can then retrieve the verification key a-vk from the directory
and use it to verify that the message came from Alice, that is, s
could have only been generated from m using the secret key
associated with a-vk.

34
Avi Rubin - CS 600.443

17

Public Key Signatures

G(n)=a-sk,a-vk

lice,a-vk

s= Sa sk(m)

?
V,.«(m,s) = “valid” for Alice

35
Avi Rubin - CS 600.443

Public Key Signatures, cont’d

* Not quite good enough. What if Eve generates (e-
sk, e-vk) and places (Alice, e-vk) in the directory.
Then everyone will think that messages signed by
Eve were signed by Alice.

36
Avi Rubin - CS 600.443

18

Public Key Signatures

Eve,e-vk
G(n)=e-sk,e-vk
lice,e-vk
m
S$= Se—sk(m)
- m,S H

Avi Rubin - CS 600.443

?
V.«(m,s) = “valid” for Alice
37

Certificate Authorities

« Attempt 2: First establish trust with the directory,
D.

— Suppose that both Alice and Bob have the verification
key d-vk of the directory D, and through some out of
band means they trust that d-vk is indeed the
verification key of D.

— Moreover, suppose that the directory has verified
Alice’s indentification info and her verification key.

— Suppose the directory computes the signature of: “D
certifies Alice’s verification key is a-vk™ and calls it D-
cert-of-Alice, short for Alice’s public key certificate.

— The directory entry for Alice is now: {Alice, a-vk, D-

cert-of-Alice}. 38
Avi Rubin - CS 600.443

19

Certificate Authority

* Attempt 2, con’t:

— Now Bob’s verification procedure of a signed message
purportedly from Alice takes three steps:

1. Retrieve Alice’s public key and Alice’s public key certificate
from the directory

2. Run V on Alice’s public key certificate using the directory’s
verification key: V4, (D-cert-of-Alice).

» Since Bob trusts that d-vk is really the verification key of D and that

D has verified the “binding” of Alice’s indentification info to her
key, if the certificate is valid, then Dan trusts that the verification
key a-vk in the certificate is really Alice’s.

3. Run V on Alice’s message and signature using a-vk.
» Ifitis valid, then Bob trusts that the message came from Alice.

39
Avi Rubin - CS 600.443
Public Key Signatures
CA, ca-sk
Alice,a-vk
/C':ert(AIice,a-vk)
G(n)=a-sk,a-vk
lice,a-vk
m lice,a-vk)
Ss= Sa—sk(m)
m,s m,s
V,.w(m,s) = “valid” for Alice
V...«(Alice,a-vk,cert(Alice,a-vk)) = “valid” for D
40

Avi Rubin - CS 600.443

20

Public Key Infrastructure

* Main Idea of Public Key Cryptography-II:
— Suppose two parties A & B have no prior trust relationship
— Suppose both A & B have a trust relationship with C.
— Then A & B can bootstrap a trust relationship using their mutual
trust of C.
 Big difficulty with Public Key cryptography: Revocation

— A CA may want to revoke a key for a large number of reasons:
computer penetration, employee leaves,...

— Revocation is a fact of life.

— Difficult to achieve revocation which is: efficient, accurate, simple,
and scalable.

41
Avi Rubin - CS 600.443

Trust Relationships

Private Key Crypto

Direct trust through
Shared key

Public Key Crypto

Direct trust through
Know key, etc.

Direct trust through
Know key, etc.

Bootstrapped trust

42
Avi Rubin - CS 600.443

21

Certification Hierarchy

HIGH
ASSURANCE
CA: T-Mobile) (c=us,s=MmD)

USER
C=US, S=MD,
L=Baltimore

PCA:

RESIDENTIAL

ASSURANCE PERSONA

JHU PERSONA

Verizon

[USER]

IPRA: Internet Policy Registration Authority
PCA: Policy Certification Authority
CA: Certification Authority

43
Avi Rubin - CS 600.443

Policy Decisions for Certification

* CA issues
— Number, names, and locations of CAs
— Protection of the CA’s private key
— Identification of principals
— Naming: Roles, titles, and authorizations
— Lifetime of certificates
— Generation, use, and protection of principals’ keys
— Frequency of CRL update

* Other issues
— Requirements for display and verification
Record retention
Storage of encrypted data
— Emergency access to keys

44
Avi Rubin - CS 600.443

22

Variations on Strict Hierarchies

* Cross certification among CAs
— More efficient look up

— Allows continued operation if higher point in common is
compromised

— Becomes unwieldy when over used

* Bottom up “islands of trust”
— Intended to solve start up problems
— May lead to policy divergence later

* Web of trust

— Users exchange keys like business cards
— Multiple paths is the norm
— Judgments about transitivity left to the user

45
Avi Rubin - CS 600.443

Public Key Encryption

A public key encryption scheme has three components:
1. A key generator G.
* Input: length n.

* Output: a public encryption key, ek, and a private decryption key dk
of length n.

2. An encryption algorithm E—uses the public encryption key
* Input: the encryption key ek, random bits r, & a message m,
* Output: a ciphertext ¢ = E ,(m,r).

3. A decryption algorithm D—uses the private decryption key
* Input: the decryption key dk, and a ciphertext c.
* Output: a message m = D, (c)

E and D must be well “matched,” i.e., for all r and m,

D (E.(m,r)) = m.
Definition of security against chosen plaintext attack

similar to the definition for secret key encryption.
46
Avi Rubin - CS 600.443

23

Public Key Encryption

G(n)=a-ek,a-dk
lice,a-ek
m, r
= Ea—ek(m’r)

B
Da.gi(C) =m

47
Avi Rubin - CS 600.443

Combining Public and Private Key
Schemes

* Public Key schemes are much more time
consuming than private key schemes.

* Typically, if two parties do not share a secret key,
they first engage in a “secret key agreement
protocol” based on public key encryption and
signatures.

* Once they have established a shared secret key,

they use efficient secret key encryption and MAC
schemes to protect their communication.

48
Avi Rubin - CS 600.443

24

Symmetric
key

Public
key

A Simple taxonomy

Block ciphers: DES, AES HMAC
Stream ciphers: RC4 MMH MAC
RSA encryption RSA
El Gamal encryption DSA

Avi Rubin - CS 600.443

49

Pseudo-random number generators

Problems:
* getting many truly random bits is slow

* getting many shared truly random bits is more awkward
* getting “good randomness” is important for many crypto
algorithms

Solution:
* theory: pseudo-random strings that are “polynomial time
indistinguishable” from truly random strings

» practice: use DES, hash functions generate bits from a
random seed (FIPS 186)

Avi Rubin - CS 600.443

50

25

Digital Fingerprints: One-Way Hash
Functions

* Cryptographically “compress” any message, M, to a fixed sized
string, H(M).

* Design goal is to make it computationally infeasible
to find any M, and M, with H(M,) = H(M,).

* What good are one-way functions?
1. Encrypting passwords UNIX, OPIE
2. Constructing digital signatures
3. Message integrity and authentication
3. Part of many other cryptographic applications:
— Pseudo-random generators
— Identification protocols
— Coin flipping by telephone
— Digital timestamping

Avi Rubin - CS 600.443

51

OPIE (aka SKEY)

» Initialization - on secure machine
— user enters password, pw and n

— User computes:
pw, = f({({(...f(pw))))...) n times

where f is a one-way function
— User sends pw,, to server
— Server stores pw,

Avi Rubin - CS 600.443

52

26

Opieinit (cont.)

Client #1 Server
pw, = user password

pw, = f(pw,)

pw, = f(pw,)

pw; = f(pw,)

pw, = f(pw;)

pw._ = f(pw_) - > client #1,pw = f(pw, ;)

53
Avi Rubin - CS 600.443

OPIE (cont.)

* To authenticate
— Server knows f}(pw)
— Client known pw
Client -> Server : “I wish to authenticate”
Server -> Client : n
Client computes -1(pw)
Client -> Server : f"1(pw)
Server computes f(1(pw))

54
Avi Rubin - CS 600.443

27

Example OPIE one-time passwords

464: DAN MAP FAIR CLAN HOVE BOO
465: TOP JAM CULT MOLT LAWN SEEN
466: SLID RODE JIG SLUG HUE COIN
467: SWAG IT AMES ELI WAST TIP

468: TIP SMOG EGAN MAP VIEW AJAR
469: EEL STAG SKIT AID DONE SLY

470: SKI APT BAND KIND BAD AD

471: BOB FREY HIDE FUSS GARY LAP
472: FIRE HUCK MIND DUE REEL KUDO
473: AGO AWRY WIT HAY BULK RAW
474: TIM KNOT KEY HASH FUM PAP
475: LYNN FIVE LILY JUG FARM AVON
476: COL COOT COLD FOOL NAGY MESH
477: NOON CHEN NAIL GAB SEEM GALA

55
Avi Rubin - CS 600.443

Birthday attacks

Alice prepares two version of a contract

— one very favorable to Bob - contract 1

— the other would bankrupt Bob - contract 2
Alice makes subtle changes to contract

— e.g. replace a space with space-backspace-space characters

— by making or not making change on 32 lines, 232 different docs.
Alice compares hash documents for both docs with all
changes

— if hash output 64 bits, should find a match using 23 different docs
Alice gets Bob to sign contract 1 of contract for which she
has a contract 2 collision

Alice can convince a judge that Bob signed contract 2.

56
Avi Rubin - CS 600.443

28

Lessons

Use has function with long output 160 bits would
require 2% documents

Always make some cosmetic change to a
document before signing

Compress before signing

— eliminates redundancy
Hash message, append hash to message, hash
again.

— hash value is the two hash results concatenated together

— this method never proven secure or insecure

57
Avi Rubin - CS 600.443

Structure of MD4, MDS5, and SHA

1. Pad message to a multiple of 512 bits:

| original message | 1000 ... 000 |64-bit original length |

2. Compute digest of padded message in 512-bit chunks:

| padded message |

first 512 bits ‘

. last 512 bits
igest /<

| message digest 128 b?ts for MD4, MD5;
160 bits for SHA

58
Avi Rubin - CS 600.443

29

Data Encryption Standard (DES)

(symmetric key)

Enc, (M) =
wild permutation, XOR’s of M, S-boxes, and k

16 “rounds,” 64-bit block input and output
not clean and concise (like RSA and one-time pad)

Standard for encryption of unclassified data since 1977

56 bits yield valid concerns about vulnerability to
“exhaustive key search”

59
Avi Rubin - CS 600.443

DES—The Data Encryption Standard

K K
56-bit 56-bit
key key
DES DES
[EE— Encrypt —/ Decrypt ——
p e P
64-bit ~c 64-bit
message 64-bit ciphertext message
Benefits:) Drawbacks:
+ Publicly known + Key size is marginal.
* Reasonably fast » Was not designed for software.
« FIPS specification
+ Widely used Implementation Issues:
. EXtS"S_lVeW analyzed « Blocks are independent.
+ No major defects found + Key distribution needed.
60

Avi Rubin - CS 600.443

30

DES Top View

64-bit Input

Initial Permutation
~ 48-bit K1

56-bit Key

48-bit K2

48-bit K16

Swap 32-bit halves

Final Permutation

64-bit Output

61
Avi Rubin - CS 600.443
DES — 16 Round Structure
[
¥ ¥
\ b | \ Ro |
) ©
L o BT
/ """"""""""" 5)
Repeat
for rounds
2 through ‘ Lis =Ryg ‘ ‘ Ris =L1g ©fRyy, Kts)‘
14 Ky
b 5 ©
‘ Rig = L5 ®f(Rys, Km)‘ ‘ Lis =Rys ‘
\ I
62

Avi Rubin - CS 600.443

31

Cipher Iterative Action

| 32 bits | 32 bits |

One Round
: Mangler
Encryption Function

é; 32 bits

| 32 bits 32 bits -

4

Avi Rubin - CS 600.443

48 bits

A Single Round of DES

‘ R (32 BITS) ‘

R EXPANDED (48 BITS) ‘ ‘ K (48 BIT KEY SEGMENT)

WA

‘ 32 BITS ‘

«@¢

64
Avi Rubin - CS 600.443

32

Bits Expansion (32-t0-48)

1 2 3 4 5 32
Input: olol1r 1ol 1J
~
Output
2 ~
F 0olol1 1 [0
1 2 3 4 5 6 7 8 48
65
Avi Rubin - CS 600.443
Bit Permutation (32-t0-32)
1 2 3 4 32
Tnput: olol11lo| - 1
1 bit
Output tltol 1l 1l - e 1
22 6 13 32 3

66
Avi Rubin - CS 600.443

33

Per-Round Key Generation

| C., 28 bits | D, 28bits |
| Circular Left Shift| | Circular Left Shift|
One
round Permutation Round 1,2,9,16:
with Discard single shift
Others: two bits
48 bits
K,
| Ci 28bits | D 28bits |
Avi Rubin - CS 600.443 o

Mangler Function

The permutation produces
“spread” among the
chunks/S-boxes!

68
Avi Rubin - CS 600.443

34

S-Box (Substitute and Shrink)

« 48 bits ==> 32 bits. (8*6 ==> § *4)

2 bits used to select amongst 4 permutations for
the rest of the 4-bit quantity

2 bits

row

4 bits

column

i=1,..

Avi Rubin - CS 600.443

8.

o1
| 07
03

/’_ > 04

an integer between

0 and 15.

69

S1

Each row and column contain different numbers.
0 1 2 3 4 5 6 7 8
14 | 4 13 11 2 115111 | 8 3
0 1517 | 4 41 2 |13]1 10
4 1 14 | 8 1316 |2 11| 15
15 |12 8 | 2 4 9 |1 7 5

Example: input: 100110 output: 8 = 1000

Avi Rubin - CS 600.443

70

35

S/Box criteria

* Mostly unpublished

e Several revealed

— No S/Box is a linear affine function of its inputs (no
linear system of equations to express output bits in
terms of input bits)

— change one input bit => change two output bits
(maximize diffusion)

— minimize difference between number of 1s and 0Os. E.g.
hold one bit constant and change other 5 bits, and
output has similar number of 1s and Os.

* Almost any change results in insecure cipher

71
Avi Rubin - CS 600.443

Electronic Code Book (ECB)

M-1 M-2 M-3 M-4
64 64 64 46 |pad
((
ENC ENC f ENC ; i ENC ;
C-1 C-2 C-3 C-4

72
Avi Rubin - CS 600.443

36

ECB problem #1

M-1

M-2 M-3 M-4
64 64 64 46pad
ENC ENC ENC ENC
i/ = i/ =N { {
Y Y Y
C-1 c-2 c3 C-4

(M-1 == M-3) => will (C-1 == C-3)

ECB preserves the patterns in plaintext too welll,
Avi Rubin - CS 600.443

ECB Problem #2

» Lack the basic protection against integrity attacks

on the ciphertext at message level (I.e., multiple
cipher blocks)

« Without additional integrity protection

— cipher block substitution and rearrangement attacks
— fabrication of information

74
Avi Rubin - CS 600.443

37

Cipher Block Chaining (CBC)

M-1 M-2 M-3
64 64 64

v —{

. . . ®
Initialization
Vector %

MN

C-1

(M-1 == M-3) very unlikely leads to (C-1 == C-3)

75
Avi Rubin - CS 600.443

CBC Decryption

76
Avi Rubin - CS 600.443

CBC - properties

Patterns in plaintext are concealed
an error is only propagated one block

can do random access decryption
— one block look backwards required

can use last block as integrity check on message
need to keep track of length and padding

77
Avi Rubin - CS 600.443

Output Feedback Mode (OFB)

A% Random Number Generator

|

ENC | ENC ENC QNC
¢ q

[[

MJ—»@ M-2 —’@ M-3— é‘; M-4 _)é

C-1 C-2 C-3 C-4

78
Avi Rubin - CS 600.443

39

OFB Properties

» Allow pre-computing of pseudorandom stream
(One-Time Pad); Xor can be implemented very
efficiently

* No error propagation problem as in CBC

« Allow in-time encrypt/decrypt due to bit-wise
computation (versus the fixed block)

* Loss of sync implies loss of data

79
Avi Rubin - CS 600.443

Attacks on DES

Exhaustive search
— look for 2°° keys on average
— specialized hardware
— Wiener attack: $1 million and three months per key
— Gilmore’s machine $250,000, 3 days on average
Linear cryptanalyses 247 known plaintext pairs
Differential cryptanalyses 243 chosen plaintext
pairs
Double DES no more secure than single DES
— meet in the middle attack

80
Avi Rubin - CS 600.443

40

Triple DES (3-DES)

Decrypt

¢ Keyq or Key3

DES

Encrypt

Avi Rubin - CS 600.443

¢ Keyq or Key3

DES
Decrypt

¢ Keyp

DES

L
Encrypt

¢ Keyq

DES

Decrypt

81

* Uses 3 keys

DESX

* Requires one round of DES
* Effective key length (exhaustive search cost)
* believed to be around 112

DESX: ciphertext = k1 xor EncDES, ,(message xor

k3)

Avi Rubin - CS 600.443

82

41

RC4

RC4 is a stream cipher with a key schedule
algorithm:

Initialization: (state array S)

For i=0..N-1
S[I]=1i

J=0

Scrambling:

For i=0..N-1
j = j+S[1i]+K[i mod m], (key hasm bytes)
Swap (S[1i],S[31)

83
Avi Rubin - CS 600.443

RC4

» After key setup, comes PRG (independent of key):
Initialization:
i=0
J=0
Generation loop:
i=i+1
Jj=j+SI[1]
Swap (S[1i],S[31)
Output z = S[S[i] + S[j]]

1 5

s [[s] | 12] ||

84
Avi Rubin - CS 600.443

42

RC4

» After key setup, comes PRG (independent of key):
Initialization:
i=0
J=0
Generation loop:
i=i+1
Jj=j+SI[1]
Swap (S[1],S[31)
Output z = S[S[1i] + S[3]]

17

5
s [|] [s | [3]

85
Avi Rubin - CS 600.443

AES

DEPARTMENT OF COMMERCE
National Institute of Standards and Technology
[Docket No. 970725180-8168-02]

RIN No. 0693-ZA16

REQUEST FOR COMMENTS ON CANDIDATE ALGORITHMS FOR
THE ADVANCED ENCRYPTION STANDARD (AES)

Evaluation criteria

— Security

— Cost
* 1o licensing (worldwide, non-exclusive, royalty-free basis)
» Computational efficiency
* Memory requirements

86
Avi Rubin - CS 600.443

43

AES (cont)

* Evaluation (cont).

— Algorithm and Implementation Characteristics

« Flexibility (key size, block size, time/memory tradeoffs)
* Hardware and software suitability
* Simplicity of design

* Timetable

— On August 20, 1998, at the First AES Candidate

Conference, NIST announced the 15 AES candidates
for Round 1 evaluation

— Round 1, August 20, 1998 - April 15, 1999

— Second AES Candidate Conference was held on March
22-23, 1999, in Rome, Italy

87
Avi Rubin - CS 600.443

AES (cont.)

* Timetable (cont.)

— Summer, 1999 finalists announced

— 3rd AES conference April 10-14 in NYC.
* Candidates

— must submit code

— must have no intellectual property problems
— must submit full specification

August 9, 1999 - NIST Announces the AES Finalist
Candidates for Round 2:

MARS, RC6TM, Rijndael,Serpent, and Twofish

88
Avi Rubin - CS 600.443

44

AES (cont.)

 Meanwhile

— tons of Crypto & Eurocrypt papers
— NIST performed statistical and efficiency testing on

candidates

— several candidates losing chance

« Example test

— Time to encrypt 1 megabyte
Time to decrypt 1 megabyte
Time to generate 1000 key pairs (enc/dec)

key setup time

cycle round counting

89

Avi Rubin - CS 600.443

Candidates

CAST-256 Entrust Technologies, Inc.
(represented by Carlisle Adams)
CRYPTON Future Systems, Inc.
(represented by Chae Hoon Lim)
DEAL Richard Outerbridge, Lars
Knudsen

DFC CNRS - Centre National pour la
Recherche Scientifique - Ecole
Normale Superieure (represented by
Serge Vaudenay)

E2 NTT - Nippon Telegraph and
Telephone Corporation (represented by
Masayuki Kanda)

FROG TecApro Internacional S.A.
(represented by Dianelos Georgoudis)
LOKI97 Lawrie Brown, Josef Pieprzyk,
Jennifer Seberry

HPC Rich Schroeppe

MAGENTA Deutsche Telekom AG
(represented by Dr. Klaus Huber)
MARS IBM (represented by Nevenko
Zunic)

RC6 RSA Laboratories (represented by
Matthew Robshaw)

RIJINDAEL Joan Daemen, Vincent
Rijmen

SAFER+ Cylink Corporation
(represented by Charles Williams)
SERPENT Ross Anderson, Eli Biham,
Lars Knudsen

TWOFISH Bruce Schneier, John
Kelsey, Doug Whiting, David Wagner,
Chris Hall, Niels Ferguson

90

Avi Rubin - CS 600.443

45

AES (cont.)

* Performance
— benchmarks on all sorts of hardware and O/S

— Specity compilers and options

91
Avi Rubin - CS 600.443
How fast is makeKey?
Reference Platform - makeKey (128-bit key)
20000
18000
16000
14000
@
£ 12000
3 10000 O EncKey|
E 8000 | |® DecKey|
S g000
4000
2000
04
o A L 1<)
SEF Lo Fs s
& FF FFELE8
& § & & &¢
“Not shown: DEAL ~48700
HPC ~G80000
FROG =-2700000
92

Avi Rubin - CS 600.443

46

How fast to en/de crypt?

Reference Platform - Encrypt/Decrypt
(128-bit key)

Clock Cycles

T T T
S geFgoegsd
& o & g g7 & NV &
&£ " Fs £5¢
& 5 & L <
[l o
1 Encrypt Decrypt
i *Not shown: HPC 15567 17679
k MAGENTA 18798 18107 1

93
Avi Rubin - CS 600.443
Side by side comparison
[13 n 13 .
Reference” Configuration
Results
Algorithm setKey(enc) setKey(dec) Encrypt Decrypt
15028 15028 2971 2983
720 805 669 803
48762 48776 3748 3729
18521 18804 4418 4359
4197 4162 1523 1509
2686986 2707347 3208 1784
675955 680980 15567 17679
15335 15347 4156 4054
2112 2108 18798 19107
7622 7621 954 945
5015 5014 845 786
6787 7467 809 832
4026 4023 2420 2318
11398 11400 3424 3217
12799 12677 973 965
94

Avi Rubin - CS 600.443

47

Class file size in Java

Java Static Memory Usage

Java Class File Sizes

95
Avi Rubin - CS 600.443
Heap usage in Java
Java Dynamic Memory Usage
Java Dynamic Heap Usage
%mﬂ
"y ,FI aH} A M M N o
1?(,«-? & ep}g gﬁ;}’?ég S ¢~§ oqgw'g'
96

Avi Rubin - CS 600.443

48

More info on AES

* AES home page

— http://www.nist.gov/aes
* many papers
* explanation of benchmarks
* discussion of each cipher
* history of selection process

¢ conference information

97
Avi Rubin - CS 600.443

Cryptography take aways

+ A few problems are believed to be intractable:
— Factoring is hard
— Inverting RSA is hard
— Computing discrete logarithms is hard

* These beliefs are based on years of study and attempts to find fast
solutions

* A crypto primitive or protocol should come with a proof that says this
primitive or protocol is as hard to break as it is to factor or invert
RS4, ...

* The proof means that the security of the primitive or protocol is
reduced to the security of a well-known, highly studied problem

* A primitive or protocol without such a proof has no guarantees—there
is very little accumulated evidence that it is secure

98
Avi Rubin - CS 600.443

49

Other Crypto Issues

* Key Agreement Protocols

* Pseudo random generators, Pseudo random
functions

* One-way functions, Trapdoor functions

* Secure multiparty computation

» Zero-Knowledge proofs

* Models of adversaries/Definitions of security

......

99
Avi Rubin - CS 600.443

Key distribution

* Needham and Schroeder protocol
— Symmetric key only

— Assumptions:
* “Trusted” third party, T
* Two principles, A and B
* long-term shared keys between principles and TTP
(Kar, Kgr)
* Nobody reveals his/her secret key
— Goals:
* A and B wish to have K,
» Nobody else should know K,
* A and B believe that only they share the secret key

100
Avi Rubin - CS 600.443

50

Needham and Schroeder

I.LA->T:A,B

2. T -> A- {B7 KAB’ { A’ KAB }KBT} Kar

3.A>B: {A, Ky by,

4.B->A {N} Kap /

5.A>B: (N+1} ¢

Avi Rubin - CS 600.443

Problems

NS is intended to distribute short-term keys
However, if a key is broken

— can replay message 3 and force B to use old,
compromised key

B never proves knowledge of the key.
How would you fix both these problems?

102
Avi Rubin - CS 600.443

51

Kerberos

Based on Needham and Schroeder

Users authenticate by being able to decrypt ticket
for tgt

Early version susceptible to offline dictionary
attack

Tickets are issued for services
Tickets expire

Widely deployed and used system
DCE is based on Kerberos

103
Avi Rubin - CS 600.443

DH setting

Alice

Bob

No previous contact between them

Both have a computer

Eve hears every single message between them

Can Alice and Bob communicate information to

produce a secret key that Eve doesn’t know?
(take a vote in the class)

104
Avi Rubin - CS 600.443

52

Diffie-Hellman Key Exchange

Known to Publi Known to
Alice ublic Bob
Choose secret A B
values A, B P9
A mod — gBmod
Compute and 9 P T - 9 P
exchange public - = —
values gA, gB gBmodp 4 *~ gAmod p
(gB)Amod p gA mod p (g™)B mod p
Compute shared
secret gAB
=B mod p gB mod p =g"B mod p

105
Avi Rubin - CS 600.443

Play in the middle attack

Alice and Bob pick random secrets a; and b;
Problem is lack of authentication.
Play-in-the-middle attack:

\ 4
, ————————» i W «—>

&
Authentication and key exchange have to be
tightly connected.

One approach is to use public keys

106
Avi Rubin - CS 600.443

53

Key Exchange:
Establishing a (symmetric) Session Key

k

Avi Rubin - CS 600.443

107

Using cryptography

54

Important principles

Don’t design your own crypto algorithm
— Use standards whenever possible

Make sure you understand parameter choices

Make sure you understand algorithm interactions
— E.g. the order of encryption and authentication
 Turns out that authenticate then encrypt is risky
* Be open with your design
— Solicit feedback
— Use open algorithms and protocols
— Open code? (jury is still out)

109
Avi Rubin - CS 600.443

Building systems with cryptography

* Use quality libraries

— SSLeay, lim (from Lenstra), Victor Shoup’s library,
RSAREEF, cryptolib

— Find out what cryptographers think of a package before
using it
* Code review like crazy
* Educate yourself on how to use library

— Caveats by original designer and programmer

110
Avi Rubin - CS 600.443

55

Common issues that lead to pitfalls

Generating randomness

Storage of secret keys

Virtual memory (pages secrets onto disk)
Protocol interactions

Poor user interface

Poor choice of key length, prime length, using
parameters from one algorithm in another

111

Avi Rubin - CS 600.443

Example: Web cookies

Cookies were designed to offload server state to browsers
Someone made a design choice
— Use cookies to authenticate and authorize users
— E.g. Amazon.com shopping cart, WSJ.com
New design choice means
— Cookies must be protected
Against forgery (integrity)
Against disclosure (confidentiality)
Cookies not robust against web designer mistakes
— Were never intended to be

Many security problems arise out of a technology built
for one thing applied to something else incorrectly.

112

Avi Rubin - CS 600.443

56

Sensus

* Created by Lorrie Craner and based on Fujioka, Okamoto, Ohta (FOO)
* Participants

Voter

Voter agent (totally trusted component, runs locally)
validator - ensure one vote per person

tallier - count ballots and report results

Not designed for Internet voting in public elections.

Avi Rubin - CS 600.443

113

Blind signatures

* Need validator to sign m
» Validator should not know value of m

* Voter must be able to verify blind signature

* Assume RSA scheme
— n = pq, where p and q are large primes

* Analogy of envelope with carbon paper in it
 Public exponent of validator is e, signing exponent is d

Avi Rubin - CS 600.443

114

57

Blind Signatures (Chaum)

* All arithmetic is mod n
+ Blinding (performed by voter):
— choose a random blinding factor »
— compute and present for signing: m X r¢ where m is the message
» Signing (performed by validator):
— compute (m X re)d
— this is equal to » X m¢
* Unblinding (performed by voter):
— compute 7 X m? /r =m

115
Avi Rubin - CS 600.443

Validator

* Public key pair: ve, vd
» Registered Voter List (RVL)

— voter IDs
— voter public keys

— whether voter ballot has been validated (dynamically
updated)

se, sd ballot seal key
ie,id voter key pair
ve, vd valiia or key pair

te, td tall ey pair
Avi Rubin - CS 600.443 K blinding factor

58

Tallier

public key pair: te, td
ve (validators public key)
T: election tally
Receipt List (RL)
— list of receipts sent out
— corresponding sealed ballots
— decyption keys
— recipt numbers

Avi Rubin - CS 600.443

se, sd ballot seal key
ie,id voter key pair
ve, vd validator key pair
te,td talier’key pair
K blinding factor

Voter agent

V: a voted ballot

ID, voter ID number

ballot seal key pair: se, sd

m = Js¢ (sealed vote)

k = large random number for blinding
voter key pair: ie, id

talliers and validator public keys: e, ve
b =m k' (blinded, sealed ballot)

Avi Rubin - CS 600.443

se, sd ballot seal key
ie,id voter key pair
ve, vd valiigt(or key pair
te,td tal ey pair
K blinding factor

59

The Sensus Polling Protocol

119
Avi Rubin - CS 600.443

The Sensus protocol

* Voter agent sends validator, sealed with ve
b: blinded, sealed ballot
ID: ID number
b b, signed with id, voter private key
+ Validator unseals with vd and
verifies that b = (b*?) ‘¢, checks the signature on b
updates RVL (registered voters list)
signs b
sends b* to voter agent, after sealing with ie
* Net result is that validator signs b

se, sd ballot seal key
ie,id voter key pair
ve, vd valig tor key pair

te, td tall ey pair
Avi Rubin - CS 600.443 K blinding factor

60

Sensus (cont.)

* Voter agent unseals with id
unblinds 5™ by dividing by k&
obtains m"? which is m, signed by validator
verifies that (m*?)"¢ = m
sends (m*, V%) to tallier, sealed with fe

« tallier unseals with 74 and
verifies: V3¢ = (m»?)ve
signs V¢ to produce (V7¢)* = receipt
updates RL with a receipt # and sealed ballot
sends (V#¢)" , receipt # to voter agent

se, sd ballot seal key
ie,id voter key pair

ve, vd vallg tor key pair

te, td tall ey pair
Avi Rubin - CS 600.443 K blinding factor

Sensus (cont.)

* Voter agent verifies receipt
checks that J5e = ((Vse)dye
sends ballot secret key, sd, and receipt number to tallier

« tallier
opens V*¢ with sd
updates RL and T
se, sd ballot seal key
ie,id voter key pair
ve, vd validator key pair
te,td tal ggkey pair
Avi Rubin - CS 600.443 K blinding factor

61

Evaluation of Sensus

Accuracy

— altered, eliminated, and invalid votes can be detected and corrected
Democracy

— if voters abstain, validator may submit ballots for them

— these invalid ballots may be detected, but not corrected
Privacy

— not possible to link a ballot to the voter who cast it

— does not prevent a voter from proving how he or she voted
* Could potentially solve with last-vote-counts process

Verifiability

— voters can verify that their ballots were counted correctly and protest anonymously

123
Avi Rubin - CS 600.443

Why inadequate for Internet voting

Assumes communication occurs over an anonymous
channel
Machines (along with secrets on them) are secure
— No Trojans, viruses, worms
— Trusted O/S, applications, bug-free platform
Assumes no subliminal channels in RSA
— Depends on the implementation (no random padding)
Assumes network is highly available
Assumes there is a national registry of identities and public
keys.

— Assumption: election PKI is available in all places where it is adopted

124
Avi Rubin - CS 600.443

62

Chaum’s receipt system

Properties

Uses visual cryptography

Generates receipts that only voter verifies
Can check that receipt exists in final tally
Cannot show anyone how you voted
Requires some widely available public keys

Requires trustees who perform mixing function

126
Avi Rubin - CS 600.443

63

Encoding the ballot
» Two laminated sheets held together

l'-”-':iﬂéf'i

i
g |

pague

- i
e Ml

nnu
Fan-transparent

Bottom layer Laminated

Avi Rubin - CS 600.443

127

Ballots

» How ballots are generated
— pick one layer at random
— encode choices in other ballot
— swap random number of equivalent pixel groups
* (i.e.rotate grey boxes to change pixel locations)
— which ones were swapped is the “key” kept by trustees
— keep one layer
— serial number printed on ballot to help voter lookup in tally

* Ways to cheat:

— print an incorrect layer

— use same serial number for 2 different receipts

— skip a ballot in the tally

— But, odds of getting caught are 50% per ballot

— If enough voters check, say n, 1 in 2”*n chance of getting away

with it.
Avi Rubin - CS 600.443

128

64

Tallying

Receipt batch Intermediate batch Tally batich

Receipt | }
image -
1,000,000
> Mcclpl | D "
00,00 e
.
. . -
.
ie: S . . .
= >
e,
{"" ‘ | .El
e coipt | N
1,825, Tustes
transtarm fioe

Trust Trustes
wranstomn

1

129
Avi Rubin - CS 600.443

Tallying (cont.)

» Uses analogy of Russian dolls

— xor tricks used to break up ballot into layers, each
encrypted with a trustee’s private key

— Each trustee only sees dolls at its layer

— After m trustees decrypt their layer, the actual ballot is
revealed.

— All ballots can be printed on a web site along with all
receipts

* but not corresponding to each other

— Voters can check that their ballot counted

130
Avi Rubin - CS 600.443

65

