Robot Kinematics



Robot Manipulators

. Arobot manipulator is typically

moved through its joints

Revolute: rotate about an axis

Prismatic: translate along an axis
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SCARA 6 axes robot arm



Other Robots

Mobile robots

Delta Robot

Stewart Platform




Kinematics

FORWARD
KINEMATICS

Cartesian Space
Tool Frame (T)
Base Frame (B) [°Ry °t:] = fla)

[*Ry, Pt ]

BR, :Orientation of T wrt Bf </ el
Bt : Position of T wrt B
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Transformation Within Joint Space

. Joint spaces are typically
defined in R"

Thus for a vector

a=|¢g .. ¢n

we can use additions
subtractions

dc = qq + A




Kinematics

Cartesian Space
Tool Frame (T)
Base Frame (B)

[ Ry, Pty ]

BR; :Orientation of T wrt B
Bt : Position of T wrt B

\J

Rigid body motion
Transformation between
coordinate frames



Cartesian Transformation
Position and Orientation

. Combine position and orientation:

. Special Euclidean Group: SE(3)
SEB3)={(t,R):t e R’ R SO(3)} =R’ x SO(3)
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Homogeneous
representation

/_1/3 Ap ="E; °p




Cartesian Transformation

Waist rotation 3207

Kinematic Chain

Shoulder rotation 0°

\ T8 __ Wrist bend 200°
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N~ rotation 2707
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T Gripper mounting

Wrist rotation 3(X)°
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Kinematics

FORWARD
KINEMATICS

[BRT/ BtT] =f(q)

q =f_1( [BRp BtT] )
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Guidelines for assigning frames:

Forward Kinematics

There are several conventions

Denavit Hartenberg (DH), modified DH,
Hayati, etc.

Choose the base and tool coordinate
frame

Make your life easy!

Start from the base and move towards
the tool

Make your life easy!

In general each actuator has a coordinate
frame.

Align each coordinate frame with a joint
actuator Barrett WAM



Forward Kinematics 2D

Ap =AE. °p
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Forward Kinematics




Forward Kinematics 2D
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Forward Kinematics 2D
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Forward Kinematics 3D
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[BRp BtT] =f(q)
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Inverse Kinematics 2D

p A cosq —sing tp| [Pz
Ay — |sing cosq 1 By
1 0 0 L] [ 1]
Given“p, “p, “t.find g:
A B

T — 1, = azcosq—Bysinq

asing +bcosqg =c
asing + becosq = Va2 + b2 sin(z + )

(tan_l(b/a) if a >0
|7+ tanH(b/a) ifa <O
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Inverse Kinematics 2D

S8

In practice, however, we are
interested in solving the inverse
kinematics for the basis vectors

p=[00]
p=[10]
p=[01]

T
T
T

which gives the friendlier solution

x (using “‘p=[10]")

acos( 'x—t,

)=q



Inverse Kinematics 3D

Likewise, in 3D we want to solve for the

A2 position and orientation of the last coordinate
g Az frame: Find g, and g, such that
Ap . _ {Rz(QHRz(Qz) AtB + R, (q1) Bte
¢~ 0 1

y

Solving the inverse kinematics gets messy fast!
A) For a robot with several joints, a symbolic

A, i solution can be difficult to get
B) A numerical solution (Newton’s method) is

s Y more generic
Note that the inverse kinematics is NOT
AEC-l — CEA




Cartesian Space
Tool Frame (T)
Base Frame (B)

[ Bvy, Bwy]

Bv;:linear vel. of T wrt B
Bw; : angular vel. of T wrt B

\J

Rigid body motion
Transformation between
coordinate frames

Kinematics



Cartesian Transformation
Linear and Angular Velocities

Given two coordinate systems A and B related by the
transformation ~E.. , the velocity between A and B is
given by

Uy Uy
4 = By
A”UZ _ ARB AtB ARB BUZ
AE Aw, 0 ARG B,
A B
Awy Wy
> w, Bw,

Where the “A” indicates a skew symmetric matrix




Kinematics

JACOBIAN

[v w]'=J(q) g

Gg=J4q)[vw]

INVERSE
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Manipulator Jacobian

Recall: The linear/angular velocity of the tool frame T in the base

frame B
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Manipulator Jacobian

We change the time varying trajectory
to be a time varying joint trajectory e

BV — BET (t) TEB (t) forward kinematics

wrt a;

Inverse of the
forward kinematics

Applying the chai

0L(q(t)) _ 0E(q(t)) 9q(t)
ot dq Ot




Manipulator Jacobian

Lets rewrite the previous result as

Vg o
ol [
v, | 2
wa — J( q )
B .
Bwy 4N _

Where J(q) is a 6xN matrix called the manipulator Jacobian
that relates joint velocities to Cartesian velocities

_ \/ \/ -
B T B T
J(q) = (88(5"? EB) (aaqu EB)




Kinematics

JACOBIAN /

[vw] =J(q)dq

INVERSE
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Manipulator Jacobian

We just derived that given a vector of joint velocities, the
velocity of the tool as seen in the base of the robot is given by

w

5| = (@)

If, instead we want to tool to move with a velocity expressed

in the base frame, the corresponding joint velocities can be
computed by



Manipulator Jacobian

If, instead we want to tool to move with a velocity expressed
in the tool frame, we can first transform the velocity in the
base frame and then use the inverse Jacobian to compute

joint velocities

{BV} _ {BRT Btr BRT] {Tv}

0 BRT Tw



Manipulator Jacobian

What if the Jacobian has no inverse?

A) No solution: The velocity is impossible
B) Infinity of solutions: Some joints can be moved without affecting

the velocity (i.e. when two axes are colinnear)

v
The robc.)t ca.nnot move @3 In this
in this direction when the configuration,

robot is in this configuration. g, and g can

Hence J(q) is singular. counter rotate.
d4 Hence J(q) is
42 singul
gular.
B) . . BV
d,=-43 [Bw] =0




