Robot Kinematics

Robot Manipulators

- A robot manipulator is typically moved through its joints
- Revolute: rotate about an axis
- Prismatic: translate along an axis

SCARA

6 axes robot arm

Other Robots

Delta Robot

Stewart Platform

Kinematics

Transformation Within Joint Space

- Joint spaces are typically defined in $\boldsymbol{R}^{\mathbf{n}}$

Thus for a vector

$$
\mathbf{q}=\left[\begin{array}{lll}
q_{1} & \ldots & q_{n}
\end{array}\right]
$$

we can use additions subtractions

$$
\mathbf{q}_{c}=\mathbf{q}_{a}+\mathbf{q}_{b}
$$

Kinematics

Cartesian Transformation Position and Orientation

- Combine position and orientation:
- Special Euclidean Group: SE(3)

$$
S E(3)=\left\{(\mathbf{t}, R): \mathbf{t} \in \mathbb{R}^{3}, R \in S O(3)\right\}=\mathbb{R}^{3} \times S O(3)
$$

$$
{ }^{A} \boldsymbol{p}={ }^{A} R_{B}{ }^{B} \boldsymbol{p}+{ }^{A} \mathbf{t}_{B}
$$

Homogeneous
representation

$$
{ }^{A} \boldsymbol{p}={ }^{A} \boldsymbol{E}_{B}{ }^{B} \boldsymbol{p}
$$

Cartesian Transformation Kinematic Chain

Kinematics

Forward Kinematics

Guidelines for assigning frames:

- There are several conventions
- Denavit Hartenberg (DH), modified DH, Hayati, etc.
- Choose the base and tool coordinate frame
- Make your life easy!
- Start from the base and move towards the tool
- Make your life easy!
- In general each actuator has a coordinate frame.
- Align each coordinate frame with a joint actuator

Forward Kinematics 2D

$$
\begin{aligned}
{ }^{A} \boldsymbol{p} & ={ }^{A} E_{B}{ }^{B} \boldsymbol{p} \\
{\left[\begin{array}{c}
{ }^{A} x \\
{ }^{A} y \\
1
\end{array}\right] } & =\underbrace{\left[\begin{array}{ccc}
\cos q & -\sin q & t_{x} \\
\sin q & \cos q & t_{y} \\
0 & 0 & 1
\end{array}\right]}\left[\begin{array}{c}
{ }^{B} x \\
{ }^{B} y \\
1
\end{array}\right]
\end{aligned}
$$

Forward Kinematics

Forward Kinematics 2D

$$
{ }^{B} \boldsymbol{p}={ }^{B} E_{C}{ }^{C} \boldsymbol{p}
$$

$$
\left[\begin{array}{c}
{ }^{B} x \\
{ }^{B} y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos q_{2} & -\sin q_{2} & { }^{B} t_{x} \\
\sin q_{2} & \cos q_{2} & { }^{B} t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
{ }^{C} x \\
{ }^{C} y \\
1
\end{array}\right]
$$

$$
\begin{aligned}
{ }^{A} \boldsymbol{p} & ={ }^{A} \boldsymbol{E}_{B}{ }^{B} \boldsymbol{p} \\
{\left[\begin{array}{c}
A \\
{ }^{A} y \\
1
\end{array}\right] } & =\left[\begin{array}{ccc}
\cos q_{1} & -\sin q_{1} & { }^{A} t_{x} \\
\sin q_{1} & \cos q_{1} & { }^{A} t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
{ }^{B} x \\
{ }^{B} y \\
1
\end{array}\right]
\end{aligned}
$$

Forward Kinematics 2D

Forward Kinematics

Forward Kinematics 3D

Kinematics

Cartesian Space Tool Frame (\boldsymbol{T}) Base Frame (B)

$$
\left[{ }^{B} R_{T},{ }^{B} \boldsymbol{t}_{T}\right]
$$

${ }^{B} R_{T}$: Orientation of T wrt B ${ }^{B} \boldsymbol{t}_{T}$: Position of Twrt B

Inverse Kinematics 2D

$$
\left[\begin{array}{c}
{ }^{A} x \\
{ }^{A} y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos q & -\sin q & t_{x} \\
\sin q & \cos q & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
{ }^{B} x \\
{ }^{B} y \\
1
\end{array}\right]
$$

Given ${ }^{A} \boldsymbol{p},{ }^{B} \boldsymbol{p},{ }^{A} \boldsymbol{t}_{B}$ find q :

$$
{ }^{A} x-t_{x}={ }^{B} x \cos q-{ }^{B} y \sin q
$$

$a \sin q+b \cos q=c$
$a \sin q+b \cos q=\sqrt{a^{2}+b^{2}} \sin (x+\alpha)$

$$
\alpha= \begin{cases}\tan ^{-1}(b / a) & \text { if } a>0 \\ \pi+\tan ^{-1}(b / a) & \text { if } a<0\end{cases}
$$

Inverse Kinematics 2D

In practice, however, we are interested in solving the inverse kinematics for the basis vectors

$$
\begin{aligned}
& { }^{B} \boldsymbol{p}=\left[\begin{array}{lll}
0 & 0
\end{array}\right]^{\top} \\
& { }^{B} \boldsymbol{p}=\left[\begin{array}{lll}
1 & 0
\end{array}\right]^{\top} \\
& { }^{B} \boldsymbol{p}=\left[\begin{array}{lll}
0 & 1
\end{array}\right]^{\top}
\end{aligned}
$$

which gives the friendlier solution
(using ${ }^{B} \boldsymbol{p}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$)

$$
\operatorname{acos}\left({ }^{A} x-t_{x}\right)=q
$$

Inverse Kinematics 3D

Likewise, in 3D we want to solve for the
 position and orientation of the last coordinate frame: Find q_{1} and q_{2} such that

$$
{ }^{A} E_{C}=\left[\begin{array}{cc}
R_{z}\left(q_{1}\right) R_{z}\left(q_{2}\right) & { }^{A} \mathbf{t}_{B}+R_{z}\left(q_{1}\right)^{B} \mathbf{t}_{C} \\
0 & 1
\end{array}\right]
$$

Solving the inverse kinematics gets messy fast! A) For a robot with several joints, a symbolic solution can be difficult to get
B) A numerical solution (Newton's method) is more generic

Note that the inverse kinematics is NOT

$$
{ }^{A} E_{C}{ }^{-1}={ }^{C} E_{A}
$$

Kinematics

Cartesian Transformation Linear and Angular Velocities

Given two coordinate systems A and B related by the transformation ${ }^{A} E_{B}$, the velocity between A and B is given by

$$
\left[\begin{array}{l}
{ }^{A} v_{x} \\
A \\
v_{y} \\
{ }^{A} v_{z} \\
{ }^{A} w_{x} \\
{ }^{A} w_{y} \\
{ }^{A} w_{z}
\end{array}\right]=\left[\begin{array}{cc}
{ }^{A} R_{B} & { }^{A} \hat{\mathbf{t}}_{B}{ }^{A} R_{B} \\
0 & { }^{A} R_{B}
\end{array}\right]\left[\begin{array}{l}
{ }^{B} v_{x} \\
{ }^{B} v_{y} \\
{ }^{B} v_{z} \\
{ }^{B} w_{x} \\
{ }^{B} w_{y} \\
{ }^{B} w_{z}
\end{array}\right]
$$

Where the " \wedge " indicates a skew symmetric matrix

Kinematics

Manipulator Jacobian

Recall: The linear/angular velocity of the tool frame T in the base frame B

$$
{ }^{B} \hat{V}=\left[\begin{array}{cccc}
0 & -{ }^{B} \omega_{z} & { }^{B} \omega_{y} & { }^{B} v_{x} \\
{ }^{B} \omega_{z} & 0 & -{ }^{B} \omega_{x} & { }^{B} v_{y} \\
-{ }^{B} \omega_{y} & { }^{B} \omega_{x} & 0 & { }^{B} v_{z} \\
0 & 0 & 0 & 0
\end{array}\right]={ }^{B} \dot{E}_{T}(t)^{T} E_{B}(t)
$$

The " V " operator is to extract the meaningful information from \hat{V}

$$
{ }^{B} \hat{V}^{\vee}=\left[\begin{array}{cccc}
0 & -{ }^{B} \omega_{z} & { }^{B} \omega_{y} & { }^{B} v_{x} \\
{ }^{B} \omega_{z} & 0 & -{ }^{B} \omega_{x} & { }^{B} v_{y} \\
-{ }^{B} \omega_{y} & { }^{B} \omega_{x} & 0 & { }^{B} v_{z} \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{c}
{ }^{B} v_{x} \\
B v_{y} \\
B v_{z} \\
{ }^{B} \omega_{x} \\
{ }^{B} \omega_{y} \\
{ }^{B} \omega_{z}
\end{array}\right] \stackrel{\stackrel{\grave{\sigma}}{\stackrel{\circ}{\omega}}}{\stackrel{\stackrel{\rightharpoonup}{\sigma}}{亏}}
$$

Manipulator Jacobian

We change the time varying trajectory to be a time varying joint trajectory

$$
\begin{gathered}
{ }^{B} \hat{V}={ }^{B} \dot{E}_{T}(t)^{T} E_{B}(t) \\
{ }^{B} V={ }^{B} \dot{E}_{T}(\mathbf{q}(t)){ }^{T} E_{B}(\mathbf{q}(t))
\end{gathered}
$$

Applying the chain rule

$$
{ }^{B} \hat{V}=\sum_{i=1}^{N}\left(\frac{\partial^{B} E_{T}}{\partial q_{i}} \dot{q}_{i}\right)
$$

Derivative of the forward kinematics wry q_{i}

Inverse of the forward kinematics

$$
\frac{\partial E(q(t))}{\partial t}=\frac{\partial E(q(t))}{\partial q} \frac{\partial q(t)}{\partial t}
$$

Manipulator Jacobian

Lets rewrite the previous result as

$$
\left[\begin{array}{c}
{ }^{B} v_{x} \\
{ }^{B} v_{y} \\
B \\
v_{z} \\
{ }^{B} \omega_{x} \\
B \omega_{y} \\
{ }^{B} \omega_{z}
\end{array}\right]=\mathrm{J}(\mathrm{q})\left[\begin{array}{c}
\dot{q}_{1} \\
\dot{q}_{2} \\
\vdots \\
\dot{q}_{N}
\end{array}\right]
$$

Where $J(\boldsymbol{q})$ is a $6 \times \mathrm{N}$ matrix called the manipulator Jacobian that relates joint velocities to Cartesian velocities

$$
\left.J(\mathbf{q})=\left[\begin{array}{lll}
\left(\frac{\partial^{B} E_{T}}{\partial q_{1}}\right.
\end{array}{ }^{T} E_{B}\right)^{\vee} \quad \ldots \quad\left(\frac{{\frac{\partial}{}{ }^{B} E_{T}}^{T}}{\partial q_{N}} E_{B}\right)^{\vee}\right]
$$

Kinematics

Manipulator Jacobian

We just derived that given a vector of joint velocities, the velocity of the tool as seen in the base of the robot is given by

$$
\left[\begin{array}{l}
{ }^{B} \mathbf{v} \\
{ }^{B} \boldsymbol{\omega}
\end{array}\right]=J(\mathbf{q}) \dot{\mathbf{q}}
$$

If, instead we want to tool to move with a velocity expressed in the base frame, the corresponding joint velocities can be computed by

$$
\dot{\mathbf{q}}=J^{-1}(\mathbf{q})\left[\begin{array}{l}
{ }^{B} \mathbf{v} \\
{ }^{B} \boldsymbol{\omega}
\end{array}\right]
$$

Manipulator Jacobian

If, instead we want to tool to move with a velocity expressed in the tool frame, we can first transform the velocity in the base frame and then use the inverse Jacobian to compute joint velocities

$$
\begin{gathered}
{\left[\begin{array}{c}
{ }^{B} \mathbf{v} \\
{ }^{B} \mathbf{\omega}
\end{array}\right]=\left[\begin{array}{cc}
{ }^{B} R_{T} & { }^{B} \hat{\mathbf{t}}_{T} \\
{ }^{B} R_{T} \\
0 & { }^{B} R_{T}
\end{array}\right]\left[\begin{array}{c}
T \\
T^{T} \\
\boldsymbol{\omega}
\end{array}\right]} \\
\dot{\mathbf{q}}=J^{-1}(\mathbf{q})\left[\begin{array}{l}
{ }^{B} \mathbf{v} \\
{ }^{B}
\end{array}\right]
\end{gathered}
$$

Manipulator Jacobian

What if the Jacobian has no inverse?
A) No solution: The velocity is impossible
B) Infinity of solutions: Some joints can be moved without affecting the velocity (i.e. when two axes are colinnear)

