Question Generation with Minimal Recursion Semantics

Xuchen Yao¹ and Yi Zhang²

¹European Masters in Language and Communication Technologies
University of Groningen & Saarland University
²Saarland University
German Research Center for Artificial Intelligence

18 June, QG/QGSTEC/2010
Outline

Introduction
 Template/Syntax/Semantics-based Approaches
 Why Semantics-based?

Background
 MRS/ERG/PET/LKB

System Architecture
 Overview
 MRS Transformation for Simple Sentences
 MRS Decomposition for Complex Sentences
 Language Independence and Domain Adaptability

Evaluation
Approaches

- **Template-based** (Mostow and Chen (2009))
 - *What did* `<character>` `<verb>`*?*

- **Syntax-based** (Wyse and Piwek (2009), Heilman and Smith (2009))

 - John plays football. (S NP (VP (V NP)))
 - John plays what? (S NP (VP (V WHNP)))
 - John does play what? (S NP (VP (Aux-V V WHNP)))
 - Does John play what? (S Aux-V NP (VP (V WHNP)))
 - What does John play? (S WHNP Aux-V NP (VP (V)))

- **Semantics-based**

 - play(John, football)
 - play(John, what)
 - play(who, football)
Approaches

- **Template-based** (Mostow and Chen (2009))
 - *What did <character> <verb>?*

- **Syntax-based** (Wyse and Piwek (2009), Heilman and Smith (2009))
 - John plays football. (S NP (VP (V NP)))
 - John plays what? (S NP (VP (V WHNP)))
 - John does play what? (S NP (VP (Aux-V V WHNP)))
 - Does John play what? (S Aux-V NP (VP (V WHNP)))
 - What does John play? (S WHNP Aux-V NP (VP (V)))

- **Semantics-based**
 - play(John, football)
 - play(John, what)
 - play(who, football)
Outline

Introduction

Template/Syntax/Semantics-based Approaches

Why Semantics-based?

Background

MRS/ERG/PET/LKB

System Architecture

Overview

MRS Transformation for Simple Sentences

MRS Decomposition for Complex Sentences

Language Independence and Domain Adaptability

Evaluation
Why Semantics-based?

- Something different than template/syntax-based.
- More intuitive?
- More language independent (universal)?

- Make use of the generation function of the English Resource Grammar
 - Deeper is better?
Why Semantics-based?

- Something different than template/syntax-based.
- More intuitive?
- More language independent (universal)?

- Make use of the generation function of the English Resource Grammar
 - Deeper is better?
Outline

Introduction
 Template/Syntax/Semantics-based Approaches
 Why Semantics-based?

Background
 MRS/ERG/PET/LKB

System Architecture
 Overview
 MRS Transformation for Simple Sentences
 MRS Decomposition for Complex Sentences
 Language Independence and Domain Adaptability

Evaluation
DELPH-IN (MRS/ERG/PET/LKB)
Deep Linguistic Processing with HPSG: http://www.delph-in.net/

INDEX: e2
RELS: <

[PROPER_Q_REL<0:4>
 LBL: h3
 ARG0: x6
 RSTR: h5
 BODY: h4]

[_like_v_1_rel<5:10>
 LBL: h8
 ARG0: e2 [e SF: PROP TENSE: PRES]
 ARG1: x6
 ARG2: x9

[PROPER_Q_REL<11:17>
 LBL: h10
 ARG0: x9
 RSTR: h12
 BODY: h11]

> HCONS: < h5 qeq h7 h12 qeq h13 >

Minimal Recursion Semantics

John likes Mary.
like(John, Mary)

Parsing with PET

Generation with LKB

John likes Mary.

English Resource Grammar

John likes Mary.
Details

(THEORY) MRS: Minimal Recursion Semantics
a meta-level language for describing semantic structures in some underlying object language.

(GRAMMAR) ERG: English Resource Grammar
a general-purpose broad-coverage grammar implementation under the HPSG framework.

(TOOL) LKB: Linguistic Knowledge Builder
a grammar development environment for grammars in typed feature structures and unification-based formalisms.

(TOOL) PET: a platform for experimentation with efficient HPSG processing techniques
a two-stage parsing model with HPSG rules and PCFG models, balancing between precise linguistic interpretation and robust probabilistic coverage.
Details

(THEORY)MRS: Minimal Recursion Semantics

A meta-level language for describing semantic structures in some underlying object language.

(GRAMMAR)ERG: English Resource Grammar

A general-purpose broad-coverage grammar implementation under the HPSG framework.

(TOOL)LKB: Linguistic Knowledge Builder

A grammar development environment for grammars in typed feature structures and unification-based formalisms.

(TOOL)PET: A platform for experimentation with efficient HPSG processing techniques

A two-stage parsing model with HPSG rules and PCFG models, balancing between precise linguistic interpretation and robust probabilistic coverage.
Outline

Introduction

Template/Syntax/Semantics-based Approaches
Why Semantics-based?

Background

MRS/ERG/PET/LKB

System Architecture

Overview

MRS Transformation for Simple Sentences
MRS Decomposition for Complex Sentences
Language Independence and Domain Adaptability

Evaluation
MrsQG (Task B)

http://code.google.com/p/mrsqg/

1. Plain text
2. Term extraction
3. FSC construction
4. MRS Decomposition
 - Apposition Decomposer
 - Coordination Decomposer
 - Subclause Decomposer
 - Subordinate Decomposer
 - Why Decomposer
5. MRS Transformation
6. Generation with LKB
7. Output selection
8. Output to console/XML
Term Extraction

- Stanford Named Entity Recognizer
- a regular expression NE tagger
- an Ontology NE tagger

Jackson was born on August 29, 1958 in Gary, Indiana.
Term Extraction

- Stanford Named Entity Recognizer
- a regular expression NE tagger
- an Ontology NE tagger

Jackson was born on August 29, 1958 in Gary, Indiana.
Outline

Introduction
Template/Syntax/Semantics-based Approaches
Why Semantics-based?

Background
MRS/ERG/PET/LKB

System Architecture
Overview
MRS Transformation for Simple Sentences
MRS Decomposition for Complex Sentences
Language Independence and Domain Adaptability

Evaluation
MRS Transformation

1. Plain text
2. Term extraction
3. FSC construction
4. MRS Decomposition
 - Apposition Decomposer
 - Coordination Decomposer
 - Subclause Decomposer
 - Subordinate Decomposer
 - Why Decomposer
5. MRS Transformation
6. Generation with LKB
7. Output selection
8. Output to console/XML
WHO

Figure: “John likes Mary” → “Who likes Mary?”
WHERE

Figure: “Mary sings on Broadway.” → “Where does Mary sing?”
WHEN

Figure: “Mary sings at 10.” → “When does Mary sing?”
WHY

Figure: “John fights for Mary.” → “Why does John fight?”
Outline

Introduction
Template/Syntax/Semantics-based Approaches
Why Semantics-based?

Background
MRS/ERG/PET/LKB

System Architecture
Overview
MRS Transformation for Simple Sentences
MRS Decomposition for Complex Sentences
Language Independence and Domain Adaptability

Evaluation
MRS Decomposition

Complex Sentences -> Simple Sentences

1. Plain text
2. Term extraction
3. FSC construction
4. MRS Decomposition
 - Apposition Decomposer
 - Coordination Decomposer
 - Subclause Decomposer
 - Subordinate Decomposer
 - Why Decomposer
5. MRS Transformation
6. Generation with LKB
7. Output selection
8. Output to console/XML
Subclause Decomposer

identifies the verb, extracts its arguments and reconstructs MRS

Figure: “Bart is the cat that chases the dog.” → “Bart is the cat.”
Subclause Decomposer

identifies the verb, extracts its arguments and reconstructs MRS

Figure: “Bart is the cat that chases the dog.” → “The cat chases the dog.”
MRS Decomposition

Complex Sentences -> Simple Sentences
Outline

Introduction
Template/Syntax/Semantics-based Approaches
Why Semantics-based?

Background
MRS/ERG/PET/LKB

System Architecture
Overview
MRS Transformation for Simple Sentences
MRS Decomposition for Complex Sentences
Language Independence and Domain Adaptability

Evaluation
Language Independence

MrsQG aims to stay language-neutral based on a semantics transformation of sentences.

In Principle
It needs little modification to adapt to other languages.

In Practice
It is difficult to guarantee absolute language independence.
Domain Adaptability

- Plain text
- Term extraction
- FSC construction
- Parsing with PET

Needs to re-train or modify:
- Stanford Named Entity Recognizer
- a regular expression NE tagger
- an Ontology NE tagger

PET Parser:
- re-train with an HPSG treebank.

HPSG grammars:
- Hand-written
- Generalize well
- Steady performance
QGSTEC2010
The Question Generation Shared Task and Evaluation Challenge (QGSTEC) 2010

Task B: QG from Sentences.
Participants are given one complete sentence from which their system must generate questions.

1. **Relevance.** Questions should be relevant to the input sentence.

2. **Question type.** Questions should be of the specified target question type.

3. **Syntactic correctness and fluency.** The syntactic correctness is rated to ensure systems can generate sensible output.

4. **Ambiguity.** The question should make sense when asked more or less out of the blue.

5. **Variety.** Pairs of questions in answer to a single input are evaluated on how different they are from each other.
Examples

TEXT: Alexander Graham Bell, who had risen to prominence through his invention of the telephone, took a great interest in recording sounds, even suggesting to Edison that they might collaborate.

WHO: Who took a great interest in recording sounds?

WHO: Who is Alexander Graham Bell?

WHAT: A great interest in what did Alexander Graham Bell take?

WHAT: What did Alexander Graham Bell take a great interest in?

WHY: Why Alexander Graham Bell took a great interest in recording sounds?

WHY: Why do they collaborate?
Outline

Introduction
 Template/Syntax/Semantics-based Approaches
 Why Semantics-based?

Background
 MRS/ERG/PET/LKB

System Architecture
 Overview
 MRS Transformation for Simple Sentences
 MRS Decomposition for Complex Sentences
 Language Independence and Domain Adaptability

Evaluation
Conclusion

- semantics-based (easy in theory, difficult in practice)
 - multi-linguality
 - cross-domain

- deep grammar (worry less, wait more)
 - generation <-> grammaticality
 - heavy machinery
Conclusion

• semantics-based (easy in theory, difficult in practice)
 • multi-linguality
 • cross-domain

• deep grammar (worry less, wait more)
 • generation \leftrightarrow grammaticality
 • heavy machinery
References

