
Decision Trees:
A comparison of various algorithms for

building Decision Trees

Vaibhav Mohan

April 18, 2013

Abstract

Decision Trees are a decision support tool that contains tree like
graph of decisions and the possible consequences. They are commonly
used in different real world scenarios ranging from operations research
to classifying a specie in a phylum given its features.

The Decision Tree is implemented using traditional ID3 algorithm
as well as an evolutionary algorithm for learning decision trees in this
paper. The Traditional Algorithm for learning decision trees is imple-
mented using information gain as well as using gain ratio. Each variant
is also modified to combat over-fitting using pruning. The Evolution-
ary Algorithm is implemented with fitness proportionate and rank
based as their selection strategy. The algorithm is also implemented
to have complete replacement and elitism as replacement strategy.
The two algorithms are compared based on their accuracy, precision
and recall by varying the aforementioned parameters on the datasets
taken from UCI Machine Learning repository[2]. The time taken for
learning the Decision Tree by each algorithm corresponding to each
setting is also compared in this paper.

1 Introduction

Classification is the problem of identifying a category for the given instance
whose category is unknown. The classifier tries to classify the given unknown
instance based on the data it learns from the training set and features it sees

1

in the instance for which prediction is to be done. This problem arises in
various fields ranging from operation research to robotics to making financial
decisions. There are wide varieties of classification problems in machine
learning domain, all of which cannot be solved using one technique [13].
Therefore, for proving that the results which we are getting from one kind
of technique is good enough for us makes it indispensable that we compare
the results with other techniques for the given problem. Whilst doing this,
we come across the various performance aspects of the algorithm i.e. where
it would fail and where it can do remarkably well in classifying the data.

One of the most popular technique for classifying data in Machine Learn-
ing domain is Decision Trees. The advantage of using Decision Trees in
classifying the data is that they are simple to understand and interpret. De-
cision tree have been well studied and widely used in the knowledge discovery
and decision support system. These trees approximate discrete-valued tar-
get functions as trees and are widely used practical method for inductive
reference[9]. Each line present in the datasets is known as the instance. The
instance contains the label and a vector of features present in it. The Deci-
sion Trees examines the feature of given instance and comes to a conclusion
on what label to assign based on the values present for the various features of
that particular instance. Each node in the decision tree is either a decision
node or a leaf node. This classifier resembles tree data structure as each
decision can have two outcomes, thereby making a binary decision tree that
culminates in a label corresponding to each set of given features.

Algorithms, such as ID3, often use heuristics that tends to find short
decision trees[9, 11], however finding the shortest decision tree is a hard op-
timization problem[6]. Genetic Algorithms (GAs) are inspired by the real
world process of evolution[9, 11, 7]. GAs have been used to construct short
and near-optimal decision trees. In order to utilize genetic algorithms, deci-
sion trees must be represented as chromosomes on which genetic operators
such as mutation and crossover can be applied. Genetic Algorithms have
been used in two ways for finding the near-optimal decision trees. One way
is that they can be used to construct decision trees in a hybrid or preprocess-
ing manner[8]. The other way is to apply them directly to decision trees[10].
In this paper, we implement decision trees using traditional ID3 algorithm
as well as Genetic Algorithm. The comparison of performance of both the
algorithms is done in this paper.

The remainder of paper is organized as follows. Section 2 defines the de-
cision trees and the various algorithms used in implementing decision trees.

2

Section 3 comprises of details of the parameters chosen pertaining to imple-
mented algorithms and experimental methods used with them. It also talks
about the datasets used for performing the experiment. Section 4 presents
the results obtained after performing the experiment. Section 5 talks about
the interpretation of the data which we got from the experiment. Finally,
Section 6 concludes this work.

2 Learning Decision Trees

The data classification is a two step process. The first step is training the
classifier using training data set. The second step involves predicting the
labels for the unknown datasets (or testing datasets). The decision tree is a
flow chart like tree structure where each node denotes a test on an attribute
and each branch denotes an outcome of the test. The leaf nodes present in
the decision trees represents classes or class distributions. This comes under
the training step. Now in order to classify an unknown instance, the attribute
values of instance are tested against decision tree and a path is traced from
root to leaf node which holds the class prediction for that sample. This comes
under the prediction step. The decision trees can easily be converted into
classification rules.

Decision tree falls under supervised learning techniques as we have known
labels in the training data set in order to train the classifier. The various al-
gorithms that are implemented in this paper are discussed in the subsections
given below.

2.1 Traditional Methods

The traditional algorithm for building decision trees is a greedy algorithm
which constructs decision tree in top down recursive manner. A typical
algorithm for building decision trees is given in figure 1.

The algorithm begins with the original set X as the root node. it iterates
through each unused attribute of the set X and calculates the information
gain (IG). The information gain is calculated by deducting conditional en-
tropy of the given attribute with the total entropy. The formulas needed to
calculate information gain along with the formula for calculating information
gain is given in the subsection given below.

The algorithm then chooses to split on the feature that has the highest

3

Figure 1: A recursive algorithm for building decision tree

information gain. The Set X is then split by the feature obtained in the
previous step to produce the subset of data depending on the value of feature.
The decision tree is then built recursively until every element in the subset
belongs to the same class, in which case, a terminal node is added to the
decision tree with a class label same as the class all its elements belong to.

Entropy and Information Gain

The information gain from the attribute test on the set of instances X is the
expected reduction in entropy. The algorithm computes the information gain
of each feature and then chooses the feature with highest information gain
for splitting. The formulas needed to calculate information gain along with
formula for calculating information gain is given below.

The total entropy is given by the formula:

H(X) = −
n∑

i=1

p(xi) log(p(xi)), (1)

The conditional entropy is given by the formula:

H(Y |X) = −
m∑
i=1

n∑
j=1

p(yi, xj) log(
p(yi, xj)

p(xj)
), (2)

and finally, the information gain (IG) is given by the formula:

IG(Y |X) = H(Y)−H(Y |X), (3)

4

The information gain is equal to total entropy for an attribute we have a
unique class label for each of the given attribute values.

Information gain is a good measure for deciding the relevance of attribute
in general. However if we have an attribute that can take large number
of distinct values, then splitting feature based on the information gain is
not prudent. For example, consider an attribute that contains the instance
number of each instance. Now if we use information gain heuristics, this
attribute will give the highest information gain value which would depict
that we can classify the samples perfectly. This would make the classifier to
over fit the training data. Now when we see an unknown instance with value
of instance number that is not present in the training set, the classifier would
fail to predict the label for it. In order to overcome this problem, we use a
new heuristics that uses gain ratio for deciding which feature to split on.

Gain Ratio

The gain ratio biases the decision tree against considering attributes with
higher number of distinct values thereby solving the drawback of the infor-
mation gain. Using gain ratio heuristics for choosing best feature to split
upon avoids over-fitting of training data. The gain ratio of an attribute is
calculated by dividing its information gain with its information value. The
formula for calculating information value is given below:

IV (Y |X) = −
n∑

j=1

p(y, xj) log(p(y, xj)), (4)

The gain ratio (GR) is then given by:

GR(Y |X) =
IG(Y |X)

IV (Y |X)
, (5)

Therefore we use gain ratio instead of information gain when searching for
best feature to split upon, avoiding the problem posed by using information
gain heuristics.

Pruning

In case of traditional algorithms for learning decision trees, when decision
trees are built, many of the branches may reflect noise or outliers in the

5

training data. In order to combat this over-fitting, we attempt to identify
and remove such branches with the goal of improving classification accuracy
on the unseen data. This is called tree pruning.

After the decision tree is made using the aforementioned algorithm, we
then traverse on each node of the tree and perform a statistical significance
test. We initially assume that there is no underlying pattern. Then actual
data is used for calculating the extent of deviation from a perfect absence
of pattern. Significant pattern is present in the data if degree of deviation
is statistically unlikely. We then calculate the probability, that under null
hypothesis, a sample of size v = n + p would exhibit the observed deviation
from the expected distribution of positive and negative examples[12]. The
deviation is measured by comparing actual number of positive and negative
examples in each subset, pk and nk, with the expected number of positives
and negatives, p̂k and n̂k:

The p̂k is given by -

p̂k = p× p̂k + n̂k

p + n
, n̂k = n× p̂k + n̂k

p + n
, (6)

The total deviation is then given by:

∆ =
d∑

k=1

(pk − p̂k)2

p̂k
+

(nk − n̂k)2

n̂k

, (7)

We then examine the value of ∆ to see if it confirms or rejects the null hy-
pothesis. With this pruning, the over-fitting of training data can be avoided
thereby increasing the accuracy of predictions.

2.2 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive heuristics search algorithm based on
the evolutionary ideas of natural selection ad genetics. They are a rapidly
growing area of artificial intelligence and are inspired by Darwin’s theory
about the evolution - survival of the fittest. GAs represent an intelligent
exploitation of a random search used to solve optimization problems. Though
they are randomized, they exploit historical information to direct the search
into the region of better performance within the search space. The idea
behind using GAs to solve the search problem in large state-space is that

6

they are good at navigating the state-space and find near-optimal solution
which could not have been found otherwise.

We generally start with a population of candidate solution, also called
individuals. These individuals are evolved towards the better solution ex-
ploring the state-space of the given problem. Each individual is represented
using genome encoding. The fitness function is defined such that it takes an
individual as its input and gives its fitness value. Therefore the key issues
to think about while programming a GA is its encoding and fitness function.
The fitness function should be chosen wisely so that it can award fitness
score to the individuals even when all the individuals perform badly. This
needs to be done because performance of all the individuals is poor at the
beginning of the search and even then the fitness function needs to drive
the search towards the part of state-space that contains better solution. A
meticulous decision about choosing the population size also needs to be done.
We should not choose very small population size as it would be insufficient to
cover the state-space for finding the solution. Increasing the population size
also increases the search time of GA. We have to hand tune this parameter
by running the algorithm on various population size so as to determine what
should be the good value of population size for our problem.

Once the initial population is chosen, we then use selection schemes for
selecting the individuals that are fittest among them. There are various
techniques such as fitness proportionate and rank based strategy for selecting
the fittest individuals. Once this is done, genetic operators such as mutation
and crossover is applied on them to generate the new generation and fitness
of new individuals is calculated. It is important that genetic operators are
defined in such a way so that once they give an individual after mutation or
crossover, the fitness function would still be able to calculate their fitness.
Otherwise the search could not be continued. After new individuals are
generated, we use some replacement strategy such as complete replacement
or elitism so as to choose the initial population for the next iteration. These
steps are performed till the fitness of the population converges i.e. fitness
of two subsequent generation does not change, or the specified number of
generations have reached.

It is also possible that the best performing individual would be lost if
we are completely replacing the old individuals with new ones. In order to
overcome this, the algorithm remembers the best individual seen so far.

7

Genetic Algorithms for Decision Trees

From the discussion above, it is clear that we need an encoding, initial popu-
lation size, fitness function, genetic operators such as mutation and crossover,
selection strategy and a replacement strategy in order to solve a problem us-
ing GAs. The following subsections discusses about how encoding is done,
what are the selection/replacement strategies used, how genetic operators
are implemented and how the fitness function is chosen in order to generate
decision trees using GAs.

1. Encoding: A tree based encoding scheme is used in this implementation
for encoding the population. The idea behind using tree based encoding
scheme is that trees can directly be encoded and manipulated. The tree
consists of a root node which has set of child nodes. These nodes can
then either have a leaf node or a decision node. The decision nodes
have decision variables associated with them while leaf nodes contains the
class label. The tree contains child nodes corresponding to each possible
outcome. This is a variable length encoding as the length of encoding is
dependent on depth/branching factor of the tree.

2. Crossover: The crossover in this encoding scheme is straightforward. We
traverse the trees and randomly choose a node for each and swap them
to get two different trees. Swapping the two sub-trees allows for large
change in behavior preserving good behavior generated by a sub-tree.

3. Mutation: Mutation is done by randomly choosing a node in the tree and
turning it into leaf node. Mutation is also done by traversing tree until
a leaf node is reached and then turning that leaf node into a randomly
chosen decision node. The idea behind this is that we just need a valid
solution and not necessarily a good solution after this operation. For
example even if we use same attribute as decision criteria twice in a given
path through the tree, it is still a valid solution.

4. Selection Strategy: Selection strategy is needed in order to choose the
fittest individuals from the population that are fit for crossover and mu-
tation. We have implemented two types of selection strategy viz. fitness
proportionate and rank based.

In case of fitness proportionate selection strategy, the fitness is assigned
to all the individuals using fitness function which is used for associating

8

a probability of selection with each individual. If fi is the fitness of
individual i in the population, then the probability of it being selected is
given by:

pi =
fi∑N
j=1 fj

,where N is the number of individuals in the population.

(8)

The rank order based selection strategy assigns rank to each individual
depending on their fitness. The fittest individuals are then selected with
probability p for mutation and probability 1−p for crossover where p must
be less than 0.2. This is because in general we choose lesser individuals
for mutation than crossover.

5. Replacement Strategy: Replacement strategy is needed for choosing
how many individuals do we need to keep for next generation. We have
implemented two types of selection strategy viz. complete replacement
and elitism. In case of complete replacement replacement strategy, we
replace the entire population again with new randomly generated individ-
uals while we keep an amount of individuals for using as next generation
population in case of elitism replacement strategy.

6. Fitness Function: The fitness function is used by GAs to calculate
the fitness of an individual. We have implemented three kind of fitness
function based on accuracy, precision and recall given by the individual
decision tree on the training data. The fitness function takes an individual
as its inputs and gives its fitness as output. In this case our input is a
decision tree. We then use this decision tree for predicting labels on
training data and calculate its accuracy/precision/recall depending on
what fitness function is used and then return the fitness of the individual.
We finally chose fitness function based on the accuracy. This is because
we wanted to maximize the accuracy of prediction in case of each datasets.

9

3 Algorithms and Experimental Methods

Traditional Algorithm

There were various parameters to choose in case of traditional algorithm
like whether to use gain ratio or information gain for splitting the features,
whether we should make algorithm to do pruning or not etc. We chose to use
gain ratio as it is a better heuristics than information gain. The results of
comparison of algorithm using gain ratio and using information gain is given
in the next section. The algorithm also have parameter for using pruning in
order to combat over-fitting. The experimentation was done using algorithm
with pruning and without pruning. The accuracy, precision and recall was
calculated on training set as well as testing set and was compared with the
other algorithm. A comparison of time taken in training the algorithms on
various datasets is also done.

Genetic Algorithm

There were various tunable parameters such as number of generations, pop-
ulation size, whether to use rank based or fitness proportionate strategy and
whether to use complete replacement or elitism as the replacement strategy.
The experimentation was done by varying population size and found that a
population size of 1000 is a good selection for this problem. Also the number
of generations was varied from 100 to 10000 and found that almost all the
data sets converge after 800 generations. Hence the number of generations
was fixed to 1000 to be safe. We also experimented with the selection strat-
egy and found that rank based selection strategy is good for our problem.
We further experimented with replacement strategy and found that the re-
sults were same for elitism and complete replacement strategy. The results
of these experimentations are given in the next section. The accuracy, preci-
sion and recall was calculated on training set as well as testing set and was
compared with the other algorithm. A comparison of time taken in training
the algorithms on various datasets is also done.

Data Sets

All the datasets used in performing the experiment was obtained from UCI
machine learning database [2]. All the datasets were processed by parsers

10

implemented by us specific to each datasets and was converted into integer
format from string format. This was done so that we can have homogeneous
type of data. This way we decoupled the algorithm from the type of data
present in the file i.e. no matter what kind of data we have in the file, the
algorithm always gets data in the integer format. Therefore if we want to use
any other dataset with this algorithm, all we need to do is write a parser that
converts the data into integer format and we could still use this algorithm in
predicting labels for that dataset. The details pertaining to each datasets,
their properties, and how they are processed is described in the sections given
below.

1. Congressional Voting Data: This dataset was obtained from UCI ma-
chine learning database[1]. This dataset contains two class labels namely
republican and democrat. There are 17 binary attributes in the datasets.
The first attribute represents the class label and the rest of attributes
define the feature of the instance that is associated with it. Each line in
this data file contains an example comprising of 17 attributes. All the
attributes were of yes/no type. The given data file had 435 instances in
it. We randomly chose 70% of examples for training the classifier and
remaining 30% for testing the classifier.

The class label democrat was encoded to 0 and republican was encoded
to 1. The attribute value y was encoded to 1 and value n was encoded
to 0. We also had missing data in some attributes which was represented
by ’?’ in the original data file. We treated this value as third value which
meant abstain i.e. no opinion was recorded. This value was encoded to
2.

2. Monk’s Problems Data: This dataset was obtained from UCI machine
learning database[3]. The Monk’s problem dataset had 6 files 3 each for
testing and training the classifier. This dataset contains two class labels
namely 0 and 1. There are 8 attributes in the datasets. The first attribute
represents the class label and the rest of attributes define the feature of
the instance that is associated with it. Each line in this data file contains
an example comprising of 8 attributes. Some of the attributes given in
this data file had 4 distinct values however none of the attributes took
more than 4 distinct values. Each of the given data file had 432 instances
in it.

11

The class label 0 was encoded to 0 and 1 was encoded to 1. The attribute
value 1, 2, 3, 4 were represented as 1, 2, 3, 4 in integer format after parsing.
These files did not have any missing data.

3. Mushroom Data: This dataset was obtained from UCI machine learn-
ing database[4]. This dataset contains the information about the physical
properties of the mushroom specimen. This dataset contains two class
labels namely e which stands for edible mushroom and p which stands for
poisonous mushroom i.e. they are unfit for consumption. There are 23
attributes in the datasets. The first attribute represents the class label
and the rest of attributes define the feature of the instance that is asso-
ciated with it. Each line in this data file contains an example comprising
of 23 attributes. Some of the attributes given in this data file had many
distinct values in them. The given data file had 8124 instances in it. We
randomly chose 70% of examples for training the classifier and remaining
30% for testing the classifier.

The class label e was encoded to 1 and p was encoded to 0. The attribute
value varied from a . . . z so we encoded them as a = 1, b = 2, c = 3
We also had missing data in some attributes which was represented by
’?’ in the original data file. There was only one attribute that contained
missing values in it so that attribute was dropped.

4. Splice Junction Data: This dataset was obtained from UCI machine
learning database[5]. This dataset contains data from a molecular biology
problem. The goal is to recognize boundaries between introns and exons.
This dataset had 2 files 1 each for testing and training the classifier. This
dataset contains multiple class labels namely ie, which represents intron-
exon boundary, ei, which represents exon-intron boundary, and n which
means neither boundary. There are 62 attributes in the datasets. The
first attribute represents the class label, the second attribute gives the
instance name and the remaining 60 fields are the sequence, starting at
position -30 and ending at position +30. Each of these fields is almost
always filled by one of a, g, t, c. Each line in this data file contains an
example comprising of 62 attributes. All the attributes in this file were
multi valued attributes.The given data file had 3190 instances in it. We
randomly chose 70% of examples for training the classifier and remaining
30% for testing the classifier.

The class label ie was encoded to 0, ei was encoded to 1 and n was

12

Dataset Train/Test Heuristic use pruning? Accuracy Precision Recall

Congressional Train IG no 1.0 1.0 1.0
Congressional Test IG no 0.9389 0.94 0.9038
Congressional Train GR no 1.0 1.0 1.0
Congressional Test GR no 0.9389 0.94 0.9038
Congressional Train IG yes 0.9145 1.0 0.9719
Congressional Test IG yes 0.9549 1.0 0.9342
Congressional Train GR yes 0.9145 1.0 0.9719
Congressional Test GR yes 0.9549 1.0 0.9342

Table 1: Performance results of traditional algorithm with different variations
using congressional datasets.

encoded to 2. The attribute value a, c, g, t were represented as 0, 1, 2, 3
respectively after parsing. The other characters in attributes were also
encoded to 3. These files did not have any missing data.

4 Results

Table 1 through 4 shows the results of traditional algorithm on congressional
dataset, monks datasets, mushroom dataset and splice junction dataset re-
spectively. The value of parameters were varied as shown in the table and
corresponding accuracy, precision and recall was recorded.

Table 5 through 8 shows the results of genetic algorithm on congressional,
monks problem, mushroom and splice junction datasets respectively. The
value of parameters were varied as shown in the table and corresponding
accuracy, precision and recall was recorded. The value of population size was
set to 1000 and number of generations was fixed to 1000. These parameters
were chosen after experimenting with their different values and recording the
accuracy. Here FP means fitness proportionate, RB means rank based, CR
means complete replacement and El means elitism.

Table 9 shows the time taken by algorithms to train on each datasets.
The time was recorded by choosing gain ratio as heuristics and using tree
pruning in case of traditional algorithm and using fitness proportionate selec-
tion strategy and elitism as replacement strategy in case of genetic algorithm.
The population size was fixed to 1000 and number of generations was also

13

Dataset Train/Test Heuristic use pruning? Accuracy Precision Recall

Monks 1 Train IG no 0.9355 0.9091 0.9677
Monks 1 Test IG no 0.8194 0.776 0.8982
Monks 1 Train GR no 0.9355 0.8971 0.9838
Monks 1 Test GR no 0.8194 0.7593 0.9351
Monks 1 Train IG yes 0.8226 0.8704 0.7581
Monks 1 Test IG yes 0.7431 0.7664 0.6991
Monks 1 Train GR yes 0.9355 0.9091 0.9677
Monks 1 Test GR yes 0.8333 0.7951 0.8981

Monks 2 Train IG no 0.9408 0.9355 0.9063
Monks 2 Test IG no 0.838 0.7195 0.838
Monks 2 Train GR no 1.0 1.0 1.0
Monks 2 Test GR no 0.8935 0.7857 0.9296
Monks 2 Train IG yes 0.9145 0.9291 0.8951
Monks 2 Test IG yes 0.8549 0.7374 0.8342
Monks 2 Train GR yes 1.0 1.0 1.0
Monks 2 Test GR yes 0.8935 0.7857 0.9296

Monks 3 Train IG no 0.8279 0.8421 0.8
Monks 3 Test IG no 0.6389 0.6915 0.5702
Monks 3 Train GR no 0.8525 0.85 0.85
Monks 3 Test GR no 0.6296 0.67 0.5878
Monks 3 Train IG yes 0.8279 0.8421 0.8
Monks 3 Test IG yes 0.6389 0.6915 0.5702
Monks 3 Train GR yes 0.8525 0.8621 0.8333
Monks 3 Test GR yes 0.6389 0.6915 0.5702

Table 2: Performance results of traditional algorithm with different variations
using Monk’s Problem datasets.

14

Dataset Train/Test Heuristic use pruning? Accuracy Precision Recall

Mushroom Train IG no 0.9954 0.9913 1.0
Mushroom Test IG no 0.9943 0.9889 1.0
Mushroom Train GR no 0.9958 0.992 1.0
Mushroom Test GR no 0.9934 0.9872 1.0
Mushroom Train IG yes 0.9954 0.9913 1.0
Mushroom Test IG yes 0.9943 0.9889 1.0
Mushroom Train GR yes 0.9924 0.9858 1.0
Mushroom Test GR yes 0.9881 0.9768 1.0

Table 3: Performance results of traditional algorithm with different variations
using Mushroom datasets.

Dataset Train/Test Heuristic use pruning? Accuracy Precision Recall

Splice Train IG no 0.9996 0.9994 0.9991
Splice Test IG no 0.8025 0.7773 0.6339
Splice Train GR no 0.9996 0.9994 0.9991
Splice Test GR no 0.8025 0.7773 0.6339
Splice Train IG yes 0.9167 0.8863 0.8392
Splice Test IG yes 0.8036 0.7535 0.6320
Splice Train GR yes 0.9167 0.8863 0.8392
Splice Test GR yes 0.8036 0.7535 0.6320

Table 4: Performance results of traditional algorithm with different variations
using Splice junction datasets.

15

Dataset Train/Test Selection Replacement Accuracy Precision Recall

Congressional Train FP CR 0.9994 0.9991 0.9954
Congressional Test FP CR 0.9032 0.8653 0.9375
Congressional Train RB CR 0.9985 0.9975 0.9951
Congressional Test RB CR 0.8935 0.8773 0.9271
Congressional Train FP El 0.9145 0.9942 0.9719
Congressional Test FP El 0.8955 1.0 0.9342
Congressional Train RB El 0.934 0.9322 0.9619
Congressional Test RB El 0.9054 1.0 0.9117

Table 5: Performance results of genetic algorithm with different variations
using congressional datasets.

fixed to 1000. These parameters were chosen after experimenting with their
different values and recording the accuracy.

Figure 2 shows the plot of number of generations vs fitness for the datasets
used in this experiment.

5 Discussion

We compare the results of various implementations in this section.

Congressional voting dataset

Table 1 shows the results of experimentation with traditional algorithm by
varying its various parameters. It can be seen from the results that there
is no change in accuracy, precision and recall when we use the classifier
for predicting data on training as well as testing dataset no matter what
heuristics we use. This happens because each attribute in this dataset takes
at most two values and hence gain ratio heuristics gives results similar to
information gain heuristics. It can also be seen that we get perfect accuracy
when predicting on training dataset. Therefore we experimented with a
version that uses pruning and found that prediction accuracy on unseen data
increases. This corroborates the fact that we were over-fitting the training
data and pruning helped us in combating over-fitting.

16

Dataset Train/Test Selection Replacement Accuracy Precision Recall

Monks 1 Train FP CR 0.8321 0.8491 0.8654
Monks 1 Test FP CR 0.7532 0.696 0.8051
Monks 1 Train RB CR 0.8309 0.8472 0.8683
Monks 1 Test RB CR 0.7654 0.7152 0.7966
Monks 1 Train FP El 0.8226 0.8704 0.7581
Monks 1 Test FP El 0.7431 0.7664 0.6991
Monks 1 Train RB El 0.8135 0.8291 0.8635
Monks 1 Test RB El 0.7374 0.7092 0.8265

Monks 2 Train FP CR 0.7925 0.8086 0.7851
Monks 2 Test FP CR 0.7532 0.696 0.7784
Monks 2 Train RB CR 0.8321 0.8491 0.8654
Monks 2 Test RB CR 0.7532 0.696 0.8051
Monks 2 Train FP El 0.9408 0.9655 0.875
Monks 2 Test FP El 0.83 0.7237 0.7746
Monks 2 Train RB El 0.9355 0.9091 0.9677
Monks 2 Test RB El 0.8132 0.7856 0.8783

Monks 3 Train FP CR 0.7577 0.7532 0.7231
Monks 3 Test FP CR 0.6054 0.6374 0.5306
Monks 3 Train RB CR 0.7754 0.8032 0.7941
Monks 3 Test RB CR 0.6352 0.6723 0.5459
Monks 3 Train FP El 0.8177 0.8232 0.77
Monks 3 Test FP El 0.63 0.677 0.5502
Monks 3 Train RB El 0.8171 0.8229 0.7673
Monks 3 Test RB El 0.6365 0.6712 0.5512

Table 6: Performance results of genetic algorithm with different variations
using Monk’s Problem datasets.

17

Dataset Train/Test Selection Replacement Accuracy Precision Recall

Mushroom Train FP CR 0.9991 1.0 1.0
Mushroom Test FP CR 0.9933 1.0 1.0
Mushroom Train RB CR 0.9925 0.9968 0.9954
Mushroom Test RB CR 0.9914 0.9964 0.9995
Mushroom Train FP El 0.9953 0.99 0.9975
Mushroom Test FP El 0.9946 0.9895 0.9894
Mushroom Train RB El 0.9955 0.9991 0.9977
Mushroom Test RB El 0.9933 0.9951 0.9981

Table 7: Performance results of genetic algorithm with different variations
using Mushroom datasets.

Dataset Train/Test Selection Replacement Accuracy Precision Recall

Splice Train FP CR 0.9619 0.9457 0.9312
Splice Test FP CR 0.7951 0.805 0.6343
Splice Train RB CR 0.9551 0.949 0.9531
Splice Test RB CR 0.8031 0.7743 0.6742
Splice Train FP El 0.9755 0.9597 0.9587
Splice Test FP El 0.813 0.793 0.6585
Splice Train RB El 0.9639 0.9493 0.9482
Splice Test RB El 0.8015 0.8132 0.6365

Table 8: Performance results of genetic algorithm with different variations
using Splice junction datasets.

Dataset Training Time (traditional) Training Time (GA)

Congressional 41 ms 226505 ms
Monks 1 12 ms 266819 ms
Monks 2 20 ms 365224 ms
Monks 3 15 ms 268876 ms

Mushroom 246 ms 918150 ms
Splice 419 ms 1415455 ms

Table 9: Training time taken by various algorithms on all datasets.

18

Figure 2: Number of generations vs fitness plot for various datasets.

19

Table 5 shows the results of experimentation with genetic algorithm by
varying its various parameters. It can be seen from the results that we get
highest accuracy when we use rank based selection strategy and elitism as
replacement strategy. All the other variations give almost similar results.

It can be seen from the results of Table 1 and 5 that traditional algorithm
performs better as compared to genetic algorithm in this case however the
difference in prediction accuracy is very small.

Monk’s Problem dataset

Table 2 shows the results of experimentation with traditional algorithm by
varying its various parameters. It can be seen from the results that there
is no change in accuracy, precision and recall when we use the classifier
for predicting data on training as well as testing dataset no matter what
heuristics we use. This might be happening because the attributes does not
have many distinct values in case of this dataset.We also experimented with
a version that uses pruning and found that prediction accuracy on unseen
data is almost similar corroborating the fact that we were not over-fitting the
training data. It can also be seen that the classifier doesn’t do well on the
Monks 3 dataset. This would be because the given dataset contains more
noise as compared to the other datasets thereby decreasing the prediction
accuracy.

Table 6 shows the results of experimentation with genetic algorithm by
varying its various parameters. It can be seen from the results that we get
highest accuracy when we use rank based selection strategy and complete
replacement as replacement strategy in case of Monks 1 data. Monks 2 data
gives highest accuracy when we use fitness proportionate selection scheme
and elitism as replacement strategy. Monks 3 data gives highest accuracy
when we use rank based selection scheme and elitism as replacement method.
All the other variations give almost similar results.

It can be seen from the results of Table 2 and 6 that traditional algorithm
performs significantly better than genetic algorithm on all the given datasets
of Monk’s problem. This could be because the state-space of Monk’s problem
is very large and genetic algorithm would not be able to explore it fully.

20

Mushroom dataset

It can be seen from the table 3 that varying the parameters of traditional
algorithm does not affect the accuracy, precision and recall in this case. This
might be happening because the data set might not be having any noise
as well as all the attributes take almost similar number of distinct values
thereby rendering gain ratio and pruning useless in this case.

Table 7 shows similar results as table 3 substantiating the fact that genetic
algorithm performs similar to traditional algorithm.

Splice Junction dataset

It is evident from table 4 that there is no change in accuracy, precision and
recall when we use the classifier for predicting data on training as well as
testing dataset no matter what heuristics we use. This might be happening
because the attributes does not have many distinct values in case of this
dataset. We also experimented with a version that uses pruning and found
that prediction accuracy on unseen data is almost similar to the version that
does not use pruning. This might be happening because the datasets might
not be having much noise in it.

Table 8 shows similar results as table 4 substantiating the fact that genetic
algorithm performs similar to traditional algorithm in this case.

Training time on datasets

It can be seen from table 9 that training classifier using traditional algorithm
requires substantially lesser time than genetic algorithm. This happens be-
cause genetic algorithm uses many agents to search the space which requires
a large amount of computation time and hence training the algorithm using
GA takes longer.

Fitness of individuals with respect to generation

Figure 2 shows the number of generations vs fitness plot for various datasets
. The population size was fixed to 1000 for plotting these graphs. It can be
seen from the graphs that all the classifiers had bad fitness when algorithm
started its execution and eventually their fitness kept growing. The algorithm
converged in almost all the cases near 800th generation. After that there

21

was very less fluctuation of fitness in all the cases. Hence the parameter for
number of generations was fixed to 1000. It might have been possible that
the algorithm would have found even better solution. This would require
more number of generations which would consume even more time.

6 Conclusions

It have been shown that traditional algorithm have performed well in almost
all the cases as compared to the genetic algorithm. It is also seen that training
classifier using genetic algorithm takes longer as compared to traditional
algorithm. However GAs are capable of solving a large variety of problems
where traditional decision tree algorithm might fail. For example, we can get
really good accuracy in case of noisy data with genetic algorithm while the
traditional algorithm would fail to do that as it might also learn noise while
training on the given data.

The limitation of our approach was that we were doing completely random
search and then trying to move towards a favorable state. Combining ID3
algorithm with GAs might help in overcoming this limitation. This approach
would have some idea about the point from where search could be started
and it might get to more optimal solution while exploring the state-space.

References

[1] D.J. Newman A. Asuncion. Uci ma-
chine learning repository congressional voting
data[http://archive.ics.uci.edu/ml/datasets/congressional+voting+records],
2007.

[2] D.J. Newman A. Asuncion. Uci machine learning repository
[http://www.ics.uci.edu/ mlearn/mlrepository.html], 2007.

[3] D.J. Newman A. Asuncion. Uci machine learning repository monk’s
problems data[http://archive.ics.uci.edu/ml/datasets/monk

[4] D.J. Newman A. Asuncion. Uci machine learning repository mushroom
data[http://archive.ics.uci.edu/ml/datasets/mushroom], 2007.

22

[5] D.J. Newman A. Asuncion. Uci ma-
chine learning repository splice junction
data[http://archive.ics.uci.edu/ml/datasets/molecular+biology+2007.

[6] L.H. Bodlaender and H. Zantema. Finding small equivalent decision
trees is hard. International Journal of Foundations of Computer Science,
11(2):343–354, 2000.

[7] D. L. Goldberg. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley, 1989.

[8] H. Vafaie K. DeJong J. Bala, J. Huang and H. Wechsler. Hybrid learn-
ing using genetic algorithms and decision tress for pattern classification.
Proceedings of the 14th International Joint Conference on Artificial In-
telligence, Montreal, Canada, pages 719–724, 1995.

[9] T. M. Mitchell. Machine Learning. McGraw hill, 1997.

[10] A. Papagelis and D. Kalles. Ga tree: genetically evolved decision trees.
Proceedings of 12th IEEE International Conference on Tools with Arti-
ficial Intelligence, pages 203–206, 2000.

[11] P. E. Hart R. O. Duda and D. G. Stork. Pattern Classification, 2nd Ed.
Wiley interscience, 2001.

[12] S. Russell and P. Norvig. Artificial Intelligence : A Modern Approach,
3rd Ed. Prentice Hall, 2009.

[13] D. H. Wolpert and W. G. Macready. No free lunch theorems for opti-
mization. Evolutionary Computation, IEEE Transactions on, 1(1):67–
82, 1997.

23

