
Timely, Reliable, and Cost-Effective Internet Transport

Service using Structured Overlay Networks

by

Amy Babay

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

September, 2018

c© Amy Babay 2018

All rights reserved

Abstract

Emerging applications such as remote manipulation and remote robotic surgery
require communication that is both timely and reliable, but the Internet natively
supports only communication that is either completely reliable with no timeliness
guarantees (e.g. TCP) or timely with best-effort reliability (e.g. UDP). We present
an overlay transport service that can provide highly reliable communication while
meeting stringent timeliness guarantees (e.g. 130ms round-trip latency across the US)
over the Internet. To enable routing schemes that can support the necessary timeliness
and reliability, we introduce dissemination graphs, providing a unified framework for
specifying routing schemes ranging from a single path, to multiple disjoint paths, to
arbitrary graphs. We conduct an extensive analysis of real-world network data, finding
that a routing approach using two disjoint paths performs well in most cases, and that
cases where two disjoint paths do not perform well typically involve problems around
a source or destination. Based on this analysis, we develop a timely dissemination-
graph-based routing method that can add targeted redundancy in problematic areas
of the network. We show that this approach covers nearly 99% of the performance
gap between a traditional single-path approach and an optimal (but prohibitively
expensive) scheme, while two dynamic disjoint paths cover about 70% of this gap, and
two static disjoint paths cover about 40%. This performance improvement is obtained
at an overall cost increase of less than 1% compared with using two disjoint paths.
The implementation of the dissemination-graph-based Internet transport service is
available in the open-source Spines overlay messaging framework (www.spines.org).

Advisor: Dr. Yair Amir
Readers: Dr. Yair Amir, Dr. Michael Dinitz, Dr. Cristina Nita-Rotaru, Dr. Xin Jin

ii

http://www.spines.org

Acknowledgments

First, I am deeply grateful to my advisor, Yair Amir for his advice, encouragement,
optimism, and constant drive for excellence. Yair has been an outstanding mentor
throughout my time in graduate school and has become a dear friend. He strives to
improve the lives of everyone he touches, and has an impressive track record of success;
his passion for helping students reach their full potential has certainly changed my
life for the better. I cherish the years spent working with him pursuing solutions to
exciting and important problems and growing as both a researcher and a person.

I thank Michael Dinitz, Cristina Nita-Rotaru, and Xin Jin for serving on my
thesis committee, and Erica Schoenberger for serving on my GBO committee. Their
support and feedback throughout this process has greatly improved the quality of
the work and my skills as a researcher. In particular, I thank Michael Dinitz for
advising me on the theoretical aspects of this work and on a qualifying project in
the PhD program. Michael’s guidance has broadened my perspective, strengthened
my core CS foundation, and deepened my ability to think about problems in an
algorithmic manner. I thank Cristina Nita-Rotaru for her support and contributions
to my growth as a researcher throughout my time in graduate school and for always
posing questions that force me to think about the work in new ways and improve
it. I thank Xin Jin for contributing his expertise on software-defined networking and
expanding my understanding of and vision for programmable networks. I thank Erica
Schoenberger for contributing her unique perspective on the broader implications of
the work.

I thank Emily Wagner for her critical role in making the work in this thesis a suc-
cess. The Playback Network Simulator used to compare and evaluate dissemination-
graph-based routing protocols in this thesis was originally Emily’s Masters project,
and her hard work and dedication to seeing our work succeed was crucial in turning
the core contribution of the thesis into a high-quality conference publication. Beyond
that, Emily is a wonderful friend and I admire the uncompromising quality of her
work.

I thank Tom Tantillo for being an incredible colleague and friend. Collaborating
closely with Tom was one of the highlights of my time in the PhD program. Tom
is one of the most intelligent and technically capable people I know, and working
with him on the code and algorithms behind Spire (our intrusion-tolerant SCADA

iii

ACKNOWLEDGMENTS

system for the power grid) was an experience I will treasure. Even when he can work
faster than the rest of us, Tom never gets frustrated by people slowing him down
with questions and is always willing to take the time to teach others and share his
knowledge.

I thank Daniel Obenshain (Dano) for being an impressive role model when I first
started in the DSN lab and for remaining a good friend throughout the years, even as
he has moved on to his next stage in life. Dano is always willing to volunteer his own
time to help others, and I cannot count the number of times I benefited from that
generosity during my time in the DSN lab. Having Dano and Tom as role models and
seeing the exciting work they were doing was a major factor in my decision to start a
PhD. I thank them deeply for that initial inspiration as well as for help, stimulating
technical collaborations, and friendship throughout the entire process.

I am immensely appreciative of LTN Global Communications for providing us
with access to a global network infrastructure. This unique opportunity allowed us
to not only collect the measurements that made the data-informed approach taken
in this thesis possible, but also enabled us to deploy and test our protocols on a
real globe-spanning network. I am grateful to the LTN Global Communications and
Spread Concepts LLC teams for all of the effort that they put into making this
possible. I especially thank Jonathan Stanton and John Lane for all of their technical
help in setting up and maintaining our access to the system, as well as Nilo Rivera,
Jacob Green, and John Schultz for their assistance and for insight into the practical
operation of a commercial overlay. I am grateful to Malik Khan, Yousef Javadi, and
Michal Miskin-Amir for their faith in and support for this work, opening up their
commercial infrastructure for our experimentation, and sharing their perspectives.

I also thank John Schultz from Spread Concepts LLC for his mentorship before and
during my time in the PhD program. John is one of the best engineers that I know,
and the opportunity to work with him has helped me become a better programmer
and learn how to write code that can have a life beyond research prototypes. As the
architect of Spines, John was also instrumental in realizing the work in this thesis as
part of the open-source release of Spines.

I thank my fellow members of the DSN lab throughout my time in graduate
school for their collaboration and for making the lab an enjoyable place to be. I
thank Marco Platania, Trevor Aron, and Samuel Beckley for their roles in making
our work on intrusion-tolerant SCADA a reality. I thank Edmund (Ned) Duhaime
for contributing to the structured overlay vision by exploring techniques for seamless
overlay use, a key capability for extending the usefulness of structured overlays to a
wide range of new Internet services. I thank Jeffrey DallaTezza, Kaiyue (Karin) Wu,
and Henrik Schuh for being wonderful labmates.

In addition to my thesis research on timely and reliable communication, I also
had the privilege of working on the important problem of protecting the power grid.
I thank the team at Resurgo LLC, including Kevin Jordan, Dianne Jordan, Eamon
Jordan, Kevin Ruddell, Ryan Ito, Kelli Goodin, Kara Knight, and Matt Troglia, for

iv

ACKNOWLEDGMENTS

pushing us to pursue this problem of high national importance and for helping to make
that work more real and practical through a red-team experiment at Pacific Northwest
National Laboratory and a test deployment at the Hawaiian Electric Company.

I thank my family for their constant love and support; without them none of this
would be possible. I thank my parents, Kim and Jim Babay, for teaching me the
value of working hard and never settling for less than my best. I thank them for
always listening to my frustrations, celebrating my successes, and reminding me to
take a step back, relax, and look at the bigger picture. They always know how to
cheer me up and help me focus on what is most important. I thank my sister, Emily
Babay, for being my first friend and role model. Emily has always been one of the
first people I turn to when I want to share big news or when I need someone to lean
on or provide advice. Her drive and accomplishments continue to inspire me to push
myself in pursuit of my goals.

Finally, I thank my wonderful fiancé Chris Paxton for his endless love and sup-
port, for always being there for me (even when he couldn’t be there physically), and
for making my life richer. Chris has shared all of my challenges, frustrations, suc-
cesses, and breakthroughs, both the tiny day-to-day ones and the big defining ones,
throughout the past five years, and I could not ask for a better partner in all of this.
I look forward to building the future together with him.

During my time at Hopkins, I received support from the Defense Advanced Re-
search Projects Agency (DARPA) grant N660001-1-2-4014 to Johns Hopkins Uni-
versity, from the Department of Defense (DoD) Environmental Security Technology
Certification Program (ESTCP) Project EW-201607 to Resurgo LLC, from the Na-
tional Science Foundation (NSF) grant 1535887 to Johns Hopkins University, and
from a Johns Hopkins University Department of Computer Science fellowship.

v

Contents

Abstract ii

Acknowledgments iii

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Solution Highlights . 3
1.2 Thesis Organization . 4
1.3 Related Work . 5

1.3.1 Overlay Routing and Recovery 5
1.3.2 Multipath Routing and Redundant Dissemination 6
1.3.3 Theory of Reliable Network Design 8

2 Structured Overlay Framework for Timely, Reliable Transport 10
2.1 Resilient Network Architecture . 11
2.2 Overlay Routers with Unlimited Programmability 12
2.3 Flow-Based Processing . 13
2.4 Hop-by-Hop Recovery . 14

3 Dissemination-Graph-Based Routing 15
3.1 Model . 16

3.1.1 Network Model . 16
3.1.2 Cost Model . 17
3.1.3 Reliability Model . 18

3.2 Foundational Approaches to Dissemination Graph Construction . . . 20
3.2.1 Dynamic Single Path . 20
3.2.2 Static Two Node-Disjoint Paths 21
3.2.3 Dynamic Two Node-Disjoint Paths 22

vi

CONTENTS

3.2.4 Overlay Flooding . 22
3.2.5 Time-Constrained Flooding 23

3.3 Optimal Dissemination Graphs . 24

4 Analyzing Network Problems in the Field 28
4.1 Flow Modeling with the Playback Overlay Network Simulator 28
4.2 Data Collection Environment . 30
4.3 Network Fault Pattern Analysis . 31

5 Dissemination-Graph-Based Transport Service using Targeted Re-
dundancy 32
5.1 Constructing Dissemination Graphs with Targeted Redundancy . . . 34

5.1.1 Source-Problem and Destination-Problem Graphs 34
5.1.2 Robust Source-Destination-Problem Graphs 36

5.2 Quick Problem Detection System . 37
5.3 Potential Optimization: Faster Reaction 37
5.4 Evaluation via Simulation . 38

5.4.1 Overall Performance . 39
5.4.2 Comparison of Approaches . 40
5.4.3 Case Study . 42

5.5 Dissemination Graph Work Evolution 45

6 Implementation 46
6.1 Generic Dissemination-Graph-Based Routing 46
6.2 Problem-Type Routing . 48
6.3 Timely, Reliable Transport Service 49
6.4 Practical Considerations and Optimizations 51
6.5 Evaluation . 52

6.5.1 Controlled Evaluation of Implementation with Simulation Val-
idation . 52
6.5.1.1 Setup . 52
6.5.1.2 Results . 54

6.5.2 Evaluation via Case Studies 65
6.5.2.1 August 15, 2016 Case Study 65
6.5.2.2 October 17, 2016 Case Study 71
6.5.2.3 September 8, 2016 Case Study 76

6.5.3 Evaluation Summary . 81

7 Supporting Application Services 82
7.1 Remote Robotic Manipulation Support 82
7.2 High-Value Video Feed Support . 83

8 Conclusion 85

vii

CONTENTS

Bibliography 86

Vita 90

viii

List of Tables

5.1 Aggregate availability and reliability with 65ms latency constraint, over
four weeks and sixteen transcontinental flows (using the recovery pro-
tocol of [1]). 39

5.2 Aggregate availability and reliability with 65ms latency constraint, over
four weeks and sixteen transcontinental flows (no recovery protocol). . 40

5.3 Percent of the benefit of time-constrained flooding obtained by each
approach and scaled cost (baseline is single-path). 41

6.1 Effective loss rate under applied loss rates ranging from 0-20% for
single-edge topology in Figure 6.1a. 54

6.2 Effective rate of lost/late packets under applied loss rates ranging from
0-20% in both directions on edges (2,3) and (3,4) for the single-path
topology in Figure 6.1b. 56

6.3 Average lost packets for 3 disjoint paths topology shown in Figure 6.1c
out of 300,000 total packets. 59

6.4 Average number of lost or late packets for topology shown in Fig-
ure 6.1d out of 300,000 total packets. 63

6.5 Average dollar cost (total packets sent / packets introduced) and good-
put cost (packets sent / packets delivered on time) for the topology in
Figure 6.1d. 63

6.6 Average lost or late packets for August 15, 2016 case study (out of
140,000 packets). 66

6.7 Average lost or late packets for October 17, 2016 case study (out of
100,000 total packets). 71

6.8 Average lost or late packets for September 8, 2016 case study. 77

7.1 Aggregate availability and reliability with 65ms latency constraint, over
four weeks and sixteen transcontinental flows (using the recovery pro-
tocol of [1]). 83

ix

LIST OF TABLES

7.2 Aggregate availability and reliability with 200ms latency constraint,
over four weeks and sixteen transcontinental flows (using the recovery
protocol of [1]). 84

x

List of Figures

2.1 Resilient Network Architecture . 11

3.1 Single-best-path dissemination graph (in terms of expected latency,
assuming normal-case latency and no loss) from New York to Los An-
geles. Cost: 2 edges. 21

3.2 Two node-disjoint paths (chosen based on expected latency, assuming
normal-case latency and no loss) from New York to Los Angeles. Cost:
5 edges. 22

3.3 Overlay flooding from New York to Los Angeles. Cost: 64 (directed)
edges (direction arrows on edges are omitted for clarity). 23

3.4 Time-constrained flooding from New York to Los Angeles, using a 65ms
latency constraint. Cost: 31 edges. 24

4.1 Global overlay topology spanning East Asia, North America, and Eu-
rope. Each circle represents an overlay node located in a data center. 30

5.1 Dissemination graphs for a flow from Atlanta to Los Angeles. 33
5.2 (Simulated) packets received and dropped over a 110-second interval

on August 15, 2016 from Atlanta to Los Angeles. 44

6.1 Simple overlay topologies for simulation validation experiments 53
6.2 Single-path results for one experimental run with a 1ms data collection

interval using the 3-path topology shown in Figure 6.1c, with 10% loss
added (in both directions), to the link (8,4), then (3,4), then (6,4). . . 57

6.3 Single-path results for one experimental run with a 10ms data collec-
tion interval using the 3-path topology shown in Figure 6.1c, with 10%
loss added (in both directions), to the link (8,4), then (3,4), then (6,4). 58

6.4 Single-path results for topology shown in Figure 6.1d, with 10% loss
added (in both directions), to the link (8,4), then (3,4), then (6,4). . . 60

6.5 Two-disjoint-paths results for topology shown in Figure 6.1d, with 10%
loss added (in both directions), to the link (8,4), then (3,4), then (6,4). 61

xi

LIST OF FIGURES

6.6 Dissemination-graph results for topology shown in Figure 6.1d, with
10% loss added (in both directions), to the link (8,4), then (3,4), then
(6,4). 62

6.7 Destination-problem dissemination graphs used in Spines and simula-
tion for topology shown in Figure 6.1d. 64

6.8 Spines results for case-study inspired by event on August 15, 2016, with
loss on all of Los Angeles node’s incoming links for flow from Atlanta to
Los Angeles. Emulated loss and latency in local-area cluster environment. 68

6.9 Playback simulation results for case-study inspired by event on August
15, 2016, with loss on all of Los Angeles node’s incoming links for flow
from Atlanta to Los Angeles. 1ms data collection interval. 69

6.10 Spines results for case-study inspired by event on August 15, 2016, with
loss on all of Los Angeles node’s incoming links for flow from Atlanta,
Georgia to Los Angeles, California. Real latencies and emulated loss
rates in a global wide-area environment. 70

6.11 Spines results for case-study inspired by event on October 17, 2016,
with loss on all of Los Angeles node’s incoming links for flow from New
York to Los Angeles. Emulated latencies and loss rates in local-area
cluster environment. 73

6.12 Playback simulation results for case-study inspired by event on October
17, 2016, with loss on all of Los Angeles node’s incoming links for flow
from New York to Los Angeles. 1ms data collection interval. 74

6.13 Spines results for case-study inspired by event on October 17, 2016,
with loss on all of Los Angeles node’s incoming links for flow from New
York to Los Angeles. Real latencies and emulated loss rates in global
wide-area environment. 75

6.14 Spines results for New York to Los Angeles flow during a case-study
inspired by an event on September 8, 2016, with the New York node
experiencing several disconnections. Emulated latencies and loss rates
in a local-area cluster environment. 78

6.15 Playback Simulation results for New York to Los Angeles flow during
a case-study inspired by an event on September 8, 2016, with the New
York node experiencing several disconnections. 79

6.16 Spines results for New York to Los Angeles flow during a case-study
inspired by an event on September 8, 2016, with the New York node
experiencing several disconnections. Real latencies and emulated loss
rates in global wide-area environment. 80

xii

Chapter 1

Introduction

Over the past five decades, the Internet has been dramatically successful, becom-
ing an integral part of modern life. The Internet’s ability to scale several orders of
magnitude to reach its current level of ubiquity was made possible by its key design
principle of keeping it simple in the middle and smart at the edge (or adhering to the
end-to-end argument [2]). Under this model, the core of the network is kept as simple
as possible, responsible only for best-effort packet switching, and more complex logic
and services are implemented only at the network edge. The simplicity of the network
core makes it extremely scalable, and the fact that all applications can be treated in
the same manner by the network core has enabled an enormous range of applications
to be deployed on the Internet.

Today, the Internet’s ubiquity, global reach, and standardized nature are driving
increasingly high-value services to use the Internet for their communication infrastruc-
ture, and new network applications that were not previously possible are emerging.
These new applications bring new demands, requiring capabilities that the Internet
does not natively support. For example, these applications may involve more com-
plex communication patterns, such as multicast or anycast, require higher levels of
security or system resilience, or have more demanding performance requirements. For
these applications, the Internet paradigm presents a limitation, as the introduction
of new network capabilities is restricted to the network edge.

One such class of emerging applications bringing new performance demands in-
cludes new highly interactive applications, such as remote robotic surgery, other
remote manipulation tasks, or collaborative virtual reality. Natively, the Internet
supports communication that is either completely reliable end-to-end, but with no
timeliness guarantees (e.g. using TCP), or that is timely but with only best-effort
reliability (e.g. using UDP). However, these emerging applications bring severe con-
straints on timeliness, while simultaneously requiring high reliability. For example,
for remote manipulation, human perception requires feedback to be received within
about 130ms to be perceived as natural. This 130ms includes both the time for the
command to reach the destination and for the feedback to be returned, translating to

1

CHAPTER 1. INTRODUCTION

a latency requirement of 65ms each way. Supporting such applications on a continent-
wide scale is highly demanding, as the network propagation delay constitutes a large
fraction of the 65ms latency deadline. For example, the propagation delay across
North America is about 35-40ms. This thesis develops an overlay transport service
to support these types of demanding interactive applications over the Internet in a
cost-effective manner.

In recent years, structured overlay network architectures have been developed to
support applications that require both timeliness and reliability. These architectures
use programmable overlay nodes in the middle of the network to enable custom over-
lay routing and hop-by-hop recovery protocols, rather than relying on the Internet’s
routing and end-to-end recovery. Overlay nodes are instantiated in general-purpose
computers, providing unlimited programmability to implement custom protocols, and
are strategically placed in data centers across the globe to provide sophisticated pro-
cessing capabilities throughout the network, rather than only at end hosts. Appli-
cations using these structured overlay architectures include multimedia applications,
such as VoIP [1] and live television [3]. A live TV service, supporting interviews from
remote studios, requires a one-way latency bound of about 200ms with 99.999% of
packets delivered on time. A global overlay network with 10-20 well-situated overlay
nodes can support such a service by using the 160-165ms available after accounting
for a 35-40ms propagation delay to allow some buffering and hop-by-hop recovery on
overlay links. A service using this approach to support the TV and media industries
is available today [4].

In contrast to applications that can tolerate a 200ms one-way latency, for the
demanding applications targeted in this thesis, there is almost no flexibility to allow
for recovery or buffering. Moreover, while techniques such as redundant sending along
a single path or network coding can improve reliability, the combination of bursty loss
on the Internet and the strict timeliness constraints of the target applications reduces
their effectiveness. Thus, a different approach is needed.

To improve the probability that a packet is successfully transmitted to its desti-
nation without the need for repeated recovery attempts that may cause its delivery
latency to exceed its deadline, we consider redundant dissemination schemes, where
multiple copies of a packet are sent over more than a single path to provide multi-
ple opportunities for it to reach its destination on time. For applications with strict
timeliness and reliability requirements, flooding on the overlay topology can provide
an optimally reliable solution. In this approach, each packet is sent on all possible
paths, so it has the highest possible probability of reaching its destination on time.
However, overlay flooding is very expensive. Since ISPs charge for each packet sent,
the cost of a redundant dissemination scheme corresponds to the number times it
requires each packet to be sent. Since overlay flooding sends each packet over every
link in the overlay topology, it incurs an extremely high cost.

A less expensive approach is to send on multiple disjoint paths. For example, send-
ing on two disjoint paths costs slightly more than twice the cost of the single best path

2

CHAPTER 1. INTRODUCTION

and allows a packet to reach its destination as long as it is successfully transmitted
along one of the two paths. Most existing systems that send data redundantly over
more than a single path to improve reliability use disjoint paths (e.g. [5], [6]).

Disjoint paths offer a coarse-grained trade-off between cost and reliability, as
adding paths provides higher reliability at a higher cost. However, this approach
uniformly invests resources along the paths from a source to a destination. Investing
fewer resources in more reliable parts of the network and more resources in less reli-
able parts of the network can improve the trade-off between cost and reliability. By
considering the dynamic loss and latency characteristics of network links, we aim to
provide close to optimal reliability at a reasonable cost.

1.1 Solution Highlights

We present a new approach that transports packets in a timely, reliable, and
cost-effective manner by constructing dissemination graphs based on network charac-
teristics, application latency and reliability requirements, and cost. A dissemination
graph is a connected subgraph of the overlay network topology that connects a source
and destination. In our approach, each packet from a source to a destination is sent
over all the links in the dissemination graph for that flow.

Ideally, we would calculate the cheapest dissemination graph that meets the appli-
cation’s reliability and latency constraints in order to provide a cost-effective service.
However, the problem of finding such a dissemination graph is NP-hard. While we
can make computing optimal dissemination graphs tractable for certain topologies,
the calculation is too slow to effectively adapt to changing network conditions, even
for practical topologies with a relatively small number of nodes.

Therefore, our approach is to analyze real-world network data, examine the types
of problems that occur in the field, and develop methods to construct and deploy
dissemination graphs that can provide the necessary reliability and timeliness during
such problems. A key finding of this analysis is that a routing approach using two
disjoint paths performs well in most cases, and that cases where two disjoint paths
do not perform well typically involve problems around a source or destination. The
grounding in real-world data and focus on applications with extremely strict timeliness
and reliability requirements separates our approach from the few previous works that
have considered redundant dissemination schemes beyond disjoint paths to improve
performance in overlay routing (e.g. [7]).

Based on the types of problems we observe in the collected data, we develop a
timely dissemination-graph-based routing method that combines the use of two dis-
joint paths with a limited number of precomputed dissemination graphs that address
the most common types of problems we observed and switches between the differ-
ent graph types as network conditions change. Specifically, the approach uses two
dynamically computed disjoint paths under normal conditions, and switches to use

3

CHAPTER 1. INTRODUCTION

precomputed dissemination graphs that add targeted redundancy around a source
or destination when problems are detected in that region. For network conditions
involving multiple types of problems simultaneously, we use more robust graphs that
add targeted redundancy around the source and destination while also including two
disjoint paths. We show that this approach can cover nearly 99% of the performance
gap between a traditional single-path approach and an optimal (but prohibitively ex-
pensive) scheme, compared with about 70% for two dynamic disjoint paths or about
40% for two static disjoint paths. This performance improvement is obtained at a
cost increase of only 0.3% over two disjoint paths.

The primary contributions of this work are:

1. The invention of dissemination graphs, providing a unified framework for speci-
fying routing schemes ranging from a single path, to multiple disjoint paths, to
arbitrary graphs.

2. An extensive analysis of real-world network data, finding that a routing ap-
proach using two disjoint paths performs well in most cases, and that cases
where two disjoint paths do not perform well typically involve problems around
a source or destination.

3. A dissemination-graph-based routing approach that employs targeted redun-
dancy based on current network conditions to provide close to the optimal
reliability possible under strict timeliness constraints at a reasonable cost.

4. An evaluation via simulation of the dissemination-graph-based routing approach,
showing that it can capture nearly 99% of the benefit of an optimal dissemina-
tion method at a cost similar to that of using two disjoint paths.

5. An open-source implementation of a complete dissemination-graph-based trans-
port service over the Internet, using the Spines overlay messaging framework [8].

6. A practical evaluation of the implemented transport service that validates the
simulation results in a local-area environment with emulated latency and loss,
as well as an evaluation on a global overlay network.

1.2 Thesis Organization

The remainder of this chapter (Section 1.3) reviews related work. Chapter 2
presents the fundamental components of the structured overlay framework underly-
ing our transport service, including its resilient network architecture, unlimited pro-
grammability, and flow-based processing. Chapter 3 describes several approaches to
constructing disseminations graphs that build on and extend existing overlay routing
schemes and discusses the trade-offs they present between cost, reliability (under strict

4

CHAPTER 1. INTRODUCTION

time constraints), and complexity. To develop a timely, reliable and cost-effective ser-
vice, we analyze how the foundational dissemination-graph-construction approaches
we consider would perform using network data collected in a real wide-area setting;
this analysis is presented in Chapter 4. Chapter 5 presents the dissemination-graph-
based transport service developed based on this analysis, and evaluates the service via
simulation, using the data collected in the wide-area analysis. Chapter 6 describes the
implementation of the transport service in the Spines overlay messaging framework,
evaluates that implementation, and validates the simulation described in Chapter 5.
Chapter 7 discusses two practical use cases for the transport service developed in the
thesis and uses the collected wide-area network data to assess the transport service’s
ability to support these use cases. Chapter 8 concludes the thesis.

1.3 Related Work

The dissemination-graph-based transport service introduced in this thesis is built
on top of a structured overlay framework and leverages prior work on overlay rout-
ing and recovery protocols, as well as redundant dissemination protocols in overlays
and other network domains. It makes use of an existing family of overlay recovery
protocols, but introduces dissemination graphs as a new approach to routing that is
more flexible than existing methods and allows for more sophisticated protocols that
can provide better performance. Our approach of constructing dissemination graphs
based on reliability goals and latency constraints is related to work on the theory
of reliable network design, although due to the hardness results from this domain
and practical limitations, we ultimately develop an approach that provides excellent
practical results but does not provide formal cost or reliability guarantees.

1.3.1 Overlay Routing and Recovery

Our dissemination-graph-based transport service builds on existing work on over-
lay networks. Many previous works have observed inefficiencies in Internet routing
and employed overlays to make use of alternative paths with better performance char-
acteristics. For example, the Detour framework uses an overlay to experiment with
alternative routing protocols based on performance metrics [9], RON recovers from
problems on a direct Internet path by sending packets through an intermediate node
(selected based on loss or latency measurements) [10], and the analysis of one-hop
source routing in [11] shows that many Internet path failures can be overcome using
the simple approach of sending through a single randomly selected intermediate node
when a problem is detected. However, these approaches were not designed to meet
strict latency deadlines. In contrast, the work in [1] presents an overlay routing pro-
tocol specifically designed to support real-time communication for VoIP. That work

5

CHAPTER 1. INTRODUCTION

introduces an expected latency metric that considers both the loss and latency charac-
teristics of overlay links, with the goal of selecting a path with the highest probability
of delivering packets within a specific timeliness requirement.

In addition to bypassing problems on a given Internet path via overlay routing,
overlays have also been used to improve reliability and latency by enabling fast recov-
ery of lost messages over relatively short overlay hops. Fully reliable hop-by-hop pro-
tocols (e.g. [12]) can improve latency compared with end-to-end protocols but cannot
support timeliness guarantees. OverQoS [13] combines at most one recovery attempt
per lost packet with forward error correction (FEC) to provide a statistical bound on
the loss rate experienced by an overlay link. We use a family of recovery protocols
specifically designed to support applications with strict latency requirements [1,3,14],
as described in Section 2.4.

While these existing works offer considerable improvements over native Internet
performance, they are not sufficient for our target applications. Because of our appli-
cations’ high reliability requirements and low tolerance for interruptions, rerouting on
a single path after problems are detected cannot provide the required level of time-
liness and reliability, even when combined with recovery protocols or FEC, as the
applications’ strict timeliness requirements reduce the number of successful recover-
ies that can be performed and the effectiveness of FEC.

1.3.2 Multipath Routing and Redundant

Dissemination

Existing work has shown the benefits of redundant dissemination over multiple
edge- or node-disjoint paths in the context of overlay networks (e.g. [15–18]) and wire-
less networks (e.g. [5,19]). Redundant dissemination is used to improve performance
(e.g. [15,16,18,19]), as well as to improve security or resilience to attacks (e.g. [5,17]).

In the wireless domain, SMT [5] transmits erasure coded messages over node-
disjoint paths to overcome malicious nodes. Paths are selected at the source from a
given set of available routes, with the source rating paths based on received acknowl-
edgments to discard paths deemed non-operational and automatically select a subset
of paths and coding redundancy factor based on the probability that each path is
operational (though how to calculate such probabilities is left as future work). The
work in [19] considers the use of multipath routing to improve performance in mobile
ad hoc networks and presents a path set selection algorithm called Disjoint Pathset
Selection Protocol (DPSP) that aims to generate a large number of highly reliable
disjoint paths. This work shows that the path sets generated by DPSP have a sig-
nificantly longer lifetime (time until all paths become non-functional) than a single
path or alternative approaches, but it does not attempt to propose a specific rout-
ing method for utilizing the generated paths, as it focuses on the path set selection
problem.

6

CHAPTER 1. INTRODUCTION

More relevant to our work, in the overlay domain, the work in [16] presents an
empirical evaluation comparing single-path routing in the style of RON (where the
source can choose to send on the direct Internet path or on a single-hop overlay path
through one intermediate relay), redundant dissemination on two disjoint single-hop
paths, and redundant sending on the direct Internet path. The work demonstrates
that both reactive overlay-level rerouting and redundant dissemination have benefits,
and a combination of the two, using redundant dissemination over two dynamically
selected single-hop paths (with one path minimizing loss and the other minimizing
latency), offers further performance improvements. JITeR [18] shares our goal of sup-
porting applications with strict timeliness constraints and aims to improve reliability
by making use of multiple paths in a way that explicitly incorporates delivery dead-
lines. In JITeR, each message is sent over a base channel and may be simultaneously
sent over one or more backup channels. Similarly to [16], each channel may be either
a direct Internet path (with multihoming potentially allowing several such distinct
paths) or a single-hop path using one relay node. Base and backup channels are
selected to minimize correlation between them, and to deliver packets “just-in-time”,
using longer paths that are still within the deadline first, so that shorter paths may
be used later for retransmissions or for packets with shorter deadlines. In [15], redun-
dant dissemination is used to improve performance and failure resilience for reliable
multicast; in particular, this work creates a mesh that ensures that each client has
at least n node-disjoint paths to the root nodes (and may have other non-disjoint
paths as well), allowing them to withstand the failure of any n− 1 nodes. The work
in [17] uses node-disjoint paths to support intrusion-tolerant communication, using
k node-disjoint paths to ensure timely communication in the presence of up to k − 1
malicious overlay nodes.

In Section 5.4, we show that in the context of performance, disjoint paths pro-
vide a substantial improvement in reliability compared to a single path, but more
sophisticated dissemination graphs can provide considerably better performance for a
similar cost. Moreover, the approach of using dissemination graphs composed of two
node-disjoint paths that we evaluate in Section 5.4 represents an improvement over
previous work using disjoint paths, as it leverages the structured overlay framework to
make use of paths with multiple intermediate nodes between the source and destina-
tion (providing greater control over path selection and enabling effective hop-by-hop
recovery over long distances) and selects these paths using a metric that considers
loss, latency, and recovery possibilities (though that metric was not our invention; it
was used for single-path selection in [14]). In contrast, existing work on multipath
overlay routing is typically limited to the use of a single intermediate relay node
(e.g. [6, 16, 18]), and does not provide the ability to select multi-hop paths based on
performance characteristics.

While most existing works using redundant dissemination consider only disjoint
paths, [7] proposes routing over non-disjoint paths in order to satisfy application
reliability constraints in the presence of geographically correlated failures, while min-

7

CHAPTER 1. INTRODUCTION

imizing cost and considering latency constraints. The approach of [7] ranks paths
based on their latencies and then determines the cheapest path-set that meets the
specified reliability requirement, according to a failure model that incorporates geo-
graphic correlation. Path computation is performed by a centralized controller that
is responsible for initiating the process of switching to a new path set. While our
goals are similar, the extremely demanding latency and reliability requirements of
our target applications require a different approach that can react quickly to chang-
ing network conditions. The path-set computation of [7] employs several heuristics to
reduce running time in practice, but still computes an optimal path-set, which can be
highly computationally intensive when many paths need to be considered. Because
we aim to provide close to optimal reliability, it is likely that many paths will need
to be considered, making the computation too expensive for timely reactions. More-
over, our approach of computing dissemination graphs at the source and including the
graph to be used in each packet allows for faster, more flexible rerouting (each packet
can potentially use a different graph) compared with the controller-coordinated path
setup and reconstruction process in [7]. Redundant dissemination beyond disjoint
paths is also used in [17], which employs overlay flooding for extreme resilience; how-
ever, this approach is only cost-effective for a small subset of critical monitoring and
control traffic and is too expensive for data transmission in our applications.

Other work combines the use of multiple paths with forward error correction
(FEC) or multiple description coding (MDC). For example, [20] sends video encoded
via multiple state encoding over multiple paths, and PDF [6] uses FEC while sending
packets over both the direct Internet path and a maximally link-disjoint backup
path. SplitStream [21] distributes content over multiple multicast trees that do not
share interior nodes to improve load balancing as well as resilience, and suggests
combining this approach with MDC or FEC to further improve reliability. While such
schemes could be used with dissemination graphs, we choose to use fully redundant
dissemination to avoid the need for application-specific encoding (as in MDC), and
to avoid introducing additional latency for redundant encoded packets (as in FEC),
as this may be significant given our strict timeliness constraints.

1.3.3 Theory of Reliable Network Design

Without considering latency constraints or recovery, the problem of calculating the
reliability of communication between a source and destination over a given dissemina-
tion graph can be formulated as the classical two-terminal reliability problem. This
problem and the related all-terminal network reliability problem have been exten-
sively studied and shown to be #P-hard (e.g. [22–26]), meaning it is likely infeasible
to determine the exact reliability of arbitrary dissemination graphs. This hardness
also implies that constructing dissemination graphs that meet a given reliability con-
straint while minimizing cost is NP-hard (see Section 3.3 for details). Moreover,

8

CHAPTER 1. INTRODUCTION

only a few works on calculating reliability consider any form of latency constraints
(e.g. [27], which considers a hop-count constraint), and none of the theoretical models
we are aware of incorporate recovery protocols, which can have a significant impact
on reliability.

Because of the hardness of calculating reliability, prior work on designing reliable
networks or graphs has used heuristics or other approximate approaches (e.g. [28–
31]). However, because they do not consider latency constraints or recovery, these
approaches are not directly applicable to our problem. We take a different approach
of examining real network data to design a practical solution that can address most
common problems.

9

Chapter 2

Structured Overlay Framework for
Timely, Reliable Transport

The foundation of the timely and reliable Internet transport service developed
in this thesis is a structured overlay framework that enables new Internet services
by building a resilient network architecture and bringing unlimited programmability
into the middle of the network to support services that the Internet cannot natively
provide.

This thesis specifically focuses on wide-area network applications that have strict
timeliness requirements, while also requiring high reliability. For such applications,
packets must be delivered within the strict timeliness constraint: packets that arrive
after their deadline are not useful. Within the timeliness constraint, the transport
service must be as reliable as possible. Some minimal packet loss is acceptable, but the
goal is to deliver the highest possible percentage of packets on time. We specifically
target on-time delivery rates on the order of 99.999%. These types of applications
are not well supported by the native Internet, which provides either timely delivery
with no reliability guarantees (i.e. UDP) or fully reliable delivery with no timeliness
guarantees (i.e. TCP).

A structured overlay framework can be used to enable these types of applications,
and other emerging applications with demanding requirements, to operate in a cost-
effective manner over existing Internet services. Structured overlay networks create
logical networks that run on top of the Internet and support powerful capabilities
through three key principles: a resilient network architecture, software overlay routers
with unlimited programmability, and flow-based processing. We describe each of these
three principles below and discuss how they support the timely, reliable transport
service.

10

CHAPTER 2. STRUCTURED OVERLAY FRAMEWORK FOR TIMELY,
RELIABLE TRANSPORT

2.1 Resilient Network Architecture

The physical architecture of the structured overlay network supports its key ca-
pabilities of unlimited programmability, global state maintenance, fast reaction, and
resilience. The foundation of the overlay’s physical architecture is a resilient network
architecture, illustrated in Figure 2.1.

The structured overlay network consists of overlay nodes connected to each other
via overlay links. Overlay nodes are physically instantiated as general-purpose com-
puters residing in data centers, while the overlay links correspond to Internet paths
between the overlay nodes. The use of general-purpose computers provides unlimited
programmability, which makes it possible to support a wide range of current and
future applications with highly demanding requirements.

Client	

Client	
 Client	

Client	

SJC

LAX

DEN

DFW

CHI

ATL

WAS SVG

NYC

JHU

Figure 2.1: Resilient Network Architecture

A key property of structured overlay networks is that they require only a few tens
of well situated overlay nodes to provide excellent global coverage. This is because, in
general, placing overlay nodes about 10ms apart on the Internet enables the desired
timeliness and reliability qualities, and about 150ms is sufficient to reach nearly any
point on the globe from any other point. The limited number of nodes allows each
overlay node to maintain global state regarding the condition of all other overlay
nodes in the network and the connections between them, allowing fast reactions to
changes in conditions. In contrast to the 40 seconds to minutes that BGP may take
to converge during some network faults, a well designed overlay can detect and route
around problems at a subsecond scale.

In addition to fast problem detection, effective rerouting also requires the ability
to make use of multiple alternative routes. To support this, overlay networks exploit
redundancy in the resilient network architecture. As shown in Figure 2.1, in such
an architecture, each overlay node is connected to each other node through multiple

11

CHAPTER 2. STRUCTURED OVERLAY FRAMEWORK FOR TIMELY,
RELIABLE TRANSPORT

redundant paths at the overlay level, and is connected to multiple underlying ISP
backbones. This redundant architecture allows the overlay to change the underlying
network path used for data transmission without relying on rerouting at the Internet
level. This is accomplished by selecting a different overlay-level path or by choosing
a different combination of ISPs to use for a given overlay link.

For overlay-level rerouting to be effective, disjointness in the overlay paths should
reflect physical disjointness in the underlying networks: if different overlay paths
overlap in the underlying network, a single problem in the underlying network can
affect multiple overlay paths. To exploit physical disjointness available in the under-
lying networks, the overlay node locations and connections are selected strategically.
Overlay nodes are placed in well-provisioned data centers, as ISPs invest in such lo-
cations by laying independent fiber connections between them. The overlay topology
can then be designed in accordance with the underlying network topology, based on
available ISP backbone maps. Overlay links are designed to be short (on the order
of 10ms) so that the Internet routing between overlay neighbors (i.e. overlay nodes
connected by a direct overlay link) is relatively predictable. Short overlay links also
enable improved performance and services by breaking the end-to-end principle at the
overlay level and increasing the processing possibilities in the middle of the network.

Connecting each overlay node on multiple ISPs provides additional redundancy
and resilience. Multihoming in this way allows the overlay to route around problems
affecting a single provider and allows most traffic to avoid BGP routing by switching
between providers at the overlay nodes and traversing only on-net links (i.e. overlay
links that use the same provider at both endpoints) between them, which generally
results in better performance (although any combination of the available providers
may be used, if desired).

2.2 Overlay Routers with Unlimited Pro-
grammability

Because overlay nodes are physically instantiated in general purpose computers,
they offer unlimited programmability in the middle of the network (as opposed to
only at end hosts). The overlay software runs on each overlay node as a normal
user-level program and is able to leverage general-purpose computing resources to
provide sophisticated network services. For example, the overlay software can make
use of the physical computer’s ample memory to store sent messages for later re-
transmissions or to track received messages to allow de-duplication of retransmitted
or redundantly transmitted messages. Similarly, the arbitrary processing possible in
a general-purpose computer allows for customized network protocols and even more
advanced features like cryptographic processing.

The relatively limited number of overlay nodes needed to provide global coverage

12

CHAPTER 2. STRUCTURED OVERLAY FRAMEWORK FOR TIMELY,
RELIABLE TRANSPORT

enables the key feature of state sharing among the overlay nodes. This shared state
can then be used to implement sophisticated network protocols. For example, overlay
nodes share information about their connections to neighboring overlay nodes, such as
current loss and latency characteristics, to enable fast rerouting according to custom
routing protocols (including the dissemination graphs introduced in this thesis) in
response to changes in network conditions. Moreover, structured overlays can support
multicast and anycast capabilities that are generally not available on the Internet by
sharing multicast and anycast group state among the nodes. All of the overlay nodes
share information about whether they have clients interested in a particular group,
making it possible to disseminate multicast messages to all relevant nodes or to select
the best target for a given anycast message (as anycast messages are delivered to
exactly one member of the relevant group). The overlay’s unlimited programmability
allows using higher-level information to select the best anycast target based on the
application’s desired properties.

The flexibility of a software overlay router allows many different network protocols
(e.g. routing and recovery protocols) to coexist. Each client application that connects
to the overlay can select the combination of protocols that best supports their par-
ticular demands, and new protocols can be easily added to support new applications.
A single overlay node can serve many clients (with the clients potentially using dif-
ferent combinations of protocols), and multiple overlays can even be run in parallel
to provide scalability (with each overlay potentially using a different variant of the
overlay software). The overlay software interface looks like a normal application to
the underlying network and like a powerful network (with additional services) to the
applications that use it.

2.3 Flow-Based Processing

In contrast to the Internet’s stateless packet switching, the structured overlay
framework employs flow-based processing. From a client’s perspective, a flow consists
of a source, destination, and the overlay services selected for that flow. A client
can select different overlay services (e.g. routing and recovery protocols) for each
application data flow.

The overlay node’s access to ample memory and processing resources allows it
to maintain the flow-based state needed to support basic services like reliability, as
well as more advanced services like authentication. Within the overlay, application
data flows may be aggregated based on their source and destination overlay nodes
or the services they select, with state maintenance and processing performed on the
aggregate flows.

13

CHAPTER 2. STRUCTURED OVERLAY FRAMEWORK FOR TIMELY,
RELIABLE TRANSPORT

2.4 Hop-by-Hop Recovery

A key capability enabled by the structured overlay framework is hop-by-hop recov-
ery. In contrast to the end-to-end recovery used to provide reliability on the Internet,
which requires packets to be recovered between their source and destination hosts,
hop-by-hop recovery allows packets to be recovered on the specific short overlay hop
on which they were lost. This greatly reduces the time needed to recover a lost packet.
Specifically, since recovering a packet requires at least two propagation delays across
the distance over which it is being recovered (one to request the lost packet and one
to retransmit it), limiting the recovery to an overlay hop with a propagation delay on
the order of 10ms enables lost packets to be recovered while still meeting strict latency
constraints. For example, across North America with a propagation delay of about
40ms, the recovery time can be reduced from about 80-100ms to about 20-25ms.

Hop-by-hop recovery is made possible by the combination of the resilient net-
work architecture, unlimited programmability, and flow-based processing discussed
above. The resilient network architecture ensures that overlay nodes are strategically
placed so that the propagation delay across each link is short enough to support fast
recovery. The unlimited programmability and general-purpose computing resources
allow intermediate overlay nodes to store packets for recovery, maintain the necessary
flow-based state, and implement the recovery protocol.

While our target applications’ strict timeliness requirements limit the number of
recoveries that can be performed successfully for a given packet, at least one recovery
on one overlay link is generally possible. Since the propagation delay of an overlay
link is typically on the order of 10ms, it is feasible to use about 20-25ms to recover
a lost packet on an overlay link, while still meeting a 65ms delivery deadline on the
scale of a continent with 35-40ms end-to-end propagation delay.

We consider a family of recovery protocols based on the real-time recovery pro-
tocol of [1] and a later generalization [3]. These protocols are designed to operate
within timeliness constraints and therefore are not 100% reliable: intermediate nodes
can discard packets once their delivery deadline has passed, since recovery will not
be useful after that point. The basic real-time recovery protocol of [1] allows a given
packet to be requested and retransmitted at most once per overlay link. More gener-
ally, instead of issuing a single request or retransmission, multiple copies of the request
and retransmission can be scheduled to be sent, separated by a short delay [3]. This
short delay improves the probability of successfully bypassing the window of corre-
lation for loss, reducing the likelihood that all copies of a request or retransmission
will be lost. The transport service developed in this thesis uses the basic protocol,
allowing one request and one retransmission, as extremely strict latency constraints
reduce the ability to effectively space out the requests and retransmissions.

14

Chapter 3

Dissemination-Graph-Based
Routing

The structured overlay framework described in Chapter 2 provides a foundation
for a timely and reliable Internet transport service, but supporting such a service also
requires effective protocols to be deployed within that framework. This chapter in-
troduces dissemination-graph-based routing, a flexible source-based routing approach
that enables packets to be disseminated over arbitrary subgraphs of the overlay topol-
ogy. We then present several specific dissemination-graph-based routing protocols and
discuss the range of trade-offs they offer in terms of their abilities to leverage the re-
silient network architecture’s path redundancy to support stringent timeliness and
reliability requirements and to provide a cost-effective service.

A dissemination graph is a connected subgraph of the overlay topology that con-
nects a flow’s source to its destination. The dissemination graph may consist of a
single path from source to destination, multiple disjoint paths, or a more complex
graph composed of an arbitrary set of overlay links. In our dissemination-graph-
based routing approaches, each packet is stamped with the graph that should be used
to disseminate it by its source at the time it is sent and then forwarded over the
overlay links included in that dissemination graph.

This flexible source-based approach provides a unified routing framework that
makes it simple to specify arbitrary graphs. Each source specifies exactly which links
each of its packets should be sent over, and intermediate nodes simply forward each
packet on all of their outgoing links that are included in the dissemination graph for
that packet; intermediate nodes do not need any additional logic to handle different
types of graphs.

During forwarding, duplicate packets are suppressed: each node only forwards
the first copy it receives of a given packet. Thus, each packet normally traverses
each edge of the dissemination graph exactly once; however when network problems
occur, loss may prevent a packet from reaching some links in its dissemination graph
or a recovery protocol may cause it to be retransmitted on some links. Note that

15

CHAPTER 3. DISSEMINATION-GRAPH-BASED ROUTING

this deduplication distinguishes dissemination graphs from sets of independent but
potentially overlapping paths, where packets may be transmitted multiple times over
links shared by multiple paths.

The use of source-based routing eliminates the possibility of packets being dropped
due to inconsistent network views across the overlay nodes as routing re-stabilizes
after a change is detected: each node honors the dissemination graph stamped on
the packet, so it follows exactly the path decided at the time it is sent, even if
network conditions change while it is in flight. However, because the decision is made
at the source, this approach can increase the time required to respond to certain
network problems (compared with non-source-based protocols), as information about
the problem must propagate to the source before routing can be updated. While non-
source-based protocols may allow faster reaction times, they are much less flexible:
link-state single-path routing approaches are widely used, but for disjoint paths or
more complex dissemination graphs, it is not obvious how to implement an effective
non-source-based routing scheme that maintains the desired graph properties in all
cases (e.g. disjointness, or redundancy level).

3.1 Model

To understand what types of dissemination-graph-based routing approaches will
be most effective in supporting timely, reliable, and cost-effective delivery, we first
specify the model in which they are implemented and how they are evaluated.

3.1.1 Network Model

Our dissemination-graph-based routing is implemented at the overlay level. As
discussed in Chapter 2, each overlay node is connected to several other overlay nodes
via overlay links. Overlay links are logical links that use the Internet for their un-
derlying communication medium. Each overlay link may have multiple ISP options
available, but for simplicity we only consider there to be one logical link between each
pair of neighboring overlay nodes.1 The overlay topology (i.e. set of overlay nodes
and links) is known to all of the overlay nodes, and is assumed not to change on the
timescales we consider.

Our experience shows that a relatively small number of nodes (i.e. tens) are suf-
ficient to provide excellent global coverage. Since the number of neighbors of each
node (its degree) is also typically small in practice (i.e. less than ten), the number of
links in the topology is not too large. This makes it practical to specify the complete
set of overlay links that make up the dissemination graph to be used to transport

1In practice, each pair of overlay neighbors decides on the underlying ISP to use on the link
between them, and this is abstracted to the rest of the network as a single logical link.

16

CHAPTER 3. DISSEMINATION-GRAPH-BASED ROUTING

a packet in that packet’s header (see Chapter 6 for implementation details). The
limited number of nodes also makes it feasible for each node to maintain global state
regarding the status (i.e. current loss rates and latencies) of all the overlay links in the
system. Note that in practice link status information takes time to be updated and
propagate through the network (on the order of tens to hundreds of milliseconds).

3.1.2 Cost Model

A key design goal of our timely reliable transport service is that it be cost-effective.
While instantiating a structured overlay network incurs certain fixed costs (e.g. ob-
taining space in strategically located data centers, purchasing computers and net-
working equipment), those costs come from the framework itself and do not depend
on the particular overlay protocols that are used. Therefore, in evaluating different
dissemination-graph-based routing approaches we focus on the component of the cost
that varies with the approach used: the total cost of the bandwidth that approach
uses to transport a packet through the network.

In our model, the service provider instantiating the structured overlay network
makes sufficient access bandwidth available at each overlay node to support the de-
mands of the applications they serve. Because provisioning sufficient bandwidth is
not difficult to do in practice, limiting the amount of data sent on each link to min-
imize congestion and best make use of limited bandwidth is not a concern. The key
constraint is the cost of the bandwidth used. In normal ISP pricing models, the ISP
customer (overlay service provider) purchases a certain amount of access bandwidth
for each node (e.g. 10 Gbps or more). The overlay operator commits to using a certain
percentage of that bandwidth (e.g. they will pay for at least 10-20% of the bandwidth
regardless of actual usage). If they use more than the commitment (which is the
normal case), they pay based on the total amount of bandwidth that was actually
used. Therefore, our model considers the total amount of bandwidth used per packet
as its cost metric. Note that while bandwidth costs for different links may vary based
on the ISP used and the location, these variations are relatively small, so we assume
that the cost of bandwidth is the same across all overlay links in the topology.

Analytical Measurement. Each time a packet is sent on an overlay link, it
counts against the total amount of bandwidth being used. Therefore, we consider the
cost CG of a given dissemination graph G to be the number of edges (overlay links)
E(G) included in that dissemination graph, since this corresponds to the number of
times each packet transported using that dissemination graph will need to be sent
in the normal case (although loss or retransmissions may affect this somewhat in
practice).

The overall cost of a dissemination-graph-based routing approach depends on
the cost of the dissemination graphs that it uses and how often each dissemination
graph is used. For static routing approaches, where the dissemination graph used

17

CHAPTER 3. DISSEMINATION-GRAPH-BASED ROUTING

for a particular flow does not change based on network conditions, the cost of the
routing approach is simply the cost of the single dissemination graph it uses. For
dynamic routing approaches, where a different dissemination graph can potentially
be selected for each packet in a flow, this overall cost can be computed as a weighted
average of the cost of the dissemination graphs used, where each graph is weighted
by the percent of the time it is used. However, because the amount of time that a
particular graph is used in a dynamic routing approach depends on the particular
network conditions experienced, we do not calculate exact costs analytically for these
approaches (although we will qualitatively discuss expected relative costs); we instead
measure the cost in practice by counting the number of packets actually sent.

Practical Measurement. When evaluating the cost of a dissemination-graph-
based routing approach in a real or simulated deployment, we measure cost using
two different metrics. The first is simply the average dollar cost of selecting that
approach for a packet. As explained above, we abstract the dollar cost of bandwidth
as the number of packets that must be sent. Therefore, the dollar cost metric is
calculated as the as the total number of packets sent (including all redundant copies
of a given packet transmitted by any overlay node) divided by the total number of
packets introduced into the network by some source. While this metric is simple and
accurately represents the cost that would be paid using a particular routing approach
at a particular time, a potentially undesirable aspect is that it rewards unreliable
graphs that drop packets early in transmission. That is, approaches using graphs
that include many edges but result in packets being dropped before they have a
chance to traverse those edges will look less expensive than approaches using graphs
with the same number of edges in which packets successfully traverse all edges (but
it is true that the less reliable graphs would in fact result in a lower cost in terms of
real dollars spent).

Therefore, we also report a goodput cost metric that measures the average dollar
cost of successfully transporting a packet from its source to destination using a given
routing approach. This metric is calculated as the total number of packets sent
(including all redundant copies of a given packet transmitted by any overlay node)
divided by the total number of packets successfully delivered at their destination
within their time constraint.2

Considered together, these two metrics provide an understanding of both the
absolute cost of a dissemination-graph-based routing approach and the cost of the
approach relative to the level of reliability it provides.

3.1.3 Reliability Model

The reliability of a dissemination graph is defined as the probability that a packet
sent using that dissemination graph successfully reaches its destination. Reliability

2This is the metric used in the cost analysis we present in [32].

18

CHAPTER 3. DISSEMINATION-GRAPH-BASED ROUTING

depends both on the structure of the dissemination graph that is used and on the
network conditions experienced at the time a packet is sent.

Analytical Measurement. We consider a dissemination graph G = (V,E),
where vertices V are overlay nodes and edges E are overlay links. We have an assign-
ment of failure probabilities (loss rates) p : E → [0, 1] to edges and an assignment of
lengths (latencies) l : E → R+ to edges. In terms of reliability, a dissemination graph
over a network that experiences packet loss can be modeled as a random graph in
which each edge e ∈ E(G) in the underlying graph is removed with probability p(e),
where the failure probability p(e) corresponds to the loss rate of edge e. Essentially,
we view each packet as traversing a (potentially different) post-failure graph that in-
cludes all edges on which the packet can be successfully transmitted and excludes all
edges on which it is lost. Then, the probability that a packet sent over the dissemi-
nation graph successfully reaches its destination within its latency constraint (i.e. the
reliability of the graph) is exactly the probability that the source and destination are
connected by a path whose length is within the latency constraint in the post-failure
graph. Therefore, for a given source s, destination t, and latency constraint L, we
define the reliability of the dissemination graph G subject to the latency constraint
L as follows:

Definition 1. Let G{p} be the probability distribution over subgraphs obtained by
removing each edge e ∈ E(G) independently with probability p(e). The reliability of
G is then the probability that there exists a path from s to t of length at most L in a
subgraph H drawn from the probability distribution G{p}. We denote this probability
by Rel(G, s, t, L).

While we can precisely define the reliability of a dissemination graph for a given
source, destination, and set of network conditions, in many cases this value is not
easy to compute. In fact, without considering the latency constraint (or equivalently
when L is arbitrarily large), computing the reliability of a graph as defined above
is exactly the classical two-terminal reliability problem [23–26], which is known to
be #P-hard [22], implying that there is no polynomial-time algorithm for computing
reliability in the general case (there may exist a fully polynomial-time randomized
approximation scheme that can approximate the answer arbitrarily well, but this
is an open question; no such scheme is known today). Note that when discussing
two-terminal reliability, we will use a non-latency-constrained definition of reliability
Rel(G, s, t), which is equivalent to Definition 1 but only requires that s and t be
connected, rather than connected within distance at most L.

Of course, for certain restricted classes of graphs, computing reliability is simple.
For example, for a single path, the reliability is simply the probability that the packet
can be successfully transmitted across every link in the path, or

∏
e∈E(G)(1 − p(e)).

However, for many of the arbitrary dissemination graphs we consider the computation
may not be feasible.

19

CHAPTER 3. DISSEMINATION-GRAPH-BASED ROUTING

Practical Measurement. In practical deployments or simulations, the reliability
of a dissemination graph is simply measured as the percentage of packets that are
delivered at their destination within the specified timeliness constraint. Therefore, to
determine the empirical reliability, we just count the total number of packets delivered
on time and divide that by the total number of packets introduced into the network.

3.2 Foundational Approaches to Dissemi-
nation Graph Construction

Building on the novel idea of dissemination-graph-based routing and our struc-
tured overlay framework for deploying such routing schemes over the Internet, we
investigate several foundational approaches to constructing the dissemination graphs
to be used in routing. These approaches range from a single path, to disjoint paths,
to arbitrary graphs, and can all be specified using our framework. Together, these
approaches present a range of trade-offs between reliability, cost, simplicity, and fea-
sibility.

3.2.1 Dynamic Single Path

In a dynamic single path approach, each packet is sent on the shortest path from
its source to its destination, as determined by its source at the time the packet is sent.
While a variety of different metrics could be used in determining the shortest path,
we consider a link-weight metric based on the expected latency metric of [1], which
takes into account both the loss rate and the latency on each overlay link, with the
goal of selecting the path that is most likely to reach the destination within the time
constraint. Specifically, we calculate the expected latency of a link as:

(1− p) · T + (p− 2p2 + p3) · (3T + ∆) + (2p2 − p3) · Tmax (3.1)

Here, p is the current loss rate of the link, T is the current latency of the link,
3T + ∆ is the time needed to recover a lost packet (a constant ∆ to detect the loss,
plus three propagation delays for the original send, request, and retransmission), and
Tmax is the maximum allowed latency, used as a penalty for packets that are lost and
cannot be successfully recovered by the deadline.

This is the cheapest approach considered: the cost is just the number of overlay
links in the single best path (note that the best path in terms of expected latency may
not have the fewest number of overlay links, and therefore may not be the path with
the lowest cost). If there is any problem on the selected path that cannot be masked
by the recovery protocol being used, losses will be visible to the application at least
until a new path is selected. While subsecond rerouting is possible, the time needed

20

CHAPTER 3. DISSEMINATION-GRAPH-BASED ROUTING

Figure 3.1: Single-best-path dissemination graph (in terms of expected latency,
assuming normal-case latency and no loss) from New York to Los Angeles. Cost: 2
edges.

to react to problems can still result in interruptions of 100-200ms, which are not
acceptable for the most demanding applications. An example dissemination graph
for a flow from New, York to Los Angeles in a global overlay topology is shown in
Figure 3.1.

3.2.2 Static Two Node-Disjoint Paths

To avoid disruptions due to problems that occur on a single path, multiple paths
may be used simultaneously. When two static node-disjoint paths are used, each
packet is sent over a dissemination graph consisting of two node-disjoint paths, where
the paths are chosen at startup time based on their normal-case latencies.3 The paths
are not recomputed when loss rates or link latencies change, making this approach
very simple to implement, as no link monitoring or rerouting is required. This ap-
proach masks the failure of any one path, at approximately twice the cost of using
the single best path. However, because the paths are static, if both of the selected
paths experience a problem, the application will be affected until the problem re-
solves. Therefore, the effectiveness of the approach depends on the type of network
problems experienced; because it will continue to use its two initially selected paths
even if both paths fail, it can perform even worse than a single dynamic path in cases
where the two selected paths experience problems but some other better-performing
path exists.

3Ideally, we would like to minimize the latency of the longer of the two paths, but there is not
a known efficient method to compute such paths. Instead, we minimize the sum of the latencies of
the two paths, which can be done efficiently, for example using Suurballe’s algorithm [33].

21

CHAPTER 3. DISSEMINATION-GRAPH-BASED ROUTING

Figure 3.2: Two node-disjoint paths (chosen based on expected latency, assuming
normal-case latency and no loss) from New York to Los Angeles. Cost: 5 edges.

3.2.3 Dynamic Two Node-Disjoint Paths

When two dynamic node-disjoint paths are used, each packet is sent over a dissem-
ination graph consisting of two node-disjoint paths chosen based on their expected
latencies (considering both loss and latency, according to Equation 3.1), as calculated
at the packet’s source at the time it is sent.

Like static two node-disjoint paths, this approach costs about twice as much as
using the single best path, but it fixes the potential problem of continuing to use two
failed or problematic paths when alternative good paths are available. The application
will only experience a problem if both paths are affected before rerouting occurs, or
if no unaffected path exists.

3.2.4 Overlay Flooding

When overlay flooding is used, each packet is sent over every link in the overlay
topology. Overlay flooding is extremely expensive, but provides optimal timeliness
and reliability: if there is any path that can transport a packet from its source to its
destination within its deadline, it will be delivered on time.

22

CHAPTER 3. DISSEMINATION-GRAPH-BASED ROUTING

Figure 3.3: Overlay flooding from New York to Los Angeles. Cost: 64 (directed)
edges (direction arrows on edges are omitted for clarity).

3.2.5 Time-Constrained Flooding

Time-constrained flooding is a novel approach that preserves the optimality of
flooding at a lower cost. In time-constrained flooding, a packet is sent on every overlay
link that can improve the probability that it reaches its destination on time, providing
optimal reliability. Time-constrained flooding improves on the cost of overlay flooding
by not sending packets to nodes from which they cannot reach their destination within
the time allowed.

The time-constrained flooding dissemination graph between a source and destina-
tion for a given latency constraint is constructed as follows:

1. Run Dijkstra’s algorithm from the source to mark each node with its distance
(in terms of network latency) from the source.

2. Reverse all edges and run Dijkstra’s algorithm from the destination to mark
each node with its distance from the destination.

3. Iterate over each edge in the graph: let ds be the distance from the source to the
head vertex of the edge, dt be the distance from the tail vertex of the edge to the
destination, and l be the latency of the edge. If ds +dt + l ≤ latency constraint,
include the edge.

4. Remove unnecessary loops by checking whether each included node is on at least
one path from the source to the destination that does not include any cycles
and removing any nodes (and their adjacent edges) that are not on such a path.
The loop removal algorithm is presented in Algorithm 1.

5. Remove edges entering the source or leaving the destination (since the source
will not forward the packet again after its original introduction, and there is no
need to forward the packet further once it reaches its destination).

23

CHAPTER 3. DISSEMINATION-GRAPH-BASED ROUTING

Figure 3.4: Time-constrained flooding from New York to Los Angeles, using a 65ms
latency constraint. Cost: 31 edges.

The time-constrained flooding dissemination graph for a given source and desti-
nation can be computed once based on the normal-case latencies of the overlay links
and does not need to be recomputed as network conditions change. While latency
variations in the network may render some edges in the normal-case time-constrained
flooding graph ineffective at certain times, excluding these edges would provide only
minimal cost savings, so we do not consider it worth the additional complication of
recomputing the graph based on changing conditions. Time-constrained flooding is
optimal in terms of reliability, but it does not consider the cost of the dissemination
graph beyond removing edges that do not improve reliability and therefore is still
likely to be too expensive for practical use.

3.3 Optimal Dissemination Graphs

The ideal approach would be to send each packet using the cheapest dissemination
graph that meets its application’s reliability and latency constraints, based on current
network conditions (or alternatively, the most reliable dissemination graph that can
be constructed within a given budget).

From the perspective of a service provider who wants to minimize the cost of
providing an agreed upon level of service, we can specify the problem of choosing the
cheapest dissemination graph satisfying a given reliability constraint as follows:

Problem 1. Minimum-Cost Dissemination Graph. Given an input graph G =
(V,E), an assignment of failure probabilities p : E → [0, 1] to edges, a source s, a
destination t, latency constraint L, and a reliability requirement r ∈ [0, 1], our goal is
to find a subgraph H such that Rel(H, s, t, L) ≥ r and the number of edges |E(H)| in
the subgraph is minimized.

24

CHAPTER 3. DISSEMINATION-GRAPH-BASED ROUTING

Algorithm 1 Time-Constrained Flooding Loop Removal

1: Given an input graph G = (V,E), source s, destination t, latency constraint L,
and assignment of latencies to edges l : E → R+

2: Let G′ = (V ′, E ′), where V ′ ← V ∪ d and E ′ ← E ∪ {(s, d), (t, d)}, where d is a
dummy node added to the graph and l(s, d) = l(t, d) = 0

3: Let Gu = (Vu, Eu) be an undirected version of G′ (collapse any edge pairs
(u, v), (v, u) ∈ E ′ to a single undirected edge (u, v)) . This requires that all
latencies are symmetric

4: Let list eval ← Vu \ {s, t, d}
5: while |list eval | > 0 do
6: Choose some n ∈ list eval
7: Let p1, p2 be two disjoint paths of minimal total latency from n to d in Gu

(e.g. using Suurballe’s algorithm)
8: if @p1, p2 or l(p1) + l(p2) > L then
9: Let Vu ← Vu \ {n}

10: Let Eu ← Eu \ {(n, v)} ∀v : (n, v) ∈ Eu

11: list eval ← list eval \ {n}
12: else
13: list eval ← list eval \ Vu(p1) \ Vu(p2)
14: end if
15: end while
16: Let G′′ ← Gu with directedness restored. For each edge (u, v) ∈ Eu, (u, v) ∈

E ′′ ⇐⇒ (u, v) ∈ E, and (v, u) ∈ E ′′ ⇐⇒ (v, u) ∈ E
17: return G′′

25

CHAPTER 3. DISSEMINATION-GRAPH-BASED ROUTING

Unfortunately, as discussed above, without considering latency constraints (which
only make the problem harder), calculating the reliability Rel(G, s, t, L) of an arbi-
trary graph is a #P-hard problem (it is exactly the two-terminal reliability problem).
Formally, the two-terminal reliability problem is defined as follows:

Problem 2. 2-Terminal Reliability. Given an input graph G = (V,E), an
assignment of failure probabilities p : E → [0, 1] to edges, a source s, and a destination
t, compute the reliability Rel(G, s, t).

We can define the associated decision problem as follows:

Problem 3. 2-Terminal Reliability (Decision). Given an input graph G =
(V,E), an assignment of failure probabilities p : E → [0, 1] to edges, a source s,
a destination t, and a reliability requirement r, determine whether the reliability
Rel(G, s, t) ≥ r.

The #P-hardness of 2-Terminal Reliability immediately implies that 2-
Terminal Reliability (Decision) is NP-hard. Based on the hardness of the
two-terminal reliability decision problem, we can show that solving the Minimum-
Cost Dissemination Graph problem to calculate optimal dissemination graphs is
NP-hard to even approximate:

Theorem 1. Unless P = NP, there is no polynomial-time α-approximation for
Minimum-Cost Dissemination Graph for any α.

Proof. We prove this by a gap reduction from 2-Terminal Reliability (Deci-
sion). The reduction is trivial: given an instance (G, p, s, t, r) of 2-Terminal Re-
liability (Decision), we simply reinterpret it as an instance of Minimum-Cost
Dissemination Graph with arbitrarily large L (specifically, it is sufficient to set
L ≥

∑
e∈E(G) l(e) to ensure that the latency constraint will not exclude any simple

path in the graph). Let ALG be an α-approximation for Minimum-Cost Dissem-
ination Graph. If rel(G, s, t, L) < r then by definition ALG must return INFEA-
SIBLE. On the other hand, if rel(G, s, t, L) ≥ r, then ALG will return a subgraph
H where rel(H, s, t) ≥ r (and where |E(H)| is at most α times the optimum, but
the size bound is not important here). Hence, ALG lets us decide in polynomial
time whether rel(G, s, t, L) < r or rel(G, s, t, L) ≥ r, and so since 2-Terminal
Reliability (Decision) is NP-hard, ALG can only exist if P = NP.

While we can make it feasible to find optimal dissemination graphs for certain
practical overlay topologies using exhaustive search (using optimizations to limit the
search space as we describe in [34]), such computations are too slow to permit fast
reactions to network problems, taking on the order of tens of seconds to complete for
overlay topologies of the size we consider.

Moreover, because detecting and reacting to problems takes time, we find that
even the optimal dissemination graph for the current network conditions known at

26

CHAPTER 3. DISSEMINATION-GRAPH-BASED ROUTING

the source is not necessarily the best choice. The formulation above assumes that
the source has perfect knowledge of the network conditions (latencies and loss rates)
each packet will experience. In practice, however, it takes time to detect that a
loss rate or link latency has changed and to propagate that information back to the
source. Therefore, it is often useful to employ additional redundancy beyond what
is required to cope with current known problems to mitigate loss during the time
required to react to new problems.

Since a routing scheme based on computing optimal dissemination graphs is not
practical (due to the fact that it is not computationally feasible in all cases and due
to the lack of perfect knowledge of network conditions), we instead take a different
approach of learning about the types of network problems that occur in the field,
with the goal of developing data-informed approaches to effectively cope with these
types of problems. We discuss the process of collecting and analyzing real wide-area
network data and our findings in Chapter 4.

27

Chapter 4

Analyzing Network Problems in
the Field

Each foundational approach discussed in Chapter 3 presents a different set of
trade-offs between reliability, cost, simplicity, and feasibility. To determine how these
trade-offs interact in practice, we collect and analyze real network data to learn about
the types of network problems that occur in the field and how each approach performs
during such problems.

4.1 Flow Modeling with the Playback
Overlay Network Simulator

To analyze the performance that different overlay routing approaches would achieve
on a real global network, we developed the Playback Network Simulator. Playback is
an overlay simulation tool that collects data on each link of a real overlay topology and
then uses that per-link data to model the performance of one or more flows through
the network. Playback can simulate a flow from any source to any destination using
any dissemination-graph-based overlay routing protocol and any recovery protocol in
the family we consider (i.e. recoveries in the style of [1, 3]). A complete description
of the Playback Network Simulator is available in [35], but we provide an overview
here that also reflects some recent changes to Playback’s modeling approach.

Data Collection. To determine the network’s loss and latency characteristics,
Playback’s data collection component collects fine-grained data by sending messages
on each overlay link in the topology at short intervals. The sending frequency for
these messages is configurable, but for our wide-area analysis, we send a message
on each link every 10ms. The granularity may be further improved (e.g. to every
1ms) with an increased bandwidth allowance and improved logging infrastructure:
the ability to store logs as we recorded data over a long period of time and processes’

28

CHAPTER 4. ANALYZING NETWORK PROBLEMS IN THE FIELD

ability to keep up with logging data from multiple neighbors were limiting factors in
our data collection.

During data collection, each node logs every message it receives, including se-
quence numbers and timestamps that allow the simulator to calculate loss and la-
tency. Loss rates and round-trip latencies can be calculated directly. To determine
approximate one-way latencies, we assume that during periods with no network prob-
lems, the latency is symmetric between each pair of nodes (i.e. each one-way latency
is equal to half the round-trip time). We then use these one-way latencies determined
during stable periods to calculate clock skew and appropriately adjust the one-way
latencies during problematic periods. This approach is more accurate than simply
using half the round-trip latency, as we find that network problems that result in
increased latency on an overlay link often occur in only one direction.

Flow Simulation. For a given time period, source-destination pair, sending rate,
overlay routing protocol, and recovery protocol, the Playback Network Simulator
simulates the end-to-end performance of that flow based on the network conditions
at the specified time. For each simulated packet in the flow, it calculates whether
it would have reached the destination using the given protocols, and if so, what
its latency would have been. The simulated packet is propagated across the network
according to its dissemination graph. For each link the packet traverses, the simulator
calculates the latency and loss rate of that link by averaging over the collected data
for that link in a sliding modeling window centered at the time that packet reaches
the link. Based on the loss rate, the simulator randomizes to determine whether the
packet is successfully transmitted. If the first attempt to transmit the packet across a
link is unsuccessful, the simulator performs further randomizations to determine when
that loss is detected, whether a request for retransmission is successful, and whether a
retransmission of the packet is received, based on the specific recovery protocol used.
If the packet is successfully transmitted, the latency to traverse the link is calculated
as the average one-way link latency at that time, plus any time needed to perform
recovery.

When static routing approaches are used, the same dissemination graph is used for
each simulated packet. However, for dynamic approaches, the dissemination graphs
can change over time. Dynamic routing is done in a preprocessing step of the simula-
tion, which processes the raw log files to determine when routing updates would have
been issued. In modeling dynamic reroutes, we assume that a routing update is issued
as soon as the average latency or loss rate measured over a sliding update detection
window changes by a certain threshold percentage. The size of the update detection
window affects how quickly we can respond to changes in the network: short update
detection windows allow for fast rerouting when problems occur, but may cause in-
stability by rerouting in response to small changes in the network (our experience
shows windows on the order of a few hundred milliseconds to be practical). Once an
update is generated, we assume that it takes 65ms to propagate to the source. This is
a conservative estimate, since the maximum latency between two nodes in the North

29

CHAPTER 4. ANALYZING NETWORK PROBLEMS IN THE FIELD

American portion of the overlay is about 50ms, and in many cases the delay will be
considerably shorter. In addition, to increase routing stability, once the loss rate or
latency on a link is raised, we do not allow it to be lowered again for 30 seconds to
avoid repeatedly attempting to use a link that may still be experiencing intermittent
problems. An increase in loss or latency will always be reported as soon as it is de-
tected. The main phase of the simulation takes the list of reroutes as an input and
uses it to change dissemination graphs at the appropriate times.1

Note that all modeling parameters, including the modeling window, the update
detection window, and the delay for updates to propagate to the source, can be
changed, and the same data can be reanalyzed with different parameters. The only
parameter that cannot be changed after data collection is the collection interval itself
(which was 10ms for our wide-area analysis). In our evaluation, we use a modeling
window of 100ms (which corresponds to 10 packets in our data) and a update detection
window of 500ms, with a 2% loss update threshold and 10% latency-change threshold.

Figure 4.1: Global overlay topology spanning East Asia, North America, and Eu-
rope. Each circle represents an overlay node located in a data center.

4.2 Data Collection Environment

We collected data over a period of several months on a real global overlay network
that we have access to through LTN Global Communications [4]. The specific overlay
topology on which we collect data is based on the one used by LTN and uses the
same underlying infrastructure. This topology includes overlay nodes in twelve data
centers and spans East Asia, North America, and Europe, as shown in Figure 4.1.
The data centers are located in Hong Kong (HKG), San Jose, California (SJC), Los
Angeles, California (LAX), Denver, Colorado (DEN), Dallas, Texas (DFW), Chicago,

1Note that the process for modeling dynamic reroutes has changed from the version of the Play-
back Simulator used in [32,35] to better match the behavior of a real implementation.

30

CHAPTER 4. ANALYZING NETWORK PROBLEMS IN THE FIELD

Illinois (CHI), Atlanta, Georgia (ATL), Washington, DC (WAS), New York, New York
(NYC), Baltimore, Maryland (JHU), London, UK (LON), and Frankfurt, Germany
(FRA).

While our overlay topology is based on LTN’s, the topology we measure is some-
what less resilient than the full LTN topology, as we only collected data using a
single ISP at each node at any given time, while the LTN topology has multiple ISP
options available simultaneously. Analyzing the performance impact of multihoming
and different ISP selection protocols is an interesting avenue for future work.

Over a period of four months, we collected four full weeks of data, using the
Playback Network Simulator’s data collection component.

4.3 Network Fault Pattern Analysis

We evaluated several of the foundational dissemination-graph construction ap-
proaches described in Chapter 3 to determine how they would have performed during
our data collection period and which types of problems they successfully address. The
approaches we considered were: dynamic single path, static two node-disjoint paths,
dynamic two node-disjoint paths, and time-constrained flooding. Each was evalu-
ated using no recovery protocol and using the real-time recovery protocol of [1]. The
performance of each approach was evaluated for sixteen flows across North America.
These flows include all transcontinental source-destination combinations of four cities
on the East coast of the US (NYC, JHU, WAS, ATL) and two cities on the West
coast of the US (SJC, LAX). A full analysis of the results appears in Section 5.4; here
we only provide the intuition leading to our new method.

Overall, we find that two dynamic node-disjoint paths perform quite well, covering
about 70% of the performance gap between a single-path approach and the optimal
reliability of time-constrained flooding. Examining the data, we observed that most
instances in which two node-disjoint paths did not achieve 100% reliability for a
particular flow involved problems on links connected to the source or destination of
that flow. We classified each interval in which two node-disjoint paths experienced
problems and found that only about 3% of problems involved packets that were
dropped or late due to problems on links not connected to the source or destination.
Therefore, to close the performance gap between two disjoint paths and the optimal
time-constrained flooding, we focus on problems involving the source or destination of
a particular packet flow, as we find that such problems account for the vast majority
of that gap.

31

Chapter 5

Dissemination-Graph-Based
Transport Service using Targeted
Redundancy

Based on the analysis described above, we design a new approach with the goal
of achieving reliability close to that of time-constrained flooding (which is optimal),
at a cost similar to that of two disjoint paths. Because we find that two disjoint
paths generally perform well, avoiding loss incurred when a single-path approach
would take time to react to and route around a problem, we use a dissemination
graph consisting of two disjoint paths in most cases. To close the performance gap
between two disjoint paths and the optimal time-constrained flooding, we focus on
problems involving the source or destination of a particular packet flow, as we find
that such problems account for the vast majority of that gap. Our approach is to
use a dissemination graph consisting of two disjoint paths for each source-destination
flow, except when a network problem is detected at the source or destination of the
flow.

Fast reactions to network problems require both quick detection of problems and
fast selection of graphs that can address those problems. Because calculating opti-
mal dissemination graphs for arbitrary conditions is computationally intensive, our
approach to enabling fast graph selection is to pre-compute a limited number of dis-
semination graphs that can address most common problems, converting the difficult
optimization problem of computing a dissemination graph into a much simpler prob-
lem of classifying network events into a few broad categories. Based on the findings
that two disjoint paths avoid many common problems and that problems that cannot
be avoided using two disjoint paths generally involve a flow’s source or destination,
our approach is to use two dynamically computed node-disjoint paths in combina-
tion with three precomputed dissemination graphs. Offline, each source computes the
following three dissemination graphs for each of its possible destinations:

32

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

DEN$

DFW$ ATL$

CHI$
WAS$

NYC$

LON$

FRA$
LAX$

SJC$

JHU$

HKG$

(a) Two node-disjoint paths, based on
normal-case latencies (4 edges).

DEN$

DFW$ ATL$

CHI$
WAS$

NYC$

LON$

FRA$
LAX$

SJC$

JHU$

HKG$

(b) Source-problem graph (10 edges).

DEN$

DFW$ ATL$

CHI$
WAS$

NYC$

LON$

FRA$
LAX$

SJC$

JHU$

HKG$

(c) Destination-problem dissemination
graph (8 edges).

DEN$

DFW$ ATL$

CHI$
WAS$

NYC$

LON$

FRA$
LAX$

SJC$

JHU$

HKG$

(d) Robust source-destination-problem dis-
semination graph (12 edges).

Figure 5.1: Dissemination graphs for a flow from Atlanta to Los Angeles.

1. Source-problem dissemination graph

2. Destination-problem dissemination graph

3. Source-destination-problem dissemination graph

In the normal case, when no source or destination problems are detected, a source
will use a dissemination graph consisting of two dynamically computed node-disjoint
paths. The paths are computed based on current link latencies and loss rates, using
the expected latency metric, as described in Section 3.2.3. Specifically, we use an
algorithm based on the Ford-Fulkerson max-flow algorithm, as described in [36]. This
approach minimizes the sum of the latencies of the two paths and works well for the
practical overlay topologies we consider. Although we would prefer to select the
paths such that the latency of the longer of the two paths is minimized, dynamically
constructing the dissemination graph requires an efficient algorithm, and that problem
is known to be NP-complete.

The source-problem and destination-problem graphs add targeted redundancy
around the source or destination, respectively, while potentially reducing redundancy

33

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

in the rest of the network to keep costs as close to two-disjoint paths as possible. The
robust source-destination-problem dissemination graph is more expensive, but adds
redundancy around both the source and destination. In addition, when a source-
destination problem graph is selected for a particular flow, it is dynamically combined
with the current best two disjoint paths in order to create a highly robust graph. Fig-
ures 5.1a - 5.1d show examples of the four graph types for a flow across the US from
Atlanta, Georgia to Los Angeles, California.

5.1 Constructing Dissemination Graphs
with Targeted Redundancy

Unlike optimal dissemination graphs for arbitrary conditions, the three dissemi-
nation graphs that we precompute for each flow have well-defined structures, making
them considerably easier to compute. Below, we describe how each of these graphs is
computed.

5.1.1 Source-Problem and Destination-Problem

Graphs

The source-problem and destination-problem graphs aim to maximize the number
of ways out of the source or into the destination, respectively. For destination-problem
graphs, we consider all overlay nodes directly connected to the destination, eliminating
any that cannot be used by the source to reach the destination within the time
constraint (i.e. the latency of the shortest path from the source to that node, plus the
latency between that node and the destination exceeds the time constraint). We then
find a tree that connects the source to all of these nodes.1 The complete destination-
problem dissemination graph consists of this tree, plus the edges connecting these
nodes to the destination.

There are several possible methods for computing the tree that connects the source
to the neighbors of the destination. The simplest approach is to use the shortest-path
tree, as it is easy to compute and ensures the lowest possible latencies. The shortest-
path tree may be a good practical choice for certain applications or large topologies,
but it does not provide cost guarantees.

We currently use minimal-cost shallow-light Steiner trees [37, 38], which provide
the lowest cost trees that ensure that the path from the source to each neighbor
node is short enough to allow it to reach the destination on time. While finding such

1If the destination has many direct neighbors, the set of nodes to include can be pruned, for
example, by eliminating the nodes on the highest-latency paths, or furthest from the destination
(since recoveries are least likely to succeed in that case).

34

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

trees is an NP-hard problem, exact calculations of these graphs are feasible for our
topology (and are likely to be feasible for many practical topologies, since they only
need to be performed once, offline). The exhaustive search algorithm used in our
current implementation is shown in Algorithm 2.

Algorithm 2 Shallow-light Steiner tree via exhaustive search

1: Given an input graph G = (V,E), source s, destination t, set of target destination
neighbors N and assignment of latency constraints l : N → R+ to the target
neighbors

2: Let C ← V \N \ {s, t}
3: for i ∈ [0, |C|] do
4: for all C ′ such that C ′ ⊆ C and |C ′| = i do
5: feasible ← true
6: V ′ ← C ′ ∪N ∪ s
7: Let H be the subgraph of G composed of the vertices in V ′ and their adjacent

edges in E
8: for all nj ∈ N do
9: p(nj)← the shortest path from s to nj in H

10: if @p(nj) or length p(nj) ≥ l(nj) then
11: feasible ← false
12: break
13: end if
14: end for
15: if feasible = true then return

⋃
nj∈N p(nj)

16: end if
17: end for
18: end for

The running time of Algorithm 2 is exponential in the number of non-target
vertices, excluding the source and destination (i.e. the size of the set C): specifically,
its runtime is 2|C| × O(|E| + |V 2|) or 2|C| × O(|E| + |V | log |V |), depending on the
implementation of Dijkstra’s algorithm used for finding shortest paths. For a small
number of vertices (e.g. 15 to 20, which is sufficient to provide global coverage), this
is quite practical. Moreover, using more sophisticated algorithms, exact solutions can
be found in time exponential only in the number of target neighbor nodes, which is
likely to be small even in larger networks (since the fanout of each node is typically
bounded, and for destinations with large fanout, the target neighbor set would likely
be pruned to reduce costs) [38, 39]. However, if exact calculations are not feasible,
such trees can also be approximated (e.g. [37,40]).

Note that algorithms for the shallow-light Steiner tree problem are typically spec-
ified with a single latency constraint for all targets, which does not quite fit our
problem. Because we are constructing a tree that connects the source to all of the

35

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

neighbors of the destination, we must also account for the time required to get from
those neighbors to the destination itself. Therefore, for each neighbor v of the desti-
nation, we have a different latency constraint l(v) = L − l(e(v,t)), which reduces the
allowed latency by the distance between the neighbor and destination. Algorithm 2
is specified to account for these different latency bounds, and other algorithms can
generally be adapted to take this into account. For example, for the algorithm in [38]
that provides an exact solution in time exponential only in the number of target
neighbors via reduction to the Directed Steiner Tree problem, this can be done by
modifying the layered graph constructed in the reduction.

While the above discussion was framed in terms of destination-problem graphs, the
same approaches can be used for source-problem graphs by simply reversing the edges
of the graph and treating the source as the destination. Reversing the edges in the
final solution then gives a graph that connects the source to all of its neighbors that
can provide an on-time path to the destination and connects all of those neighbors
to the destination via a tree that respects the latency constraint.

5.1.2 Robust Source-Destination-Problem

Graphs

The robust source-destination-problem graphs are more expensive than the other
graphs types, but this is acceptable because they are only used rarely, in the case
of multiple problem types occurring simultaneously in the network. These graphs
are precomputed to add redundancy around both the source and destination and
dynamically modified to ensure that there are at least two node-disjoint paths between
the source and destination.

In our approach, the precomputed base graphs are created by simply taking the
union of the edges in the source-problem and destination-problem graphs. At the
time that the graph is used, it is combined with the current best two node-disjoint
paths (based on network conditions), creating a highly robust graph, composed of
the union of all three other graph types used in our approach (dynamic two paths,
source-problem, and destination-problem). While this method does not provide strict
cost guarantees, that is acceptable for these infrequently used graphs that must be
highly robust to failures.

Developing a principled method of constructing dissemination graphs that provide
the necessary robustness while also minimizing cost is a challenging problem. One
method we have considered is to construct a highly robust graph that connects each
neighbor of the source to each neighbor of the destination. Intuitively, this ensures
that (assuming there are no problems in the middle of the network), it is sufficient for
the source to successfully transmit the packet to any one of its neighbors and for the
destination to be able to receive the packet from any one of it neighbors (since each
neighbor of the source will forward the packet to all neighbors of the destination).

36

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

Unfortunately, we have shown that such computing such graphs is W[1]-hard with
respect to the number of neighbor combinations, even in the case that all edges are of
unit length and unit cost, making it unlikely to be feasible as a general approach [38].

5.2 Quick Problem Detection System

Fast rerouting is accomplished using a quick detection system in which each over-
lay node monitors each of its links, flooding an update to all of the other overlay
nodes whenever it detects that a new problem has started on one of its links or
that an existing problem has resolved. When the number of problematic incoming
links for a given node exceeds a certain threshold, each source will switch to using a
destination-problem graph for that destination. Similarly, if a node detects problems
on a threshold number of its outgoing links, it will switch to using source-problem
graphs. The source-destination-problem graphs are used when there are problems
at both the source and destination. In addition, if a source-problem or destination-
problem graph is selected for a given flow, and a problem is also detected on another
link of that dissemination graph (not at the source or destination), the robust source-
destination-problem graph will also be used.

While all specific thresholds are configurable, we currently consider a link prob-
lematic if its measured loss rate is greater than 2% (a loss rate of exactly 2% is not
considered problematic) or if its latency is at least 25% above its baseline latency. A
source is considered problematic if at least two of its outgoing links are classified as
problematic, and a destination is considered problematic if at least two of its incoming
links are classified as problematic.

This approach is scalable to large numbers of simultaneous packet flows, as it
requires only a small monitoring overhead per overlay link. All simultaneous flows
between a particular source-destination pair can use the same dissemination graph,
so no per-flow monitoring is needed. Note that if the same overlay deployment needs
to support applications with significantly different latency constraints, it may be
necessary to maintain multiple graph sets for each flow (one for each application
class), but in practice it is likely simpler to run separate overlay instances in parallel,
with applications distributed across them based on their timeliness constraints.

5.3 Potential Optimization: Faster
Reaction

One potential drawback of our source-based routing approach compared with link-
state routing is that information about changes in network conditions must be prop-
agated back to the source before a flow can be rerouted. We currently consider this

37

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

delay acceptable, because it is not clear that a non-source-based scheme can guaran-
tee that the desired graph properties are maintained, and because the propagation
delay is typically relatively small. We target applications with demanding latency
constraints (on the order of 65ms), so clearly for such applications, the propagation
delay cannot be more than the required latency constraint (i.e. the service is not
feasible unless the propagation delay from source to destination is less than 65ms).
In general, the propagation delay between any two points on the globe (e.g. Europe
to Asia, passing through North America, which is a distance greater than half the
globe) is within about 150ms.

However, the flexibility of dissemination graphs offers an avenue for optimizing
the reaction time of the protocol by allowing intermediate nodes to add edges to the
dissemination graph on a packet. We do not want to give intermediate nodes full
power to determine the graph, since intermediate nodes may have different views of
the current network conditions, and it is not clear how to ensure that the packet
traverses, for example two paths that are actually node disjoint in that situation.
However, adding edges to a graph can only improve reliability (assuming sufficient
node processing power and total bandwidth, which the overlay service provider pro-
visions). Therefore, one approach is to allow intermediate nodes in a dissemination
graph to increase the redundancy of the dissemination graph if they detect problems
that are not accounted for in the dissemination graph on a received packet. For ex-
ample, if the source is not yet aware of a problem at the destination (and so uses a
dissemination graph consisting of two disjoint paths), nodes closer to the destination
that are already aware of the problem could modify that graph, for example by simply
adding the edges in the destination-problem graph to increase redundancy.

While such an approach can improve reaction times, it complicates the protocol,
as intermediate nodes need more involved protocol-specific logic, rather than simply
forwarding each packet based solely on the edges in the dissemination graph stamped
on it. Considering this trade-off, we currently choose to favor protocol simplicity and
do not attempt to optimize reaction time in this way.

5.4 Evaluation via Simulation

To assess the performance of our dissemination-graph-based routing approach that
adds targeted redundancy during problems involving a flow’s source or destination,
we use our Playback Network Simulator, as described in Section 4.1. We analyze
how the targeted redundancy approach would perform over the four weeks of data
we collected over several months (from July to October 2016) and compare it to the
initial dissemination graph construction approaches we considered in Section 4.3. For
the single-path dissemination-graph approach, we additionally consider a redundant
single path scheme, in which each message is originally transmitted twice, separated
by 0.5ms, as this represents the simplest approach to adding redundancy in packet

38

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

transmission.
We consider the same sixteen transcontinental flows as in Section 4.3, modeling

a sending rate of one packet per millisecond for each flow. This rate corresponds
well to the applications we target (described in Chapter 7). All results consider a
65ms one-way latency deadline, since we aim to support highly interactive remote
manipulation applications. While the complete transport service uses the recovery
protocol of [1], here we present results both with and without recoveries to assess the
benefit provided by both the routing and recovery protocol components.

5.4.1 Overall Performance

Table 5.1 presents overall reliability and availability results for each of the dissemination-
graph-based routing approaches we consider, aggregated over all sixteen flows across
the US and over all four weeks of data collection. We say that a flow is unavailable if
the loss rate on that flow exceeds 50% over a period of at least one second. As seen
in Table 5.1, over the course of a week, the average unavailability for a flow using a
single-path approach is about 35 seconds, or about 25-29 seconds using any of the
other approaches. This translates to an overall availability of about 99.994% for a
single path and 99.995-99.996% for the other approaches.

For the time that a flow is available, we calculate its reliability, or the percentage of
packets delivered within their latency deadline. From Table 5.1, we see that both time-
constrained flooding and our targeted redundancy approach reach nearly 99.9999%.
This translates to about 1.4-1.5 packets per million that do not arrive within their
deadline using these approaches, compared to 9-23 packets per million that do not
arrive on time for the other approaches, representing close to an order of magnitude
improvement.

Routing Approach Availability Unavailability Reliability Reliability

(%)
(seconds per flow

(%)
(packets lost or

per week) late per million)
Time-Constrained Flooding 99.995883% 24.90 99.999863% 1.37
Targeted Redundancy

99.995864% 25.02 99.999849% 1.51
(via Dissemination Graphs)
Dynamic Two Disjoint Paths 99.995676% 26.15 99.999103% 8.97
Static Two Disjoint Paths 99.995266% 28.63 99.998438% 15.62
Redundant Single Path 99.995223% 28.89 99.998715% 12.85
Single Path 99.994286% 34.56 99.997710% 22.90

Table 5.1: Aggregate availability and reliability with 65ms latency constraint, over
four weeks and sixteen transcontinental flows (using the recovery protocol of [1]).

Table 5.2 shows the same availability and reliability metrics as Table 5.1 but
without using any recovery protocol to retransmit lost packets. These results show
a very similar overall pattern but with lower overall reliabilities. The use of the

39

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

Routing Approach Availability Unavailability Reliability Reliability

(%)
(seconds per flow

(%)
(packets lost or

per week) late per million)
Time-Constrained Flooding 99.995883% 24.90 99.999702% 2.98
Targeted Redundancy

99.995863% 25.02 99.999687% 3.13
(via Dissemination Graphs)
Dynamic Two Disjoint Paths 99.995676% 26.15 99.998736% 12.64
Static Two Disjoint Paths 99.995264% 28.64 99.998156% 18.44
Redundant Single Path 99.995222% 28.90 99.998519% 14.81
Single Path 99.993974% 36.44 99.997190% 28.10

Table 5.2: Aggregate availability and reliability with 65ms latency constraint, over
four weeks and sixteen transcontinental flows (no recovery protocol).

recovery protocol does not significantly affect availability, as periods of unavailability
are generally caused by complete disconnections, which cannot be overcome through
recoveries.

5.4.2 Comparison of Approaches

As time-constrained flooding sends packets over every link that can possibly im-
prove reliability, it provides an upper bound on the performance that any dissemina-
tion graph or path can achieve (using the same recovery protocol). Since single-path
approaches are commonly deployed today, we use our single-path approach as a base-
line. We consider the performance gap between time-constrained flooding and a single
path as the scale for measuring the performance of other approaches.

Specifically, for each week, we calculate this performance gap as the difference
between the total number of packets delivered by their 65ms deadline using the single-
path approach and using time-constrained flooding. Across all sixteen flows, with
each flow sending at a rate of one packet per millisecond, time-constrained flooding
would deliver 68,112 more packets on time than a single path in Week 1, 480,806
more packets in Week 2, 115,152 more packets in Week 3, and 615,397 more packets
in Week 4, for a total of 1,279,467 more packets delivered on-time across all four
weeks (out of over 38.7 billion total packets). Table 5.3 shows what percent of this
performance gap each approach covers, aggregated over all sixteen flows for each of
the four weeks we consider.

These results show that our dissemination graph approach with targeted redun-
dancy achieves close to optimal reliability, covering 98.97% of the gap between time-
constrained flooding and single-path routing (for a total of 1,266,286 additional pack-
ets delivered on time compared to single-path routing). While two disjoint paths
offer a substantial improvement over a single path, they do not reach the same level
of reliability, covering about 70% of that gap if dynamic reroutes are used and about
40% if the paths are static.

In addition, the “Scaled Cost” column of Table 5.3 shows that our approach is

40

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

Routing Approach Week 1 Week 2 Week 3 Week 4 Overall Scaled Cost
2016-07-12 2016-08-08 2016-09-01 2016-10-13 (Dollar Cost)

Time-Constrained Flooding 100.00% 100.00% 100.00% 100.00% 100.00% 14.350
Targeted Redundancy

94.19% 99.19% 98.00% 99.50% 98.97% 2.203
(via Dissemination Graphs)
Dynamic Two Disjoint Paths 80.91% 71.34% 47.73% 73.46% 70.74% 2.197
Static Two Disjoint Paths -76.72% 50.89% 53.58% 40.79% 39.50% 2.194
Redundant Single Path 54.12% 37.25% 4.89% 59.10% 45.75% 2.000
Single Path 0.00% 0.00% 0.00% 0.00% 0.00% 1.000

Table 5.3: Percent of the benefit of time-constrained flooding obtained by each
approach and scaled cost (baseline is single-path).

able to provide this performance improvement at a cost increase of less than 0.3%
compared with two disjoint paths, with two disjoint paths costing a little less than
10% more than twice the cost of the single best path. The source-problem and
destination-problem graphs used by our approach may include about twice as many
edges as a graph consisting of two disjoint paths (as shown in Figures 5.1b and 5.1c),
and the more expensive source-destination-problem graphs can include three times
as many edges (as in Figure 5.1d). However, the more expensive graphs are used
infrequently: in our analysis over four weeks, our targeted redundancy approach uses
the (dynamically computed) two node-disjoint paths dissemination graph 99.670%
of the time, the source-problem graph 0.117% of the time, the destination-problem
graph 0.159% of the time, and the source-destination-problem graph 0.054% of the
time. This means that over the course of a week for a given flow, the source-problem
graph is used for a little less than 12 minutes, the destination-problem graph is used
for about 16 minutes, and the source-destination-problem graph is used for about 5.5
minutes. Therefore, the approach incurs a small total overhead compared with two
disjoint paths. In contrast, time-constrained flooding has an overhead of more than
6.5 times the cost of two disjoint paths (or over 14 times the cost of a single path),
making it too expensive for practical use. Note that while we only list the dollar
cost metric in Table 5.3, the goodput cost metric is nearly identical: for the precision
we consider, the only change is that time-constrained flooding’s scaled cost would be
reduced to 14.349 from 14.350.

While the overall pattern of results is fairly consistent across the four weeks,
Week 1 and Week 3 show a few interesting differences. The Week 1 results illustrate
the major drawback of using two static disjoint paths: such an approach will continue
to use the same paths even if they suffer a complete disconnection or other severe
problem, which can cause it to perform much worse than even a single-path approach
that is able to route around problems. In Week 1, such incidents occur several times,
causing the static two disjoint paths approach to perform considerably worse than
the dynamic single path approach. This is the reason for the -76.72% figure for static
two disjoint paths in Week 1: in this week, the static approach does not cover any of
the performance gap between the single path approach and time constrained flooding.

41

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

Instead, it actually underperforms the single path approach by 76.72% of that gap.
For a simple example of how this can happen, we can consider an event on July

15, 2016, where the outgoing links from San Jose to Dallas and from San Jose to
Denver were both disconnected nearly simultaneously. During this time, the outgo-
ing links to Los Angeles and New York continued to work without problems, allowing
time-constrained flooding to operate without any interruption and allowing all of the
dynamic routing approaches to reroute within about 500ms. In contrast, the static
two disjoint paths approach continues to attempt to use the same two disconnected
paths, and is not able to resume successful delivery until the disconnection ends over
1 second later. More dramatically, substantially elevated latency on those same links
later that same day results in a full 25 seconds during which packets cannot be deliv-
ered on time on the San Jose to Baltimore flow, while the other routing approaches
experience negligible interruptions. This effect contributes to the redundant single-
path approach outperforming two static disjoint paths overall, although we note that
our independent loss modeling also provides the best-case simulated performance for
redundant sending (as it assumes that the loss probability of the second copy of a
packet is independent of the outcome of the first packet).

In Week 3, however, we see another unusual pattern, where the redundant single-
path approach provides only a minimal benefit compared to the basic single-path
approach (covering only 4.89% of the gap between it and time-constrained flooding,
compared to the 35-60% it normally covers). This is because many of the problems
in Week 3 stem from link disconnections that lead to suboptimal routing decisions
(i.e. choosing paths that may be loss-free but cannot deliver packets on time; see Sec-
tion 6.5.2.3 for a detailed examination of one such incident). Because the redundant
single-path approach uses the same routing algorithm, it is limited to essentially the
same performance as the single-path approach: sending packets multiple times on a
path that cannot reach the destination on time does not provide any higher reliability
than sending them only once on that path.

5.4.3 Case Study

While our dissemination graph approach performs comparably to two disjoint
paths during periods when the network is largely loss-free, it can provide a dramatic
improvement during problematic periods. Table 5.1 shows very low loss when av-
eraged over the course of several weeks, but this loss is not uniformly distributed
over time: the service should provide acceptable performance even during periods of
highly concentrated loss. Figures 5.2a and 5.2c show the performance of the flow from
Atlanta to Los Angeles during one such period, occurring on August 15, 2016 (dur-
ing Week 2). In these figures, blue dots represent packets delivered within the 65ms
latency constraint, while red dots represent packets delivered after 65ms or dropped
(dropped packets are shown at 0ms latency). During this 110-second interval, all of

42

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

the Los Angeles node’s incoming links were experiencing loss ranging from about 20%
to 70%. Using dynamic single path routing with real-time hop-by-hop recovery results
in an effective rate of lost or late packets of about 24.9%, while using two disjoint
paths plus recovery reduces it to about 4.6%. In this case, our approach provides
more than an order of magnitude improvement compared with two disjoint paths,
reducing the rate of packets not delivered within 65ms to about 0.3% and matches
the (optimal) performance of time-constrained flooding.

This improvement stems from the fact that the destination-problem dissemination
graph from Atlanta to Los Angeles provides additional ways into the Los Angeles
node, and additional opportunities for lost packets to be recovered. This can be seen
in the distinct “stripes” in Figures 5.2b and 5.2c. Using two paths (Figure 5.2b), one
path generally uses the Dallas overlay node as its last hop before reaching Los Angeles
and has a latency of about 26ms (lowest blue stripe), while the other goes through
Denver and has a latency of about 32ms (second blue stripe). Packets that are initially
lost but subsequently recovered on the shorter path generally arrive with a latency of
about 60ms (blue stripe at 60ms), while packets recovered on the longer path often
arrive too late, with latencies around 70ms (highest red stripe). For two substantial
periods, a path with San Jose as the next-to-last hop is used instead, resulting in base
latency around 33ms, but faster recoveries (around 43ms). Figure 5.2c illustrates the
impact of the destination-problem graph, including several additional blue stripes that
represent the additional paths and recovery opportunities available between the source
and destination by making use of all of the Los Angeles node’s relevant neighbors.

43

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

(a) Single path (27,353 lost or late packets, 5 packets with latency over 120ms not shown).

(b) Two node-disjoint paths (5,100 lost or late packets, 15 packets with latency over 120ms
not shown).

(c) Novel dissemination-graph-based approach, adding targeted redundancy at the desti-
nation (338 lost or late packets).

Figure 5.2: (Simulated) packets received and dropped over a 110-second interval on
August 15, 2016 from Atlanta to Los Angeles.

44

CHAPTER 5. DISSEMINATION-GRAPH-BASED TRANSPORT SERVICE
USING TARGETED REDUNDANCY

5.5 Dissemination Graph Work Evolution

We first introduced the concept of a timely, reliable, and cost-effective transport
service using dissemination-graph-based routing with targeted redundancy in [32].
That work included a dissemination-graph-based routing protocol similar to the one
presented in this chapter and evaluated its effectiveness using the same four weeks
of network data that we analyze here. However, the protocol and analysis in this
chapter differ from [32] in several important ways.

First, the dissemination-graph-based algorithm we present here is an improvement
on the algorithm presented in [32]. That work used a simpler approach, in which the
two disjoint paths used by the protocol were static, so all four dissemination graph
types could be precomputed, and the protocol only needed to switch between them
based on network conditions. While the simplicity of this approach is appealing, and it
was shown to provide excellent results using our collected data, relying solely on static
graphs is risky for practical deployments that require high availability. Although the
graphs used by the approach provide high reliability overall, it is still possible (if rare)
to encounter a situation in which even the most robust graph used by the approach
does not include a currently functional means of reaching the destination on time,
even though some such path exists (and could be found by a dynamic approach).
Therefore, the new protocol presented in this thesis uses two dynamic node-disjoint
paths in the normal case, and incorporates them into the robust source-destination
problem graphs as well.

Note that an alternative approach using only static graphs would be to fall back
to overlay flooding or time-constrained flooding in the case of a problem that is not
handled by the robust source-destination graph. However, such an approach requires
significantly higher overprovisioning of the network bandwidth to ensure that the
network can support the worst case of all flows using time-constrained flooding and
therefore may not be feasible. In contrast, our dynamic approach actually tends to
reduce costs overall, as we use the source-problem, destination-problem, and source-
destination problem dissemination graphs less often than in the protocol from [32].
Because the previous protocol used two static paths, it shifted to a more robust
graph as soon as one source or destination problem was detected if that problem fell
on one of the edges included in the two static paths. With two dynamic paths, this
is not necessary: rerouting the two paths effectively addresses this problem, so we
never switch to a more robust problem-type graph unless at least two problems of the
relevant type are detected.

Second, the analysis in this chapter uses an updated version of the Playback
Network Simulator, with routing and disconnection modeling that more closely match
the behavior that would be found in a real overlay implementation. Therefore, the
results presented in this chapter are not directly comparable with the results from [32],
as both the protocol and simulation have been modified.

45

Chapter 6

Implementation

The dissemination-graph-based transport service developed in this thesis is imple-
mented in the Spines overlay messaging framework and is available as open source as
part of Spines [8]. The implementation builds on the existing capabilities in Spines to
deploy overlay networks, dynamically monitor network characteristics, and perform
overlay-level routing and hop-by-hop recovery [41]. It augments those existing ca-
pabilities with a generic framework for dissemination-graph-based routing, an ability
to route based on which links are classified as problematic (in terms of their current
loss and latency), and an implementation of the specific dissemination-graph-based
routing protocol described in Chapter 5.

6.1 Generic Dissemination-Graph-Based
Routing

We implemented dissemination-graph-based routing in Spines using a bitmask
with one bit per (directed) link in the overlay topology to compactly represent the
graph. When sending a packet, the source specifies the dissemination graph to use
for that packet by setting exactly the bits in the bitmask that correspond to the links
that should be included in that packet’s dissemination graph. When an intermediate
node receives a packet to forward, it loops through all of its neighbors and checks
whether the edge from itself to that neighbor is set in the bitmask on the packet; if
it is set, it simply forwards the packet to that neighbor.

While a bitmask large enough to represent all the directed edges in the overlay
topology must be included in the header of each packet, this small overhead is not
a limiting factor for the approach: we currently use exactly 64 bits (one word) to
represent all the overlay links in a globe-spanning topology and expect 128 bits (two
words) to be sufficient to represent most overlay topologies of the size needed to
support our target applications, although any size bitmask is supported.

46

CHAPTER 6. IMPLEMENTATION

De-duplication. When dissemination graphs are used, packets may be dissem-
inated over graphs that are more complex than a single path or fully disjoint paths.
In this case, an intermediate node may receive copies of the same packet from several
of its neighbors. In such cases, the intermediate node should not forward the packet
each time it receives one of the copies: it instead performs de-duplication, only for-
warding the packet the first time it is received. This ability to perform de-duplication
in the middle of the network is enabled by the structured overlay’s ability to maintain
flow-based state at each overlay node.

To allow de-duplication, each source maintains a sequence number for the packets
that it sends using source-based routing. Each time that source sends a packet using
source-based routing, it increments this sequence number and stamps it on the packet.
Each overlay node maintains a fixed-size history for each other node in the network;
this history temporarily stores the sequence numbers of packets that this node has
received from those sources. The history is implemented as a simple circular buffer.
Upon receiving a packet, the node looks up its sequence number in its buffer for that
packet’s source (by simply using the sequence number modulo the buffer size to get
the correct index in the buffer). If the received packet is newer (i.e. has a higher
sequence number) than the stored sequence number, the node forwards the packet
and replaces the stored sequence number with the new one. If the packet’s sequence
number is identical to or older than the stored one, it is discarded.

Note that if there is a large amount of packet reordering, it is possible for a node to
incorrectly reject a packet that it never forwarded as a duplicate, because it may have
already received a newer packet for the relevant buffer slot. However, by correctly
setting the size of the buffer, we can ensure that nodes will never discard a packet
that may still be useful. For protocols that require timeliness and may not be 100%
reliable (like the ones used for our timely, reliable transport service), this simply
means setting the buffer large enough that any packet that falls outside the current
history window is already past its delivery deadline (and therefore no longer useful).
Specifically, the buffer should be able to hold at least a number of packets equal to
the maximum sending rate of any source (in packets per millisecond) multiplied by
the longest application delivery deadline being served (in milliseconds). This size can
be configured for the overlay based on the applications that it needs to support. For
example, we currently use a history of 100,000 sequence numbers. Targeting flows
with sending rates of 1 packet per millisecond and deadlines of about 65 milliseconds,
this configuration can support over 1500 such flows per source simultaneously. Of
course, if more flows or higher sending rates are needed, this value can easily be
increased: storing 100,000 8-byte sequence numbers for each of about 20 sources
requires about 16 MB of memory, which is not a problem today. For fully reliable
protocols, the history should be at least the size of the windows used for reliability
(although the combination of dissemination-graph-based routing and a reliable link
protocol is not yet implemented in Spines).

Finally, note that to work across overlay node restarts, each source sequence con-

47

CHAPTER 6. IMPLEMENTATION

sists of two parts: a 32-bit sequence number and a 32-bit incarnation. The sequence
number part is incremented each time the source introduces a new message, as de-
scribed above. The incarnation part is set to the current time (in epoch seconds)
when the Spines daemon starts up. A packet is considered new if its incarnation is
later than the stored incarnation, or the incarnation is equal and the sequence number
is higher. Without time-based incarnations, a source that went down, came back up,
and restarted its sequence number at one would have its messages discarded by the
other nodes until it eventually reached a sequence number higher than the highest
one it had sent prior to restarting. Of course, if a node starts up, goes down, and
restarts within one second (causing it to choose the same incarnation on restart), its
initial messages may still be discarded, but since the number of messages it could have
sent in the fraction of a second that it was up is likely limited, this is not a serious
problem in practice. This approach also handles the range limitation of the 32-bit
sequence number: once the sequence part rolls over, the source simply increments
the incarnation part and allows the sequence part to restart (of course, these can be
increased to 64-bit numbers to mitigate this issue as well, at the cost of using larger
headers and more memory to store the history).

6.2 Problem-Type Routing

The dissemination-graph-based transport service described in Chapter 5 depends
on the ability to classify links as problematic. To implement this in Spines, we add
both a new flag to propagate information about problematic links throughout the
network and a concept of a baseline weight to determine if a link is experiencing
higher than normal latency.

Baseline weights are specified in the Spines configuration file that each daemon
reads when it starts up. This configuration file specifies all of the nodes and links in
the overlay topology, as well as a baseline latency for each link. This baseline latency
corresponds to the roundtrip latency of that link under normal conditions and can be
measured prior to instantiating the overlay network by simply pinging between the
relevant overlay nodes. If baseline latencies are not available, Spines could be set up
to ignore latency for the purpose of problem classification and only detect problems
based on loss, but this may result in some problems not being identified or being
identified later than would have been possible otherwise.

As part of the normal operation of Spines, each node monitors its connections
to its overlay neighbors, tracking the status (connected/disconnected), loss rate, and
latency on each of its links. Based on this information, the node calculates a link
weight for each of its outgoing links (which varies based on the link-weight metric
used), and when the weight for a link changes, it floods that information throughout
the overlay network. We augment the information in the flooded update with a
flag indicating whether the link is currently judged to be problematic, based on the

48

CHAPTER 6. IMPLEMENTATION

thresholds set up in Spines. In principle, this flag can be used to allow problem-type
routing to coexist with any of the link-weight metrics in Spines, although the current
implementation only supports its use with the expected latency metric designed for
applications that require both timeliness and reliability (described in Section 3.2.1).
The calculated link weight can be used normally to compute shortest paths or disjoint
paths, while the flag can be used to switch between the graph classes (two disjoint
paths, source-problem, destination-problem, and robust source-destination-problem
graphs) in our approach (and could be used by new routing protocols as well).

Note that in order to avoid flooding updates for minor link weight variations,
updates are only sent if the change in link weight crosses a significance threshold. A
change is considered significant if it changes the state of the problem flag (i.e. if a
problem starts or is resolved) or if the value of the metric changes by more than a
threshold percentage (with a default of 10% in Spines today). To improve stability,
we also enforce that a link weight cannot decrease for at least 30 seconds after it was
last increased. The default problem threshold settings in Spines are set such that
a link will be considered problematic if its loss rate exceeds 2% or if its measured
latency is 25% higher than its baseline latency. A problematic link will be restored
to normal status once its loss rate returns to 0.5% or less, and its latency is within
15% of its baseline value.

6.3 Timely, Reliable Transport Service

We use the generic dissemination-graph-based routing and problem-type routing
capabilities described above to implement the timely, reliable transport service de-
scribed in Chapter 5.

Our transport service uses the existing real-time link protocol in Spines to provide
timely hop-by-hop recovery. As explained in Section 2.4, the real-time recovery pro-
tocol allows a packet lost on a given overlay link to be requested and retransmitted
at most once, and only if it can be recovered within its timeliness constraint. Each
node stores packets for potential retransmissions until they are requested (since after
a packet is requested once, it will never be asked for again) or until its deadline has
passed (since it is no longer useful after that point) [1].

At startup, each node computes the three static dissemination graphs options
(source-problem, destination-problem, and source-destination-problem) that it will
use in routing flows from itself to each of the other node in the network. It generates
and stores the bitmask representing each of these graphs.

To perform dissemination-graph-based routing using the approach described in
Chapter 5, each node keeps track of which type of dissemination graph it is currently
using for each other node in the overlay topology. When a node has a new packet to
introduce into the network for a particular destination, it looks up what graph type is
currently being used for that destination. If a source-problem or destination-problem

49

CHAPTER 6. IMPLEMENTATION

graph is currently being used, the node simply copies the appropriate precomputed
bitmask into the packet header and forwards the packet on all of its outgoing links
included in the bitmask. If a two node-disjoint paths graph is currently being used,
the source checks whether it already has the relevant two paths graph cached; if so,
it can simply copy it, otherwise it computes it as described in Chapter 5, copies it
into the packet header and adds it to the cache (the full cache of computed paths is
cleared each time a link weight is updated). If a robust source-destination-problem
graph is being used, the source determines the dynamic two paths component of the
graph as in the two paths graph case and then performs a bitwise “or” operation to
combine it with the precomputed source-destination-problem graph before stamping
it on the packet.

The current graph type used for a destination is updated in response to link
weight updates. Recall that each node is responsible for sending out updates about
changes on its outgoing links and receives flooded updates from the other nodes
regarding their outgoing links. As discussed above in Section 6.2, links are classified
as problematic when they experience loss or elevated latency. A source will switch to
using a destination-problem graph for a particular destination if a threshold number of
that destination’s incoming links are currently classified as problematic. It will switch
to using a source-problem graph if a threshold number of its own outgoing links are
classified as problematic. We currently use a threshold of two problematic links, as
a dynamic two-disjoint-paths graph can successfully address any single problem by
relying on the second path to deliver packets until the problem is detected and then
routing away from the problematic link once it is detected.

The robust source-destination-problem graph will be used for a flow when multiple
problem types occur simultaneously. If both a source problem and a destination
problem are detected for a given flow, the source-destination-problem graph will be
used. Moreover, if either a source- or destination-problem graph is being used and a
new problem is detected on a link that is in the active dissemination graph but is not
part of the known source or destination problem (i.e. that is not an incoming link for
the destination in the case of a destination-problem graph or that is not an outgoing
link for the source in the case of source-problem graph), the source will switch to
using the robust source-destination-problem graph.

If the current network conditions for a given destination do not fall into any of
the problem classes described above, the dynamically computed dissemination graph
consisting of two node-disjoint paths (chosen to minimize the sum of their expected
latencies based on current conditions) is used.

50

CHAPTER 6. IMPLEMENTATION

6.4 Practical Considerations and
Optimizations

We have presented a dissemination-graph-based routing approach that aims to be
simple, cost-effective, and reliable. While the core service we presented selects one
particular trade-off between the factors of simplicity, cost, and reliability, in practice,
we find that for high-value applications it can be desirable to even further optimize
reliability (at the expense of slightly increased cost or reduced algorithmic simplicity).
Here we describe several modifications to the core service that we use in practice or
believe can provide even better service for high-value applications.

Shortest-Path-Tree Dissemination Graphs. Section 5.1.1 presents a method
of computing source-problem and destination-problem dissemination graphs based
on shallow-light Steiner trees that minimize the cost of connecting the source (or
destination) to all of the relevant neighbors of the destination (or source). While the
method described ensures that all paths from the source to the destination through
the target neighbors are within the specified latency constraint, they may not be the
lowest possible latency paths, as we optimize for cost over latency.

In practice, we often prefer to optimize for latency over cost. Lower latency paths
can provide higher reliability in practice, as they reduce the likelihood of latency fluc-
tuations causing packets to miss their deadlines and make it more likely for recoveries
of lost packets to be successfully completed within the time constraint. While using
shortest path trees does not provide any formal guarantee that the cost of the dis-
semination graph is close to the minimal possible cost, in practice the overall increase
in cost is small, especially since these graphs are only used when problems occur (less
than 1% of the time, as reported in Section 5.4). For these reasons, shortest-path trees
are currently used in constructing dissemination graphs in our Spines implementation.

Robust Source-Problem and Destination-Problem Graphs. In addition
to improving the latency provided by the source-problem and destination-problem
graphs, we can also improve their reliability, again at the expense of a small increase
in cost. The robust source-destination-problem graphs described in Section 5.1.2
ensure that there are at least two disjoint paths through the network, but the source-
problem and destination-problem graphs, as described in Section 5.1.1, do not. To im-
prove reliability, we can also ensure that the source-problem and destination-problem
graphs, in addition to including all of the relevant source or destination neighbors,
include at least two disjoint paths. This approach can provide better robustness to
problems that occur in the middle of the network while a source or destination prob-
lem is ongoing. While the approach specified in Chapter 5 will switch to the robust
source-destination-problem graph if a problem starts in the middle of the network
while a source-problem or destination-problem graph is being used, loss may occur
during the time it takes to detect the problem and switch graphs. Ensuring the that
source-problem and destination-problem graphs have two disjoint paths already could

51

CHAPTER 6. IMPLEMENTATION

allow them to handle such problems without the need to switch to the robust source-
destination-problem graph and without incurring any loss. While this optimization
is not implemented today, it is useful to consider for high-value applications.

6.5 Evaluation

To evaluate the implementation of our dissemination-graph-based transport ser-
vice, we conduct several sets of experiments. First, we evaluate the implementation
using several small overlay topologies deployed in a cluster with emulated latencies
between overlay nodes and specific loss rates applied to selected edges in the topology.
These experiments are designed to validate the simulation results, showing that the
Playback Network Simulator accurately captures the salient performance character-
istics needed to guide overlay routing protocol design.

After validating the simulation results, we evaluate the implementation in a more
realistic setting, using case studies drawn from the network data collected in July
through October 2016. The case studies are evaluated both in a local-area cluster
environment with emulated latencies and loss rates that we can fully control, and on
a real global overlay network, with real latencies and emulated loss. These results
demonstrate that, as shown in the simulation results, our novel dissemination-graph-
based routing protocol significantly improves on the performance of protocols using
a single path or two disjoint paths, and the transport service is able to provide
the required timeliness and reliability for our target applications even during severe
network problems.

6.5.1 Controlled Evaluation of Implementation with

Simulation Validation

To validate the simulation results, we run our Spines implementation in parallel
with the Playback Network Simulator’s data collection component. We then use the
collected data to simulate the same flows that we run in Spines and compare the
results. Spines and the data collection are run at the same time, but use different
ports and each have their own stream of packets.

6.5.1.1 Setup

These experiments are done using a series of relatively simple overlay topologies to
isolate the various factors affecting overall performance. These topologies are shown
in Figure 6.1. The latencies shown in the figures are emulated using the Linux NetEm
utility. For experiments evaluating performance under various loss conditions, loss is
also applied using NetEm across all ports. Each experiment is repeated five times, and

52

CHAPTER 6. IMPLEMENTATION

(a) Single-edge graph. (b) Single-path graph.

(c) Three-path graph. (d) Three-path graph, plus two edges.

Figure 6.1: Simple overlay topologies for simulation validation experiments

unless otherwise specified, results are averaged over the five runs. For the simulation
results, each of the five runs is analyzed using ten different random seeds, and the
results are averaged over those ten seeds and five runs. Each run lasts 5 minutes.

A key factor affecting the accuracy of Playback’s simulation is the granularity
of data collection: the higher the sending rate of the data collection component, the
finer-grained the data will be, and the more accurate the simulation can be. Therefore,
each experiment is run using two different data collection intervals: 1ms and 10ms. A
data collection interval of 1ms means that Playback’s data collection program sends
a message on each link of the topology every millisecond. This matches the sending
rate that we are simulating and provides very fine-grained data for the simulation. A
data collection interval of 10ms means that Playback’s data collection program sends
a message on each link of topology every 10 milliseconds. This produces less fine-
grained data, but is often more practical to deploy for long-running data collection
experiments since it consumes less bandwidth and results in smaller log files. The
modeling window used in the simulation (discussed in Chapter 4) is always set to
include 10 packets; for the 1ms data collection interval this corresponds to a window
of 10ms, while for the 10ms data collection interval this corresponds to a window of
100ms.

Because the two different data collection intervals are run as two different sets of
experiments, there are also two corresponding sets of results for the real implemen-
tation in Spines, so any given simulation can be compared to what happened in the
real implementation that was running at the same time and experiencing the same
network conditions. However, the data collection interval of the simulator has no
effect on Spines: any differences between the two sets of implementation data (typ-
ically denoted by “Spines (1ms)” and “Spines (10ms)”) are simply due to random
variations in the experienced network loss. We use NetEm to emulate the same link
loss rates for both sets of experiments, but the exact sequence of lost packets is of

53

CHAPTER 6. IMPLEMENTATION

course not identical.

6.5.1.2 Results

The first experiment uses the single-edge topology shown in Figure 6.1a. This is
the simplest possible overlay topology, consisting of only two overlay nodes with a
single link between them. This allows us to evaluate the operation of the real-time
hop-by-hop recovery protocol in Spines and compare it with Playback’s modeling of
loss and the recovery protocol without considering other factors, such as routing.
Since there is only a single link, the routing protocol does not have any impact, so we
simply use single-path routing in both Spines and the simulation. For this experiment,
we apply loss rates ranging from 0-20% in both directions on the single edge (1,2) and
measure the overall loss rate experienced by Spines and reported by the simulator.
The results are shown in Table 6.1.

Applied Expected Spines Playback Spines Playback
Loss Rate Effective (1ms) (1ms) (10ms) (10ms)

on Edge (1,2) Loss Rate
0% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
2% 0.0792% 0.0804% 0.0796% 0.0765% 0.2223%
5% 0.4875% 0.4877% 0.4871% 0.4947% 0.8327%
10% 1.9000% 1.8955% 1.8953% 1.9100% 2.4941%
20% 7.2000% 7.1955% 7.2022% 7.1851% 8.1582%

Table 6.1: Effective loss rate under applied loss rates ranging from 0-20% for single-
edge topology in Figure 6.1a.

For each applied loss rate, the expected effective loss rate using the real-time hop-
by-hop recovery protocol is calculated as p(p+p−p2) = 2p2−p3, where p is the applied
loss rate. This is because for a packet to fail to make it to the destination, it must be
lost on the first transmission attempt and either the retransmission request for that
packet must be lost or the retransmission attempt must be lost. Table 6.1 shows that
the loss rate experienced by Spines is in fact nearly identical to this expected loss
rate, and with a 1ms data collection interval the loss rates reported by the Playback
simulation are also nearly identical to Spines and the expected loss rates.

With a 10ms data collection interval, the Playback simulation tends to overesti-
mate the actual loss rate slightly. This effect is due to correlation that the simulator
introduces by averaging over the modeling window to determine the loss probability
for any given packet: packets that fall in the same window or in largely overlapping
windows will be subject to similar loss probabilities. Because an original transmission
of a packet and a retransmission of that packet will be close to each other in time
(separated by about one roundtrip time to allow for the request and retransmission),

54

CHAPTER 6. IMPLEMENTATION

they fall into similar modeling windows when a data collection interval of 10ms is used
with a modeling window of 100ms (in the single edge topology, a roundtrip is 20ms).
This added correlation reduces the effectiveness of the recovery protocol as modeled
by the simulator when the underlying loss is uniform (as it is in our experiments with
artificially applied loss rates).

For example, consider an underlying uniform loss rate of 2%. In any given 100ms
window, there are 10 packets, so the loss rate may be 0%, 10%, 20%, . . . , 100%. If
a packet is lost, that means it fell in a window with at least one missing packet, so
the average loss rate for that window is at least 10%. Since a recovery attempt will
fall in a largely overlapping window, this makes it very likely that the retransmission
also falls into a window with at least a 10% loss rate. Therefore, while on average the
probability of a packet’s original transmission being lost is only 2%, the probability
of a retransmission of a lost packet also being lost is closer to 10% instead of 2%. In
fact, if we calculate the expected effective loss rate accounting for this correlation, by
letting the original probability of loss be 2% and the probability of a retransmission
being lost be 10%, we get 0.02× (0.02 + 0.1− (0.02×0.1)) = 0.00236, for an expected
overall loss rate of 0.236%, instead of 0.02 × (0.02 + 0.02 − 0.022) = 0.000792 as
shown in Table 6.1.1 This expected loss rate of 0.236% is close to the 0.223% loss
rate reported by Playback for the 10ms data collection interval with 2% applied loss
in Table 6.1.

The size of the modeling window affects the correlation introduced by the simu-
lator. Smaller windows add stronger correlation between packets, but over a shorter
time window, while longer windows add weaker correlation with longer duration.
Longer windows also have the effect of smearing the edges of complete disconnec-
tions, as packets will begin to be lost with some probability as soon as the beginning
of the disconnection enters the window and will continue to be lost with some prob-
ability until the window has completely passed the end of the disconnection. While
a window longer than 100ms would be able to more accurately model the uniform
loss that we apply in these controlled experiments, we chose a window of 100ms as a
reasonable compromise for real networks, where we do see disconnections and bursty
loss.

Note that while the simulator does overestimate the loss rate in this case, this
effect is consistent across all routing protocols, so it does not have a serious impact
on the usefulness of the simulator as a tool for comparing protocols. Moreover, its
effect on the overall loss is solely due to its reduction of the effectiveness of the recovery
protocol. If the simulation is run without recoveries, its results are all within 0.1%
of the expected value (specifically, 0%, 1.956%, 4.977%, 9.903%, and 19.936% for
applied/expected loss rates of 0%, 2%, 5%, 10%, and 20%, respectively).

The second experiment is similar to the first, but instead of a topology consisting

1Note that the probability of a retransmission request being lost remains 2%, since the simulator
does not introduce any correlation between loss in one direction of a link and loss in the opposite
direction.

55

CHAPTER 6. IMPLEMENTATION

Applied Expected Spines Playback Spines Playback
Loss Rate Effective (1ms) (1ms) (10ms) (10ms)
on Edges Loss Rate

(2,3) and (3,4)
0% 0.000000% 0.0000% 0.0000% 0.0000% 0.0000%
2% 0.195232% 0.1975% 0.1950% 0.1933% 0.4830%
5% 1.176250% 1.1649% 1.1845% 1.1811% 1.8478%
10% 4.420000% 4.4391% 4.2140% 4.4011% 5.6306%
20% 15.52000% 15.4877% 15.5042% 15.5130% 17.0735%

Table 6.2: Effective rate of lost/late packets under applied loss rates ranging from
0-20% in both directions on edges (2,3) and (3,4) for the single-path topology in
Figure 6.1b.

of only a single edge, it consists of a three-hop path between a source and destination.
This topology is shown in Figure 6.1b and is referred to as the single-path topology.
For this experiment, we applied loss in both directions to the last two links of the
path, edges (2,3) and (3,4). Since packets can be dropped on either of these two
links, the expected loss rate can be calculated as 2(2p2 − p3)− (2p2 − p3)2. However,
with this topology, we also need to account for packets that can arrive late. With
10ms oneway latencies across each link, a packet that must be recovered on both
edges (2,3) and (3,4) will take about 70ms to reach the destination node 4 (since each
recovery adds about one roundtrip time on the link over which it is recovered, which
for this topology is 20ms). Therefore, the total expected rate of lost or late packets
is 2(2p2−p3)− (2p2−p3)2 + (p(1−p)2)2 for this experiment. The results in Table 6.2
show a similar pattern to those for the single-edge topology, with the rate of lost or
late packets for Spines and for Playback with a 1ms data collection interval being
almost identical to the expected loss rate and to one another. As before, the loss
rate reported by Playback with a 10ms data collection interval shows a similar overall
loss pattern to the Spines and 1ms Playback results, but slightly overestimates the
absolute loss rate, particularly at lower levels of loss.

The third set of experiments evaluates basic routing capabilities by using a slightly
more complex topology composed of three disjoint paths between the source (node
1) and destination (node 4), as shown in Figure 6.1c. For this experiment, we added
loss to different edges in the topology one by one to trigger reroutes. Specifically, we
start with no loss; after 30 seconds we add 10% loss to edge (8,4) (the last link of the
shortest source-destination path in the topology); 80 seconds later we add 10% loss
to edge (3,4) (the last link of the next shortest path); 80 seconds later we add 10%
loss to edge (6,4) (the last link of the longest path); and 80 seconds later we remove
all loss. In all cases, loss is added in both directions on each edge (i.e. to the edge and
its reverse edge). Here we only consider basic single path routing (more sophisticated

56

CHAPTER 6. IMPLEMENTATION

routing protocols will be evaluated in the next set of experiments).

(a) Spines: 1555 packets lost or late.

(b) Simulation (1ms data collection, random seed = 1): 1496 packets lost or late.

Figure 6.2: Single-path results for one experimental run with a 1ms data collection
interval using the 3-path topology shown in Figure 6.1c, with 10% loss added (in both
directions), to the link (8,4), then (3,4), then (6,4).

The results of one specific experimental run are illustrated in Figure 6.2 (results
for the other four runs are similar). Each dot in the plots represents a packet, with the
x-axis representing the time at which it was received and the y-axis representing its
latency for reaching the destination. Dropped packets are shown in red at 0 on the y-
axis. The protocol’s rerouting can clearly be seen in the latency patterns represented
in the plots. Initially, the lowest latency path (from node 1 to 7 to 8 to 4) is used.
However, once 10% loss is applied to edge (8,4), the routing protocol takes that loss
into account and reroutes to the next shortest path (from node 1 to 2 to 3 to 4).
When loss is applied to edge (3,4), the protocol reroutes again, to the longest path
(from node 1 to 5 to 6 to 4). Once loss is applied to edge (6,4), all three available

57

CHAPTER 6. IMPLEMENTATION

paths are equally lossy, so the protocol chooses to return to the lowest latency path
– while it suffers loss, there is no way to avoid that under the given conditions.

(a) Spines: 1584 packets lost or late.

(b) Simulation (10ms data collection, random seed = 1): 1902 packets lost or late.

Figure 6.3: Single-path results for one experimental run with a 10ms data collection
interval using the 3-path topology shown in Figure 6.1c, with 10% loss added (in both
directions), to the link (8,4), then (3,4), then (6,4).

Recall that the expected latency metric used here attempts to optimize the prob-
ability of a packet arriving successfully at the destination by considering both loss
and latency, and generally results in preferring paths with lower overall loss rates.
While we apply equal loss rates on all three lossy edges in this experiment, random
fluctuations in the loss pattern can cause the protocol to judge certain paths as more
or less lossy at a particular time. This is the reason that we see the protocol move off
of the shortest path for short periods during the time that all paths are experiencing
10% loss (e.g. a little before the 4:00 mark in Figure 6.2a). Also note that while the
protocol is able to reroute quickly (in less than a second), it does suffer small amounts

58

CHAPTER 6. IMPLEMENTATION

of loss each time loss is applied to a new link before it can route away from that link:
this shows up in the plots as dropped and recovered (higher latency) packets at each
point that loss starts on a new link.

Figure 6.3 shows another experimental run with the same topology and loss pat-
tern as in Figure 6.2, but with a 10ms data collection interval. The routing pattern
shown matches the Spines implementation and the 1ms data collection results, al-
though as expected, the overall loss rate for the simulation is slightly higher in this
case.

Expected Spines Playback Spines Playback
Lost/Late (1ms) (1ms) (10ms) (10ms)
Packets

1520 1541.6 1551.74 1553.6 2115.5
(SD=54.00) (SD=38.57) (SD=26.60) (SD=130.77)

Table 6.3: Average lost packets for 3 disjoint paths topology shown in Figure 6.1c
out of 300,000 total packets.

Table 6.3 shows the total number of lost or late packets averaged over 5 runs (as
well as standard deviations) during this experiment in both the Spines implementation
and the Playback simulation. Because of the ability to reroute, we only expect loss
during the 80 seconds (out of 5 minutes) that all paths experience loss (discounting
the minor loss that occurs prior to each reroute). During this time, we apply 10%
loss, for an expected effective loss rate of 1.9%, or 1520 out of 80,000 packets.

Next, we evaluate the full implementation of our dissemination-graph-based trans-
port service, comparing it to single-path routing and two-disjoint-paths routing. To
do this, we use the overlay topology shown in Figure 6.1d. This graph consists of the
same three disjoint paths as in Figure 6.1c, but with two additional edges, allowing
for dissemination graphs that do not consist of only disjoint paths.

For this set of experiments, we apply loss in the same pattern as in the experiments
using the topology of Figure 6.1c (10% loss on edge (8,4), then (3,4), then (6,4)), but
using the extended topology and repeating the experiment with two-disjoint-paths
routing and our full transport service in addition to single-path routing.

The results for a single experimental run using single-path routing are shown
in Figure 6.4. These results are very similar to the results for the 3-disjoint-paths
topology described above; the addition of the two extra edges does not provide any
alternative paths of lower latency or loss for the specific scenario we consider, so the
routing pattern is essentially the same, resulting in very similar loss rates and delivery
latencies.

The results for a single experimental run using two-disjoint-paths routing are
shown in Figure 6.5. This figure clearly illustrates the benefits of using two-disjoint
paths instead of a single path. First, because two paths are always being used simulta-

59

CHAPTER 6. IMPLEMENTATION

(a) Spines: 1507 packets lost or late.

(b) Simulation (1ms data collection, random seed = 1): 1500 packets lost or late.

Figure 6.4: Single-path results for topology shown in Figure 6.1d, with 10% loss
added (in both directions), to the link (8,4), then (3,4), then (6,4).

neously, this approach does not experience any loss during the time it takes to detect
that a link has become lossy and reroute: the second path is able to deliver packets
that would be lost in a single-path approach.2 In addition, during the time that all
paths are experiencing loss, the simultaneous use of two paths considerably lowers
the loss rate by providing more opportunities for packets to arrive at the destination
on time: for a packet to fail to reach the destination, both its original transmission
and its recovery attempt must fail on both of the two paths in use.

Finally, results for a single experimental run using our dissemination-graph-based
routing protocol with targeted redundancy are shown in Figure 6.6. These plots

2Note that this is true because we add loss to the links one at a time; if both of the two paths
being used simultaneously started to experience loss or became disconnected, a two-path approach
would incur loss. However, this is a rarer scenario.

60

CHAPTER 6. IMPLEMENTATION

(a) Spines: 32 packets lost or late.

(b) Simulation (1ms data collection, random seed = 1): 24 packets lost or late.

Figure 6.5: Two-disjoint-paths results for topology shown in Figure 6.1d, with 10%
loss added (in both directions), to the link (8,4), then (3,4), then (6,4).

illustrate the benefit of employing targeted redundancy compared with using two
paths. Because we use two disjoint paths in the normal case, no loss is incurred
during the time it takes for newly begun loss to be detected (just like in the two-
disjoint-paths approach). The main benefit of our approach can be seen during the
time that all paths are experiencing loss. Once the first two paths begin to experience
loss on their last hop (i.e. the link entering the destination), the situation is classified
as a destination problem, so the protocol begins to make use of all useful incoming
links for the destination. In this case, this provides three entry points instead of only
two, and for the specific example run shown in Figure 6.6, results in all packets being
delivered on time in the Spines implementation (Figure 6.6a), which also matches the
Playback simulation for that time period (Figure 6.6b). Note that the protocol does
not guarantee 100% delivery in this case but does reduce the loss rate to a nearly

61

CHAPTER 6. IMPLEMENTATION

negligible level: across all experimental runs we see 0-2 packets per run that are not
delivered on time in the Spines implementation.

(a) Spines: 0 packets lost or late.

(b) Simulation (1ms data collection, random seed = 1): 0 packets lost or late.

Figure 6.6: Dissemination-graph results for topology shown in Figure 6.1d, with
10% loss added (in both directions), to the link (8,4), then (3,4), then (6,4).

The above plots for specific experimental runs illustrate the behavior and benefits
of the three routing approaches qualitatively. Table 6.4 quantifies the effect of the
protocols by reporting the average number of lost or late packets across all 5 runs for
each experiment type (i.e. 1ms vs 10ms data collection interval) and all 10 random
seeds for the simulation. As in the experiments with the 3-disjoint-paths topology
(Figure 6.1c), we only expect loss during the 80 seconds that there is no loss-free
path available (minus small hits during detection for the single-path approach). For
approaches using multiple incoming links to the destination, a packet only fails to
reach the destination if it is lost on all of the available incoming links. Therefore the
loss rates for the single-path, two-disjoint-paths, and dissemination-graph approaches

62

CHAPTER 6. IMPLEMENTATION

in this case are calculated as 2p2 − p3, (2p2 − p3)2, and (2p2 − p3)3, respectively. The
expected and actual numbers of lost or late packets for all three approaches are shown
in Table 6.4. This table shows the benefit that can be obtained by increasing the level
of redundancy: using two disjoint paths reduces the number of lost packets by over 50
times compared with a single-path approach, and our dissemination graphs further
reduce the number by about 50 times. Note that while the Playback results with a
10ms data collection interval continue to slightly overestimate the absolute loss rate,
this overestimation occurs consistently across all protocols, with the relative pattern
of improvement across the protocols remaining very similar. Therefore, while a 1ms
data collection interval is recommended to achieve as accurate a simulation as possible,
a 10ms interval (which is often more practical) is very good for judging differences
between protocols and provides a reasonably accurate but somewhat pessimistic view
of overall loss.

Routing Expected Spines Playback Spines Playback
Lost/Late (1ms) (1ms) (10ms) (10ms)
Packets

Single Path 1520 1527 1535.62 1545.2 2110.3
(SD=44.90) (SD=38.81) (SD=15.04) (SD=57.91)

Two Disjoint Paths 28.88 29.2 29.48 24.4 48.0
(SD=1.72) (SD=4.61) (SD=1.62) (SD=7.00)

Dissemination Graphs 0.54872 0.6 0.42 0.6 1.36
(SD=0.80) (SD=0.60) (SD=0.49) (SD=1.14)

Table 6.4: Average number of lost or late packets for topology shown in Figure 6.1d
out of 300,000 total packets.

Routing Spines Playback Spines Playback
(1ms) (1ms) (10ms) (10ms)

Dollar Goodput Dollar Goodput Dollar Goodput Dollar Goodput
Single Path 3.0242 3.0397 3.0243 3.0398 3.0242 3.0398 3.0246 3.0460

Two Disjoint Paths 6.0722 6.0727 6.0727 6.0733 6.0722 6.0727 6.0727 6.0736
Dissemination Graphs 7.3145 7.3145 6.7141 6.7141 7.3029 7.3029 6.7074 6.7074

Table 6.5: Average dollar cost (total packets sent / packets introduced) and goodput
cost (packets sent / packets delivered on time) for the topology in Figure 6.1d.

In addition to reliability, cost-effectiveness is a key consideration for our protocols.
Table 6.5 shows the average cost for the three different routing approaches in each
set of experiments with the topology in Figure 6.1d. Using two disjoint paths costs
about twice as much as a single path (2.0079 times as much in terms of dollar cost
on average for the “Spines (1ms)” runs). Using dissemination graphs with targeted
redundancy costs about 20.5% more than using two disjoint paths in Spines, although
the cost reported by the Playback simulation is only about 10.5% more than the cost

63

CHAPTER 6. IMPLEMENTATION

for two disjoint paths. In this case, the difference in cost between using two disjoint
paths and dissemination graphs with targeted redundancy is higher than reported in
the evaluation over four weeks of data reported in Section 5.4. This is simply because
we are focusing on a short period with significant network problems for this controlled
evaluation: the destination-problem dissemination graph is used for over half of the
five-minute period examined. In practice, network problems are less frequent, so
the cost of the more expensive dissemination graphs is amortized over much longer
periods of time.

(a) Destination-problem graph used in
Spines (8 edges).

(b) Destination-problem graph used in
Playback Simulation (7 edges).

Figure 6.7: Destination-problem dissemination graphs used in Spines and simulation
for topology shown in Figure 6.1d.

The reason for the discrepancy in cost reported by Spines and by the simulation
is that the destination-problem graph used by Spines is slightly different than the
one used in the simulation. In the simulation, we use shallow-light Steiner trees to
construct the destination-problem graphs, which connect all the neighbors of the des-
tination to the source in a tree that minimizes the number of edges while meeting the
latency requirements. However, in the Spines implementation, we choose to optimize
for latency over cost and use shortest-path trees. Because of this, the simulation uses
the lowest cost destination-problem graph shown in Figure 6.7b with seven edges,
while Spines uses the eight-edge graph shown in Figure 6.7a. Note that because of
the way the latencies are set up in this topology, the lowest cost graph in Figure 6.7b
is actually a valid shortest-path tree as well (the latency from the source node 1 to
each of the neighbor destination nodes 3, 6, and 8 is the same in both Figure 6.7b
and Figure 6.7a). Therefore, it would be valid for Spines to use this graph as well,
in which case it would achieve a cost similar to that reported by the simulation;
however, because of the order in which Spines processes edges when constructing its
shortest-path tree, it selects a different valid (though more expensive) solution. A fu-
ture optimization would be to allow Spines to select the least expensive graph among
valid shortest-path trees.

64

CHAPTER 6. IMPLEMENTATION

6.5.2 Evaluation via Case Studies

The controlled evaluation in the previous section allows us to closely examine
the factors affecting the reliability and cost of single-path routing, two-disjoint-paths
routing, and our full dissemination-graph-based transport service, as implemented in
Spines, and as modeled by the simulator on simple overlay topologies designed specif-
ically to evaluate different aspects of the protocols. In this section, we evaluate our
implementation of the dissemination-graph-based transport service in Spines using a
real practical overlay topology and realistic network conditions.

Specifically, we use the same overlay topology as in our data collection and eval-
uation via simulation in Section 5.4 (Figure 4.1), and evaluate the implementation’s
performance on case studies drawn from network problems that we observed during
the four weeks of data collection from Section 5.4. For each case study, we emulate
the network conditions that were observed at a specific point in time.

First, to give us full control over the latencies and loss rates, these experiments are
conducted on a cluster of twelve computers on a local area network, using NetEm to
set latencies and loss rates to match those observed in the collected data. Disconnec-
tions are emulated by applying 100% loss to the relevant links. As in the controlled
experiments in Section 6.5.1, each case study is run in two different conditions, one
with a data collection interval of 1ms for the simulation and one with a data collection
interval of 10ms. For each condition, the case study is run five times and the results
are reported as averages. In these case studies, the three routing protocols being
evaluated (single-path, two disjoint paths, and dissemination graphs with targeted
redundancy) are always run in parallel, so we can compare the performance that each
provides at the same time and under exactly the same conditions.

In addition to the local-area evaluation with emulated latencies and loss rates, we
also evaluate each case study on a real global overlay network. In this setting, we
do not emulate latency, as the overlay nodes are distributed across North America,
Europe, and Asia (in the same topology as in the local-area emulation) and have real
network latency between them. However, to recreate the scenario for each case study,
we emulate loss using the setlink tool in Spines (since we do not have permissions to
use NetEm to modify machine-level settings). Because we are only able to apply loss
to Spines traffic, rather than all traffic, we do not run the simulator’s data collection
in this setting. Otherwise, the procedure is the same as in the local-area evaluation.

6.5.2.1 August 15, 2016 Case Study

The first case study is inspired by an event that occurred on August 15, 2016, in
which all of the Los Angeles node’s incoming links were experiencing varying degrees
of loss over a period of a little less than two minutes. For this case study, we focus on
the flow from Atlanta, Georgia to Los Angeles, California at that time. To recreate
a similar scenario for our case study, we analyzed the raw log data from that time

65

CHAPTER 6. IMPLEMENTATION

Routing Spines Playback Spines Playback Spines
(1ms) (1ms) (10ms) (10ms) Wide-Area

Single Path 7145.60 7066.25 7495.60 11677.80 7051.80
(SD=137.72) (SD=111.80) (SD=789.92) (SD=1306.00) (SD=108.23)

Two Disjoint Paths 1047.2 1005.75 1036.40 1753.6 866.00
(SD=210.42) (SD=58.71) (SD=203.57) (SD=122.63) (SD=93.03)

Dissemination Graphs 194.0 179.75 196.20 229.20 125.00
(SD=16.52) (SD=14.13) (SD=15.30) (SD=20.73) (SD=16.59)

Table 6.6: Average lost or late packets for August 15, 2016 case study (out of
140,000 packets).

period, calculating the average loss rate and latency on each of these incoming links
for every 10-second interval in that period.

To run the experiment in the local-area cluster setting, we first set the latency of
all of the edges in the overlay topology to match their latency in the real wide-area
topology (using NetEm). After allowing the flow to run for 10 seconds, we begin
applying the calculated loss rates and latencies from the analyzed data, updating the
values for each link every ten seconds. The loss rates varied between 45.2% and 68.3%
for the Washington DC to Los Angeles link, 21.6% to 35.5% for the San Jose to Los
Angeles link, 18.9% to 30.1% for the Dallas to Los Angeles link, 18.7% to 32.2% for
the Hong Kong to Los Angeles link, and 25.4% to 38% for the Denver to Los Angeles
link. None of the links experienced significantly elevated latency during this time.

Table 6.6 shows the average number of packets lost (out of 140,000 total packets)
for each routing approach. The results for Spines (1ms) show that using two disjoint
paths reduces the loss rate for this scenario from about 5.1% with a single-path ap-
proach to about 0.75%. Using dissemination graphs with targeted redundancy further
reduces the loss rate to 0.14%. From this, we see that our implemented dissemination-
graph-based transport service is able to support good performance (99.86% on-time
delivery), even during a severe network problem (with single-link loss rates of 18-68%)
and significantly improves performance compared to simpler routing approaches using
the same infrastructure.

Figure 6.8 shows the latency for each packet sent during one experimental run of
this case study using each of the three routing protocols we evaluate in Spines. Based
on the latencies shown in these plots, we can see that in general, the single-path
approach uses the shortest path from Atlanta to Dallas to Los Angeles (about 26ms
latency). The two-disjoint-paths approach uses that path plus the longer path from
Atlanta to Denver to San Jose to Los Angeles (about 34ms), although it briefly shifts
to use a path from Atlanta to Denver directly to Los Angeles, which has a similar
latency overall but does not allow successful recoveries on the Denver - Los Angeles
link (which is longer than the San Jose - Los Angeles link). The dissemination graph
approach makes use of all incoming links to the Los Angeles node, providing more

66

CHAPTER 6. IMPLEMENTATION

opportunities for packets to arrive on time and to be recovered successfully.
Figure 6.9 shows the results of the Playback simulator using the data collected at

the same time as the run shown in Figure 6.8 (with a 1ms data collection interval),
which display a similar overall pattern.

Figure 6.10 shows the results of the same case study run on the global wide-
area network. Overall, the performance closely matches the results of the local-area
emulation. Comparing the “Spines Wide-Area” column of Table 6.6 to the “Spines
(1ms)” and “Spines (10ms)” columns shows that the number of lost packets is very
similar, and Figure 6.10 shows that the overall routing pattern also matches well
(although routing varies somewhat across the five runs for both the local-area and
wide-area experiments). However, the fact that we do not fully control the latency
of each link in the wide-area setting leads to some small differences between the two
cases: for example, most recoveries on the Denver - Los Angeles link are able to reach
the destination on time in the wide-area setting (during the brief reroute around the
00:54 mark for the two-disjoint-paths approach), although they arrived just after the
65ms latency deadline in the local-area emulated setting.

67

CHAPTER 6. IMPLEMENTATION

(a) Spines 1 path: 7064 packets lost or late.

(b) Spines 2 paths: 785 packets lost or late.

(c) Spines Dissemination Graphs: 195 packets lost or late.

Figure 6.8: Spines results for case-study inspired by event on August 15, 2016, with
loss on all of Los Angeles node’s incoming links for flow from Atlanta to Los Angeles.
Emulated loss and latency in local-area cluster environment.

68

CHAPTER 6. IMPLEMENTATION

(a) Simulation 1 path: 7154 packets lost or late.

(b) Simulation 2 paths: 976 packets lost or late.

(c) Simulation Dissemination Graphs: 170 packets lost or late.

Figure 6.9: Playback simulation results for case-study inspired by event on August
15, 2016, with loss on all of Los Angeles node’s incoming links for flow from Atlanta
to Los Angeles. 1ms data collection interval.

69

CHAPTER 6. IMPLEMENTATION

(a) Spines 1 path: 6983 packets lost or late.

(b) Spines 2 paths: 735 packets lost or late.

(c) Spines Dissemination Graphs: 124 packets lost or late.

Figure 6.10: Spines results for case-study inspired by event on August 15, 2016,
with loss on all of Los Angeles node’s incoming links for flow from Atlanta, Georgia to
Los Angeles, California. Real latencies and emulated loss rates in a global wide-area
environment.

70

CHAPTER 6. IMPLEMENTATION

6.5.2.2 October 17, 2016 Case Study

The second case study is inspired by an event that occurred on October 17, 2016.
Similarly to the previous case study, all of the Los Angeles node’s incoming links were
experiencing loss for a period of about one minute. For this case study, we focus on
the flow from New York to Los Angeles at that time. As in the previous case study,
we recreate the scenario (to the degree possible without being able to reproduce the
exact loss characteristics, e.g. burstiness) by averaging the loss rate and latency over
each 10-second interval and updating the applied loss rates and latencies via NetEm
every 10 seconds in the local-area setting, and updating the applied loss rates via
Spines setlink every 10 seconds in the wide-area setting.

In this case, the loss rates varied from 25-32.2% on the Washington DC to Los
Angeles link, 24.6-30.2% on the San Jose to Los Angeles link, 22.8-28.6% on the Dallas
to Los Angeles link, 32.9-44.7% on the Hong Kong to Los Angeles link, and 50.8-56.9%
on the Denver to Los Angeles link. None of the link latencies were significantly higher
than normal at this time.

Table 6.7 shows the average number of packets lost for each routing protocol (and
experimental condition). From this table, we see that our dissemination-graph-based
transport service is able to reduce the loss rate to about 0.18%, while two disjoint
paths experience about 1.18% loss and a single-path approach experiences over 10%
loss (these numbers are based on the Spines (1ms) column).

Routing Spines Playback Spines Playback Spines
(1ms) (1ms) (10ms) (10ms) Wide-Area

Single Path 10464.60 11065.75 11568.60 12292.60 10964.40
(SD=1950.92) (SD=238.72) (SD=2732.70) (SD=2852.62) (SD=3645.28)

Two Disjoint Paths 1182.60 1138.00 1949.00 2504.00 1655.60
(SD=101.72) (SD=90.37) (SD=858.10) (SD=813.86) (SD=599.79)

Dissemination Graphs 179.20 158.50 175.40 218.00 174.40
(SD=9.41) (SD=6.89) (SD=10.59) (SD=9.86) (SD=10.33)

Table 6.7: Average lost or late packets for October 17, 2016 case study (out of
100,000 total packets).

Figure 6.11 shows the per-packet delivery latencies for one of the five experi-
mental runs for this case study for each of the three routing protocols evaluated in
Spines. Using single-path routing, initially, before any loss is applied, Spines uses the
lowest-latency path from New York to Washington DC to Los Angeles (about 34ms).
However, once loss begins it reroutes to the slightly longer (about 35.5ms) path that
uses Dallas as the last hop before Los Angeles, as that path provides lower expected
latency under the applied loss conditions. A little after the 00:49 mark, as loss rates
fluctuate, it briefly reroutes back to the path through Washington, and then to a
slightly longer path (about 39ms) through San Jose, before going back to the 35.5ms
path through Dallas and finally returning to the 34ms path through Washington after
the loss ends. Interestingly, although the path through San Jose path is longer than

71

CHAPTER 6. IMPLEMENTATION

the others, it actually provides the best performance in this particular case, as it
allows for recovery of lost packets within the time constraint (due to the fact that the
last hop from San Jose to Los Angeles is shorter than the other options).

The two-disjoint-paths approach fairly consistently chooses paths through San
Jose and Dallas, although it briefly trades the path using Dallas for the New York -
Washington - Los Angeles path (between 00:49 and 01:04). The dissemination-graph-
based transport service with targeted redundancy reroutes to a destination-problem
dissemination graph as soon as it detects loss on two of the Los Angeles node’s
incoming edges, making use of all available entry points to the Los Angeles node and
substantially reducing the overall loss rate.

The results for Playback’s simulation using data collected at 1ms intervals during
the same time period as the Spines run in Figure 6.11 are shown in Figure 6.12.
The overall pattern of these results is quite similar, although reroutes do not line
up exactly, largely due to random variation in how the two programs experience the
same applied loss rate: although the data collection and Spines implementation are
running in parallel and experiencing the same conditions, they will not see exactly
the same pattern of lost packets, which can cause their routing calculations to differ
somewhat.

Finally, the results for one run of the same case study on the global overlay
network are shown in Figure 6.13. Both the average numbers of lost packets and the
overall routing patterns for each approach are very similar to the local-area Spines and
simulation results, further validating the usefulness of our dissemination-graph-based
approach in successfully addressing this type of network problem.

72

CHAPTER 6. IMPLEMENTATION

(a) Spines 1 path: 13034 packets lost or late.

(b) Spines 2 paths: 1072 packets lost or late.

(c) Spines Dissemination Graphs: 186 packets lost or late.

Figure 6.11: Spines results for case-study inspired by event on October 17, 2016,
with loss on all of Los Angeles node’s incoming links for flow from New York to Los
Angeles. Emulated latencies and loss rates in local-area cluster environment.

73

CHAPTER 6. IMPLEMENTATION

(a) Simulation 1 path: 11017 packets lost or late.

(b) Simulation 2 paths: 1109 packets lost or late.

(c) Simulation Dissemination Graphs: 157 packets lost or late.

Figure 6.12: Playback simulation results for case-study inspired by event on October
17, 2016, with loss on all of Los Angeles node’s incoming links for flow from New York
to Los Angeles. 1ms data collection interval.

74

CHAPTER 6. IMPLEMENTATION

(a) Spines 1 path: 13591 packets lost or late.

(b) Spines 2 paths: 1384 packets lost or late.

(c) Spines Dissemination Graphs: 192 packets lost or late.

Figure 6.13: Spines results for case-study inspired by event on October 17, 2016,
with loss on all of Los Angeles node’s incoming links for flow from New York to Los
Angeles. Real latencies and emulated loss rates in global wide-area environment.

75

CHAPTER 6. IMPLEMENTATION

6.5.2.3 September 8, 2016 Case Study

The third case study investigates a different type of problem than the previous
two. Instead of random loss, this case study analyzes a complete disconnection of
several links, inspired by an event that occurred on September 8, 2016. Here we
consider the flow from Los Angeles to New York, at a time when several of the New
York node’s links experienced disconnections.

The pattern of disconnection events can be seen in Figure 6.14 (for Spines in the
emulated, local-area setting), Figure 6.15 (for the corresponding simulation), and Fig-
ure 6.16 (for Spines in the real wide-area setting). Initially, the single-path approach
uses the shortest path, from Los Angeles, to Washington, to New York, and both the
two-paths approach and dissemination-graph-based approach use that same path plus
a second path from Los Angeles to Dallas to Atlanta to Baltimore to New York. The
first event, at about 00:15 is a simultaneous disconnection of both the Washington -
New York link and the Baltimore - New York link. Because these are the paths that
are actively being used in all three approaches, they all experience a short outage.
This outage shows up as a series of dropped (red) packets, lasting about 1 second in
Spines and 500ms in the simulation. This brief outage represents the time needed
to detect the disconnection and reroute to a new dissemination graph. Spines has a
somewhat heavier link creation and destruction process that results in it being more
conservative than what is modeled in the simulator, leading to the longer outage.
Once the disconnections are detected, all protocols are able to reroute, making use of
alternative paths that continue to work and experiencing no loss for the remainder of
the 2-second disconnection.

Notice that the dissemination-graph-based approach is able to resume taking ad-
vantage of the lower latency on the shortest path as soon as the disconnection ends,
as it uses a destination-problem graph that includes that path as well as alternative
ways into the destination during that period. In contrast, the single-path and two-
disjoint-paths approaches continue to use the longer path. This is due to the design
choice of not allowing link weights to be lowered for at least 30 seconds after a weight
increase is detected. In general, this is a very useful practice, as it makes routing
more stable and helps avoid switching back to problematic links before the problem
has fully resolved. However, in rare cases, it can have negative consequences: one
such example is seen in the next event just after 00:54.

In the event around 00:54, the Washington - New York and Baltimore - New
York links are again simultaneously disconnected, followed 2 seconds later by the
disconnection of the Chicago - New York link, and the disconnection of the San
Jose - New York link half a second after that. This set of four disconnected links
eliminates all of the possible paths from Los Angeles that can reach New York within
65ms. This situation lasts for 2 full seconds, until the San Jose - New York link is
restored (followed shortly by the Washington, Baltimore, and Chicago links). While
our dissemination-graph-based approach is able to resume timely service immediately

76

CHAPTER 6. IMPLEMENTATION

after this unavoidable 2-second interruption ends, the other approaches suffer a 30-
second period of late delivery, due to the fact that they reroute the flow through
Europe when the disconnection is detected and are not willing to return to any of the
links that were disconnected until 30 seconds has elapsed.

This is a limitation of the expected-latency-based routing protocol used (and of
most protocols used today) in the context of applications with strict timeliness con-
straints: because the routing protocol does not explicitly enforce the deadline, it can
select paths that are not actually able to meet the requirements. One modification
to the protocol that could help address this would be to restrict the operation of
the routing protocol to the time-constrained flooding dissemination graph, to avoid
including edges that cannot reach the destination on time (although this still does
not strictly guarantee that the selected paths would be within the latency constraint).
The benefits of dissemination-graph-based routing are first that it explicitly incorpo-
rates latency constraints, avoiding this issue, and further that it employs a higher
degree of redundancy to avoid the need to attempt to select the best path(s) in the
first place; it simply uses all viable options simultaneously in these problem cases.

Routing Spines Playback Spines Playback Spines
(1ms) (1ms) (10ms) (10ms) Wide-Area

Single Path 36883.80 29813.50 36678.80 29738.80 35783.60
(SD=343.83) (SD=95.52) (SD=85.05) (SD=124.76) (SD=76.10)

Two Disjoint Paths 36006.00 29081.00 35997.80 29098.20 35670.40
(SD=171.86) (SD=164.05) (SD=85.49) (SD=64.28) (SD=89.51)

Dissemination Graphs 5920.80 3098.75 5913.40 3123.20 5563.40
(SD=170.98) (SD=169.24) (SD=85.14) (SD=68.31) (SD=86.90)

Table 6.8: Average lost or late packets for September 8, 2016 case study.

Table 6.8 shows the average number of lost or late packets over the five runs, as
well as standard deviations. From the table, we can clearly see that the dissemination-
graph-based protocol avoids the additional 30 seconds of failed delivery incurred by
the other approaches, although it does suffer from the unavoidable disconnection, as
well as the time it takes to detect and reroute to overcome the avoidable disconnec-
tions. Note that the overall loss in Spines is higher than reported by the simulator
due to its link set up and tear down process: it takes somewhat longer both to re-
act to disconnections and to restore links after a disconnection ends. The number
of lost packets in the wide-area environment is slightly but consistently lower than
in the local-area environment (by about 300+ packets). This is simply an artifact
of the different loss/disconnection emulation methods used in the two environments.
The way we change loss rates via NetEm in local-area environment has a slight delay
that effectively makes the unavoidable disconnection last a few hundred milliseconds
longer in the local-area setting.

77

CHAPTER 6. IMPLEMENTATION

(a) Spines 1 path: 36695 packets lost or late.

(b) Spines 2 paths: 36008 packets lost or late.

(c) Spines Dissemination Graphs: 5922 packets lost or late.

Figure 6.14: Spines results for New York to Los Angeles flow during a case-study
inspired by an event on September 8, 2016, with the New York node experiencing
several disconnections. Emulated latencies and loss rates in a local-area cluster envi-
ronment.

78

CHAPTER 6. IMPLEMENTATION

(a) Simulation 1 path (1ms data collection, random seed = 1): 29763 packets
lost or late.

(b) Simulation 2 paths (1ms data collection, random seed = 1): 29182 packets
lost or late.

(c) Simulation Dissemination Graphs (1ms data collection, random seed =
1): 3224 packets lost or late (26 packets over 120ms not shown).

Figure 6.15: Playback Simulation results for New York to Los Angeles flow during
a case-study inspired by an event on September 8, 2016, with the New York node
experiencing several disconnections.

79

CHAPTER 6. IMPLEMENTATION

(a) Spines 1 path: 35776 packets lost or late.

(b) Spines 2 paths: 35660 packets lost or late.

(c) Spines Dissemination Graphs: 5552 packets lost or late.

Figure 6.16: Spines results for New York to Los Angeles flow during a case-study
inspired by an event on September 8, 2016, with the New York node experiencing
several disconnections. Real latencies and emulated loss rates in global wide-area
environment.

80

CHAPTER 6. IMPLEMENTATION

6.5.3 Evaluation Summary

The above evaluation of our implementation of the dissemination-graph-based
transport service in Spines demonstrates that our approach of using dissemination
graphs with targeted redundancy improves performance compared with simpler ap-
proaches in practice under realistic network conditions. This evaluation validates the
simulation results presented in Chapter 5 in two ways. First, the controlled evalua-
tion, comparing results from Spines and the Playback simulator running in parallel on
simple overlay topologies, shows that the simulation is able to accurately reflect per-
formance differences between protocols we consider and can accurately model overall
performance in terms of loss and latency (with the caveat that low levels of uniform
loss are generally modeled too pessimistically when the coarser 10ms data collection
interval is used, due to induced correlation reducing the effectiveness of recoveries).
Second, the case studies, comparing a single path, two disjoint paths, and dissem-
ination graphs with targeted redundancy under realistic conditions drawn from the
data analyzed in Chapter 5, show that the Spines implementation is able to deliver
the performance benefits claimed in scenarios like those we observed in the collected
data from a real global overlay topology.

81

Chapter 7

Supporting Application Services

Our dissemination-graph-based transport service is designed to support applica-
tions with demanding combinations of timeliness and reliability requirements. In this
chapter, we describe examples of two such applications: remote robotic manipulation
and high-value video feed transmission. We assess our transport service’s ability to
support the communication needs of these applications, based on simulation using the
four weeks of data collected on a real global overlay network described in Chapter 4.
In both cases, these are high-value applications, where it is reasonable to pay the
additional cost of redundant dissemination (about twice the cost of a single path),
although the high overhead of an approach like time-constrained flooding would be
impractical.

7.1 Remote Robotic Manipulation Sup-
port

A major use case for this service is to support remote robotic surgery or other
remote manipulation tasks. These applications require high reliability and have ex-
tremely stringent timeliness constraints: in order for interaction to feel natural, the
round-trip delay between performing an action and receiving a response (e.g. video,
haptic feedback) must be less than about 130ms (65ms each way). Position updates
for manipulating robots are commonly sent at a frequency of 1000 Hz.

This type of highly interactive application is discussed as our main motivation
throughout this thesis, with the results in Sections 5.4 and 6.5 addressing support
for such applications. These evaluations use a 65ms oneway latency constraint and
a sending rate of one packet per millisecond to match the characteristics and re-
quirements of remote manipulation applications. Table 5.1 from the evaluation in
Section 5.4 is reproduced here as Table 7.1 and shows the level of availability and
reliability our transport service can support for remote manipulation applications.

82

CHAPTER 7. SUPPORTING APPLICATION SERVICES

Routing Approach Availability Unavailability Reliability Reliability

(%)
(seconds per flow

(%)
(packets lost or

per week) late per million)
Time-Constrained Flooding 99.995883% 24.90 99.999863% 1.37
Targeted Redundancy

99.995864% 25.02 99.999849% 1.51
(via Dissemination Graphs)
Dynamic Two Disjoint Paths 99.995676% 26.15 99.999103% 8.97
Static Two Disjoint Paths 99.995266% 28.63 99.998438% 15.62
Redundant Single Path 99.995223% 28.89 99.998715% 12.85
Single Path 99.994286% 34.56 99.997710% 22.90

Table 7.1: Aggregate availability and reliability with 65ms latency constraint, over
four weeks and sixteen transcontinental flows (using the recovery protocol of [1]).

Overall, the analysis shows that we can provide reliability such that less than 2
packets per million will not be successfully delivered at their destination within the
time-constraint for flows between the East Coast of the US and the West Coast of
the US.

Note that this reliability analysis excludes an average of 25.02 seconds per flow per
week that the service is not available due to disconnections. While this is a relatively
small period of time, we would like to support even higher availability, on the order of
99.999%. Unfortunately, in our analysis even the optimally reliable approach of time-
constrained flooding suffers from similar unavailability, as it is largely due to cases
where an entire site is disconnected from the rest of the network. To provide higher
availability, the transport service could be augmented with multi-homing capabilities,
allowing it to make use of multiple ISPs and avoid such disconnections; while the
general structured overlay framework incorporates this, our current implementation
does not.

Collaborating with robotics researchers, we have demonstrated an initial proof-
of-concept for this application, remotely manipulating a robotic arm capable of per-
forming robotic ultrasound. Using the LTN infrastructure and our Spines overlay
messaging framework, we have shown that we can manipulate a robot located in a
hospital at the Technical University of Munich, Germany from Johns Hopkins Uni-
versity in Baltimore, Maryland over the Internet with a one-way network latency of
about 50ms.

7.2 High-Value Video Feed Support

Another use case for the service is to support high-value video feeds. Such feeds
carry high-quality video (e.g. professional sporting events) to a few sites from which
the video can ultimately be distributed to a large number of endpoints. Because
any error in the original transmission can be propagated to millions of viewers, these
high-value feeds require extremely high reliability (beyond normal broadcast quality).

83

CHAPTER 7. SUPPORTING APPLICATION SERVICES

Routing Approach Availability Unavailability Reliability Reliability

(%)
(seconds per flow

(%)
(packets lost or

per week) late per million)
Time-Constrained Flooding 99.996560% 20.81 99.999995% 0.05
Targeted Redundancy

99.996544% 20.90 99.999985% 0.15
(via Dissemination Graphs)
Dynamic Two Disjoint Paths 99.996525% 21.02 99.999757% 2.43
Static Two Disjoint Paths 99.996458% 21.42 99.999573% 4.27
Redundant Single Path 99.996293% 22.42 99.999359% 6.41
Single Path 99.996284% 22.48 99.998717% 12.83

Table 7.2: Aggregate availability and reliability with 200ms latency constraint, over
four weeks and sixteen transcontinental flows (using the recovery protocol of [1]).

As timeliness constraints for these feeds are less strict than those for remote manip-
ulation, our service can employ both redundant dissemination graphs with a greater
diversity of viable paths and more opportunities for recovery to succeed to achieve
even higher reliability.

Table 7.2 presents reliability and availability metrics for the same data as in Ta-
ble 7.1, but analyzed with respect to applications with a timeliness constraint of
200ms rather than 65ms. Comparing Table 7.2 with Table 7.1, we can see that the
less strict latency constraint allows us to achieve higher availability and to provide
the higher level of reliability required for these high-quality (and high-value) feeds.
In this case, our dissemination-graph-based transport service is able to provide over
99.9999% reliability. In fact, reliability in this case could potentially be improved
even further by allowing multiple recovery attempts for lost packets [3], since the
less restrictive timeliness requirement could allow such attempts to arrive within the
latency constraint.

In this setting, unavailability is reduced for two reasons. First, the impact of each
disconnection is slightly shortened, as the 200ms latency allowance makes it possible
for packets that previously would have been lost near the end of the disconnection to
be recovered once the disconnection is resolved. Second, the 200ms latency constraint
makes it possible to use additional paths to overcome some types of disconnections:
there are cases in which all paths that can reach the destination with 65ms are dis-
connected, but additional paths can provide delivery within 200ms. One example
of this is the disconnection analyzed in the September 8, 2016 case study from Sec-
tion 6.5.2.3: with a latency constraint of 200ms, routing through Europe to overcome
the disconnection and reach New York from Los Angeles is a viable option.

These results show that a transport service using our dissemination-graph-based
routing protocol with targeted redundancy can be useful for this type of applica-
tion (with extremely high reliability requirements and somewhat less strict timeliness
requirements) in addition to the highly interactive applications we target.

84

Chapter 8

Conclusion

We have presented dissemination graphs, providing a unified framework for spec-
ifying routing schemes based on paths, as well as more complex graphs. Based on
an extensive analysis of real-world network data, we designed a dissemination-graph-
based routing approach that employs targeted redundancy to invest resources in prob-
lematic areas of the network. We demonstrated through simulation using real network
data that this approach can cost-effectively cover nearly 99% of the performance gap
between a traditional single-path approach and an optimal but impractical scheme.

We have implemented the protocol to create a timely, reliable, and cost-effective
transport Internet service within the open-source Spines structured overlay messag-
ing framework (www.spines.org). Our evaluation of the implementation validates the
simulation results through controlled experiments. We further demonstrate the ben-
efit of dissemination graphs with targeted redundancy through several realistic case
studies, inspired by the real-world network data.

Finally, we have analyzed the ability of the protocol to support two different
classes of applications: remote robotic manipulation (with a 65ms latency constraint)
and high-value video transport (with a 200ms latency constraint). This analysis
demonstrates the effectiveness of the transport service for both applications and the
improvement it provides over simpler routing protocols.

85

http://www.spines.org

Bibliography

[1] Y. Amir, C. Danilov, S. Goose, D. Hedqvist, and A. Terzis, “An overlay architec-
ture for high-quality VoIP streams,” IEEE Transactions on Multimedia, vol. 8,
no. 6, pp. 1250–1262, Dec 2006.

[2] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system
design,” ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 277–288, Nov. 1984.
[Online]. Available: http://doi.acm.org/10.1145/357401.357402

[3] Y. Amir, J. Stanton, J. Lane, and J. Schultz, “System and method for recovery
of packets in overlay networks,” U.S. Patent 8 437 267, May, 2013.

[4] LTN Global Communications, “LTN Global Communications,” http://www.
ltnglobal.com, retrieved September 26, 2018.

[5] P. Papadimitratos and Z. J. Haas, “Secure message transmission in mobile
ad hoc networks,” Ad Hoc Networks, vol. 1, no. 1, pp. 193 – 209,
2003. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1570870503000180

[6] T. Nguyen and A. Zakhor, “Path diversity with forward error correction (PDF)
system for packet switched networks,” in Proceedings of the 22nd Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM),
March 2003, pp. 663–672 vol.1.

[7] K. Karenos, D. Pendarakis, V. Kalogeraki, H. Yang, and Z. Liu, “Overlay routing
under geographically correlated failures in distributed event-based systems,” in
On the Move to Meaningful Internet Systems, 2010, pp. 764–784.

[8] Johns Hopkins Distributed Systems and Networks Lab, “The Spines messaging
system,” http://www.spines.org, retrieved September 26, 2018.

[9] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoff-
man, J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan, “Detour: informed inter-
net routing and transport,” IEEE Micro, vol. 19, no. 1, pp. 50–59, Jan 1999.

86

http://doi.acm.org/10.1145/357401.357402
http://www.ltnglobal.com
http://www.ltnglobal.com
http://www.sciencedirect.com/science/article/pii/S1570870503000180
http://www.sciencedirect.com/science/article/pii/S1570870503000180
http://www.spines.org

BIBLIOGRAPHY

[10] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles (SOSP), 2001, pp. 131–145. [Online]. Available:
http://doi.acm.org/10.1145/502034.502048

[11] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and D. Wether-
all, “Improving the reliability of internet paths with one-hop source routing.”
in Proceedings of the 6th Usenix Symposium on Operating Systems Design and
Implementation (OSDI), 2004, pp. 183–198.

[12] Y. Amir and C. Danilov, “Reliable communication in overlay networks,” in Pro-
ceedings of the IEEE International Conference on Dependable Systems and Net-
works, June 2003, pp. 511–520.

[13] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz, “OverQoS: An
overlay based architecture for enhancing internet QoS,” in Proceedings of the 1st
Symposium on Networked Systems Design and Implementation (NSDI), 2004,
pp. 71–84.

[14] Y. Amir, C. Danilov, S. Goose, D. Hedqvist, and A. Terzis, “1-800-OVERLAYS:
Using overlay networks to improve VoIP quality,” in Proceedings of the
International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), 2005, pp. 51–56. [Online]. Available:
http://doi.acm.org/10.1145/1065983.1065997

[15] A. C. Snoeren, K. Conley, and D. K. Gifford, “Mesh-based content
routing using XML,” in Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP), 2001, pp. 160–173. [Online]. Available:
http://doi.acm.org/10.1145/502034.502050

[16] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan, “Best-path vs. multi-path
overlay routing,” in Proceedings of the 3rd ACM SIGCOMM Conference
on Internet Measurement (IMC), 2003, pp. 91–100. [Online]. Available:
http://doi.acm.org/10.1145/948205.948218

[17] D. Obenshain, T. Tantillo, A. Babay, J. Schultz, A. Newell, M. E. Hoque,
Y. Amir, and C. Nita-Rotaru, “Practical intrusion-tolerant networks,” in Pro-
ceedings of the 36th International Conference on Distributed Computing Systems
(ICDCS), June 2016, pp. 45–56.

[18] A. Bessani, N. F. Neves, P. Veŕıssimo, W. Dantas, A. Fonseca, R. Silva, P. Luz,
and M. Correia, “JITeR: Just-in-time application-layer routing,” Computer Net-
works, vol. 104, pp. 122–136, 2016.

87

http://doi.acm.org/10.1145/502034.502048
http://doi.acm.org/10.1145/1065983.1065997
http://doi.acm.org/10.1145/502034.502050
http://doi.acm.org/10.1145/948205.948218

BIBLIOGRAPHY

[19] P. Papadimitratos, Z. J. Haas, and E. G. Sirer, “Path set selection in mobile
ad hoc networks,” in Proceedings of the 3rd ACM International Symposium on
Mobile Ad Hoc Networking & Computing (MobiHoc), 2002, pp. 1–11. [Online].
Available: http://doi.acm.org/10.1145/513800.513802

[20] J. G. Apostolopoulos, “Reliable video communication over lossy packet networks
using multiple state encoding and path diversity,” in Proc. SPIE, Visual
Communications and Image Processing, vol. 4310, 2001, pp. 392–409. [Online].
Available: http://dx.doi.org/10.1117/12.411817

[21] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh,
“SplitStream: High-bandwidth multicast in cooperative environments,” in Proc.
19th ACM Symposium on Operating Systems Principles (SOSP), 2003, pp.
298–313. [Online]. Available: http://doi.acm.org/10.1145/945445.945474

[22] L. Valiant, “The complexity of enumeration and reliability problems,” SIAM
Journal on Computing, vol. 8, no. 3, pp. 410–421, 1979.

[23] C. J. Colbourn, The Combinatorics of Network Reliability. New York, NY,
USA: Oxford University Press, Inc., 1987.

[24] J. Provan and M. Ball, “The complexity of counting cuts and of computing the
probability that a graph is connected,” SIAM Journal on Computing, vol. 12,
no. 4, pp. 777–788, 1983.

[25] M. Jerrum, “On the complexity of evaluating multivariate polynomials,” Ph.D.
dissertation, University of Edinburgh, 1981.

[26] T. Farley, “Network reliability and resilience,” Ph.D. dissertation, Arizona State
University, 2009.

[27] H. Cancela, F. Robledo, G. Rubino, and P. Sartor, “Monte carlo
estimation of diameter-constrained network reliability conditioned by pathsets
and cutsets,” Computer Communications, vol. 36, no. 6, pp. 611 –
620, 2013, reliable Network-based Services. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0140366412002861

[28] K. Aggarwal, Y. Chopra, and J. Bajwa, “Topological layout of links
for optimizing the s-t reliability in a computer communication system,”
Microelectronics Reliability, vol. 22, no. 3, pp. 341 – 345, 1982. [Online].
Available: http://www.sciencedirect.com/science/article/pii/0026271482900063

[29] J. Barrera, H. Cancela, and E. Moreno, “Topological optimization of
reliable networks under dependent failures,” Operations Research Letters,
vol. 43, no. 2, pp. 132 – 136, 2015. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167637714001771

88

http://doi.acm.org/10.1145/513800.513802
http://dx.doi.org/10.1117/12.411817
http://doi.acm.org/10.1145/945445.945474
http://www.sciencedirect.com/science/article/pii/S0140366412002861
http://www.sciencedirect.com/science/article/pii/S0140366412002861
http://www.sciencedirect.com/science/article/pii/0026271482900063
http://www.sciencedirect.com/science/article/pii/S0167637714001771
http://www.sciencedirect.com/science/article/pii/S0167637714001771

BIBLIOGRAPHY

[30] B. Elshqeirat, S. Soh, M. Lazarescu, and S. Rai, “Dynamic programming for
minimal cost topology with two terminal reliability constraint,” in 2013 19th
Asia-Pacific Conference on Communications (APCC), Aug 2013, pp. 740–745.

[31] B. Elshqeirat, “Optimizing reliable network topology design using dynamic pro-
gramming,” Ph.D. dissertation, Curtin University, 2015.

[32] A. Babay, E. Wagner, M. Dinitz, and Y. Amir, “Timely, reliable, and cost-
effective internet transport service using dissemination graphs,” in Proceedings of
the 37th International Conference on Distributed Computing Systems (ICDCS),
June 2017, pp. 1–12.

[33] J. W. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, no. 2, pp.
125–145, 1974. [Online]. Available: http://dx.doi.org/10.1002/net.3230040204

[34] A. Babay, “Timely, reliable, and cost-effective transport service using dissemi-
nation graphs,” in IEEE/IFIP International Conference on Dependable Systems
and Networks (Student Forum), June 2015.

[35] E. Wagner, “The Playback network simulator: Overlay performance simulations
with captured data,” Masters Project, Johns Hopkins University, December 2016.

[36] D. Obenshain, “Practical intrusion-tolerant networking,” Ph.D. dissertation,
Johns Hopkins University, November 2015.

[37] M. V. Marathe, R. Ravi, R. Sundaram, S. Ravi, D. J. Rosenkrantz,
and H. B. Hunt, “Bicriteria network design problems,” Journal of
Algorithms, vol. 28, no. 1, pp. 142 – 171, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0196677498909300

[38] A. Babay, M. Dinitz, and Z. Zhang, “Characterizing demand graphs for
(fixed-parameter) shallow-light steiner network,” CoRR, vol. abs/1802.10566,
2018. [Online]. Available: http://arxiv.org/abs/1802.10566

[39] L. Guo, K. Liao, and H. Shen, “On the shallow-light steiner tree problem,” in 15th
International Conference on Parallel and Distributed Computing, Applications
and Technologies, Dec 2014, pp. 56–60.

[40] M. T. Hajiaghayi, G. Kortsarz, and M. R. Salavatipour, “Approximating
buy-at-bulk and shallow-light k-steiner trees,” Algorithmica, vol. 53, no. 1, pp.
89–103, 2009. [Online]. Available: http://dx.doi.org/10.1007/s00453-007-9013-x

[41] C. Danilov, “Performance and functionality in overlay networks,” Ph.D. disser-
tation, Johns Hopkins University, September 2004.

89

http://dx.doi.org/10.1002/net.3230040204
http://www.sciencedirect.com/science/article/pii/S0196677498909300
http://arxiv.org/abs/1802.10566
http://dx.doi.org/10.1007/s00453-007-9013-x

Vita

Amy Babay was born in 1990 in Erie, Pennsylvania. She received her BA in
Cognitive Science in 2012 and her MSE in Computer Science in 2014, both from Johns
Hopkins University. Prior to starting her PhD, she gained experience with global
overlay networks in the commercial world, working at LTN Global Communications.
As an MSE and PhD student, Amy was a member of the Distributed Systems and
Networks Lab, where her research focused on enabling new Internet services using
structured overlay networks and on building intrusion-tolerant critical infrastructure
systems. She received the Johns Hopkins Computer Science Department’s Special
Service Award in 2015 and the Professor Joel Dean Excellence in Teaching Award in
2018.

90

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Solution Highlights
	Thesis Organization
	Related Work
	Overlay Routing and Recovery
	Multipath Routing and Redundant Dissemination
	Theory of Reliable Network Design

	Structured Overlay Framework for Timely, Reliable Transport
	Resilient Network Architecture
	Overlay Routers with Unlimited Programmability
	Flow-Based Processing
	Hop-by-Hop Recovery

	Dissemination-Graph-Based Routing
	Model
	Network Model
	Cost Model
	Reliability Model

	Foundational Approaches to Dissemination Graph Construction
	Dynamic Single Path
	Static Two Node-Disjoint Paths
	Dynamic Two Node-Disjoint Paths
	Overlay Flooding
	Time-Constrained Flooding

	Optimal Dissemination Graphs

	Analyzing Network Problems in the Field
	Flow Modeling with the Playback Overlay Network Simulator
	Data Collection Environment
	Network Fault Pattern Analysis

	Dissemination-Graph-Based Transport Service using Targeted Redundancy
	Constructing Dissemination Graphs with Targeted Redundancy
	Source-Problem and Destination-Problem Graphs
	Robust Source-Destination-Problem Graphs

	Quick Problem Detection System
	Potential Optimization: Faster Reaction
	Evaluation via Simulation
	Overall Performance
	Comparison of Approaches
	Case Study

	Dissemination Graph Work Evolution

	Implementation
	Generic Dissemination-Graph-Based Routing
	Problem-Type Routing
	Timely, Reliable Transport Service
	Practical Considerations and Optimizations
	Evaluation
	Controlled Evaluation of Implementation with Simulation Validation
	Setup
	Results

	Evaluation via Case Studies
	August 15, 2016 Case Study
	October 17, 2016 Case Study
	September 8, 2016 Case Study

	Evaluation Summary

	Supporting Application Services
	Remote Robotic Manipulation Support
	High-Value Video Feed Support

	Conclusion
	Bibliography
	Vita

