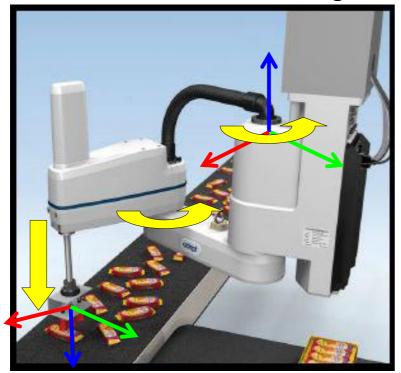
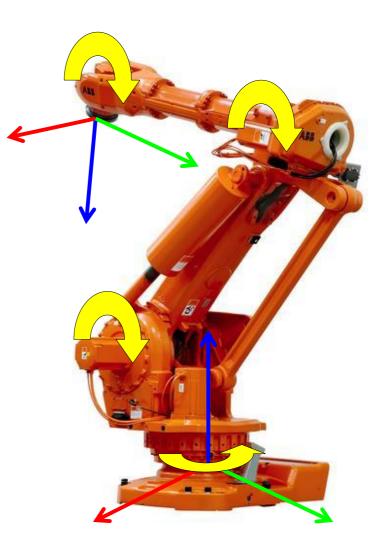
Robot Kinematics

Robot Manipulators

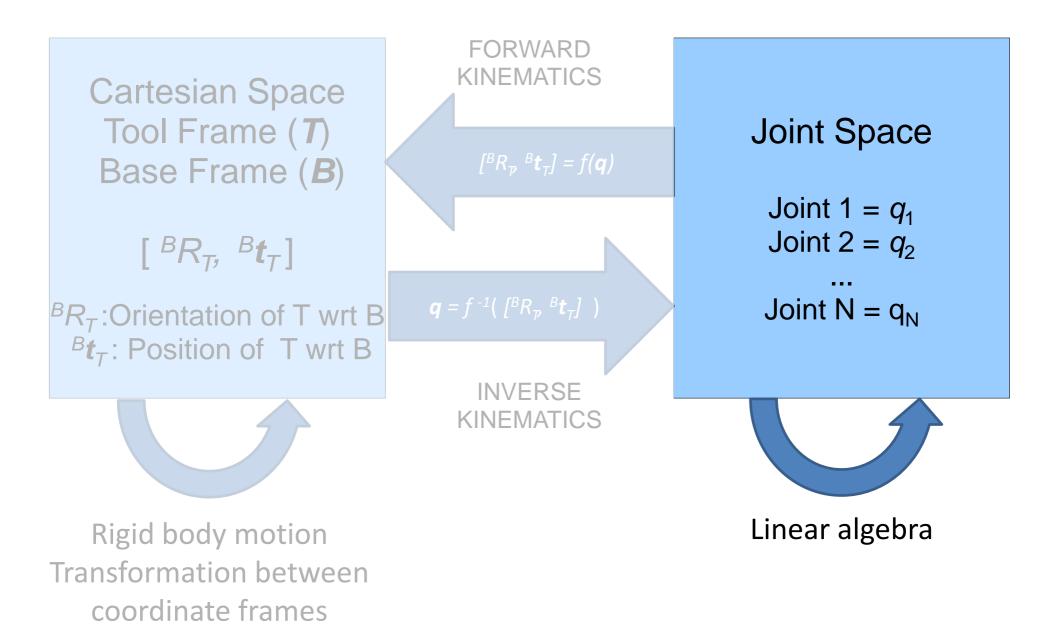
- A robot manipulator is typically moved through its joints
 - Revolute: rotate about an axis
 - Prismatic: translate along an axis





SCARA

6 axes robot arm



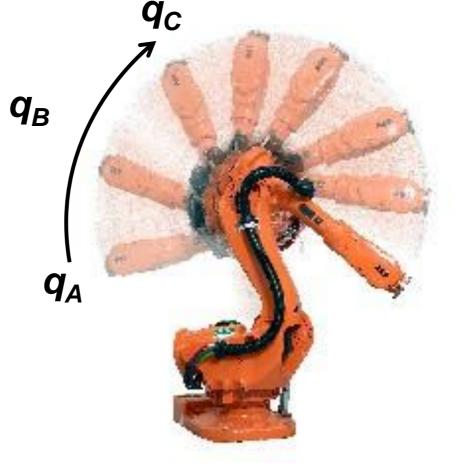
Transformation Within Joint Space

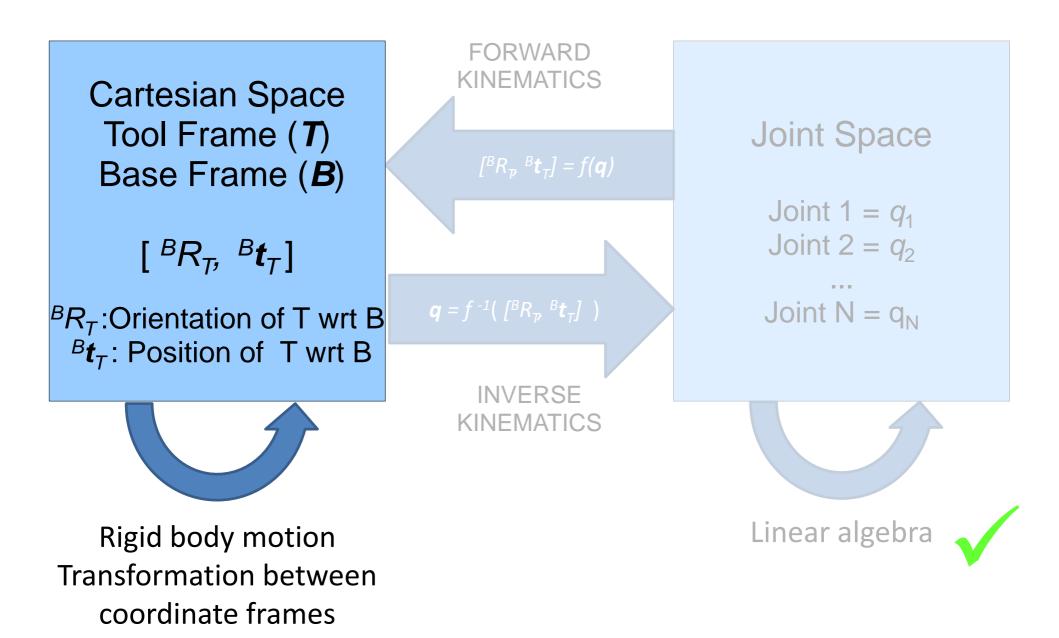
 Joint spaces are typically defined in *R*ⁿ

Thus for a vector

 $\mathbf{q} = \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix}$

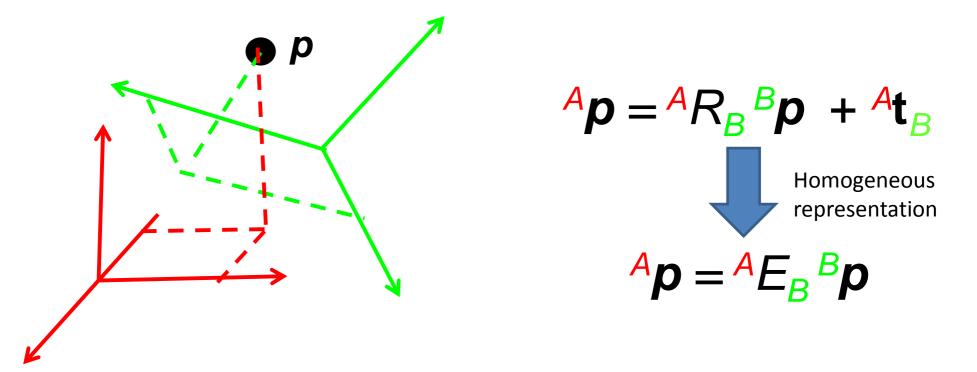
we can use additions subtractions $\mathbf{q}_c = \mathbf{q}_a + \mathbf{q}_b$





Cartesian Transformation Position and Orientation

- Combine position and orientation:
 - Special Euclidean Group: SE(3)
 - $SE(3) = \{(\mathbf{t}, R) : \mathbf{t} \in \mathbb{R}^3, R \in SO(3)\} = \mathbb{R}^3 \times SO(3)$



.3D Rotations

- LOTS of different ways of representing them:
 - Quaternion, Euler angles, axis/angle, Rodrigues
- ONE concept

A 3x3 rotation matrix that

$$A \boldsymbol{p} = A R_B^B \boldsymbol{p}$$

Where $({}^{A}R_{B}{}^{T}) {}^{A}R_{B} = {}^{A}R_{B} ({}^{A}R_{B}{}^{T}) = I$

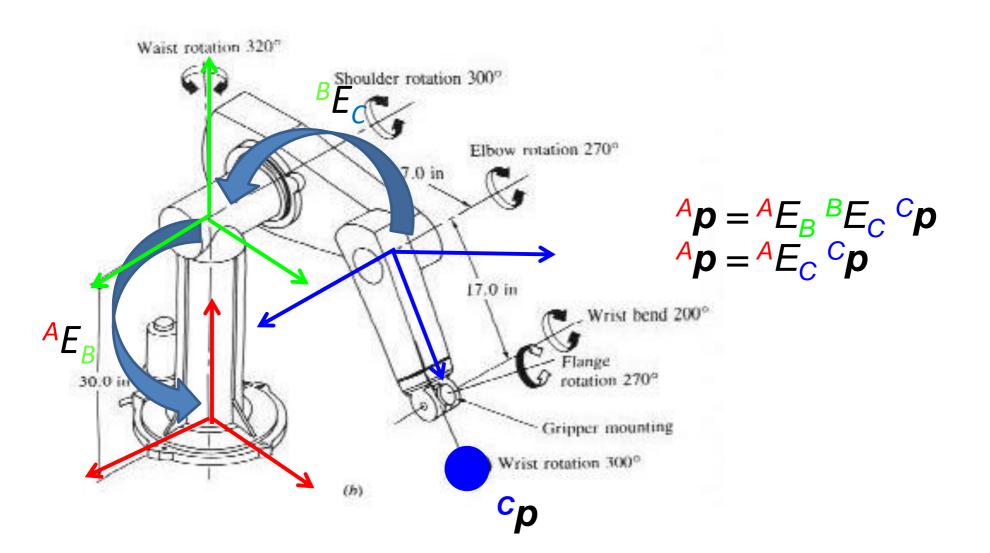
• Elementary rotations

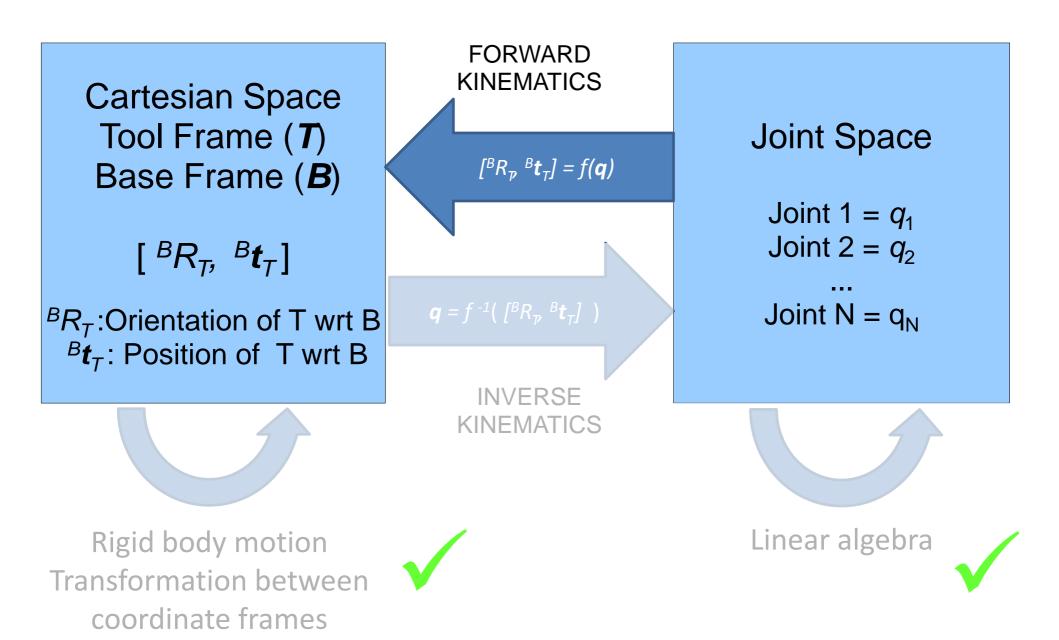
Rotation about x Rotation about y Rotation about z

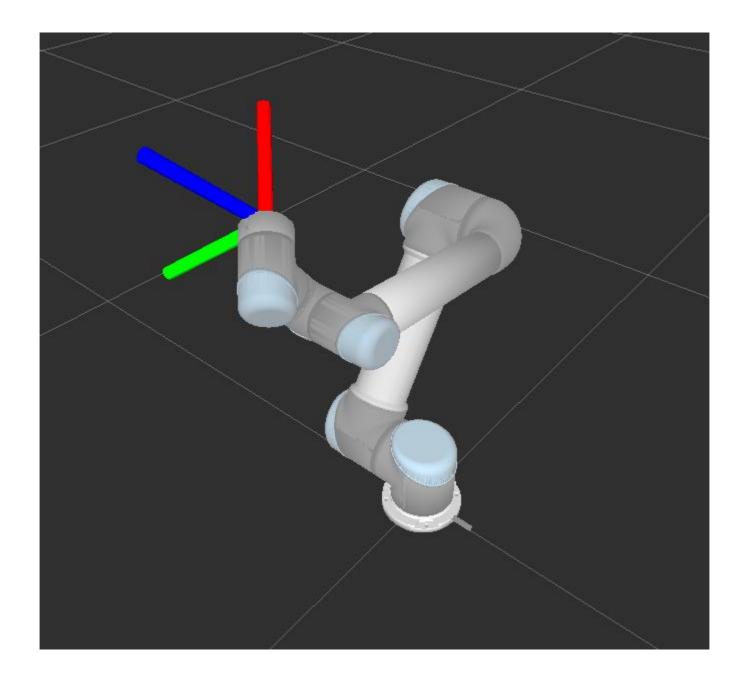
$$R_{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix} \quad R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \quad R_{z}(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $R = R_x R_y R_z \neq R_z R_y R_x$

Cartesian Transformation Kinematic Chain



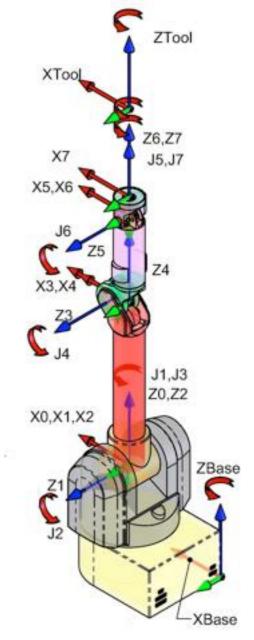




Forward Kinematics

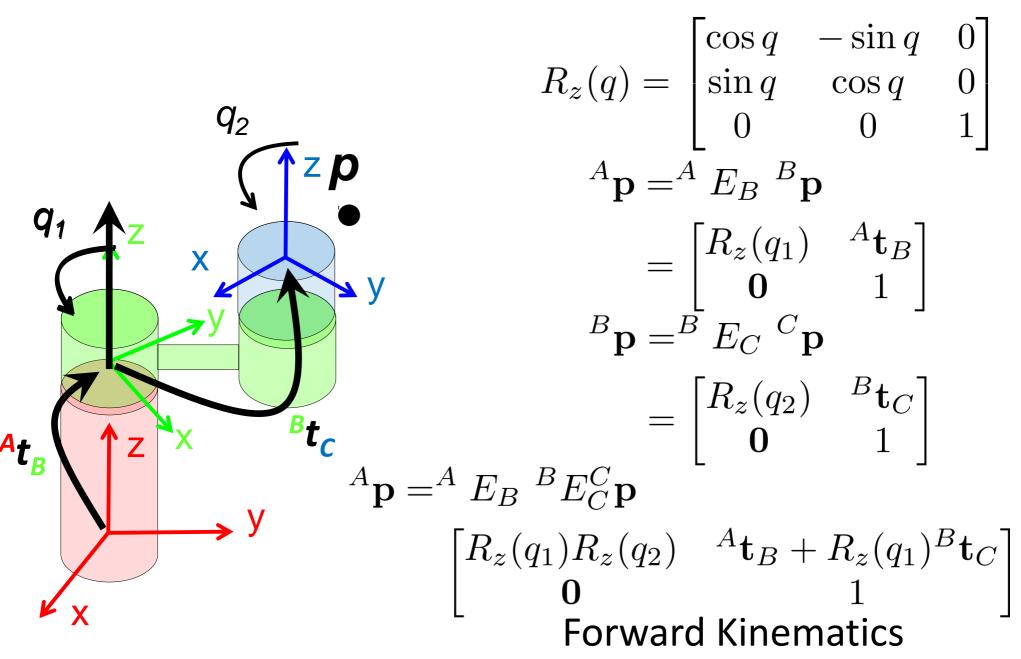
Guidelines for assigning frames to robot links:

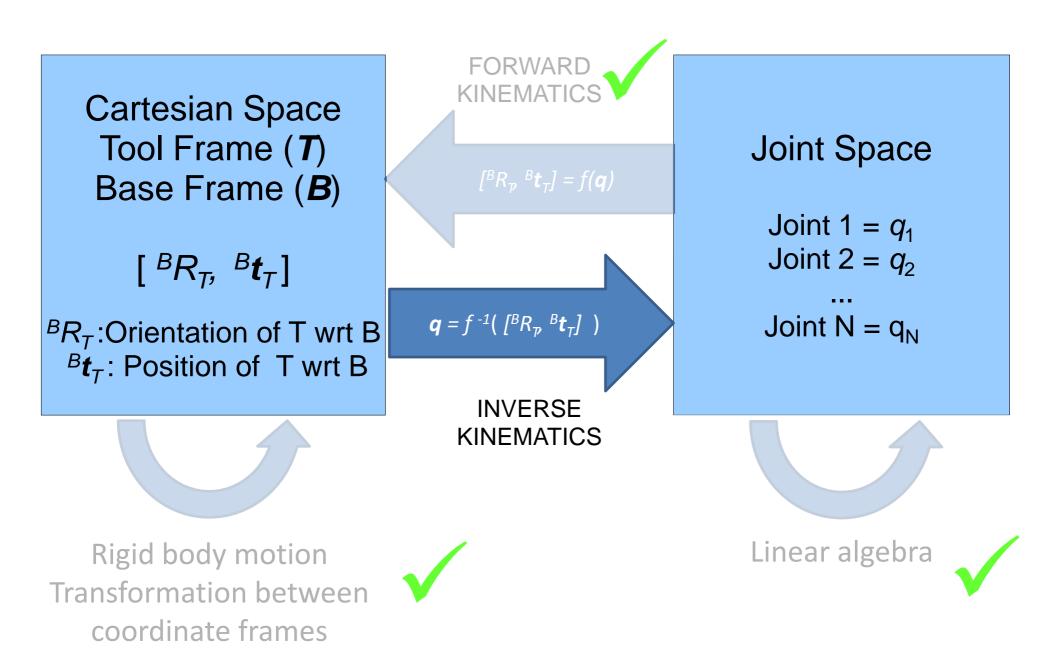
- . There are several conventions
 - Denavit Hartenberg (DH), modified DH, Hayati, etc.
 - These are conventions (habits), not laws!
- 1) Choose the base and tool coordinate frame
 - Make your life easy!
- 2) Start from the base and move towards the tool
 - Make your life easy!
 - In general each link has a coordinate frame.
- 3) Align each coordinate frame with a joint actuator
 - Conventionally it's the "Z" axis but this is not necessary and any axis can be use to represent the motion of a joint



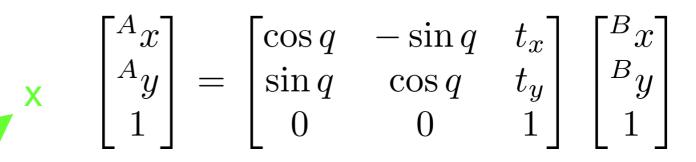
Barrett WAM

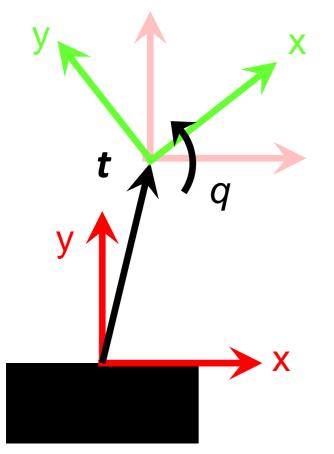
Forward Kinematics 3D





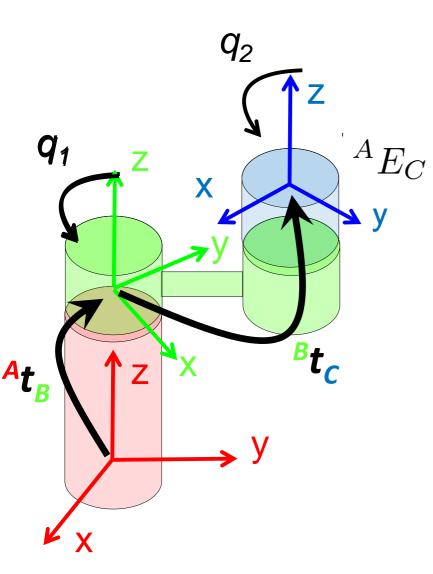
Inverse Kinematics 2D





Given ${}^{A}R_{B}$ and ${}^{A}t_{B}$ find qq only appears in ${}^{A}R_{B}$ so solving R for q is pretty easy. With several joints, the inverse kinematics gets very messy.

Inverse Kinematics 3D



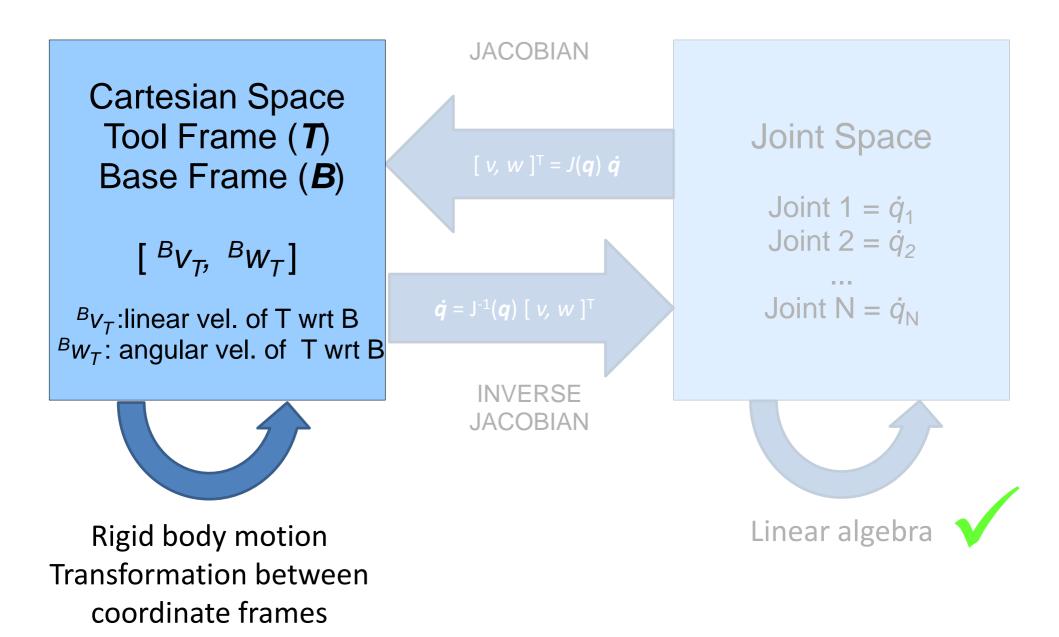
Likewise, in 3D we want to solve for the position and orientation of the last coordinate frame: Find q_1 and q_2 such that ${}^{A}E_{C} = \begin{bmatrix} R_{z}(q_1)R_{z}(q_2) & {}^{A}\mathbf{t}_{B} + R_{z}(q_1) & {}^{B}\mathbf{t}_{C} \\ \mathbf{0} & 1 \end{bmatrix}$

Solving the inverse kinematics gets messy fast!

- A) For a robot with several joints, a symbolic solution can be difficult to get
- B) A numerical solution (Newton's method) is more generic

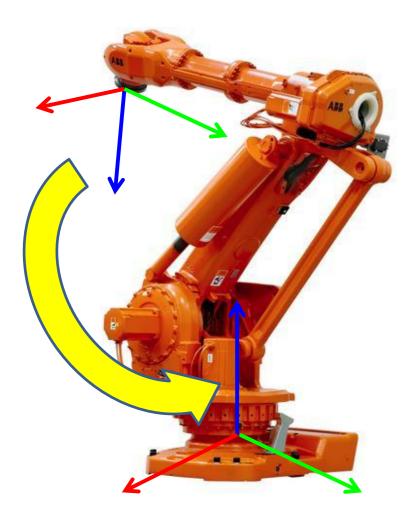
Note that the inverse kinematics is NOT

 ${}^{\mathbf{A}}E_{\mathbf{C}}^{-1} = {}^{\mathbf{C}}E_{\mathbf{A}}$



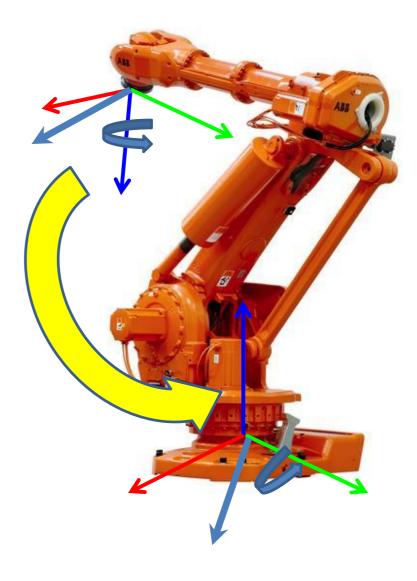
Rigid Body Transformation

Relates two coordinate frames



Rigid Body Velocity

Relate a 3D velocity in one coordinate frame to an equivalent velocity in another coordinate frame



Rotational Velocity

We note that a rotation relates the coordinates of 3D points with

$$^{A}p(t) = ^{A}R_{B}(t)^{B}p$$

Deriving on both sides with respect to time we get

$$v_{A_p}(t) = \frac{d^A p(t)}{dt} = {^A\dot{R}_B}^B p$$
$$v_{A_p}(t) = {^A\dot{R}_B}({^AR_B}^{-1A}R_B)^B p$$
$$v_{A_p}(t) = ({^A\dot{R}_B}^B R_A)^A p$$

Rotational Velocity

$${}^{A}\dot{R}_{B}{}^{A}R_{b}^{-1}$$
 is skew symmetric $\hat{a} = \begin{bmatrix} 0 & -a_{z} & a_{y} \\ a_{z} & 0 & -a_{x} \\ -a_{y} & a_{x} & 0 \end{bmatrix}$

And the instantaneous spatial angular velocity is defined by

$${}^{A}\hat{\omega}_{B} \coloneqq \begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix} = {}^{A}\dot{R}_{B}{}^{A}R_{B}^{-1}$$

Where ${}^{A}w_{B} = [w_{x} w_{y} w_{z}]^{T}$ form a vector that represents the angular velocity of a body.

Spatial Velocity

Velocity of a rigid body as seen from another frame (here called the "spatial" frame)

$${}^{A}E_{B}(t) = \begin{bmatrix} {}^{A}R_{B}(t) & {}^{A}\mathbf{t}_{B}(t) \\ 0 & 1 \end{bmatrix}$$
$${}^{A}\dot{E}_{B}{}^{A}E_{B}^{-1} = \begin{bmatrix} {}^{A}\dot{R}_{B} & {}^{A}\dot{\mathbf{t}}_{B} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} {}^{A}R_{B}^{T} & -{}^{A}R_{B}^{TA}\mathbf{t}_{B} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} {}^{A}\dot{R}_{B}{}^{A}R_{B}^{T} & -{}^{A}\dot{R}_{B}{}^{A}R_{B}^{T} \\ 0 & 0 \end{bmatrix}$$

The "*s"patial velocity* is defined by ${}^{A}\hat{V}_{B}^{s} = {}^{A}\dot{E}_{B} {}^{A}E_{B}^{-1}$

Where the linear velocity is defined by

$$^{A}v_{B}^{s} = -^{A}\dot{R}_{B}^{A}R_{B}^{TA}\mathbf{t}_{B} + ^{A}\dot{\mathbf{t}}_{B}$$

And the angular velocity is define as before by

$${}^{A}\hat{\omega}_{B}^{s} = {}^{A}\dot{R}_{B}^{A}R_{B}^{T}$$

Body Velocity

Velocity of a rigid body with respect to its own frame

$${}^{A}E_{B}(t) = \begin{bmatrix} {}^{A}R_{B}(t) & {}^{A}\mathbf{t}_{B}(t) \\ 0 & 1 \end{bmatrix}$$
$${}^{A}\hat{V}_{B}^{b} = {}^{A}E_{B}^{-1\,A}\dot{E}_{B} = \begin{bmatrix} {}^{A}R_{B}^{T\,A}\dot{R}_{B} & {}^{A}R_{B}^{T\,A}\dot{\mathbf{t}}_{B} \\ 0 & 0 \end{bmatrix}$$

The "**b**"ody velocity is defined by
$${}^{A}\hat{V}_{B}^{b} = {}^{A}E_{B}^{-1A}\dot{E}_{B}$$

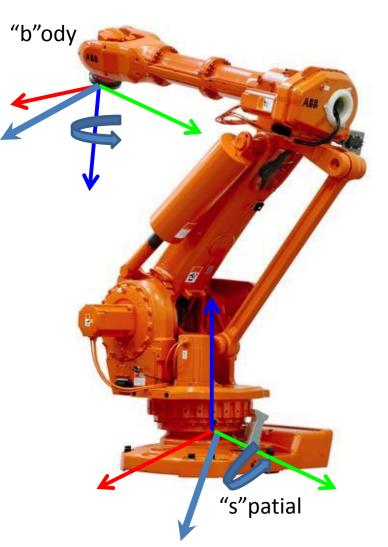
Where the linear velocity is defined by

$$^{A}v_{B}^{b} = ^{A}R_{B}^{TA}\dot{\mathbf{t}}_{B}$$

And the angular velocity is define as before by

$${}^{A}\hat{\omega}_{B}^{b} = {}^{A}R_{B}^{TA}\dot{R}_{B}$$

Transform Body Velocity to Spatial Velocity

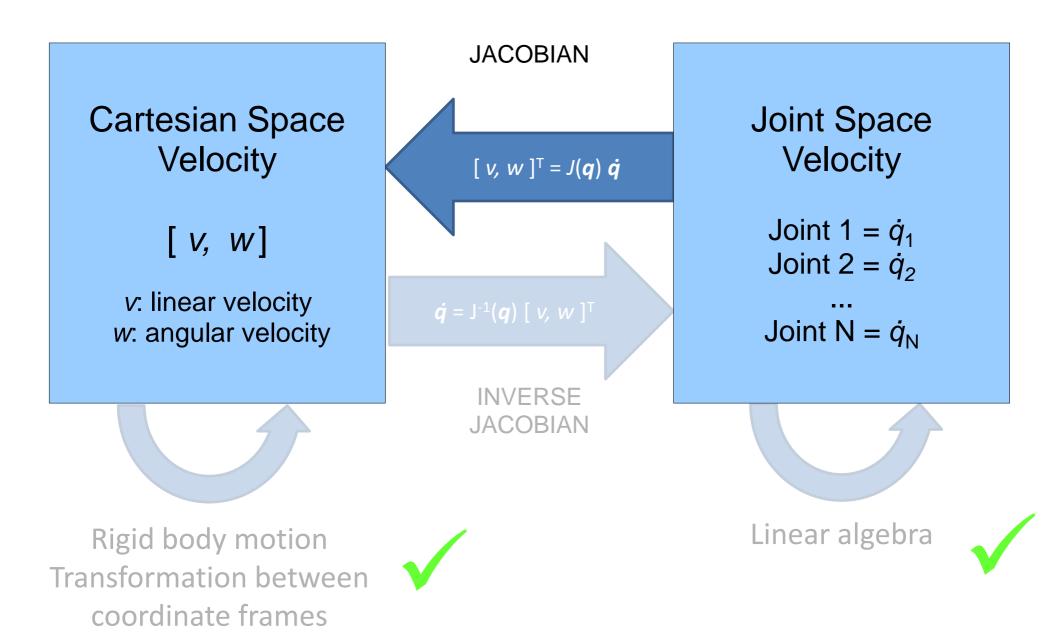


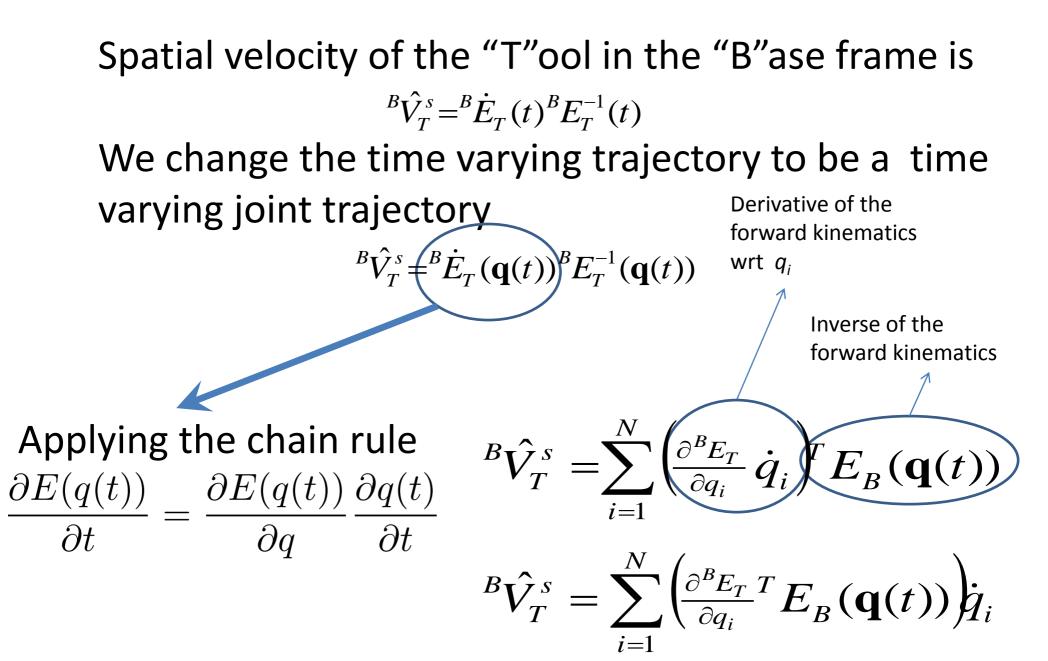
If you are given a "body velocity":

Rotate the tool about a given axis (in the tool frame)
Drive the tool along a given axis (in the tool frame)

Then you can compute the equivalent velocity in the "spatial" frame according to

$$\begin{bmatrix} {}^{A}v_{B}^{s} \\ {}^{A}\omega_{B}^{s} \end{bmatrix} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}\hat{\mathbf{t}}_{B}^{A}R_{B} \\ 0 & {}^{A}R_{B} \end{bmatrix} \begin{bmatrix} {}^{A}v_{B}^{b} \\ {}^{A}\omega_{B}^{b} \end{bmatrix}$$





Lets rewrite the previous result as

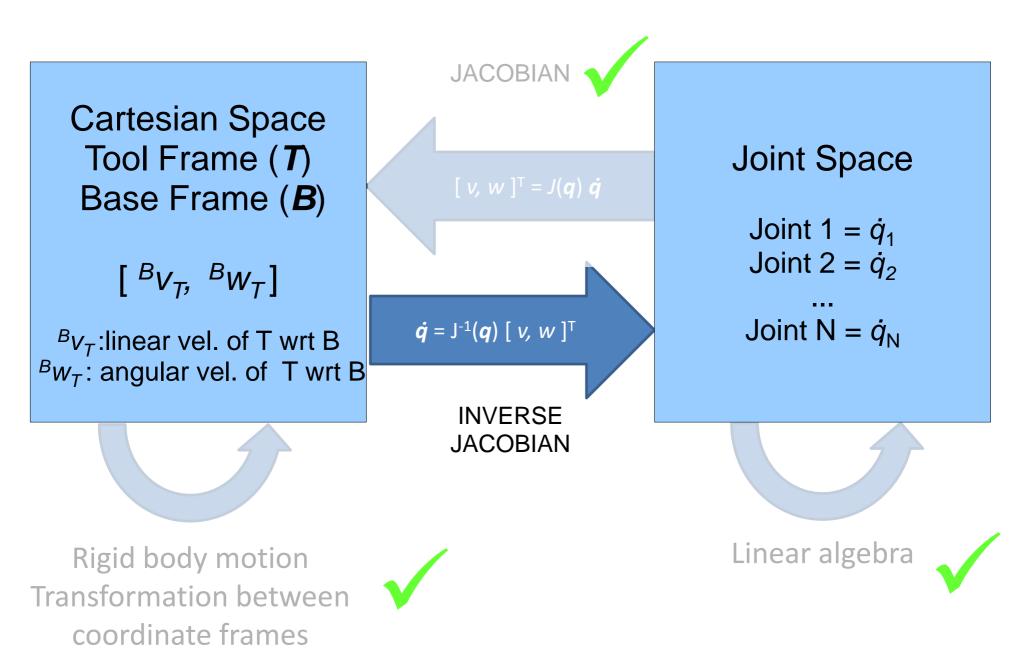
$$\begin{bmatrix} {}^{B}v_{T}^{s} \\ {}^{B}\omega_{T}^{s} \end{bmatrix} = J(\mathbf{q})\dot{\mathbf{q}}$$

Where J(q) is a 6xN matrix called the manipulator Jacobian that relates joint velocities to Cartesian velocities. Note that the Jacobian depends on **q** and, therefore, is configuration dependant.

- Each column of J(q) is given by the linear and angular velocities elements (v_x , v_y , v_z , w_x , w_y , w_z) found in each $\frac{\partial^B E_T}{\partial q_i}^T E_B$
- Thus, given the following "extraction" operator $\begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix}^{\vee} = \begin{bmatrix} v \\ \omega \end{bmatrix}$

J has the following structure

$$J(\mathbf{q}) = \left[\left(\frac{\partial^B E_T^{T}}{\partial q_1} E_B \right)^{\vee} \cdots \left(\frac{\partial^B E_T^{T}}{\partial q_N} E_B \right)^{\vee} \right]$$



We just derived that given a vector of joint velocities, the velocity of the tool as seen in the base of the robot is given by

$$\begin{bmatrix} {}^B \mathbf{v} \\ {}^B \boldsymbol{\omega} \end{bmatrix} = J(\mathbf{q}) \dot{\mathbf{q}}$$

If, instead we want to tool to move with a velocity expressed in the **<u>base</u>** frame, the corresponding joint velocities can be computed by

$$\dot{\mathbf{q}} = J^{-1}(\mathbf{q}) \begin{bmatrix} {}^{B}\mathbf{v} \\ {}^{B}\boldsymbol{\omega} \end{bmatrix}$$

Inverting a matrix is much easier than computing the inverse kinematics!

What if the Jacobian has no inverse?

A) No solution: The velocity is impossibleB) Infinity of solutions: Some joints can be moved without affecting the velocity (i.e. when two axes are colinnear)

