
Scalable Process Group Membership
for the Spread Toolkit

Ryan W. Caudy
caudy@cnds.jhu.edu

Advisor: Dr. Yair Amir
yairamir@cs.jhu.edu

A project report submitted to The Johns Hopkins University in comformity with the
requirements for the degree of Master of Science in Engineering

Baltimore, Maryland

October 2004

c©Ryan W. Caudy 2004
All rights reserved

Abstract

Group Communication Systems (GCSs) are a part of the core infrastructure of many dis-
tributed systems. By providing reliable, ordered, many-to-many messaging services, in
addition to group membership services, they can enable applications such as database repli-
cation [1], distributed logging, Internet Protocol (IP) address fail-over, and distributed load
balancing. However, without careful design, scalability is not an inherent component of
many such systems.

This project report discusses the design choices made in one GCS, the Spread toolkit, in-
cluding using a client-daemon architecture to leverage hierarchical systems, a two-layer
membership protocol that translates a membership service at the daemon-level to one that
pertains to process groups, and several new enhancements made as part of this work. These
enhancements include the the removal of limits on the size of state exchanges, a reorgani-
zation of the way group state is stored in the Spread daemon, and a shift to the use of
representatives to decrease the messaging costs of the group state exchange.

In addition, the semantics and client interface provided by Spread’s process group mem-
bership protocol are discussed, including a strengthened set of semantics to provide more
information about the sets of members that were virtually synchronous in past configura-
tions.

ii

Acknowledgements

I’d like to thank my parents for everything they have done for me. Every day I’m reminded
of just how lucky I was to have loving, kind, truly supportive parents. I owe any and all
success in my life to them for the values they instilled, and their continued support.

I’d like to thank my advisor, Dr. Yair Amir, for giving me incredible opportunities in
the Center for Networking and Distributed Systems. I may not have always taken full
advantage, but I feel that I gained an incredible amount of skill, knowledge, and experience,
both from the work I did, and from my conversations with a man who has a truly excellent
perspective on the value of building real computer systems.

I’d like to thank all of the members of the CNDS lab, past and present, who have been
astounding colleagues. John Schultz, for being the best man to think and talk with about
any data structures or semantics problem I came up with. Jonathan Stanton, for being
the key to my productivity each of the all-too-few occasions when we were able to work
together. Claudiu Danilov, for being an outstanding guy, with great advice about anything.
Ciprian Tutu, for teaching me the first lessons about writing a real paper, and just being a
great person to talk with. Cristina Nita-Rotaru, for helping me get through a few difficult
times, and being a good influence. Each and every other person associated with the lab
deserves my thanks, as well, for helping to make it such an excellent place to do research.

I’d like to thank some of the people who helped me make it through Hopkins finan-
cially, including Mike Bloomberg, the STRIVE Benefactor, and the Benefactor’s angel-
of-everything, Susan Barnwell.

Last, but not least, I’d like to thank every one of the good friends who helped me get through
Hopkins, including Mike Hilsdale, Darren Davis, Raphael Schweber-Koren, Peter Keeler,
Ashima Munjal, and most especially Lisa Vara-Gulmez, my fiancée.

Ryan W. Caudy
October 2004

iii

Contents

1 Introduction 1

2 The Spread Toolkit 2

2.1 Layered Membership Service . 2

2.2 Extended Virtual Synchrony Overview . 3

3 Towards a Scalable Process Group
Membership 4

3.1 Algorithm Specification and State Machine 4

3.2 Initial Process Group Membership Implementation 6

3.3 Scalabity Improvements . 6

4 Extending the Group Membership Semantics 9

4.1 Membership Message Semantics . 9

4.2 Extending the Virtual Synchrony Set . 9

5 Performance 11

5.1 Experimental Design . 11

5.2 Lightweight Membership Changes . 12

5.3 Heavyweight Membership Changes . 12

5.3.1 Partitions of One Daemon . 15

5.3.2 Merges of One Daemon . 15

5.3.3 Partitions into Two Equal Sets . 17

5.3.4 Merges from Two Equal Partitions 20

6 Related Work 21

iv

7 Conclusions 22

v

List of Figures

1 The Group Membership Algorithm – State Machine 5

2 Three-level GroupsList Hierarchy . 7

3 Emulab Visualization of Experimental Topology 11

4 Computation Time to Join Last Group . 13

5 Computation Time to Leave Last Group 13

6 Partioning Costs at Representative of Singleton Partition 14

7 Partitoning Costs at Representative of Remaining Partition 14

8 Merge Costs at Representative of Singleton Partition 16

9 Merge Costs at Representative of Remaining Partition 16

10 Partition Costs at the Representative of the First Equal Partition 18

11 Partition Costs at the Representative of the Second Equal Partition 18

12 Merge Costs at the Representative of the First Equal Partition 19

13 Merge Costs at the Representative of the Second Equal Partition 19

vi

1 Introduction

The past decade has witnessed extremely rapid growth of the Internet, as part of a mas-
sive increase in the availablity of networking technology, to the extent that even citizens of
developing nations often have cheap access to global communication over vast networks.
With this increase, distributed applications have become an increasingly common part of
everyday life for a continually growing number of individuals. Taking this reality into ac-
count, scalability in distributed systems must be treated as a goal of paramount importance.

Group Communication Systems (GCSs) are a part of the core infrastructure of many dis-
tributed systems. By providing reliable, ordered, many-to-many messaging services, in
addition to group membership services, they can enable applications such as database repli-
cation [1], distributed logging, Internet Protocol (IP) address fail-over, and distributed load
balancing. However, without careful design, scalability is not an inherent component of
many such systems.

The Spread toolkit is one such GCS, developed at the Center for Networking and Dis-
tributed Systems (CNDS) at The Johns Hopkins University. This report describes the ar-
chitecture of the Spread toolkit as it pertains to providing a scalable process group mem-
bership service. It will reveal the basic design choices that enable the construction of a
scalable system of this type, as well as a number of improvements that have been made as
part of this work.

The remainder of this report is organized as follows. Section 2 presents an overview of the
Spread toolkit. Section 3 further develops a discussion of Spread’s process group member-
ship algorithm, and the improvements that have been made. Section 4 discusses extensions
to the semantics of Spread’s process group membership algorithm that were enabled by
modifications designed to improve scalability. Section 5 provides performance results,
while Section 6 provides a limited survey of related work. Section 7 concludes the report.

1

2 The Spread Toolkit

The Spread toolkit, publicly available as open source software from www.spread.org, is
a GCS that implements a version of the Extended Virtual Synchrony (EVS) specification
[6, 8, 1]. It provides messaging and membership services with strong guarantees to client
applications that link with the Spread client library. This library provides a simple, power-
ful Application Programming Interface (API), and performs the low-level networking oper-
ations to allow clients to communicate over a reliable, first-in-first-out channel (i.e. TCP/IP
or Unix domain sockets) with a Spread daemon process. Spread daemons communicate
amongst themselves using User Datagram Protocol (UDP) packets, sending multicast or
broadcast messages when possible and advantageous, and unicast messages otherwise.

2.1 Layered Membership Service

A large part of the scalability of Spread’s membership service stems as a direct conse-
quence from the client-daemon architecture described above. Rather than have each client
participate directly in a global membership algorithm, which would severely limit the per-
formance of a system with many clients, the client membership service is mapped onto a
lower level daemon membership service. This two-layer membership protocol is conducted
entirely by the daemons.

The first layer, the daemon membership, is responsible for setting up the network level
membership of Spread daemons. It copes properly with partitions and merges of the un-
derlying network, as well as failures and recoveries of individual Spread daemons. This
protocol implements exactly the EVS specification as presented in [6]. It is expected, and
observed in real systems, that this protocol operates effectively with tens or even hundreds
of daemons. However, scaling to thousands would be difficult in the extreme.

The second layer, the group membership protocol, has two interacting components. The
first, referred to here as the lightweight membership event handler, deals with group mem-
bership events that are not caused by an underlying change in the daemon membership,
but rather by the join, leave, or disconnect of an individual client. The second, the group
state exchange algorithm, exchanges messages between daemons who have successfully
installed a regular configuration (see Section 2.2) together, in order to establish a shared
state concerning the membership of client processes in the various multicast groups used
within the system.

After handling a lightweight membership event or completing a state exchange, the group
membership protocol ensures that clients are notified via succinct messages of the correct
membership of each of their process groups. The process group membership protocol and
its scalability is the subject of Section 3 of this report.

2

2.2 Extended Virtual Synchrony Overview

A complete specification of EVS would be well beyond the scope of this report. However,
a partial, informal specification is included here, to clarify some of the discussion that
follows in the remaining sections of this report.

As it pertains to this work, the vital component of the EVS specification is the notion of
configurations and configuration changes. A configuration is a set of nodes that represents
the membership of a network component, with a unique identifier associated that isolates
it temporally from other configurations with identical node-sets. In the context of Spread,
note that these identifiers are referred to as membership IDs when discussing the daemon-
level EVS protocol, and group IDs when discussing the client-level EVS protocol.

Algorithm participants (nodes) deliver membership configurations of two types, regular
and transitional. A regular configuration c may be preceded by several transitional config-
urations consisting of nodes who came together to c, and succeeded by several transitional
configurations consisting of nodes who either move forward together to their next regular
configuration, or crash. Thus, a given node installs a regular configuration c, followed by a
transitional configuration c′ consisting only of members from c, followed by a new regular
configuration c′′, and so on as long as membership changes continue to occur. The reason
for the “or crash” possibility mentioned above is a fundamental property of asynchronous
systems [2].

These configurations relate to message semantics in complex ways, but only one observa-
tion is necessary in this work. Specifically, any set of nodes that starts in a given config-
uration c and then installs the same following configuration c ′ delivers the exact same set
of messages during c. This property, referred to as failure atomicity, is the same as saying
that the nodes that installed c′ from c were virtually synchronous during configuration c.

3

3 Towards a Scalable Process Group
Membership

This section attempts to briefly describe the behavior of the process group membership
protocol in Spread, and explain the design decisions that have affected its scalability.

3.1 Algorithm Specification and State Machine

A complete specification of the group membership protocol is contained in [9]. For this
reason, this report only includes a brief overview of the algorithm. However, it is important
to note that the following assumption holds throughout the remainder of this document:

The daemon membership protocol correctly handles delivery of configuration
changes to the group membership protocol, and correctly delivers messages in
those configurations exactly as specified in [6].

The purpose of the group membership algorithm is to properly maintain the state of all
groups in the system, collectively referred to as the GroupsList, and to ensure that clients
receive proper notifications of transitional and regular configurations in order to correctly
preserve EVS semantics.

The group membership protocol exists as a state machine, as depicted in Figure 1. The
states and their basic functions are as follows:

GOP(Groups-Operational): In GOP, the algorithm is functioning as normal, during a reg-
ular configuration of the client-level EVS protocol. Light-weight membership events
are handled by sending simple notification messages, installing new regular con-
figurations with an (implicit) intervening transitional configuration of infinitesimal
duration. Receipt of a transitional configuration from the daemon membership layer
triggers a shift to the next state, GTRANS.

GTRANS(Groups-Transitional): In GTRANS, some groups are in a transitional configu-
ration (i.e. those groups that were changed by the underlying configuration change).
These groups receive notification of a transitional configuration, and deliver lightweight
membership events as heavyweight membership events, in order to correctly preserve
the client-level EVS semantics. Groups that have not changed behave exactly as in
GOP, delivering simple notifications without the full EVS semantics. Receipt of
a regular configuration triggers a shift to GOP, if the regular configuration has the
same set of nodes as the previous transitional configuration, or else to GGATHER.

GGATHER(Groups-Gather): In GGATHER, client messages are blocked, preventing the
arrival of any new lightweight membership events. At the beginning of this state, dae-

4

GGT

GTRANS

GGATHER

GOP

Recv
Trans Config

Recv
Reg Config
(==Trans)

Complete
State

Exchange

Complete
State

Exchange

Recv
Trans Config

Recv
Reg Config

Recv
Join/Leave

Recv
Join/Leave

Recv
State Message

Recv
State Message

Recv
Reg Config
(!=Trans)

Figure 1: The Group Membership Algorithm – State Machine

mons send their GroupsList state. If the state exchange is completed, the daemons
compute the new GroupsList deterministically, and provide notification messages
to clients for any group whose membership changed either as a result of the transi-
tional configuration or the new regular configuration. Once these notifications are
completed, the algorithm returns to GOP. However, if another transitional configura-
tion arrives before the completion of the state exchange, the algorithm shifts to state
GGT.

GGT(Groups-Gather-Transitional): GGT is designed to handle cascading membership
changes, that is, membership changes at the daemon level that occur before the
group state is correctly exchanged after the last daemon membership change. During
GGT, as in GGATHER, client events cannot occur, including lightweight member-
ship events. A daemon in state GGT will wait for state exchange messages from
the previous regular configuration. If all of the expected state messages arrive, the
daemon will act as if GGATHER had in fact completed (performing the same com-
putation, notification, and shift to GOP) and the cascading transitional configuration
had in fact arrived after this point (causing a shift to GTRANS). If, instead, the next
regular configuration arrives first, the algorithm will properly dispose of the old state
messages it collected, shift to GGATHER, and begin the state exchange anew.

5

3.2 Initial Process Group Membership Implementation

Initially, the implementation of the group membership algorithm held to a very straightfor-
ward interpretation of the specification given above. The GroupsList data structure was
built as a skip list of group data structures, each of which maintained a skip list of member
data structures. Each group maintained state for the group as a whole, such as the current
group ID, while each member maintained state for the member it represented, as well as
enough identifying information to locate the daemon to which the member belonged.

Using skip lists does have important scalability benefits, in terms of computational time –
skip lists implement the ordered dictionary abstract data type, with expected O(log n) time
for search, insert, and delete operations [7]. Since skip lists are ordered, as well, iteration
over the GroupsList in a desirable, deterministic order at each node can be conducted in
O(n) time.

However, there are drawbacks to this straightforward approach, including:

• Each daemon is responsible for sending the state for all of the members attached to
it, independently from other daemons.

• A given daemon can only send exactly one state message, with an upper size limit
determined by the maximum message size allowed by the GCS. This has the effect
of limiting scalability artificially.

• All data in the GroupsList is discarded when the new group membership was com-
puted after a successful state exchange. This potentially wastes a large amount of
computational time, because the data that is discarded is that for all of the daemons
that have remained virtually synchronous with the daemon under consideration since
it last completed a group state exchange, and hence is up to date.

• Members are managed individually, even though a large percentage of their state is
common to all members in the same group attached to the same daemon.

3.3 Scalabity Improvements

The work detailed in this report includes a number of scalability improvements, as well as
certain semantic enhancements (see Section 4), and extensive code changes for software
engineering and clarity reasons. The scalability changes are explained in detail in this
subsection.

The first improvement was removal of the limit on state-exchange messages per daemon.
Daemons now send as many state messages as they require, with only one limitation: for
a given group, the data about members from a given daemon must fit in one message.
Removing this limit requires only a few modifications to the way such messages are built. A

6

group G1

daemon members D1,1

member M1,1,1
...

member M1,1,k
...

daemon members D1,m

member M1,m,1
...

member M1,m,�
...

group Gn

daemon members Dn,1

member Mn,1,1
...

member Mn,1,x
...

daemon members Dn,p

member Mn,p,1
...

member Mn,p,y

Figure 2: Three-level GroupsList Hierarchy

small performance enhancement that went along with this change was to send only the last
state-exchange message from a given daemon using totally-ordered delivery, and unordered
for all earlier messages. Note that the requirement for the last message to be sent with an
additional ordering guarantee ensures that the daemons in the system will complete the
state exchange at the same place in the stream of messages being delivered during their
configurations, ensuring consistent operation of the group membership algorithm.

Two key observations lead to the further changes that were made. First, when a network
level change occurs, the group membership is changed not according to individual-member
units, but rather in units consisting of all the members residing at a given daemon. Second,
under certain circumstances, each daemon in a set is known to have exactly the same group
state.

Leveraging the first observation allows for a reorganization of the GroupsList. Instead of
using a two-level hierarchy of group structures and member structures, it’s advantageous
to instead use a three-level hierarchy. This new structure consists of group structures,
which list daemon members structures, which in turn list all of the member structures for
a given daemon and group. See Figure 2 for an illustration of this reorganization.

7

This new level of hierarchy allows for most of the aforementioned state information to be
kept per daemon per group instead of per member per group, resulting in a substantial
savings in space for systems with large numbers of clients per group. In addition, various
places in the group membership algorithm require iterating over all members in a group to
examine this state. Considering that the number of daemons with members in a group is
often substantially smaller than the total number of members, a sizable decrease in compu-
tational time used for certain parts of the algorithm is to be expected, most notably during
the handling of transitional configurations that cause some daemons to become partitioned
away from the daemon we consider. For a demonstration of this benefit, see Section 5.

This reorganization also makes it far simpler to take advantage of the second observation
listed above. If daemons are known to have exactly the same group state information, one
daemon can represent the others in the state exchange process. This condition holds when a
set of daemons have completed an earlier group state exchange and have remained virtually
synchronous with one another since. Thus, for one such set of synchronized daemons S,
there are two operations that can change the set.

1. The delivery of a transitional configuration c, with member-set S ′. In this case,
S = S ∩ S ′.

2. The completion of a group state exchange with another set R, as defined by the re-
ceipt of all state messages from the representatives of each set. Note that this does
not demand that the entire state exchange complete, allowing us to potentially con-
solidate two synchronized sets of daemons in GGT if the next regular configuration
arrives before the full state exchange is completed. In this case, S = S ∪ R.

In addition, the concept of a synchronized set of daemons, represented by only one daemon,
makes it simple to avoid discarding and recomputing state information that is guaranteed
to be correct. This results in significant performance and scalability improvements.

There may also be a significant savings in network time spent transferring state, since
under most circumstances fewer overall messages need to be sent, saving overhead and
protocol costs. However, the experiments conducted in Section 5 use very large numbers
of members and groups, and so don’t serve to evaluate this consideration.

8

4 Extending the Group Membership Semantics

One aspect of the group membership protocol that has been left out of our discussion up to
this point are the semantics of the notification messages delivered to the clients. Note that
clients receive notification messages on a per-group basis, and there there are two types of
these membership messages.

4.1 Membership Message Semantics

A transitional membership message serves only to signal to the client that the messages it
receives for a given group after the signal may not meet all of the ordinary guarantees that
hold during a regular configuration (see [6]). However, this message does not provide any
details about the membership of the transitional configuration it initiates. The reason for
this is that that membership may not yet be known, due to the possibility that lightweight
membership changes may occur during the transitional configuration. For instance, if a
member m was notified that a member m′ was in her transitional configuration, but then
m′ left the group before the next regular configuration was installed, this would violate the
EVS specification as described in Section 2.2.

For this reason, the regular membership message that installs the following regular config-
uration in the client-level EVS protocol notifies the client not only of the membership of
its new regular configuration, but additionally of the group members with whom that client
was virtually synchronous during the last transitional configuration (provided that these
members did not crash). This set of group members included with the regular membership
message is referred to as a virtual synchrony set (or VS-set).

4.2 Extending the Virtual Synchrony Set

The changes to the structure of the GroupsList enable an extension to the VS-set seman-
tics to be made with little-or-no performance penalty or added complexity. Each daemon
adds one additional field to the daemon members structure, which contains the member-
ship ID of the last daemon-level configuration in which the corresponding daemon was
involved in a network-level change for the corresponding group. It is easy to see that dae-
mons members structures whose members are included in the next regular configuration
and who have identical membership IDs have member sets consisting of members that were
virtually synchronous with one another during the previous configuration, or crashed.

Since this information is passed to all daemons during the group state exchange algorithm,
it becomes possible for each daemon to inform its members of not only their own VS-
set, but also of additional disjoint VS-sets that cover every member of the new regular
configuration. This extra level of information is referred to colloquially as, “who-came-

9

with-whom?” Some discussion has been made of attempting to leverage these extended
semantics in group re-keying algorithms for secure group communication systems.

Note also that these additional semantics are well-complemented by the addition of repre-
sentatives to the state exchange. Since client-level messages are not delivered during the
execution of the state exchange algorithm, even a representative whose synchronized set
grows as the result of a partially completed state exchange in GGT can accurately maintain
the multiple VS-sets by simply not changing membership IDs, since doing so is unneces-
sary.

10

Figure 3: Emulab Visualization of Experimental Topology

5 Performance

5.1 Experimental Design

The experiments for this section were conducted using the Emulab Network Emulation
Testbed[10] at the University of Utah. The network used was a single 100 Mbps LAN (Lo-
cal Area Network), connecting twenty of the testbed’s computers. Each node ran Redhat
Linux 9.0, and had one 850MHz Intel Pentium III processor and 512MB of PC133 ECC
SDRAM.

Each node had one Spread daemon, and 50 test clients, each of which joined a specificed
number of groups, 100, 500, or 1000 in the tests conducted. This means that in each of
these tests, each group has 1000 members, which leads to 100, 000, 500, 000, or 1, 000, 000

11

group members in the system as a whole, respectively. One additional test director client
was run on the last node, node 20, in order to trigger each measured action. Figure 3 shows
the network topology as displayed via Emulab’s NetBuild GUI visualization tool.

Since the goal of these experiments was a comparison between the older Spread daemon
and the new one resulting from this project, each test was repeated (where possible) with
each. Note that the older Spread daemon used has modifications to allow multiple state
exchange messages to be sent, including the delivery guarantee enhancement discussed
in Section 3, in order to allow comparisons with worthwhile numbers of members and
groups. Unless otherwise discussed, each data point represents the average of twenty mea-
surements.

5.2 Lightweight Membership Changes

Lightweight membership events were triggered using the test director client, which joined
or left as the last member of the last group on the last daemon, according to the sorting
used by the GroupsList data structure. The measurement results for the computation time
to insert this new group member and create the correct notification message are shown in
figure 4 and figure 5, comparing each daemon side-by-side.

The general trend observable from the graphs is that the time increases along a relatively flat
line for each version of the Spread daemon, but that the newer daemon has somewhat better
performance. It seems likely that this performance difference is due to the hierarchical
organization of the GroupsList, which allows the new daemon to not rely entirely on the
expected distribution of nodes in the skiplist for its time cost.

5.3 Heavyweight Membership Changes

Heavyweight membership events, i.e. partitions and merges of the set of Spread daemons
that can communicate via the network, were triggered using administrative and testing
tools created for use with Spread, specifically SpMonitor and SpCmd. They allow a dif-
ferent connectivity than that of the actual network to be imposed artificially on the Spread
daemons.

The numbers reported for each of the following experiments are from the daemons that
serve as representatives for each membership change in the new version of the algorithm.
Total time costs for non-representative daemons are very similar, but only the representa-
tives create state exchange messages, the time for which can be compared to the time the
older daemons take to build their own purely-local state messages.

In general, it is clear from examination of the data that the new algorithm and implemen-
tation appears to scale linearly with the total number of members across all groups, and

12

Computation Time to Join Last Group

0

0.2

0.4

0.6

0.8

1

1.2

100 500 1000

Number of Groups (each with 1000 members)

A
v
e
ra

g
e

T
im

e
(m

s
)

Old

New

Figure 4: Computation Time to Join Last Group

Computation Time to Leave Last Group

0

0.2

0.4

0.6

0.8

1

1.2

100 500 1000

Number of Groups (each with 1000 members)

A
v
e
ra

g
e

T
im

e
(m

s
)

Old

New

Figure 5: Computation Time to Leave Last Group

13

Node 1 Timings for Partition to (1,19)

0

1

2

3

4

5

6

7

8

9

New-100 Old-100 New-500 Old-500 New-1000

Daemon-Number of Groups (each with 1000 members)

A
v

e
ra

g
e

T
im

e
(s

e
c

o
n

d
s

)

Other

Prune

Figure 6: Partioning Costs at Representative of Singleton Partition

Node 2 Timings for Partition to (1,19)

0

0.5

1

1.5

2

2.5

New-100 Old-100 New-500 Old-500 New-1000

Daemon-Number of Groups (each with 1000 members)

A
v

e
ra

g
e

T
im

e
(s

e
c

o
n

d
s

)

Other

Prune

Figure 7: Partitoning Costs at Representative of Remaining Partition

14

impose very limited computational overhead. This does not appear to be the case with the
older daemon.

Note that in order to conduct tests with the older daemon at 500 groups without triggering
looping, cascading heavyweight membership changes, a modification was required to in-
crease the token timeout, a key component of the daemon membership algorithm’s failure
detection, up to 30 seconds. This value is extremely high for most applications, because
it allows a failed daemon to stall the entire Spread network for a long period of time. For
similar reasons, tests were not conducted with 1,000 groups (i.e. 1,000,000 total group-
memberships) for the older daemon. It was observed that the computation time for a merge
grew to be approximately 80 seconds at node 2 and the others in its partition, which is
unreasonably long to set the token timeout.

5.3.1 Partitions of One Daemon

Experimental results for partitioning the daemons into one set with only daemon {1} and
another with daemons {2, ..., 20} are shown in figures 6 and 7. At node 1, the total times
for the partition algorithm were 0.17s for 100 groups, 1.49s for 500 groups, and 5.00s for
1,000 groups with the new implementation; and 0.37s for 100 groups, and 7.82s for 500
groups with the old implementation. At node 2, the total times for the partition algorithm
were 0.09s for 100 groups, 0.49s for 500 groups, and 1.04s for 1,000 groups with the
new implementation; and 0.20s for 100 groups, and 2.25s for 500 groups with the old
implementation. As mentioned above, each group has 1,000 members.

Node 1 must remove all but its own members from the GroupsList, and so spends a fair
amount of time removing other daemons’ members, as shown by the dominance of prune
time in figure 6. However, it is notable that the older Spread daemon spends significantly
more time in doing so at each number of groups for which a comparison is possible. This is
likely due to the difference in the number of membership checks required – one per group
for each of the 20 daemons for the new implementation, and one per group for each of the
1,000 members for the old implementation.

Node 2 has significantly lower costs to prune the GroupsList, since it must only remove 1
20

of the total members. For this reason, the total cost is dominated more by the remaining
time, which is spent mostly on building membership notification messages.

5.3.2 Merges of One Daemon

Experimental results for re-merging the partitioned sets described above are shown in fig-
ures 8 and 9. At node 1, the total times for the merge algorithm were 0.92s for 100 groups,
4.69s for 500 groups, and 9.30s for 1,000 groups with the new implementation; and 1.25s
for 100 groups, and 16.05s for 500 groups with the old implementation. At node 2, the

15

Node 1 Timings for Merge from (1,19)

0

2

4

6

8

10

12

14

16

18

New-100 Old-100 New-500 Old-500 New-1000

Daemon-Number of Groups (each with 1000 members)

A
v

e
ra

g
e

T
im

e
(s

e
c

o
n

d
s

)

Other

Compute

Build State

Figure 8: Merge Costs at Representative of Singleton Partition

Node 2 Timings for Merge from (1,19)

0

5

10

15

20

25

30

35

New-100 Old-100 New-500 Old-500 New-1000

Daemon-Number of Groups (each with 1000 members)

A
v

e
ra

g
e

T
im

e
(s

e
c

o
n

d
s

)

Other

Compute

Build State

Figure 9: Merge Costs at Representative of Remaining Partition

16

total times for the merge algorithm were 0.67s for 100 groups, 3.39s for 500 groups, and
6.83s for 1,000 groups with the new implementation; and 1.86s for 100 groups, and 30.33s
for 500 groups with the old implementation. As mentioned above, each group has 1,000
members.

Here, the easiest observation is the much higher computation cost paid by the older daemon
when rebuilding the GroupsList. This is due to its naive policy of removing all members
from each changed group, rather than only those that are not known to have correct state.
This cost seems higher than it should be, but has been observed in previous performance
tests when using the same skip list implementation.

The time spent building state messages is much greater for the new daemon than for the
old daemon at these representative nodes. However, this difference is minimized wherever
possible, and appears to have negligible impact when compared with the total time cost
of the algorithm. Note that node 1 pays a much higher computation cost than node 2,
for the new daemon, because it must do 19 times more work in processing messages and
inserting members to its GroupsList. The “other” time category is spent mostly on building
notification messages, and on the network transmission of the state messages, which have
roughly the same total size for the two daemon implementations, but with lower metadata
overhead for the new daemon.

5.3.3 Partitions into Two Equal Sets

Experimental results for partitioning the daemons into two equally-sized sets, {1, ..., 10}
and {11, ..., 20}, are shown in figures 10 and 11. At node 1, the total times for the partition
algorithm were 0.11s for 100 groups, 1.18s for 500 groups, and 2.20s for 1,000 groups with
the new implementation; and 0.45s for 100 groups, and 13.61s for 500 groups with the old
implementation. At node 11, the total times for the partition algorithm were 0.11s for 100
groups, 0.82s for 500 groups, and 1.70s for 1,000 groups with the new implementation;
and 0.53s for 100 groups, and 17.49s for 500 groups with the old implementation. As
mentioned above, each group has 1,000 members.

Here, the most noticeable measurement is the extremely high cost for pruning the Group-
sList for the old daemon with 500 groups. As in the measurements at node 1 for the
singleton partitioning, the time to prune the GroupsList dominates, but less so in this case
because of the equal division of the state information. It is not immediately clear why the
pruning is slightly more expensive at node 1 than node 11 for the new implementation, but
the reverse is true for the old implementation.

17

Node 1 Timings for Partition to (10,10)

0

2

4

6

8

10

12

14

16

New-100 Old-100 New-500 Old-500 New-1000

Daemon-Number of Groups (each with 1000 members)

A
v

e
ra

g
e

T
im

e
(s

e
c

o
n

d
s

)

Other

Prune

Figure 10: Partition Costs at the Representative of the First Equal Partition

Node 11 Timings for Partition to (10,10)

0

5

10

15

20

New-100 Old-100 New-500 Old-500 New-1000

Daemon-Number of Groups (each with 1000 members)

A
v

e
ra

g
e

T
im

e
(s

e
c

o
n

d
s

)

Other

Prune

Figure 11: Partition Costs at the Representative of the Second Equal Partition

18

Node 1 Timings for Merge from (10,10)

0

5

10

15

20

25

New-100 Old-100 New-500 Old-500 New-1000

Daemon-Number of Groups (each with 1000 members)

A
v

e
ra

g
e

T
im

e
(s

e
c

o
n

d
s

)

Other

Compute

Build State

Figure 12: Merge Costs at the Representative of the First Equal Partition

Node 11 Timings for Merge from (10,10)

0

5

10

15

20

25

30

New-100 Old-100 New-500 Old-500 New-1000

Daemon-Number of Groups (each with 1000 members)

A
v

e
ra

g
e

T
im

e
(s

e
c

o
n

d
s

)

Other

Compute

Build State

Figure 13: Merge Costs at the Representative of the Second Equal Partition

19

5.3.4 Merges from Two Equal Partitions

Experimental results for merging the above partitioning are shown in figures 12 and 13.
At node 1, the total times for the merge algorithm were 0.69s for 100 groups, 3.45s for
500 groups, and 6.91s for 1,000 groups with the new implementation; and 1.46s for 100
groups, and 22.44s for 500 groups with the old implementation. At node 11, the total times
for the merge algorithm were 0.68s for 100 groups, 3.44s for 500 groups, and 6.89s for
1,000 groups with the new implementation; and 1.63s for 100 groups, and 26.76s for 500
groups with the old implementation. As mentioned above, each group has 1,000 members.
Again, the old implementation’s computational cost is the dominating impression.

For the new implementation, the results are almost identical between node 1 and node 11,
the leaders of their respective partitions. The performance for the new implementation
shows the same general trends discussed earlier. It is worth noting that network transmis-
sion time dominates computation time, even on the hardware used, which is fairly slow by
today’s standards.

20

6 Related Work

One notable body of related work in process group membership algorithms for group com-
munication is Light-Weight Groups [3, 4]. The work described in [3] attempts to provide a
scalable membership service by dynamically mapping the membership protocol for several
light-weight groups (LWGs) onto the membership of an underlying heavy-weight group
(HWG). This allows a number of LWGs to conduct their membership protocols based on
the underlying membership and messaging services, ammortizing the cost of the network-
level membership. [4] introduces a version of this service that can operate in a partitionable
environment.

The LWG and HWG services map roughly onto Spread’s group membership and daemon
membership protocols, respectively. However, there are two significant differences. Firstly,
the LWG/HWG service is designed for the somewhat different semantics of Virtual Syn-
chrony – for a complete explanation of the difference between EVS and VS, see [8]. Sec-
ondly, LWGs are dynamically mapped onto their underlying HWGs – this mapping can be
changed for performance reasons based on various heuristics. Spread, on the other hand,
has a fixed mapping. However, Spread’s fixed mapping is designed based on the assump-
tion that the administrators who design the architecture of a Spread network and the pro-
grammers who choose the mapping from clients to their associated Spread daemons take
network and resource considerations into account. Thus, without any need for dynamically
changing the association between the two levels of the membership protocol, it is possible
to achieve a near-optimal mapping for a given environment. For this reason, however, it
may require a great deal of intelligent management to properly configure and maintain a
Spread network.

Moshe [5], a group membership service designed for wide area networks, seeks to specify
a general algorithm that is portable across different underlying failure detection services
and independent of the system using the membership data. Potentially, the view-oriented
membership data that is delivered will be used by a GCS as a lower layer in providing its
own services. The process-level membership provided by Moshe and its underlying failure
detection service maps fairly closely onto Spread’s daemon membership service. The pro-
cesses provided with membership views by Moshe are directly engaged as nodes in a GCS,
while Spread enables an additional level of hierarchy that enables it to potentially scale
to many more client processes. In addition, Spread’s tight coupling of failure detection,
membership algorithm, and group communication semantics allow for better performance
decisions to be made throughout the system.

Also relevant are a number of works that provide information about Spread’s implementa-
tion, semantics, and/or performance, notably including [8] and [9].

21

7 Conclusions

This project report described the key elements of the scalability of process group mem-
bership in the Spread toolkit, a Group Communication System. It conducted a careful ex-
amination of the role of a client-daemon architecture in enabling this scalability, and also
provided detailed explanations of several performance improvements to Spread’s process
group membership protocol. In addition, the semantics of the membership protocol and its
notification messages were examined in detail, including several enhancements performed
as part of this work.

Moderately comprehensive performance measurements of the scalability of both the orig-
inal and the enhanced process group membership protocols were conducted using the
Emulab[10] testbed. The discussion of these results emphasized that the enhanced pro-
tocol scales linearly with the number of group membership relationships, and minimizes
computation through careful application of shared knowledge.

Strong performance increases with large numbers of groups and members were shown
with respect to the previously-existing group membership algorithm and implementation.
In tests with 20 daemons and 500 groups, with 500,000 total members across all groups, the
group membership algorithm’s average total times to partition the set of daemons in half
and re-merge from this partitioning were decreased by at least 91% and 85%, respectively.
For partitioning of a single daemon and the corresponding re-merge, the average total times
were decreased 71% and 81%, respectively.

22

References

[1] Yair Amir. Replication Using Group Communication Over a Partitioned Network.
PhD thesis, Hebrew University of Jerusalem, 1995.

[2] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[3] Katherine Guo and Luis Rodrigues. Dynamic light-weight groups. In The 17th IEEE
International Conference on Distributed Computing Systems (ICDCS), pages 33–42,
1997.

[4] Katherine Guo and Luis Rodrigues. Partitionable light-weight groups. In The 20th
IEEE International Conference on Distributed Computing Systems (ICDCS), 2000.

[5] I. Keidar. Moshe: A group membership service for wans, 1999.

[6] Louise E. Moser, Yair Amir, P. Michael Melliar-Smith, and Deborah A. Agarwal. Ex-
tended virtual synchrony. In The 14th IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 56–65, 1994.

[7] William Pugh. Skip lists: A probabilistic alternative to balanced trees. In Workshop
on Algorithms and Data Structures, pages 437–449, 1989.

[8] John Schultz. Partionable virtual synchrony using extended virtual synchrony. Mas-
ter’s thesis, The Johns Hopkins University, 2000.

[9] Jonathan Stanton. Practical Wide-Area Group Communication. PhD thesis, The Johns
Hopkins University, 2002.

[10] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac New-
bold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental en-
vironment for distributed systems and networks. In Proc. of the Fifth Symposium on
Operating Systems Design and Implementation, pages 255–270, Boston, MA, Dec.
2002. USENIX Association.

23

