An Inference-rules based Categorial Grammar Learner for Simulating Language Acquisition

Xuchen Yao, Jianqiang Ma, Sergio Duarte, Çağrı Çöltekin

University of Groningen

18 May 2009
Outline

Introduction
 Combinatory Categorial Grammar
 Language Acquisition

Learning by Inference Rules
 Grammar Induction by Inference Rules
 The Learning Architecture

Experiment
 Learning an Artificial Grammar
 Learning Auxiliary Verb Fronting
 Learning Correct Word Order

Conclusion
Outline

Introduction

Combinatory Categorial Grammar
Language Acquisition

Learning by Inference Rules

Grammar Induction by Inference Rules
The Learning Architecture

Experiment

Learning an Artificial Grammar
Learning Auxiliary Verb Fronting
Learning Correct Word Order

Conclusion
Categorial Grammar

- **basic categories**: S (sentence), NP (noun phrase), N (noun)
- **Complex categories**: NP/N, $S\backslash NP$ and $(S\backslash NP)\backslash(S\backslash NP)$
- **Slash operators**: / \

Peter saw a book

\[
\begin{array}{cccc}
NP & VP & DT & N \\
\hline
\end{array}
\]

\[
\begin{array}{cccc}
NP \\
\hline
VP \\
\hline
S \\
\end{array}
\]

\[
\begin{array}{cccccc}
NP & (S\backslash NP)/NP & NP/N & N & NP \\
\hline
S\backslash NP \rightarrow S \\
\end{array}
\]

Figure: Example derivation for sentence *Peter saw a book*
Categorial Grammar

- basic categories: S (sentence), NP (noun phrase), N (noun)
- Complex categories: NP/N, $(S\backslash NP)\backslash(S\backslash NP)$
- Slash operators: / \

Figure: Example derivation for sentence *Peter saw a book*
Different Operation Rules

- **Function application rules (CG)**
 - Forward: $A/B \quad B \quad \rightarrow \quad A \quad (>)$
 - Backward: $B \quad A\backslash B \quad \rightarrow \quad A \quad (<)$

- **Function composition rules (CCG)**
 - Forward: $A/B \quad B/C \quad \rightarrow \quad A/C \quad (> B)$
 - Backward: $B\backslash C \quad A\backslash B \quad \rightarrow \quad A\backslash C \quad (< B)$

- **Type raising rules (CCG)**
 - Forward: $A \quad \rightarrow \quad T/(T\backslash A) \quad (> T)$
 - Backward: $A \quad \rightarrow \quad T\backslash(T/A) \quad (< T)$

- **Substitution rules (CCG)**
 - Forward: $(A/B)/C \quad B/C \quad \rightarrow \quad A/C \quad (>S)$
 - Backward: $B\backslash C \quad (A\backslash B)\backslash C \quad \rightarrow \quad A\backslash C \quad (<S)$
Outline

Introduction
 Combinatory Categorial Grammar
 Language Acquisition

Learning by Inference Rules
 Grammar Induction by Inference Rules
 The Learning Architecture

Experiment
 Learning an Artificial Grammar
 Learning Auxiliary Verb Fronting
 Learning Correct Word Order

Conclusion
Nativist vs. Empiricist

- Auxiliary Verb Fronting
 - Peter is awake.
 - Is Peter awake?
 - Peter who is sleepy is awake.
 - Is Peter who is sleepy awake?
 - *Is Peter who sleepy is awake?

- Word Order
 - I should go.
 - I have gone.
 - I am going.
 - I have been going.
 - I should have gone.
 - I should be going.
 - I should have been going.
 - *I have should been going.
Nativist vs. Empiricist

- Auxiliary Verb Fronting
 - Peter is awake.
 - Is Peter awake?
 - Peter who is sleepy is awake.
 - Is Peter who is sleepy awake?
 - *Is Peter who sleepy is awake?

- Word Order
 - I should go.
 - I have gone.
 - I am going.
 - I have been going.
 - I should have gone.
 - I should be going.
 - I should have been going.
 - *I have should been going.
Nativist vs. Empiricist

- **Auxiliary Verb Fronting**
 - Peter is awake.
 - Is Peter awake?
 - Peter who is sleepy is awake.
 - Is Peter who is sleepy awake?
 - *Is Peter who sleepy is awake?

- **Word Order**
 - I should go.
 - I have gone.
 - I am going.
 - I have been going.
 - I should have gone.
 - I should be going.
 - I should have been going.
 - *I have should been going.
Nativist vs. Empiricist

- **Auxiliary Verb Fronting**
 - Peter is awake.
 - Is Peter awake?
 - Peter who is sleepy is awake.
 - Is Peter who is sleepy awake?
 - *Is Peter who sleepy is awake?

- **Word Order**
 - I should go.
 - I have gone.
 - I am going.
 - I have been going.
 - I should have gone.
 - I should be going.
 - I should have been going.
 - *I have should been going.
Research Questions

1. Can we give a computational simulation of the acquisition of syntactic structures?
 - How do we derive the category of an unknown word in a sentence?

2. Can we give a judgement of the Nativist-Empiricist debate from the perspective of CCG?
 - How important is experience? Or the innate ability is more important?
Outline

Introduction

 Combinatory Categorial Grammar
 Language Acquisition

Learning by Inference Rules

 Grammar Induction by Inference Rules
 The Learning Architecture

Experiment

 Learning an Artificial Grammar
 Learning Auxiliary Verb Fronting
 Learning Correct Word Order

Conclusion
Level 0/1 Inference Rules

- Level 0 inference rules
 \[\frac{B/A \quad X \quad \rightarrow \quad B}{\Rightarrow \quad X = A \quad \text{if} A \neq S} \]
 \[\frac{X \quad B\setminus A \quad \rightarrow \quad B}{\Rightarrow \quad X = A \quad \text{if} A \neq S} \]

- Level 1 inference rules
 \[\frac{A \quad X \quad \rightarrow \quad B}{\Rightarrow \quad X = B\setminus A \quad \text{if} A \neq S} \]
 \[\frac{X \quad A \quad \rightarrow \quad B}{\Rightarrow \quad X = B/A \quad \text{if} A \neq S} \]

Figure: Example of level 1 inference rules: Peter works.

\[\overline{\text{NP}} \quad \overline{\text{X}} \]
\[(S\setminus \text{NP}) \]
\[\frac{S}{<} \]
Level 2 Inference Rules

- Level 2 side inference rules
 \[\mathbf{X} \quad \mathbf{A} \quad \mathbf{B} \quad \rightarrow \quad \mathbf{C} \quad \Rightarrow \quad \mathbf{X} = (\mathbf{C} / \mathbf{B}) / \mathbf{A}\]
 \[\mathbf{A} \quad \mathbf{B} \quad \mathbf{X} \quad \rightarrow \quad \mathbf{C} \quad \Rightarrow \quad \mathbf{X} = (\mathbf{C} \setminus \mathbf{A}) \setminus \mathbf{B}\]

- Level 2 middle inference rule
 \[\mathbf{A} \quad \mathbf{X} \quad \mathbf{B} \quad \rightarrow \quad \mathbf{C} \quad \Rightarrow \quad \mathbf{X} = (\mathbf{C} \setminus \mathbf{A}) / \mathbf{B}\]

Figure: Example of level 2 inference rules: Peter saw a book.
Level 3 Inference Rules

- Level 3 side inference rules
 \[X \quad A \quad B \quad C \rightarrow D \Rightarrow X = ((D/C)/B)/A \]
 \[A \quad B \quad C \quad X \rightarrow D \Rightarrow X = ((D\backslash A)\backslash B)\backslash C \]

- Level 3 middle inference rules
 \[A \quad X \quad B \quad C \rightarrow D \Rightarrow X = ((D\backslash A)/C)/B \]
 \[A \quad B \quad X \quad C \rightarrow D \Rightarrow X = ((D\backslash A)\backslash B)/C \]

- Inference rules of up to level 3 can derive most categories of common English words.
Outline

Introduction
 Combinatory Categorial Grammar
 Language Acquisition

Learning by Inference Rules
 Grammar Induction by Inference Rules
 The Learning Architecture

Experiment
 Learning an Artificial Grammar
 Learning Auxiliary Verb Fronting
 Learning Correct Word Order

Conclusion
The Learning Architecture

Figure: Learning process using inference rules
Outline

Introduction

Combinatory Categorial Grammar
Language Acquisition

Learning by Inference Rules

Grammar Induction by Inference Rules
The Learning Architecture

Experiment

Learning an Artificial Grammar
Learning Auxiliary Verb Fronting
Learning Correct Word Order

Conclusion
Target Grammar

\[
\begin{align*}
Peter & := \text{NP} \quad \text{with} \quad := (\text{N}/\text{N})/\text{NP} \\
Mary & := \text{NP} \quad \text{with} \quad := (\text{NP}/\text{NP})/\text{NP} \\
big & := \text{N}/\text{N} \quad \text{with} \quad := ((\text{S}/\text{NP})\backslash(\text{S}/\text{NP}))/\text{NP} \\
\text{colorless} & := \text{N}/\text{N} \quad \text{sleep} := \text{S}\backslash\text{NP} \\
book & := \text{N} \quad a := \text{NP}/\text{N} \\
\text{telescope} & := \text{N} \quad \text{give} := ((\text{S}/\text{NP})/\text{NP})/\text{NP} \\
\text{the} & := \text{NP}/\text{N} \quad \text{saw} := (\text{S}/\text{NP})/\text{NP} \\
run & := \text{S}\backslash\text{NP} \quad \text{read} := (\text{S}/\text{NP})/\text{NP} \\
big & := \text{N}/\text{N} \quad \text{furiously} := ((\text{S}/\text{NP})\backslash(\text{S}/\text{NP})) \\
\end{align*}
\]

Table: Target Grammar Rules

- Recursive & ambiguous
- Assume only NP and N are known to the learner
Result

Figure: Two ambiguous parses of the sentence
Peter saw Mary with a big big telescope

Figure: Ambiguous parse 1
Peter saw Mary with a big big telescope

Figure: Ambiguous parse 2
Outline

Introduction
Combinatory Categorial Grammar
Language Acquisition

Learning by Inference Rules
Grammar Induction by Inference Rules
The Learning Architecture

Experiment
Learning an Artificial Grammar
Learning Auxiliary Verb Fronting
Learning Correct Word Order

Conclusion
Learning Auxiliary Verb Fronting 1

Figure: Learning Auxiliary Verb Fronting 1

Peter is sleepy

\[\begin{array}{c}
NP \quad (S/\text{NP})/(S_{adj}/\text{NP}) \\
S_{adj}/\text{NP} \\
S/\text{NP} \\
\end{array} \]

Peter awake

\[\begin{array}{c}
NP \quad (S_{q}/(S_{adj}/\text{NP}))/\text{NP} \\
S_{adj}/\text{NP} \\
S_{q}/(S_{adj}/\text{NP}) \\
\end{array} \]

Peter who is sleepy is awake

\[\begin{array}{c}
NP \quad (\text{NP}/\text{NP})/(\text{S}/\text{NP}) \\
(\text{S}/\text{NP})/(S_{adj}/\text{NP}) \\
S_{adj}/\text{NP} \\
S/\text{NP} \\
\end{array} \]

\[\begin{array}{c}
NP \quad (\text{NP}/(S_{adj}/\text{NP}))/\text{NP} \\
S_{adj}/\text{NP} \\
S/\text{NP} \\
\end{array} \]

\[\begin{array}{c}
NP \\
\text{NP} \\
\text{NP} \\
\end{array} \]
Learning Auxiliary Verb Fronting 2

\[
\begin{align*}
\text{Is} & := (S/adj/NP)/NP \\
\text{Peter} & := (NP/NP)/(S/NP) \\
\text{who} & := (S/NP)/(S/adj/NP) \\
\text{is} & := S/adj/NP \\
\text{sleepy} & := S/adj/NP \\
\text{awake} & := (S_q/(S/adj/NP))/NP
\end{align*}
\]

\textbf{Figure:} Learning Auxiliary Verb Fronting 2

- \textit{is} := (S/NP)/(S/adj/NP)
- \textit{Is} := (S_q/(S/adj/NP))/NP
Outline

Introduction

Combinatory Categorial Grammar
Language Acquisition

Learning by Inference Rules

Grammar Induction by Inference Rules
The Learning Architecture

Experiment

Learning an Artificial Grammar
Learning Auxiliary Verb Fronting
Learning Correct Word Order

Conclusion
Learning Correct Word Order

- I should go.
- I have gone.
- I am going.
- I have been going.
- I should have gone.
- I should be going.
- I should have been going.
- *I have should been going.

Figure: Learning Correct Word Order
1. Can we give a computational simulation of the acquisition of syntactic structures?
 - How do we derive the category of an unknown word in a sentence?
 - This paper presents a simple and intuitive method to achieve this.

2. Can we give a judgement of the Nativist-Empiricist debate from the perspective of CCG?
 - How important is experience? Or the innate ability is more important?
 - Simple and intuitive logical rules can also help resolve the celebrated linguistic phenomena.
 - Logic gives a third way beside experience and innateness.
Conclusion

1. Can we give a computational simulation of the acquisition of syntactic structures?
 - How do we derive the category of an unknown word in a sentence?
 - This paper presents a simple and intuitive method to achieve this.

2. Can we give a judgement of the Nativist-Empiricist debate from the perspective of CCG?
 - How important is experience? Or the innate ability is more important?
 - Simple and intuitive logical rules can also help resolve the celebrated linguistic phenomena.
 - Logic gives a third way beside experience and innateness.