
Comparison of various classification models for making financial deci-

sions 

 

 

 

 

 

 
 

Abstract 

Banks are having an important place in the 

market economies. They decide who could get 

financial loans and the terms on which it 
should be given. Individuals and companies 

require bank loans in order for markets and so-

ciety to function properly.  

 

Credit scoring algorithms are the tools used by 

banks in determining whether the loan should 

be approved for individual/company or not. In 

this project, I implemented various classifica-

tion algorithms for predicting whether some-

body will experience financial distress in the 

next two years by looking on various parame-
ters like monthly income, age, number of open 

credit lines and loans etc. A comparison of ac-

curacy of implemented models is also done. 

 

The model can be used by borrowers to help 

them in making best financial decisions. 

1 Introduction 

Individuals/companies apply for loans so as to 
keep their business going. Banks play crucial role 

in providing individuals/companies with funds so 

that the market and society could function proper-
ly. But then, not all individuals/company’s loan 

application should be approved. In order to give a 

decision on a loan application, the bank looks on 
credit history of an individual/company. The pa-

rameters include monthly income, age, number of 

open credit lines and other approved loans for that 
individual. These parameters are used in predicting 

whether a person would be suitable for giving loan 

or not. This functionality can be achieved by using 

credit scoring algorithms to predict whether some-
body will experience financial distress in the next 

two years.  

 
In this paper, I have implemented various classifi-

ers for predicting the aforementioned decision. The 

algorithms implemented in this paper are Percep-
tron predictor, Winnow predictor, and an ensemble 

training algorithm that uses combination of k-

nearest neighbors and neural networks algorithm 
with instance bagging for predicting the labels. The 

details of the above algorithms are given in subse-

quent sections in this paper.  
 

I have also done some preprocessing of data as 

some of the instances had noisy data while others 
had some missing data. Its details are given in the 

subsequent sections. This paper also does the com-

parison of accuracies obtained by each classifica-
tion algorithm. 

 

2 Classification 

2.1 Machine Learning techniques used 

The data is preprocessed so that noisy data and 

missing data in some instances can be handled. 

The machine learning techniques that are used in 
predicting the labels are Perceptron predictor, 

Winnow predictor, and an ensemble training algo-

rithm that uses combination of k-nearest neighbors 
and neural networks algorithm with instance bag-

ging. Details on how data is cleaned, and why a 

Vaibhav Mohan  
     Computer Science Department  

Johns Hopkins University  

Baltimore, MD 21218, USA  
vmohan3@jhu.edu  



given algorithm is implemented and used are de-

scribed in the sections given below. 
 

2.2 Data 

The data used in this project is obtained from the 
competition titled “Give me some credit” in 

kaggle.com. The data file contains various parame-
ters such as Monthly Income, Number of Depend-

ents, age, number of open credit lines and loans 

etc. It is stored in csv format. Since the test data 
was not having labels, therefore in order to do 

training and predictions, I separated the train data 

in two groups. The train data contained 150,000 
instances. I used 80% data for training the classifi-

ers and remaining 20% for testing. The algorithms 

were also used to predict test data but since labels 
were not available for that, accuracy for it cannot 

be calculated. The data contains various parame-

ters. Each parameter is described briefly below 
along with how it is processed to deal with missing 

data. 

a) Instance Number (column 1): This contains 

the instance number data. It is left as is. 

 

b) SeriousDlqin2yrs (column 2): This is of bina-

ry type. Our algorithm is used to predict this. 

This depicts whether a person experienced 90 

days past due delinquency or worse. 

 

c) RevolvingUtilizationOfUnsecuredLines (col-

umn 3): Total balance on credit cards and per-

sonal lines of credit except real estate and no 
installment debt like car loans divided by the 

sum of credit limits. This is in percentage. The 

missing data was replaced with 0 and if any da-

ta in this column was greater than 100, it was 

replaced with data%100. 

 

d) Age (column 4): Contains the age of the bor-

rower in years. It is of integer type. This col-

umn didn’t contain any missing data. However 

the data in this column which was greater than 

100 was replaced with data%100. 

 

e) NumberOfTime30-59DaysPastDueNot 

Worse (column 5): This column contains 

number of times borrower has been 30-59 days 

past due but no worse in the last 2 years. The 

missing data was replaced with 0. 

 

f) DebtRatio (column 6): This field contains da-

ta in percentage form. It is obtained by dividing 

the sum of monthly debt payments, alimony, 

living costs with monthly gross income. This 

column didn’t contain any missing data. 

 

g) MonthlyIncome (column 7): This column 

contained the information about the monthly 
income of an individual. The missing data was 

replaced by the average of monthly income of 

all the instances. 

 

h) NumberOfOpenCreditLinesAndLoans (col-

umn 8): This column contained information 

about the number of open loans such as car 

loans, house loans and lines of credit (ex. Cred-

it card). The missing data was replaced with a 

zero. 

 

i) NumberOfTimes90DaysLate (column 9): 
This column had information about the number 

of times an individual was late by 90 days or 

more in paying their bills. The missing value 

was replaced with 0. 

 

j) NumberRealEstateLoansOrLines (column 

10): This column contained information about 

number of mortgage and real estate loans in-

cluding home equity lines of credit an individ-

ual have taken. The missing value was again 

replaced with zero. 

 

k) NumberOfTime60-89DaysPastDueNot 

Worse (column 11): This field contains the in-

formation about the number of times borrower 

has been 60-89 days past due but no worse in 

the last 2 years. The missing values in this col-

umn were again replaced with a zero. 

 

l) NumberOfDependents (column 12): This 

column contained information about the num-

ber of dependents in the family excluding 

themselves. The missing values in this column 
were again replaced with a zero. 

 

2.3 Perceptron Predictor 

The perceptron predictor was used initially to see if 
it can learn the data properly and that implement-

ing neural networks for the given data would be a 

wise choice or not. Also according to Daniel et. al, 
the perceptron classifier is well suited for linearly 

separable data. Hence I implemented this first to 

see if we can gain good accuracy in prediction. 

The perceptron predictor is a mistake driven algo-

rithm i.e. updates to the weight vector of the per-



ceptron is made only when an example is misclas-

sified. The algorithm for perceptron predictor is 
given in figure 1. 

             Figure 1. Perceptron Predictor Algorithm 

 

In this algorithm, the weight vector w is initialized 

to 0. The threshold β is initialized to 0.0, learning 
rate η is assigned to 0.1, and number of training 

iterations is set to 10. This algorithm runs as many 

number of times as number of iterations is speci-

fied. For each example i, the algorithm receives the 
feature vector xi and computes its dot product with 

the weight vector w. Now if this dot product is 

greater than the threshold, the predicted label is 1 
otherwise the predicted label is -1. The algorithm 

then checks whether the predicted label matches 

the original label. If the predicted label matches the 
original label, the weight vector is kept as is. If the 

predicted label does not matches the original label, 

then the weight vector is updated according to the 

formula: 
 

New Weight Vector = Old Weight Vector + learning 

rate*original label*feature vector 

 

This algorithm is implemented by me for the given 
datasets and its accuracies by varying number of 

iterations on test data is recorded and listed in the 

results section. 

 
 

 

2.4 Winnow Predictor 

This algorithm is similar to perceptron predictor. 

The only changes between this algorithm and per-

ceptron are the way this initializes its parameters 
and its update function for the weight vector. The 

Winnow predictor algorithm is given in figure 2. 

           

            Figure 2. Winnow Predictor Algorithm 

 

In this algorithm, the weight vector w is initialized 
to 1. The threshold β is initialized to n/2 where ‘n’ 

is the number of instances, learning rate η is as-

signed to 0.1, and number of training iterations is 
set to 10. For each example i, the algorithm re-

ceives the feature vector xi and computes its dot 

product with the weight vector w. Now if this dot 

product is greater than the threshold, the predicted 
label is 1 otherwise the predicted label is -1. The 

algorithm then checks whether the predicted label 

matches the original label. If the predicted label 
matches the original label, the weight vector is 

kept as is. If the predicted label does not matches 

the original label, then the weight vector is updated 

according to the formula: 
 

New Weight Vector = Old Weight Vector * (learning 

rate) original label*sign (feature vector) 

 
Also if the new weight is greater than some fix 

quantity µ = 1.0e6, then the new weight is made 

equal to µ. Again this algorithm is also implement-

ed and its performance is shown in the results sec-
tion. 

 



2.5 Ensemble Learning Algorithm – Neural 

Networks combined with k-nearest neigh-

bors algorithm 

Although the Perceptron Predictor algorithm 
seemed promising, the single layer perceptrons are 

only capable of learning linear data. For ex. Only 

one perceptron cannot be used to represent the 
XOR function. According to Chuanyi et. al, in or-

der to obtain a classification system that have good 

generalization performance as well as efficiency in 

space and time, a learning method based on com-
binations of weak classifiers can be used. Weak 

classifiers are linear classifiers that can do just a 

little better than making random guesses. Also ac-
cording to Igor et. al, we can achieve good perfor-

mance if we use mean of labels of k-nearest 

neighbors while training the data instead of simply 

taking the label of example for which the label is 
misclassified.  

 

Keeping all these points in mind, I came up with 
an algorithm that combined the k-nearest neighbor 

algorithm with neural networks. Neural networks 

are combination of perceptron. The Perceptron 
Predictor algorithm was preferred over Winnow 

Predictor algorithm for implementing the subclas-

sifiers in ensemble learning algorithm because the 

former performed better than the latter. The algo-
rithm implemented here is a two layer feed forward 

network. The input layer consists of training data. 

The next layer is called hidden layer which con-
tains hidden nodes. The values from these hidden 

nodes are then combined to produce a final output. 

We have a parameter ‘K’ in the implementation 
that depicts the number of perceptron used in hid-

den layer. The algorithm also have a parameter 

‘k_nn’ that defines how many instances are used in 

obtaining the mean value of the label using k-
nearest neighbors algorithm. Here each perceptron 

‘k’ has its own set of weight vectors wk. Each per-

ceptron also have a weight µk associated with it 
which is used when we combine the output from it. 

The prediction of label using this algorithm is giv-

en by the following equation: 

 
Equation 1. Prediction function for Ensemble predictor. 

 

Where h(z) is equal to 1 if z is greater than or equal 

to zero and zero otherwise, and g(z) is given by: 

Here the function ‘g’ is an activation function 

which transforms non-linear inputs to output which 

is usually binary. Neural networks use sigmoid 
functions to approximate binary output.  

 

The training of the neural networks is done using 

the ‘k’ perceptrons which we have in the hidden 
layer. Each perceptron is trained using aforemen-

tioned algorithm with the following two changes: 

 
1) For the kth sub classifier, we exclude every 

kth instance from that perceptron’s training 

data i.e. if i%K=k, then that instance is not 
included in training that sub classifier. 

This approach is known as instance bag-

ging. 

 
2) During the training of the sub classifier, if 

we predict a wrong label, then we don’t 

use the original label from the same in-
stance in learning. Instead, we use k-

nearest neighbor algorithm to find k-

nearest neighbors using Euclidean distance 

and take the mean of the labels of ‘k_nn’ 
number of instances. Now if the mean is 

greater than or equal to 0.5, we use origi-

nal label as ‘1’. Otherwise we use ‘0’ as 
the original label. 

 

Now for learning the weights µk associated with 
each sub classifier, we use the following equation: 

      Equation 2. Function for learning weights µk. 

 

Where ‘M’ is the set of misclassified examples. 
The algorithm for updating the µk associated with 

each sub classifier is given in figure 3. 

 

Thus the algorithm for training the ensemble pre-
dictor is given in figure 4. 

 

   
 

 

21
)(

z

z
zg






 
 Figure 3. Update algorithm for µk of sub classifier ‘k’. 

 

             Figure 4. Ensemble Predictor Algorithm. 

 

The problem faced in implementing the above pro-

posed algorithm was that k-nearest neighbors algo-

rithm runs in O(n2). Hence the algorithm was 
taking a lot of time in training. Therefore in order 

minimize the time, one more parameter named 

‘num_instances_k_nn’ was introduced that limited 
the number of instances to be used for finding the 

‘k’ nearest neighbor of the given instance. The 

number of instances for training k-nearest neigh-

bors are chosen at random from the given instances 
and then finally ‘k_nn’ number of instances were 

taken to obtain the mean for finding the label. 

 
One other problem faced in implementing this al-

gorithm was to decide whether the output from k-

nearest neighbor should be fed into the neural 
network or the reverse must be done. So I experi-

mented with both the models and found that former 

yielded better accuracy in predicting data as com-

pared to latter.  
 

 

3 Experimental framework and results 

All the implementations were tested on system 

running on Intel core-i7 3610QM @ 2.3 GHz. The 
operating system used was Windows 7. Implemen-

tations were done using JAVA v1.7 using eclipse 

as IDE. The comparison of accuracies of different 
algorithms were recorded and compared. 

 

3.1 Perceptron Predictor  

The perceptron predictor was tested by varying the 

number of iterations in training and also by varying 
its learning rate. The number of instances in train-

ing data was 120,000 and that in test data was 

30,000. The results are shown in table 1. 

By seeing the results, we can say that the classifier 

is able to learn the data properly and give predic-

tions with good accuracy. 
 

 
Number of 

iterations  

Learning 

rate (α) 

Accuracy 

10 0.01 93.19 % 

50 0.01 93.19 % 

100 0.01 93.17 % 

200 0.01 93.17 % 

500 0.01 93.17% 

10 0.1 93.19 % 

50 0.1 93.19 % 

100 0.1 93.17 % 

200 0.1 93.18 % 

500 0.1 93.18 % 

 
       Table 1. Results for Perceptron Predictor Algorithm 

 

From the results given above, we can say that in-

crease in number of iterations decreases the accu-

racy of predictions while changing learning rate 
have almost no effect on predictions. 

3.2 Winnow Predictor 

The Winnow Predictor was also tested the same 

way Perceptron Predictor was tested. The results 

for the tests are shown in table 2. 
 

It is clear from table 1 that the algorithm is able to 

learn the data and predict it with high accuracy. It 
can also be observed that increasing the number of 

iterations does not change the accuracy of predic-



tion while increasing the learning rate increases the 

prediction accuracy. 
 

Number of 

iterations  

Learning 

rate (α) 

Accuracy 

10 1.1 92.09 % 

50 1.1 92.1 % 

100 1.1 92.09 % 

200 1.1 92.1 % 

500 1.1 92.1% 

10 1.5 92.98 % 

50 1.5 92.97 % 

100 1.5 92.97 % 

200 1.5 92.98 % 

500 1.5 92.97 % 

 

       Table 2. Results for Winnow Predictor Algorithm 

 

3.3 Ensemble Predictor 

The ensemble algorithm had various different pa-

rameters such as number of instances for k-nearest 
neighbors, ‘k_nn’ in k-nearest neighbors, learning 

rate (η), the number of perceptrons to be used (K), 

number of iterations (num_iter) etc. The parame-
ters were varied and tested on the same datasets 

with which the other two algorithms were tested. 

The parameters in the subclassifiers (perceptron) 
were kept constant while varying the parameters of 

ensemble learning algorithm. The Learning rate (α) 

of the subclassifier was set to 0.01 and the number 
of iterations of subclassifier was set to 10. This is 

because the given settings yielded best accuracies 

in predicting the data as we can see from table 1.  

The test results for Ensemble Predictor by varying 

its various parameters are given in table 3. 
 

k_nn K η num_iter Accuracy 

3 5 0.1 5 93.22 % 

3 5 0.2 10 93.23 % 

3 5 0.5 20 93.22 % 

4 4 0.1 5 93.22 % 

4 4 0.2 10 93.25 % 

4 4 0.5 20 93.22 % 

5 3 0.1 5 93.22 % 

5 3 0.2 10 93.22 % 

5 3 0.5 20 93.21 % 

 
   Table 3. Results for Ensemble Predictor Algorithm 

 

From the above results, we can see that there is a 

very small performance gain in ensemble algo-
rithm as compared to others. Also increase in 

learning rate and number of iterations increases 

accuracy minutely. The accuracies obtained is al-

most equivalent in all the cases. 
 

3.4 Comparison of models 

 
From the results given in table 1, 2, and 3; we can 

conclude that Perceptron Predictor algorithm per-

forms better than Winnow Predictor algorithm and 
hence the subclassifier used in implementing the 

ensemble predictor algorithm is perceptron predic-

tor. It can also be seen that ensemble predictor al-

gorithm performs better than any other model and 
is able to predict the data with good accuracy. 

 

4 Conclusion 

I conclude that all the models describe the data 

quite well. It can also be concluded by seeing the 

results that Ensemble Predictor performs better 

than any other model on the given datasets. I be-
lieve that combination of the KNN and Neural 

Networks are interesting and could be applied in 

other types of datasets too.  
 

5 Future work  

Replacement of missing or unreasonable values 

could be performed by a more suitable procedure, 
such as maximum-likelihood based methods. 

 

Another interesting approach in learning the data 
could be feeding the logistic model with results 

from other models, such as SVM or neural net-

works.  

6 Comparison to proposal 

According to the original proposal, all the tasks 

were implemented in this project except the lo-

gistic regression which I mentioned that I would 
like to achieve. I found that logistic regression al-

gorithms was already implemented during the as-

signments. Also I had mentioned that I will 

implement Neural Networks using instance bag-
ging as well as feature bagging. But again since 

this was already implemented in assignments, so I 



came up with a combination of k-nearest neighbors 

and neural networks algorithm in the final imple-
mentation. In addition to the things mentioned in 

proposal, I also implemented data cleaning tech-

niques for handling missing data as well as noisy 

data. Overall, everything was implemented up to 
my expectation in this project.  

References  

Bishop, C.M. 2006. Pattern Recognition and Machine 

Learning. Springer Science. 

 

Mitchell, Tom 1997. Machine Learning. McGraw-Hill. 

 

Zurada, J. M. 1992. Introduction to artificial neural 

systems. St. Paul: West. 

 
Daniel A. Jimenez, Calvin Lin. 2001. Dynamic Branch 

Prediction with Perceptrons. Association for Compu-

ting Machinery. Proceeding HPCA '01 Proceedings 

of the 7th International Symposium on High-

Performance Computer Architecture Page 197. 

Chuanyi Ji, Sheng Ma. 1997. Combinations of Weak 

Classifiers. IEEE transactions on neural networks, 

Vol. 8, No. 1. 

Igor V. Tetko. Associative Neural Networks. Institut de 

Physiologie, Université de Lausann. 

Maytal Saar-Tsechansky, Foster Provost. 2007. Han-

dling Missing Values when Applying Classification 

Models.  

Mark Dredze. 2012. Class Assignments. Johns Hopkins 

University. 


