Robot Kinematics



Robot Manipulators

. Arobot manipulator is typically

moved through its joints

Revolute: rotate about an axis

Prismatic: translate along an axis
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SCARA 6 axes robot arm
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Transformation Within Joint Space

. Joint spaces are typically
defined in R"

Thus for a vector

a=|¢g .. ¢n

we can use additions
subtractions

dc = qq + A




Kinematics

Cartesian Space
Tool Frame (T)
Base Frame (B)

[ Ry, Pty ]

BR; :Orientation of T wrt B
Bt : Position of T wrt B
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Cartesian Transformation
Position and Orientation

. Combine position and orientation:

. Special Euclidean Group: SE(3)
SEB3)={(t,R):t e R’ R SO(3)} =R’ x SO(3)
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Homogeneous
representation

/_1/3 Ap ="E; °p




3D Rotations

. LOTS of different ways of representing them:
. Quaternion, Euler angles, axis/angle, Rodrigues
. ONE concept
A 3x3 rotation matrix that
“p =Ry "p
Where (*R:.T) “R, =“R; (*R.T) = |
. Elementary rotations

Rotation about X Rotation abouty Rotation about z

1 0 0 | [ cosf 0 sing| (cosa —sina 0]
R(#)=|0 cos¢ -sinp| R (B)=| O 1 0 |R,(x)=|sina cosa O
|0 sing cosg | |—sing 0 cosp 0 0 1

R = R,R,R,# R,R R,



Cartesian Transformation
Kinematic Chain

Waist rotation 3207

Shoulder rotation 0°
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T Gripper mounting

Wrist rotation 3(X)°
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[BRT/ BtT] =f(q)

q =f_1( [BRp BtT] )
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Forward Kinematics

Guidelines for assigning frames to robot links:

. There are several conventions

Denavit Hartenberg (DH), modified DH, Hayati,
etc.

These are conventions (habits), not laws!
1) Choose the base and tool coordinate frame
Make your life easy!

2) Start from the base and move towards the
tool

Make your life easy!
In general each link has a coordinate frame.

3) Align each coordinate frame with a joint
actuator

Conventionally it's the “Z" axis but this is not
necessary and any axis can be use to represent
the motion of a joint Barrett WAM
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Forward Kinematics 3D
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Inverse Kinematics 2D

A cosq —sing ty| [Pz
Ay — |sing cosq 1 By
1] 0 0 L] [1

Given R, and “t. find g

g only appears in “R.. so solving R
for g is pretty easy. With several
joints, the inverse kinematics gets

very messy.




Inverse Kinematics 3D

Likewise, in 3D we want to solve for the

A2 position and orientation of the last coordinate
g Az frame: Find g, and g, such that
Ap . _ {Rz(QHRz(Qz) AtB + R, (q1) Bte
¢~ 0 1

y

Solving the inverse kinematics gets messy fast!
A) For a robot with several joints, a symbolic

A, i solution can be difficult to get
B) A numerical solution (Newton’s method) is

s Y more generic
Note that the inverse kinematics is NOT
AEC-l — CEA




Cartesian Space
Tool Frame (T)
Base Frame (B)

[ Bvy, Bwy]

Bv;:linear vel. of T wrt B
Bw; : angular vel. of T wrt B
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Rigid Body Transformation
Relates two coordinate frames

Rigid Body Velocity
Relate a 3D velocity in one coordinate
frame to an equivalent velocity in another
coordinate frame
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Rotational Velocity

We note that a rotation relates the coordinates
of 3D points with

"p(t)="Rs (1)°p
Deriving on both sides with respect to time we get

vAp(t)=ARB(ARg”RB)Bp

V., (0 =('R,"R,)"p




Rotational Velocity

0 -a,
ARB ARb_l is skew symmetric a=| a, O
~a, a,

And the instantaneous spatial angular velocity
is defined by

0 -0 o
A~ . _AD Ap-1
W, =| o, 0 -o FR:R;
-0, o, 0

Where #wg = [ w, w, w, ]" form a vector that
represents the angular velocity of a body.




Spatial Velocity

Velocity of a rigid body as seen from another frame

(here called the “spatial” frame)
ey | Re(t)  “tg(t)
Eq(t) =
AE' AE—1: ARB AJtB AR; _AR;AtB _ ARBAR; _ARBAR;AtB"'AtB
o 0 0] O 1 0 0

The “s”patial velocity is defined by
A\'/\E')SZAE'B AEél
Where the linear velocity is defined by
Ave =—"R, "R “t,+ 1,
And the angular velocity is define as before by

Ars AD ApT
wg="Rg "Ry



Body Velocity

Velocity of a rigid body with respect to its own frame

AR, (1) Atg(t)
0 1

AR; ARB AR; Ats}

AEB (t) —

A\ib:AE—lAE' —
B B B |: O O

The “b”ody velocity is defined by
Av\é):AEgl AE'B
Where the linear velocity is defined by
=R} A,
And the angular velocity is define as before by

A~b_ ADT AE
wg="Rg "Ry



Transform Body Velocity to Spatial
Velocity

ubnody ) "
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o4 vl you are given a “body velocity”:

1) Rotate the tool about a given axis (in the tool frame)
2) Drive the tool along a given axis (in the tool frame)

Then you can compute the equivalent velocity in the “spatial”

frame according to

Avls3 ARB AtB ARB Avg

A _.s A A_D
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[v w]'=J(q) g

Gg=Jq)[vw]
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Manipulator Jacobian

Spatial velocity of the “T”ool in the “B”ase frame is
VP =P, (1) °E (1)

We change the time varying trajectory to be a time

varying joint trajector Derivative of the

forward kinematics

E () e

Inverse of the
forward kinematics

Applying the chain rule

0L(q(t)) _ 0E(q(t)) 9q(t)
ot dq Ot




Manipulator Jacobian

Lets rewrite the previous result as

o
V. .
R ERI ()]s
Wy

Where J(q) is a 6xN matrix called the manipulator Jacobian
that relates joint velocities to Cartesian velocities.

Note that the Jacobian depends on q and, therefore, is
configuration dependant.



Manipulator Jacobian

. Each column of J(q) Is given by the linear and
angular velocities elements (v,, v,, v,, W,, w,,
w,) found in ea(:haBE

oq;
. Thus, given the following “extraction” operator

o o] 7o

J has the following structure

OBE ’ OBE ’
J(Q) = TTE TTE
(@) [ 0 B) [an B]

TTE
B




Kinematics
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[vw] =J(q)dq
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Manipulator Jacobian

We just derived that given a vector of joint velocities, the
velocity of the tool as seen in the base of the robot is given by

w

5| = (@)

If, instead we want to tool to move with a velocity expressed
in the base frame, the corresponding joint velocities can be
computed by

a=J"a) s},

Inverting a matrix is much easier than computing the inverse
kinematics!



Manipulator Jacobian

What if the Jacobian has no inverse?

A) No solution: The velocity is impossible
B) Infinity of solutions: Some joints can be moved without affecting

the velocity (i.e. when two axes are colinnear)

v
The robc.)t ca.nnot move @3 In this
in this direction when the configuration,

robot is in this configuration. g, and g can

Hence J(q) is singular. counter rotate.
d4 Hence J(q) is
42 singul
gular.
B) . . BV
d,=-43 [Bw] =0




