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Abstract

Overlay networks create virtual topologies on top of the existing networking

infrastructure and come as a middle layer between end-user applications and the basic

network services. The main reasons of using an intermediate level of communication

are the new service functionality and the improved performance offered by application

specific protocols that can be deployed in overlay networks. This thesis explores the

benefits offered by overlay networks and introduces new mechanisms that improve

performance and offer additional functionality to networking applications.

Multicast services are rarely used today, mainly due to scalability and secu-

rity concerns. An overlay architecture addresses these issues by moving the service

management and deployment above the network infrastructure. We present an ar-

chitecture for transparent overlay multicast and an optimal distributed flow control

for reliable multicast in overlay networks that scales with the number of participants

and groups.

Even though capacity grows exponentially over time, latency is difficult to

improve. We present an overlay approach that can substantially decrease the number

of delayed packets in wide area reliable communication and increase the delivery

ratio of best effort communication, leading to improved performance in time-sensitive

applications such as Voice over IP.
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Chapter 1

Introduction

The Internet provides a very successful set of network protocols that allow its global

deployment, reliability and standardization. With the unprcecedented growth of the Inter-

net, these protocols become difficult to change, and therefore it is very hard to incorporate

new network services at the network infrastructure level. Moreover, the scalability require-

ments of the Internet limit applications to use only end-to-end protocols, as application

state (e.g. session state) cannot be maintained in intermediate routers.

This thesis explores a practical overlay network approach that uses a set of application-

level routers on top of a physical network such as the Internet. This allows specific appli-

cations to use different protocols that can utilize more information about the participating

network resources. The benefits of this approach are:

• Providing new services that are not feasible to implement in the current networking

infrastructure by deploying application-specific overlays.

• Achieving better performance for existing services by using algorithms that trade

scalability with more information about network resources. As opposed to the Internet

protocols, our approach scales only to the size of an overlay network (thousands of

nodes), but for this size of network, it uses more knowledge to gain better performance.
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Any overlay network comes with additional costs: first, communication has to incure

data and management overhead since it adds an intermediate level between the application

and the network infrastructure. This price has to be paid at each intermediate node.

Second, the placement of overlay nodes is usually less than optimal as the administrator of

an overlay rarely has access to the core nodes of the network.

Our results point to the high potential of the overlay paradigm even while considering

the overhead associated with it. We realize this paradigm in an actual system named

Spines which, unlike other approaches, is general, runs in user space, and is able to include

multiple protocols in the same architecture. Spines was designed and implemented in order

to facilitate our research and experiment with the protocols presented in this thesis, and

was made publicly available to allow other researchers and practitioners to deploy their own

overlay network ideas.

1.1 Highlights and Contributions

An overlay network is a user-level topology built by selecting a subset of the nodes in

the underlying network and connecting them by virtual links. The overlay links are actually

unicast connections between the overlay nodes in the supporting infrastructure.

Unlike the Internet, overlay networks are small (up to thousands of nodes), expanding

only to the size of the application they serve. Additional information, that cannot be

maintained at the coarse granularity of the global Internet, can be propagated among the

participants of an overlay. New protocols that exploit this additional information can be

deployed in order to address specific requirements of various applications. Over the last few

years overlay networks emerged as a very powerful concept in extending the functionality

and performance provided by the Internet. This concept also allows easy experimentation

and deployment of far reaching ideas and protocols by layering multiple virtual topologies

on top of the existing network, without requiring changes of standards and without the risks

associated with experimentation on an operational network infrastructure. We develop an
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overlay network platform and we use it to pursue our research, focusing on two aspects of

networking communication: adding new service functionality, and improving performance

of the existing services.

We present the design of an overlay multicast protocol that scales with the number

of groups, senders and receivers in the system. In our model, any participant can be a

sender, receiver or both; any participant can join a different number of groups at the same

time, and can multicast messages to any number of groups, even to those that it is not a

member of. Since it runs within an overlay network, our multicast scheme does not depend

on changes in the network infrastructure. Moreover, in order to facilitate easy adaptation

of existing IP Multicast applications, we developed a transparent interface where calls using

the same parameters are used to join and leave groups, or to send and receive messages.

An even more complex service that we look at is providing end-to-end reliability for

messages sent over multicast groups, using reliable links between the nodes of the overlay.

Since the overlay is deployed over the Internet, where various links have different capacity

and available bandwidth, the overlay nodes can see more incoming traffic than the capacity

of their outgoing links. One of the main challenges of this environment is to provide an

adequate control feedback to the originating senders of multicast traffic, and to design a

distributed flow control mechanism that adjusts the sending rate of each participant in such

a way that the total throughput transfered in the system is maximized.

In contrast to existing window-based flow control schemes we avoid end-to-end per

sender or per group feedback by looking only at the state of the virtual links between par-

ticipating nodes. This produces control traffic proportional only to the number of overlay

network links and independent of the number of groups, senders or receivers. We opti-

mize the throughput sent in the network by applying a Cost-Benefit Framework [1] that

was proven to achieve near-optimal resource utilization. We show the effectiveness of the

resulting protocol through simulations and validate the simulations with live Internet ex-

periments.
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Additional functionality does not come at the expense of performance, because the

overlay networks work in an additional layer of topologies, not interfering with existing

protocols. Moreover, the fine grain control over the participants of an overlay gives us

the ability to improve performance even for the existing applications. We show that cou-

pling cheap processing and memory with the programmable platform provided by overlay

networks and paying a small price in throughput overhead, can considerably improve the

latency characteristics of network services.

Reliable point-to-point communication is usually achieved by applying a reliable

protocol, such as TCP, between the end nodes of a connection. We argue that a hop-

by-hop approach, where connections are broken into several reliable hops – multiple links

in an overlay network – considerably reduces the latency and jitter of communication.

We quantify the effects of the hop-by-hop reliability approach in simulation as well as in

practice using our overlay network system, Spines. The experimental results show that the

overhead associated with overlay network processing of packets at the application level is

not a significant factor compared with the considerable gain of the approach.

We took the latency improvements offered by the overlay networks to the more

demanding environment of Voice over IP, which requires fast, interactive communication.

The Internet provides best effort delivery, without any inherent quality of service guarantees.

Low latency is a key factor in supporting high quality interactive conversations, and as such

contemporary VoIP solutions use UDP to transfer data over the IP layer, despite being

subject to network loss and failures.

We describe and evaluate how using an overlay network approach can significantly

improve the quality of Voice over IP communication. Application level overlay routers

can understand the stringent requirements of VoIP and implement new algorithms that

mask the limitations of the underlying Internet. We describe two protocols that facilitate

localized recovery for lost packets and rapid rerouting in the event of network failures.

Our experimental results indicate that the two approaches can be combined to yield a
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quantitative improvement to voice communication quality.

The main contributions of this research are:

• A new architecture for constructing practical, transparent overlay networks

• A transparent overlay multicast protocol scalable with the number of groups and

participants.

• An optimal distributed flow control for reliable multicast and unicast in overlay net-

works.

• An overlay protocol for reducing latency and jitter of reliable communication while

maintaining fairness guarantees with external TCP traffic.

• A soft real-time protocol for improving quality of Voice over IP communication

• The Spines overlay network system that allows easy deployment and experimentation

of overlay protocols.

1.1.1 Thesis Organization

The rest of the thesis is organized as follows: The next section presents relevant work

in overlay networks, multicast, flow control reliability and Voice over IP. Chapter 2 describes

the overlay network framework, and introduces our overlay network platform, Spines. Chap-

ter 3 presents our solution for scalable and transparent multi-sender multi-group multicast,

and in Chapter 4 we present a global flow control for many-to-many reliable multicast. In

Chapter 5 we describe how existing applications using reliable communication can leverage

from overlay networks to improve packet latency and jitter. Chapter 6 addresses improving

the quality of Voice over IP communication using overlays. We summarize our contributions,

and conclude the thesis in Chapter 7 discussing future directions of networking research in

overlay networks.
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1.2 Related Work

One of the early uses of overlay networks in the Internet was EON (Experimental

OSI-based Network) [2], which proposed an overlay on top the IP network, that would al-

low experimentation with the OSI network layer. The scheme was only experimental and

did not lead to a practical deployment for new services or protocols. IP multicast [3],[4]

was proposed over ten years ago to extend the Internet service model from point-to-point

to point-to-multipoint data delivery. Despite the attractiveness of this model due to its

simplicity and efficiency, a number of crucial problems have impeded the global deployment

of IP multicast. In [5] and [6], the authors cite a number of problems that are inherent

in the IP multicast service model. These problems, including group management, lack of

access control, absence of a good inter-domain multicast routing protocol and distributed

multicast address allocation, have proved to be a significant barrier to wide-spread com-

mercial deployment of IP multicast. The Mbone [7] is a routing mechanism that creates an

overlay infrastructure over the global Internet and extends the use of IP multicast by cre-

ating virtual tunnels between the networks that support native IP multicast. As it is based

mainly on IP Multicast, the Mbone faced the same scalability and deployment problems,

and therefore today it is not widely used.

Multi Protocol Label Switching (MPLS) [8] has been recently proposed as a way to

improve the performance of underlying network. This is done by pre-allocating resources

across Internet paths (LSPs in MPLS parlance) and forwarding packets across these paths.

Our approach is network agnostic and therefore does not depend on MPLS, but it can

leverage any reduction in loss rate offered by MPLS. At the same time, MPLS will not

eliminate route and link failures or packet loss. Since it runs at a higher level, our overlay

network can continue to forward packets avoiding failed network paths.

Application-level overlay networks emerged mainly to provide new services to the

applications. Flexibility of routing and providing high network availability was one of the

first services looked into. The X-Bone [9] is a system that uses a graphical user interface
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for automatic configuration of IP-based overlay networks, while RON [10] is an overlay

network system that creates a fully connected graph between several nodes, monitors the

connectivity between them, and, in case of Internet route failures, re-directs packets through

alternate overlay nodes. Both X-Bone and RON are implemented at the IP level, and while

they can offer performance improvements through path selection, they do not develop link

or application-specific protocols and do not provide additional services to the applications.

In this respect, they are complementary to our work. I3 [11] proposes a global overlay

architecture where packets are sent to logical identifiers, and receivers use triggers to indicate

their interest in packets sent to an identifier, allowing service flexibility like multicast and

anycast. This thesis argues in favor of using multiple application specific overlays that can

be deployed in parallel, such that each overlay network expands only to the size of the

application it serves.

The idea of using localized recovery on intermediate links is not new. In 1976 the

International Committee for Telegraph and Telephony (CCITT) recommended X.25 as

a store-and-forward connection oriented protocol between end-nodes (DTE) and routers

(DCE). In [12], the authors give a detailed description of the X.25 protocol. However, since

the Internet was developed as a connectionless, best-effort network (which allows better

scalability and interoperability), it did not incorporate the X.25 specifications, and relied

on end-to-end protocols such as TCP to provide reliable connections.

TRAM [13] is a tree-based reliable multicast protocol that uses repair trees to localize

recoveries, and aggregates end-to-end acknowledgments at intermediate nodes. TRAM was

designed specifically for single-source multicast. If applied to multiple flows (unicast or

multicast), TRAM requires intermediate nodes to keep packet-based state for each end-

to-end session in order to provide end-to-end reliability and congestion control. SRM [14]

provides a form of localized recovery for reliable multicast by using randomized timeouts

for sending retransmission requests and the retransmissions themselves. SRM does not

guarantee recovery from the nearest node, as the closest one may set its timeout to be higher

than that of an upstream node. Its probabilistic algorithm allows for double retransmission
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requests and recovery messages to be sent. Yoid [15] is a set of protocols that allows

host-based content distribution using unicast tunnels and, where available, IP multicast.

Yoid has the option of using TCP as the link protocol on the overlay network, but does

not guarantee either end-to-end congestion control or end-to-end reliability. In addition

to these guarantees, the protocols described in this thesis use an out of order forwarding

mechanism that provides less burstiness at the network level, and lower packet latency and

jitter.

OverQoS [16] proposes an overlay link protocol that uses both retransmissions and

forward error correction (FEC) [17] to provide loss and throughput guarantees. OverQoS

depends on the existence of an external overlay system (the authors suggest RON as an

option) to provide path selection and overlay forwarding. In this respect, our system can use

OverQos as a plug-in module as an alternative to our real-time recovery protocol presented

in Section 6.2.1, probably with the necessary modifications that take into account the special

requirements of voice traffic.

Other overlay networks such as Overcast [18], Scattercast [19], HTMP [20] and End-

System Multicast (ESM) [21], aim to address the scalability limitations of IP Multicast.

The main target of HTMP and ESM are groups with relatively small number of partici-

pants such as the ones used for multimedia teleconferences. HTMP creates a tree shared

among all the group participants while ESM creates an overlay mesh, on top of which a

conventional routing algorithm is run to generate per-source trees which are then used for

multicast delivery. Our solution scales to very large number of groups, each with thousands

of participants. It does so, by utilizing a shared group of infrastructure nodes that form the

core of the overlay where end-user nodes connect to.

In this respect our approach shares the same system architecture with Scattercast

and Overcast. The main design goal for Overcast is to build bandwidth-optimized multicast

trees for the distribution of high-bandwidth, high-volume contents such as high quality video

and software distributions. Overcast uses caching at the edges to serve content to “late”
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receivers and recover from losses. In order to provide reliable delivery, Overcast nodes are

connected by TCP connections and nodes request retransmissions for content lost during

periods where the tree is reconstructed after node crashes. Scattercast is also built for

the purpose of delivering content to large receiver groups. Scattercast builds a mesh over

which a per-source tree is created by running a Distance Vector-like routing protocol. Both

Scattercast and Overcast are customized to best serve the needs of their specific applications,

exposing a high level interface dealing with specific application level objects. In contrast,

our solution provides the same socket interface that developers are accustomed to.

Many different approaches exist in the flow control literature, including TCP-like

window based protocols [22, 23], one or two bit feedback schemes [24, 25, 26], and opti-

mization based flow control [27, 28, 29, 30, 31, 32]. The economic framework for flow and

congestion control used in many optimization based protocols [28, 30] has some similar-

ity with the cost-benefit model used in our work. In both, the links have some cost and

packets that are sent must have sufficient benefit to pay the cost of the network resources

they require. A significant difference is that our cost-benefit model takes an algorithmic

approach using a simple formula to decide when a packet can be sent, and is not based

on economic theory. Unlike many economic models our cost-benefit model does not try to

reach an equilibrium state based on the rationality of the participants, or influence non-

cooperative processes to behave, but rather optimizes the throughput under the assumption

of minimally cooperative (non-rational or even malicious) senders.

Research on protocols to support group communication across wide area networks

such as the Internet has begun to expand. Group communication protocols designed for

such wide area networks have been proposed [33, 34, 35, 36] which continue to provide the

traditional strong semantic properties such as reliability, ordering, and membership. These

systems predominantly extend a flow control model previously used in local area networks,

such as the Totem Ring protocol [35], or adapt a window-based algorithm to a multi-

sender group [37, 36]. Our work presents a flow control algorithm designed explicitly for

wide-area overlay networks which is motivated more by networking protocols and resource

9



optimization research, than by existing group communication systems.

Work on flow control for multicast sessions has occurred mainly in the context of

the IP-Multicast model. Much of this work has focused on the congestion control problem,

avoiding extra packet loss and providing fairness, and has left flow control up to higher level

protocols (such as reliability, ordering, or application level services). Research has explored

the difficult problems associated with multicast traffic such as defining fairness [38, 39]

and determining appropriate metrics for evaluation of multicast traffic [40]. A number of

congestion control protocols have been developed with the goal of providing some level of

fairness with TCP traffic, while taking advantage of the unique characteristics of multicast

traffic. These include window based protocols [41, 42], rate based protocols [43, 44], multi-

layer based protocols [38], and protocols that use local recovery to optimize congestion

control [45]. While IP-Multicast focuses on a single sender, single group approach that

scales to many receivers and many intermediate routers, our approach addresses a multi-

group multi-sender problem that scales with the number of groups, senders and receivers,

but is defined in an overlay network setting rather than on every router in the Internet.
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Chapter 2

Spines, An Overlay Network

Platform

In this chapter we present the overlay network paradigm and introduce an overlay

network system, Spines [46], that we developed to allow experimentation of our protocols,

and to be a useful platform for other researchers and practitioners in the field.

2.1 Overlay networks

An overlay network constructs a user level graph on top of an existing networking

infrastructure such as the Internet, using only a subset of the available network links and

nodes, as seen in Figure 2.1. An overlay link is a virtual edge in this graph and may consist

of many actual links in the underlying network. Overlay nodes act as user-level routers,

forwarding packets to the next overlay link toward the destination. At the physical level,

packets traveling along a virtual edge between two overlay nodes follow the actual physical

links that form that edge.

There can be many overlay networks running independently at the same time on top

of a single networking infrastructure, each of them defining a specific virtual topology. An
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Physical link used by the overlay network

Virtual overlay network link

Figure 2.1: An overlay network example

overlay network may or may not overlap with other overlay topologies, such that a physical

node in the underlying physical infrastructure can be part of more than one virtual overlay

topology.

The overlay handles traffic for multiple connections in various directions, such that

every connection can have a limited number of intermediate overlay hops. Our experiments

presented in Section 5.2, as well as previous work [10] show that increasing the number of

nodes in an overlay follows a diminishing return function. At some early point, the benefit

of adding additional nodes to an existing overlay is small, and is overcome by the overhead

associated with a larger overlay. Therefore we believe that overlays should be relatively

small (tens to hundreds of nodes) with direct link latencies in the order of milliseconds or

tens of milliseconds, thus being able to cover most of achievable distances on our planet.

Overlay networks have two main drawbacks. First, the overlay routers incur some

overhead due to the the management of the overlay and also due to processing of each packet,

which requires delivering the packet to the application level, processing it, and forwarding

it to the next overlay router. Second, the placement of overlay routers in the topology of
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Application

Spines daemon

Figure 2.2: A Spines overlay

the physical network is often far from optimal, because the creator of the overlay network

rarely has control over the physical network (usually the Internet), or even the knowledge

about its actual topology. Therefore, while overlay networks can sometimes find alternate

paths that improve end-to-end latency, many times the multi-hop paths provided by the

overlay networks have higher latency than the direct point to point Internet connections.

However, overlays are small compared to the global underlying network, and there-

fore protocols that exploit the relatively limited size and scope of overlays not only can

overcome their drawbacks, but can actually offer better performance to end-user applica-

tions. Overlay networks allow full control over the protocols running between participating

nodes. While the Internet provides generic communication solutions that are not tailored

to a specific application, an overlay network usually has a limited scope and therefore can

deploy application-aware protocols.

2.2 Spines

Spines [46] is an open source overlay network system that allows easy deployment and

testing of overlay protocols. It runs in the user space, does not need root access or kernel

modifications, and encapsulates packets on top of UDP. Spines offers a two-level hierarchy
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in which applications (clients) connect to the closest overlay node, and then the node is

responsible for forwarding and delivering data to the final destination through the overlay

network. The benefit of this hierarchy is that it limits the size of the overlay network, thus

reducing the amount of control traffic exchanged. An example of a Spines overlay network

is shown in Figure 2.2. Overlay nodes act both as servers (accepting connections from

various applications) and as routers (forwarding packets towards clients connected to other

overlay nodes). Applications may reside either locally with the Spines nodes or on machines

different than the overlay node they connect to.

In order to connect to a Spines overlay node, applications use a library that enables

both UDP and TCP communication between the application and the selected Spines node.

The API offered by the Spines library closely resembles the Unix socket interface both

for unicast and multicast communication, and therefore it is easy to port any application

to use Spines. As an example, we describe in Section 6.4 the necessary steps to adapt

current Voice over IP applications to use Spines. Each client is uniquely identified by the

IP address of the overlay node it connects to, and by an ID given at that node, which

we call Virtual Port. Spines provides both reliable and best-effort communication between

end applications, using the applications’ node IP address and the Virtual Port resembling

TCP and UDP communication. Similarly to the socket() call, a spines socket() function

returns a descriptor that can be used for sending and receiving data. A spines sendto() call

resembles the regular sendto(), and a spines recvfrom() resembles the regular recvfrom(),

with identical parameters. Virtual Ports are only defined in the context of an overlay node,

and have no relation to the actual operating system ports. Spines also offesr multicast

capabilities using its API that resembles the IP Multicast mechanism.

2.2.1 The Spines software architecture

Spines runs a software daemon on each of the overlay nodes. The Spines daemon

communicates with clients through a Session layer as seen in Figure 2.3. There is one Session
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Figure 2.3: Spines software architecture

for each client connection, and if the client requests a reliable end-to-end connection with

some other client, the daemon will instantiate an end-to-end Reliable Session module that

will manage the end-to-end reliability, FIFO ordering, and end-to-end congestion and flow

control between the two end applications. By default, regardless of the type of overlay links

used between overlay nodes, the communication between clients and their overlay daemon is

done through TCP reliable channels. However, clients can also request best effort commu-

nication with their daemon. In this case data packets (spines sendto(), spines recvfrom())

are sent over UDP, while the the control communication (spines bind(), spines setsockopt(),

etc.) is done through reliable TCP channels. The reliable channels between daemons and

clients can buffer packets as needed, and in case of buffer overflow they can either drop

outstanding packets, block the sending client, or disconnect the client, depending on the

semantics requested. Note that Spines does provide end-to-end flow control between clients

requesting reliable end-to-end communication, slowing down the sending applications to the
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receiving speed of the destinations.

Spines nodes connect to each other using virtual links forming the overlay network.

Once a message is sent on a Spines overlay network it will be forwarded on the overlay links

until it reaches the destination. Spines runs a number of protocols on each virtual link,

including a best effort service, a TCP-fair reliable protocol [47], and a real time recovery

protocol. Thus, each overlay link consists of four logical components, as seen in Figure 2.3.

• An Unreliable Data Link sends and receives data packets with no regard to ordering

and reliability. It is used for best effort, fast communication as it has no buffering

other what is provided by the operating system. The unreliable protocol in Spines

only provides overlay routing for data packets.

• A Reliable Data Link provides overlay link reliability through a selective repeat proto-

col and a TCP-fair congestion control, but does not provide FIFO ordering. Packets

are buffered before being sent on a Reliable Data Link only in case the available

link capacity (or the congestion control) limits the outgoing bandwidth to a lower

value than the incoming throughput. The explicit congestion notification mentioned

in Section 5.1.2 is based on the size of these buffers. The Reliable Data Link protocol

provides a TCP-fair congestion control. This allows the deployment of Spines overlays

in the Internet, giving us fairness with external TCP traffic.

• A Real-time Data Link behaves mostly like the Unreliable Data Link, but attempts to

recover lost packets if the recovery can be done within a certain time constraint. This

is useful for improving the packet delivery ratio for real-time applications that have

strong requirements for communication delay. Retransmissions are attempted only

once, and the total number of retransmissions is regulated through a token-bucket

mechanism such that congested links will not suffer from an unlimited increase in

traffic due to retransmissions.

• A Control Link is used for sending and receiving control information between neigh-
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boring daemons, and provides both reliable and unreliable communication between

various components of the overlay nodes. In case reliable control packets are buffered,

the unreliable control packets bypass the buffer and are sent directly on the network

for fast response time.

The Overlay Node is responsible for maintaining connections to its neighbors and

forwarding data packets either on the overlay links or to its own clients. A Data Forwarder

parses the header of each message and sends it on the next link or to the daemon-client

interface. The Data Forwarder allows any combination of reliable and best effort Session,

and real-time, reliable or unreliable links in order to experiment with different forwarding

mechanisms. The type of Session and Data Link requested are stamped in the header of

each message. For example, one can create a reliable end-to-end connection using either

unreliable, real-time, or reliable links.

Neighboring overlay nodes ping each other periodically using unreliable hello packets.

The Spines Hello Protocol is responsible for creating, destroying and monitoring overlay

links between neighbor daemons, and also for measuring the link latencies. Round trip time

measurements are smoothed by computing a 5%-95% decaying average. Spines detects

network failures through the hello protocol, and adjusts its routing accordingly in under 10

seconds.

Spines adds a link specific sequence number on every data packet sent between two

neighboring overlay nodes. The receiving overlay node uses this sequence number to esti-

mate link loss rate. The loss rate is computed by averaging the number of packets received

between two subsequent loss events over the last L loss events (in our implementation

L = 50). This way, the loss estimate converges relatively fast when loss rate increases (less

number of packets will be received between two loss events), but is conservative in using

opportunistic overlay links that exhibit temporary low loss conditions.

Based on link loss, latency and hop count, a cost for each link is computed using

various metrics. Spines currently allows optimizing number of hops, latency, loss rate, or
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a metric that we call expected latency, that we will discuss in Chapter 6. Link costs are

propagated through the network by an incremental Link State mechanism that uses the

reliable control links created among neighboring Spines nodes. A State Flood protocol is

responsible for aggregating cost updates and disseminating them reliably to all the overlay

nodes, only when the state of the links change, or periodically at large intervals for garbage

collection. The same State Flood protocol is also responsible for propagating Group State

membership information, containing the groups that each node intends to receive messages

from. The link state protocol provides complete information about the existing overlay

links, from which a Routing module chooses the neighbor providing the shortest path to

each destination. All the routing information is maintained in dynamic hash data-structures

that allows fast access on packet routing.

2.2.2 Spines overhead

In addition to the IP and UDP headers, Spines adds its own headers for routing and

reliability. Also, for reliable connections Spines sends acknowledgments for every packet at

the level of each link for hop reliability and at least four acknowledgments per end-to-end

window for end-to-end reliability and congestion control. When possible, acknowledgments

are piggybacked with data packets.

The control traffic required for maintaining the overlay network is small compared

to the overall data traffic, consisting in our implementation of periodical hello messages and

small link updates. One 32 byte hello message is sent every second by each of the two end-

nodes of a direct link. A single link update is propagated to the other nodes in the overlay

only in case of a network change. On the initial state transfer, when a new node is brought

up, as well as in the case of multiple network events that happen simultaneously, multiple

link updates are aggregated, so that a regular Ethernet packet can carry between 60 and 90

distinct updates, depending on the sparsity of the network. In the current implementation,

Spines scales to up to several hundred overlay nodes, and up to one thousand clients per
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node.

When compared with a standard TCP connection running alone on a network link

with capacity ranging from 500 Kbps to 100 Mbps, the Spines link protocol achieves about

3.5% less data throughput, and the end-to-end connection that uses both levels of reliability

and congestion control (on the hop and end-to-end) shows an overhead of at most 5.7%.

The best effort protocol, as well as the real-time protocol in Spines have an overhead of

about 2.3%.
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Chapter 3

Scalable Multi-group, Multi-sender

Overlay Multicast

We use the overlay paradigm to provide a transparent multicast service suitable for

applications that use multiple senders and receivers, and multiple groups at the same time.

This chapter presents the design of the multicast protocol, and its implementation in Spines.

This chapter is based on joint work with Andreas Terzis.

Multicast communication allows sending data packets to multiple recipients at the

same time. Obviously, this can be achieved by opening multiple unicast connections in

parallel (one for each recipient), but this approach will send multiple duplicate packets

on network links shared by multiple source-destination paths. The goal of an efficient

multicast protocol is to send packets only once on the shared links, and duplicate them at

the points where their network paths diverge. The ideal result is a routing tree (multicast

tree) that spans from the source to all of the recipients joining the multicast group, using

the underlying network topology, such that a packet is not sent more than once on any

network link. However, this usually is at odds with the overhead of managing the multicast

routing state when users join and leave groups, and also when parts of the network become

disconnected or re-connected.
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IP Multicast [4] came as a solution for routing multicast traffic within the IP net-

work. It requires network routers to constantly exchange information about the multicast

groups they handle, and the routing information associated with it. Since IP Multicast is a

global protocol, implemented as part of the Internet, the name space of the groups is also

global, such that a multicast group cannot be used at the same time by two independent

applications around the world, unless they want to receive each other’s packets. Specifically,

a multicast group is defined as an IP address within a specific range of class D addresses.

An IP address in the Internet usually defines a resource (a computer, a router, etc.), in

general limited in number by the total of hardware participants in the network. In contrast,

multicast groups are application specific, so virtually an infinite number of groups should

be able to coexist in the network at the same time, independently. Obviously, this creates

scalability, security and synchronization problems in deployment. As a consequence, IP

Multicast is not widely used today, even though was introduced more than a decade ago.

Application-level multicast uses software routers running on computers that create

multicast trees between them in an overlay network. Since the overlay links do not always

match the underlying topology, application-level multicast is not as efficient as IP Multicast,

many times sending duplicate packets on the same physical links. However, it has all off

the benefits of the overlay architecture it uses, allowing application-specific protocols and

ease of deployment. Moreover, the group name-space of application-level multicast is only

defined within the overlay network, and does not need to scale to the entire world.

Our goal is to design a system capable of providing efficient application level multi-

cast, that scales with the number of groups and with the number of participants - senders

and receivers. Our approach allows any participant to join a large number of groups si-

multaneously and to send packets at any time to any group. Moreover, the approach is

highly transparent, such that any application that uses IP Multicast can be easily modified

to use our system. The protocols can handle network partitions, crashes, merges, or any

combination of these events.
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3.1 Overlay multicast

We developed our multicast protocols in the context of our overlay network platform,

Spines, thus having the benefit of the less general, application-level unicast routing and of

the daemon-client architecture as a baseline.

We define a multicast group as a class D multicast address, exactly as IP Multicast.

Note that even though they have similar naming scehme with IP Multicast, the overlay

groups only extend to the scope of the overlay network, and are independent of other

overlays. If an application intends to join a group, it informs the overlay node that it is

connected to, and the server will pass to the application the messages sent to that group.

Leaving a group follows a similar procedure. In order to multicast a message to a group, an

application simply sends the message (through its overlay node) to the multicast address

representing the group. The overlay network handles the routing of the multicast message

according to the current membership of the group to which the message is sent. Applications

can join, leave, send and receive messages to and from multicast groups at any time. An

application can join multiple groups, thus it can be member of more than one group at the

same time. In order to send messages to a group, it is not necessary that the application

join that group.

3.1.1 Group membership

Every overlay node knows the groups to which each of its own applications belong.

However, a server does not know the membership of individual applications connected to

other nodes, but only the membership of other nodes in the overlay network. At the overlay

level a node is considered member of a group if it has at least one application joining that

group.

When the first application joins a group locally, the node issues a join message that

propagates to all other nodes in the overlay network. Subsequent application joins to the

same group will not generate any new messages in the overlay, as the server is already a
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member of that group. When the last local application member of a group leaves that

multicast group, the server issues a leave message that propagates to all the other nodes.

Node level joins and leaves are sent through the same State Flood mechanism used

by the Link State protocol, as described in Section 2.2.1. Group updates are ordered

per sender node and flooded using reliable channels between neighbor nodes, only when

a node membership occurs. Using reliable channels allows us to send only incremental

updates, so if nothing changes no joins and leaves are sent. The reliable channels used for

control information like joins and leaves are separate from the data channels, so the control

information is not queued with the data messages, therefore propagating fast.

Node membership is maintained in a collection of (node id, group id) tuples for every

group that a node (not application) belongs. Therefore, the size of our data structures grows

linearly with the number of node members in every group. In our experiments, we were

able to manage a number of node members in the order of one million, on regular PC

computers. Note that the number of applications using an overlay and joining groups can

be much higher than the number of nodes in the overlay, as each node can handle up to

several hundreds of applications connected locally.

3.1.2 Routing

The multicast routing in an environment with multiple senders, receivers and groups

should answer the following question: If a node receives a packet originated from a particular

sender and sent to a specific group, what are the neighbors (if any) to which the node

should forward the message. Distributed deterministic decisions should be taken, as multiple

paths or multicast trees from the same sender to the designated group may co-exist in the

overlay. The answer depends on the membership of the specific group the packet was sent

to, the originator of the packet, and on the current overlay topology. As packets are not

disseminated everywhere in the network, but only to the nodes that joined the group, the

packet should be forwarded only on downstream links that have nodes joining that group.
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Also, depending on the location of the sender in the network, a different multicast tree may

be used, such that the cost of propagating the message can be optimized. Computing the

routing for each packet can be prohibitively expensive, while pre-computing and storing all

the combinations of (sender, multicast address) consumes a large amount of memory for

pairs that may never be used, and requires extensive computation overhead in case of a

join, leave, or topology change.

We use an all pairs shortest path algorithm that computes the shortest path from

every node to all the other nodes, only when a network topology change occurs, and not

when an application (or node) joins or leaves a group. Regardless of the specific groups

in the system, this gives us one complete multicast tree from each source to all the other

nodes in the network, by combining all the shortest paths originating from a node to other

nodes in a tree rooted at that node. For an overlay network with n nodes and m links, The

complexity of the all-pairs shortest path algorithm we use is O(n3). This can be optimized

to recompute the routing in the order O(n2) when a new link is added, or when the cost of a

link goes down, and O(n·m+n2 ·log(n)) when a link is removed, or a link cost increases [48].

Per sender, per group routing is achieved by pruning the complete multicast trees

for each sender and group individually, such that a packet is not sent on links that do not

have downstream destinations. Pruning the tree at an intermediate node requires iterating

through the list of members of the group the message is addressed to. For each node member

of the group, we apply the all-pairs shortest path routing as unicast from the originator of

the message to that destination, while considering downstream links only once. Obviously,

this operation is expensive, and cannot be performed for each message, and on the other

hand, we want to avoid large computations per membership change. We only compute and

store the routing information for a specific pair (sender, multicast group) when the first

message that matches that pair arrives. Subsequent packets from the same sender to the

same group will be routed directly using the previously stored information. The stored

routing state relevant to a group is discarded (and re-computed again, as above, when new

messages arrive) any time that group experiences a membership change.

24



A

B

ED

C

GF

Figure 3.1: Membership topology

 0

 10000

 20000

 30000

 40000

 50000

 60000

 10000  30000  50000  70000  90000  110000  130000  150000

T
im

e 
(m

se
c)

Number of groups per node

Join
Leave

Figure 3.2: Membership propagation delay

3.2 Experimental results

We measured the time it takes to perform multiple join or leave operations in parallel

on multiple computers, and to propagate the routing information about the group member-

ship in Spines. This is determined by the time required to process the membership updates

on each computer, and by the time needed to propagate these updates through the reliable

flooding mechanism, essentially the diameter of the network. In this experiment we focused

on the processing and synchronization overhead. We deployed a network consisting of 7

computers, all running Linux and having an Intel Pentium IV 2.8Ghz processor, and 1GB

memory. The nodes were set up in an overlay topology as in Figure 3.1, with local area

links between the nodes.

At each node, an identical application sends messages to two groups, say group J

and L (these are actually two IP multicast addresses), every 20 milliseconds, using Spines.

The messages contain the group address they are sent to, and the IP address of the sending

application. A different application (joiner) at each node joins a number of groups, then joins

group J and waits until it receives at least one message from each of the sending applications.

This ensures that the entire membership information (including the last group J ) has been

propagated to all the other nodes. Then all the joiner applications leave all the groups
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they have previously joined, and finally, they join group L and wait for a message from

each node. The time is recorded both after the join and leave information is propagated.

Figure 3.2 shows the time required for join and leave operations, as the number of groups

increase. We notice that joins and leaves take almost the same amount of time, and that

the graphs follow a close to linear evolution with the number of groups, which means that

a single join or leave operation does not depend on the number of groups already in the

system. For example, for 150000 groups per application, it takes about 50 microseconds

to join a group, and about 45 microseconds to leave.The computers running Spines were

using 100% CPU during the experiments, showing that the bottleneck was the processing

of the local data structures. This shows that a single Spines overlay network can handle a

relatively large number of groups.
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Chapter 4

Global Flow Control for

Many-to-many Reliable Multicast

in Overlays

This chapter presents a flow control strategy for multi-group multi-sender reliable

multicast and unicast in overlay networks, based on competitive analysis. Our goal is to

maximize the total throughput achieved by all senders in overlay networks where many

participants reliably multicast messages to a large number of groups. This chapter is based

on joint work with Baruch Awerbuch and Jonathan Stanton.

Our framework assigns costs to network resources, and benefits to achieving user

goals such as multicasting a message to a group or receiving a message from a group.

Intuitively, the cost of a network resource, such as buffers in routers, should go up as the

resource is depleted. When the resource is not utilized at all its cost should be zero, and

when the resource is fully utilized its cost should be prohibitively expensive. Finding the

best cost function is an open question; however, it has been shown theoretically [1] that using

a cost function that increases exponentially with the resource’s utilization is competitive

with the optimal off-line algorithm. Competitive ratio is defined as the maximum, over all
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possible scenarios, of the ratio between the benefit achieved by the optimal offline algorithm

and the benefit achieved by the online algorithm.

Our online algorithm allows the use of resources if the benefit attached to that use

is greater than the total cost of allowing the use. The choice of benefit function enables us

to optimize for various goals. By adjusting the benefit function, performance issues such as

throughput and fairness can be taken into account when making flow control decisions. For

example, the benefit can be the number of packets sent (sending throughput), the number

of packets received by all receivers (receiving throughput), or the average latency given

some throughput constraints. In this chapter we use only the sending throughput benefit

function, seeking to optimize the total sending throughput of all the participants in the

network.

Reliability is provided both on each link of the overlay network, and end to end

between the multicast members through a membership service. In our approach, each

overlay link provides local retransmissions for reliability and uses a standard congestion

control protocol that adapts the available bandwidth to the network congestion. This

results in a dynamic capacity being available to our flow control framework on every overlay

network link. All the traffic generated by our system on a link is seen as one TCP flow on

that link, regardless of the number of senders or receivers. This provides a very conservative

level of fairness between our multicast traffic and competing TCP flows.

The global flow control problem deals with managing the available bandwidth of

the overlay links and the buffers in the overlay nodes. One may also view this problem as

congestion control for end-to-end overlay paths. The reason we define it as flow control is

that at the physical network level, congestion control is achieved by TCP that runs between

overlay nodes, while managing the buffers in the overlay routers is seen as an application

level flow control task.

Our framework requires the sender to be able to assign cost to a packet based on the

aggregate cost of the links on which it travels. We develop the framework in the context of
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overlay networks, where the number of network nodes is relatively small compared to the

global Internet, while the number of senders, receivers and groups can be very large. For

such systems, assigning the aggregate link cost is relatively cheap because dissemination tree

information can be available at the sender. Also, as overlay network routers are flexible, it

is easy to implement our protocol in the overlay nodes.

4.1 Background

The network model used is an overlay graph with nodes and overlay links. Based

on the network topology, each overlay node chooses a tree from this graph, in which it will

multicast messages. This tree is rooted at the daemon node and may differ from other

daemons’ trees. In order to localize recovery for lost messages, we use the standard TCP

protocol on each of the overlay overlay links. In Chapter 5 we show how using reliable

overlay links can improve performance of end-to-end communication. The choice of TCP

gives us a clean baseline to evaluate the behavior of our Cost-Benefit framework without

side effects introduced by a different protocol. However, any other point-to-point reliable

protocol could be used instead of TCP.

The overlay nodes provide multicast services to client applications, and each node

can have many clients connected to it. Each client may join an arbitrary number of groups,

and may send multicast messages to any number of groups, including ones it has not joined.

Clients connect to any daemon (preferably the closest one) and that daemon handles the

forwarding of their traffic and provides all the required semantics, including reliability and

ordering.

The entire protocol described in this chapter is implemented only at the daemon

level and is completely transparent to the multicasting clients. What the clients see is just

a TCP connection to an overlay node, and they send their messages via a blocking or non-

blocking socket. It is the responsibility of our flow control to regulate the acceptance rate

of the client-daemon connection.
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In a multi-group multiple sender system, each sender may have a different rate at

which it can reach an entire receiver group, and different senders may reach that group

over different multicast trees. Therefore, the bottleneck link for one sender may not be

the bottleneck for other senders. The obvious goal is to allow each sender to achieve their

highest sending rate to the group, rather than limiting them by what other senders can

send to that group. To achieve this, rate regulation must occur on a per-sender per group

basis rather than as a single flow control limit for the entire group or system. The result is

a flow control that provides fine granularity of control (per-sender, per-group).

4.2 Global flow control for wide area overlay networks

The algorithmic foundation for our work can be summarized as follows: We price

links based on their “opportunity cost”, which increases exponentially with link utilization.

We compare different connections based on the total opportunity cost of the links they use,

and slow down connections with large costs, by delaying their packets at the entry point.

4.2.1 Algorithmic foundation

Whether a message is accepted or not into the system by a daemon is an online

decision problem. At the time of acceptance it is not known how much data the sending

client (or the other clients) will be sending in the future, nor at what specific times in the

future.

The general problem with online allocation of resources is that it is impossible to op-

timally make irreversible decisions without knowing the future nor the correlations between

past and future. Thus, our goal is to design a “competitive” algorithm whose total accrued

benefit is comparable to that achieved by the optimal offline algorithm, on all scenarios (i.e.

input sequences). The maximum possible performance degradation of an online algorithm
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(as compared with the offline) is called the “competitive ratio”. Specifically,

ρ = max
x

Boffline(x)

Bonline(x)
(4.1)

where x is the input sequence, Bonline(x) is the benefit of the online algorithm, and

Boffline(x) is the benefit of optimal offline algorithm on sequence x.

Our goal is to design an algorithm with a small competitive ratio ρ; such an algorithm

is very robust in the sense that its performance is not based on unjustified assumptions about

probability distributions or specific correlation between past and future.

Theoretical background for the cost-benefit framework: Our framework is

based on the theoretical result in [1]. The framework contains the following components:

• User benefit function is defined, representing how much benefit a given user extracts

out of their ability to gain resources, e.g., ability to communicate at a certain rate.

• Resource opportunity cost is defined based on the utilization of the resource. The cost

of a completely unused resource is equal to the lowest possible connection benefit, and

the cost of a fully used resource is equal to the maximum connection benefit.

• A connection is admitted into the network if the opportunity cost of resources it wishes

to consume is lower than its benefit.

• Flow control is accomplished, conceptually, by dividing the traffic stream into packets

and applying the above admission control framework for each packet.

Model of the resource – Cost function: The basic framework revolves around

defining, for each resource, the current opportunity cost, which is, intuitively, the benefit

that may be lost by higher-benefit connections as a result of consumption of the above

resource by lower-benefit connections.

Since the goal is to maximize the total benefit, it is “wasteful” to commit resources

to applications (connections) that are not “desperate” for that resource, i.e., not enjoying
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the maximal possible benefit from obtaining this resource. On the other hand, it is equally

dangerous to gamble that each resource can be used with maximal benefit gained without

knowing the sequence of requests ahead of time.

For the purpose of developing the reader’s intuition, it is useful to consider a some-

what restrictive setting where the resources are either assigned forever, or rented out for

a specific time. For a given resource l, (e.g., bandwidth of a given link l), denote by u l

the normalized utilization of the resource, i.e., ul = 1 means the resource is fully utilized

and ul = 0 means that the resource is not utilized at all. Also, let α be the minimum

benefit value of a unit of a resource used by a connection and β be the maximum value.

Let γ = β/α. In our framework, the opportunity cost of a unit of resource is defined as:

C(ul) = γul (4.2)

As we will describe later, in our approach a unit of resource is a packet slot in the link

buffers. Such an exponential cost function leads to a strategy where each 1/ log2 γ of the

fraction of the utilized resource necessitates doubling the price.

For a path or a multicast tree consisting of multiple links, the opportunity cost of

the path is the sum of opportunity costs of all the links which make up the path.

Model of the user – Benefit function: This is part of the user specifications, and

is not part of our algorithms. Each user (connection) associates a certain “benefit function”

f(R) with its rate R. The simplest function f(R) = R means that we are maximizing

network throughput; a linear function means we are maximizing weighted throughput.

More interestingly, a concave function (second derivative negative, e.g.
√

R) means

that there is a curve of diminishing return associated with rate allocation for this user. For

example, imagine that a traffic stream is encoded in a layered manner, and it consists of a

number of streams, e.g., first 2KB is voice, next 10KB is black and white video, and last

50KB is color for the video stream. In this case, a concave benefit function may allocate

$10 for the voice part, additional $5 for video, and additional $2 for color.

Notice that concave functions enable one to implement some level of fairness: given
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50KB of bandwidth, it is most “beneficial” to provide voice component for 25 connections,

rather than voice + black and white video + color for a single connection since $10 x 25 =

$250 is the total benefit in the former case, and $10 + $5 + $2 = $17 is the total benefit in

the latter case.

4.2.2 An online auction model

Let us focus on the following simple case of auctioning off an arbitrary resource, say

link capacity, in an online setting where the bids arrive sequentially and un-predictably.

The input to the problem is a sequence of bids with benefits B1, B2, Bk that are

positive numbers in the range from α to β, generated online at times t1, t2, tk; each bid

requests fraction ri of the total resource.

The output is a sequence of decisions Di made online, i.e. at times t1, t2, tk, so that

Di = 1 if the bid is accepted and Di = 0 otherwise. The total benefit of the auction is

∑

Bi · ri · Di and the inventory restriction is that
∑

Di · ri ≤ C where C is the resource

capacity.

The question is what is the optimal online strategy for decision making without

knowing the future bids, given that decisions to accept “low” bids cannot be reversed after

knowing about future higher bids. On the other hand, it is dangerous to wait for high bids

since they may never arrive.

This problem of designing a competitive online algorithm for allocating link band-

width was shown in [1] to have a lower bound of Ω(log γ) on the competitive ratio ρ, where

γ is the ratio γ = β/α between maximal and minimal benefit. It is achievable if 1/ log2 γ of

the fraction of the utilized resource necessitates doubling the price of the resource. Specif-

ically, at time ti, the cost of the resource is defined as Ci = C(ul) = γul , and the decision

to accept Di = 1 takes place if and only if Ci < Bi.

Let P be the highest bid accepted by an optimal offline algorithm, but rejected by

our algorithm. Since 1/ log2 γ of the fraction of the utilized resource necessitates doubling
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the price, then in order to reject a bid with benefit P , our algorithm should have set the

resource cost higher than P , which means that at least 1/ log2 γ fraction of the utilized

capacity was already sold for at least half of P . So the benefit Bonline achieved by our

online algorithm is at least

Bonline > P/(2 · log2 γ) (4.3)

The total “lost” benefit, i.e. benefit of all the bids accepted by the offline algorithm and

rejected by our algorithm, is at most P , achievable if the entire resource was sold at maxi-

mum price P by the offline algorithm. If we define Boffline as the total benefit achieved by

the offline algorithm, then:

Boffline − Bonline < P (4.4)

If we plug P from Equation 4.4 into Equation 4.3 we get Bonline > (Boffline −Bonline)/(2 ·

log2 γ) which follows to a competitive ratio ρ of:

ρ =
Boffline

Bonline
< 1 + 2 · log2 γ (4.5)

This shows that our strategy of assigning an exponential cost to the resource leads to a

competitive ratio that is within a logarithmic factor of γ.

4.2.3 Adapting the model to practice

The above theory section shows how bandwidth can be rationed with a Cost-Benefit

framework leading to a near-optimal (competitive) throughput in the case of managing

permanent connections in circuit-switched environments.

The core theory has several assumptions which do not exactly match the reality in

overlay networks. We will examine these assumptions and adapt the ideas of the Cost-

Benefit framework to work in overlay networks.

• The framework applies to permanent connections in circuit-switched environment,

rather than to handling individual packets in packet-switched networks.
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• The theoretical model assumes that the senders have instantaneous knowledge of the

current costs of all the links at the instant they need to make a decision. It is also

assumed that fine-grained clocks are available and essentially zero-delay responses to

events are possible.

• The natural application of the framework, as in the case of managing permanent

virtual circuits, is to use bandwidth as the basic resource being rationed. However,

available bandwidth, defined as the link capacity that can be used by our overlay

protocols while fairly sharing the total capacity with the other external traffic, is not

under the overlay nodes’ control. Competing external Internet flows may occupy at

any point an arbitrary and time-varying fraction of the actual link capacity. Moreover,

it is practically impossible to measure instantaneous available bandwidth without us-

ing invasive methods. Therefore, while available bandwidth is an essential component

for performance, our protocols cannot meaningfully ration (save or waste) it, as its

availability is primarily at the mercy of other applications that share the network with

our overlay. (Recall that our application has to share the link bandwidth “fairly” with

other external TCP flows.)

This leads to the following adaptations:

Accommodating Packet Switching

Although the model assumed admission control of connections in a circuit switched

environment, it can be applied to packet switching in a straight-forward way. The path

of each packet can be viewed as a short time circuit that is assigned by the source of the

packet. For each packet, we can make a decision to accept or delay that packet individually.

Rationed Resource

The underlying model does not specify which resources are to be managed by it. One

of the most important issues is deciding what resource is to be controlled (rationed) since
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not all of the resources used are controllable. Figuratively speaking, available bandwidth

to flow control is like wind to sailing: it is controlled by adversarial forces rather than by

us. We must try to adapt as much as possible to changing circumstances, rationing the

controllable resources.

Thus, we chose buffer space in each overlay node as the scarce resource we want

to control. Conceptually, we model our software overlay node as a router with fixed size

output link buffers where packets are placed into the appropriate output link queues as

soon as the packet is received by the overlay node. Note that the number of queues is equal

to the number of outgoing links, and does not depend on the number of senders, receivers

or groups in the system. If a link is not congested, its corresponding queue will be empty.

In this case, once a packet arrives in the buffer, it is immediately sent (maybe with a short

delay due to operating system scheduling). If the incoming traffic is more than the capacity

of an outgoing link, some packets will accumulate in the corresponding outgoing link buffer.

Practical Cost Function

Every overlay node establishes the cost for each of its outgoing links and advertises

this cost to all the other nodes. The price for a link is zero if its corresponding buffer is

empty. This means that the cost is zero as long as the link is not congested, i.e. the link can

accommodate all the incoming traffic. As the link gets congested and packets accumulate

in the buffer, the cost of the link increases. The price can theoretically go as high as infinite

when the buffer is full. In practice, the cost of the link will increase until a given value

Cmax when no user will be able to buy it.

Equation 4.2 from Section 4.2.1 gives the basic form of our cost function. The

utilization of a link buffer is given by n/M where n is the average number of packets in

the buffer and M is the desired capacity of the buffer. The cost of a link l as a function of

packets in its buffer is Cl(n) = γn/M which ranges from 1 to γ. We scale the cost of each
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resource from 0 to Cmax (the prohibitive cost), so the cost of a link becomes:

Cl(n) = Cmax · γn/M − 1

γ − 1
(4.6)

The theory does not make any assumptions about the user benefit function, or about the

minimum and maximum user benefit that define the base of the exponent γ. If we use a

large base of the exponent, then the cost function stays near zero until the buffer utilization

is almost 1, and then the cost goes up very quickly. This would be acceptable if we had

instantaneous feedback, but as we can only get delayed information from the network our

reaction to a cost increase might be too late, allowing the number of used buffers to increase

above our desired soft limit before any protocol could react and slow down the sending rate.

A practical mechanism will provide incremental feedback on costs before the utilization

becomes high, which calls for a small base of the exponent. For simplicity, we chose e as

the base of the exponent, so finally we get:

Cl(n) = Cmax · en/M − 1

e − 1
(4.7)

Each router periodically advertises the cost of its links by multicasting a cost update message

to all the other daemons through the overlay network. In Section 4.3 we show how to

minimize the control traffic while maximizing the information it contains.

Each sending daemon can compute the cost of a packet by summing up the cost of

all the links that a packet will traverse in the multicast tree, plus a constant ∆ (packet

processing cost) that will be discussed below in Section 4.2.3 . If we consider MT the set

of the links belonging to a multicast tree of a packet p, then the total cost of the packet,

Cp, is computed as:

MT = {l|l ∈ Multicast tree of p}

Cp = ∆ +
∑

l∈MT

Cl (4.8)

Given the exponential nature of our cost function, it may be possible to approximate the

cost of a path with the cost of the single link having the highest utilization, as a higher

utilization is likely to yield a dramatically higher cost value. This approximation can be
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useful in systems that do not use a link-state propagation mechanism to reduce the control

traffic in a way similar to distance vector algorithms. In this work we do not need to use

such an approximation as we already have all of the necessary information to compute the

cost of a path as the sum of the cost of all the links it uses.

Benefit Assignment

The choice of benefit is tightly intertwined with the goal we want to achieve. In this

work we choose to maximize the total sending throughput, which means we aim to send

globally the maximum number of packets within a unit of time. As we delay packets at

the entry point thorough our admission control mechanism, intuitively, the benefit of each

packet increases with the time it waits to be sent. A user that has its packets delayed is

more “desperate” than a user that has its packets sent immediately. In addition, we would

like to encourage users that use cheap, non-congested links to forward their packets, and

slow down the ones that use highly congested links.

Although one would like to handle the benefit as a pure rate, in practice giving

several units of benefit to a client at a time is more efficient due to the low granularity

of the operating system scheduling. This is why we scale both the resource cost and the

benefit functions to a value Cmax higher than γ. We define a “salary” as the amount of

benefit units (say dollars) a client is given from time to time. A client is allowed to save

up to S = Cmax dollars of its salary. The mechanism implements a token bucket of dollars

with S, the maximum cost of a link, as the bucket size. We define the minimum benefit of

a packet to be α = 1, and the maximum benefit to be β = e, achieved when the amount

of accumulated tokens is S. This leads to a range from 1 to γ = e, as our initial link cost

function, and we scale it in a linear function from 1 to Cmax, the prohibitive cost of a link.

If the number of tokens available in the bucket is k, with 0 ≤ k ≤ S, the benefit of sending

a packet is

B = 1 + k/S · (Cmax − 1) (4.9)
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The sending rate of the clients is regulated by the daemon a client is connected to. The

daemon acts as the client’s “agent”, purchasing packets whenever possible for the sending

client.

If the client wants to send a packet that costs more benefit dollars than it currently

has in its budget, the daemon blocks the client by not reading from its socket anymore,

and keeps the expensive packet until the client affords to buy it. This happens when the

client receives more benefit dollars, or when the cost for the sending tree goes down. Since

the sender will continue to accrue benefit and the links have a maximum possible cost, the

packet will eventually be sent.

Packet Processing Costs

A link that is not congested has a cost of zero, and a client that sends through

it will see it this way until the next cost update arrives. Therefore, any client would be

allowed to send an infinite number of packets on a non congested link between two cost

updates, obviously leading to high burstiness and congestion on these links. A solution for

this problem is to have a minimum cost per link greater than zero; however this will not

scale with the size of the network (long paths could have a very large cost even if idle).

Our solution is to keep the minimum link cost at zero, but add a constant cost per packet

(like a processing fee). This cost is the constant ∆ referred to in Equation 4.8, and in our

implementation we define it to be $1. Therefore we put a cap on the number of packets

each client can send between two cost updates, even when the network cost is zero, because

of the limited salary.

Non-intrusive Bandwidth Estimation

Since we do not know the network capacity (assumed known by the theory), we

approximate such knowledge by adaptively probing for the current network bandwidth. We

choose to do this in a way very similar to TCP. When a client receives a salary, the daemon
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checks whether the client was blocked during the last salary period (due to an intention to

buy a packet more expensive that it could afford). If the client was not blocked, it means

that it was able to buy, and therefore send, all the packets it initiated, so the next salary

period will be exactly the same as the previous one. However, if the client was blocked,

the daemon compares the cost of the most expensive packet that the client sent during

the last salary period with a certain threshold H. If the maximum cost is less than the

threshold, the time between two salaries is decreased, as the client might have been blocked

due to processing fees on a relatively idle network. If the maximum cost is larger then the

threshold H, it means that the client tried to buy expensive packets, therefore contributing

to congestion in the network. The threshold H can be any arbitrary value larger than

the processing fee. However, the larger the threshold is, the more likely each client will

get an increase in the salary rate, even in a congested network, resulting in higher buffer

occupancy. In our implementation we choose H = 2, slightly bigger than the processing fee

∆ = 1.

The way we adjust the salary period follows the TCP congestion control algorithm.

If the salary period should be decreased then the new salary period is:

Tnew =
Told · Tupdate

Told + Tupdate
(4.10)

where Told is the previous salary period and Tupdate is the minimum time between two cost

updates. In our experiments, the initial salary period is 1 second.

If the salary period should be increased, the new salary period will be:

Tnew = 2 · Told (4.11)

This algorithm resembles the TCP congestion control [23] where Tnew and Told would

be the average time between two packets sent, and Tupdate would be the round trip time.

Equation 4.10 is algebraically equivalent to adding 1 to the congestion window in TCP,

while equation 4.11 is equivalent to reducing the congestion window by half.
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Figure 4.1: Randomization effect on buffer utilization

Cost Update Synchronization

Finally, the coarse granularity of cost updates causes a high degree of synchronization

between clients at the time an update is received. This synchronization phenomenon can

cause oscillations in the overlay node buffers as every client buys/sends at the same time,

then the cost goes up, then everybody waits for the price to go down, etc. To prevent the

synchronization, the overlay node may delay a packet even though the client has sufficient

funds to send it immediately. This delay will last until either another packet arrives in

the sending queue, a new cost update arrives, or a short timeout elapses. Note that this

scheduling delay does not reduce the client’s budget, so the main mechanism of admission

control remains unchanged. Ideally, this scheduling randomization should depend on the

number of senders in the system competing for a link. Propagating such an information

would be prohibitively expensive, so we use an approximation in which the client sends a

packet with probability 1/Cp, where Cp is the total cost of the packet, otherwise it delays

the packet.

The experiment depicted in Figure 4.1 demonstrates the benefit of randomization.

In this experiment, our flow control is deployed on a single 2Mbps link serving 100 streams

that compete over the link capacity. The figure shows the maximum buffer utilization over

the last sampling interval with and without randomization.
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4.3 Fairness and scalability

What definition of fairness is best in a multicast environment is an area of active

research. For this work we choose a conservative approach of considering each link on our

overlay network as one TCP flow. We fairly share each link with all the external competing

traffic. Some might argue that this is too conservative, as many people may be using our

multicast service at once, and each one would receive their own TCP flow if they were

using a separate unicast service, but here they will share only one TCP flow. This is true.

However, for the purpose of this work we tried to provide an overlay network flow control

that works in any environment and thus made a conservative choice.

The difference between looking at the receiving throughput and at the sending

throughput when comparing a multicast protocol with TCP is big, as there can be more

than one receiver for one sender. However, we try to be very conservative by taking into

account the worst case scenario and analyze only the sending throughput.

Giving a “fair” amount of traffic to all the senders, regardless of their intended use

of network resources, is at odds with maximizing throughput of the network as a whole. We

choose, by default, to provide a fair share of our overlay network resources to all senders

who have the same cost per packet. That could be because their packets travel over the

same multicast tree, or just by coincidence. However, senders who have higher costs, e.g.

because they cross more congested links, will be allowed to send at a lower rate. This is

depicted in Section 4.5 Scenario 3, where sender A-F who uses all the network links receives

much less than its “fair” share of the resources.

4.3.1 Router State Scalability

The cost-benefit flow control protocol provides a fine-grained level of control (per-

group, per-sender, per-packet flow control) in a complex multi-group multi-sender multicast

environment, without keeping any per-flow state in the intermediate routers. The only

required router state is one cost record for each outgoing link of the router. Moreover, the
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amount of control traffic does not depend on the number of groups, senders, or receivers

in the system, neither does it carry any information about them. The cost updates carry

information only about the state (buffer sizes) of the links - edges in the overlay network

graph. Thus, a much larger number of clients and groups, in the order of thousands to tens

of thousands can be supported.

4.3.2 Frequency of Cost Updates

Each daemon in the overlay network multicasts a cost update at every Tmax interval

as long as its outgoing links are not congested, or their costs did not change significantly.

However, if at least one of its links becomes congested - the link cost increases - the daemon

will send more frequent cost updates, at Tmin intervals. This mechanism is based on the

observation that, in general, in a multicast tree there are only a few bottleneck links that will

limit the speed of the entire tree. Moreover, it is likely that the bottleneck links for different

senders or groups will be the same. Therefore, only the daemons that control bottleneck

links will send frequent cost updates, while the others will not contribute much to the control

traffic. Since the cost updates are very small (64 bytes in our implementation), they are

piggy-backed with the data packets whenever possible. Electing the values of the advertising

intervals Tmax and Tmin is a compromise between the control traffic we allow in the network

and the performance degradation due to additionally delayed feedback. They depend also on

the diameter of the network, the maximum client link bandwidth, and the size of buffers in

the intermediate nodes. In our experiments we show that in practical overlay networks with

delays in order of tens of milliseconds and throughput in the order of megabits per second,

values such as Tmax = 2.5 seconds, and Tmin 50 milliseconds, coupled with overlay buffers of

about 100 packets, achieve good performance. For an overlay network with the average link

bandwidth of 2Mbps this leads to a control traffic of about 0.5 percent per congested link,

and 0.01 percent per non-congested link. We believe that for higher throughput networks

we may need to either send cost updates more often or increase the size of the overlay

buffers.

43



4.4 The Cost-Benefit protocol

To summarize, we present the Cost-Benefit protocol below:

• On each topology change, the overlay routers compute their routing tables, and the

set of links in the overlay that will be used by their clients to multicast packets

• When an overlay node needs to forward a packet, if the reliability window of the

downstream link is full, the overlay node will buffer the packet. For all its downstream

links that have at least a packet in their buffer, the overlay node computes the link

cost Cl and multicasts it to the other routers every Tmin interval. For all other links,

the overlay node advertises a zero cost every Tmax interval.

• Overlay nodes maintain a token-bucket budget and a token rate for each of their

clients. The cost of a packet is computed based on the cost of the links that packet

will use, and is subtracted from the budget (token bucket) of the client that sent it.

• Clients that cannot afford sending their current packet are blocked until either their

budget increases (they get more tokens) or the cost of sending their current packet

decreases.

• The token rate of the clients “salary period” is adjusted only for clients that are

blocked: If the most expensive packet they bought over the last salary period was

higher than the threshold, their salary period doubles (the rate is reduced by half).

Otherwise, the new salary period Tnew becomes:

Tnew =
Told · Tupdate

Told + Tupdate
(4.12)

where Told is the previous salary period and Tupdate is the minimum time between two

cost updates.
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Figure 4.2: Scenario 1: Network Configuration

4.5 Simulation results

We used the ns2 network simulator [49] to evaluate the performance and behavior of

our flow control protocol. The main issues we focused on are:

• Optimal network resource utilization;

• Automatic adjustment for dynamic link capacities;

• Optimal sharing of network resources to achieve maximum throughput;

• Fairness between flows using the same congested links;

• Scalability with number of clients, groups and diameter of the network;

Scenario 1 – achieving the optimal network throughput: We used the multi-

cast tree shown in Figure 4.2, with the link capacities and latencies as shown in the figure.

All the intermediate buffers in the network have a soft limit of 100 packets. Clients receive

a $10 salary, and they can save up to S = Cmax = $20 in their budget. The processing fee

is ∆ = $1/packet.

Two classes of 20 separate clients each initiate multicast messages, Sacfg and Scdg.

Receiver clients are connected to nodes C, D, F and G. For simplicity we do not show the

receiving clients, but only the daemons they are connected to. The Sacfg clients multicast
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Figure 4.4: Scenario 1, Simulation: Buffers

to receivers connected to nodes C, F and G, and the Scdg clients multicast to receivers

connected to nodes D and G, sharing the links B-C, B-E and E-G. Sacfg clients are limited

by the 2Mb bottleneck link E − F , and Scdg clients are limited by the 1Mb link B − D.

There are no other bottleneck links in the system.

The aggregate sending throughput of the two flows is shown in Figure 4.3. The two

flows achieve maximal network usage, Sacfg clients getting on average 1.977 Mbps and Scdg

getting 0.992 Mbps.

Rather than looking at the instantaneous buffer occupancy which is very dynamic and

depends on the sampling frequency, we chose to analyze the evolution of the upper bound

of the buffer utilization. We measure the maximum buffer size over the last sampling period

and present it in Figure 4.4.

The reason for a higher buffer utilization on link E − F is that there is a higher

feedback delay from node E to node A (25 milliseconds) than from node B to node C (10

milliseconds), as in Figure 4.2. Link E −F also experiences higher variability in buffer uti-

lization and throughput. In general, higher latency paths will experience higher variability

in throughput and buffer occupancy.

Scenario 2 – fair sharing of network resources: To examine the effect of a

congested link, the network shown in Figure 4.5 is used. Here, link E − G forms the
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Figure 4.8: Scenario 2, Simulation:
Throughput with delayed senders

bottleneck for both flows. Each flow represents 20 sending clients.

The two flows share the bottleneck link fairly equal. Flow Sacfg gets an average

of 997.3 Kbps and flow Scdg gets an average of 997.6 Kbps, while the buffer of the link

G − E stays below 150 packets. The various clients who make up each flow also share the

bandwidth fairly. In Figure 4.6, we show the sending throughput achieved by each of the

20 Sacfg clients. The variance of the clients throughput was less than 4.6%.

A second experiment uses the same tree configuration as Figure 4.5 but starts the

second group of senders Scdgg only after 200 seconds, and also changes the bandwidth of

the link E-G to 1Mbps after 400 seconds. Figure 4.7 shows the maximum buffer utilization
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on the links E-G, B-D and E-F. After 200 seconds, as well as after 400 seconds we do not

see any major change in the buffer utilization on the bottleneck link. Specifically, there

is no large spike in maximum utilization when the second group of clients begins sending

all at once, or when the bottleneck link reduces its capacity by half. This is because the

link has an existing non-zero cost and so the clients must pay that cost before sending.

Figure 4.8 shows how the throughput of the two groups of clients responds to the new load,

or change in the available bandwidth, sharing fairly the congested link. The response time

for adjusting the rate of the flow Sacfg when the second flow is introduced was under 5

seconds.

Scenario 3 – unicast behavior and comparison with TCP: Our flow control

tries to maximize throughput by allowing low cost packets to pass, and reducing high cost

traffic. A simple way to demonstrate this is to set up a chain network in which some clients

try to send their packets across the entire network, while other clients use only one link in

the chain. Figure 4.9 shows such a network with 5 links connected in a chain. One client

sends from node A to node F, and 5 other clients send only over one link, i.e. from B to C

or from E to F.

Figure 4.10 shows the throughput on the chain network as short path connections

start up every 150 seconds. The client A-F starts trying to use the entire capacity of the

network. When the client A-B starts, they share the congested link, AB, about equally.

When the third client, B-C, starts at time 300, the long flow A-F slows down letting short

flows use the available bandwidth. As we add more congested links by starting more short

connections, the throughput of the flow A-F goes almost to zero, thus almost maximizing the

global throughput of the system. If the flow control had been fair, the aggregate throughput

would be 6 Mbps, 1 Mbps for each client. We achieved an aggregate throughput after all

clients have started of 9.677 Mbps, while the theoretical maximum is 10 Mbps.

The results of the previous simulation present a definite bias toward short flows and

show how such a bias can increase network throughput. One can view reliable unicast
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Figure 4.9: Scenario 3: Network Configuration

connections as a special case of reliable multicast, and in this experiment we show that our

cost-benefit flow control achieves similar behavior to that of a set of end-to-end connections

using TCP on the same network.

Figure 4.11 presents the throughput on the same chain network, only instead of

hop-by-hop connections regulated by our flow control, we run end-to-end TCP connections.

With end-to-end TCPs, the long A-F connection is biased against in the same way as our

flow control. Moreover, when competing with only one other TCP flow A-B, the longer flow

A-F receives less bandwidth. We believe this is because TCP is biased against both long

RTT connections as well as having to cross multiple congested links. So even when only

one link is congested, the longer RTT of the A-F flow causes it to receive lower average

bandwidth then the short RTT A-B flow.

Scenario 4 – scalability with number of nodes and groups: In order to see

how a large number of clients multicasting to many different groups share the network

resources, we set up the network presented in Figure 4.12. The overlay network consists

of 1602 nodes, and there are 1600 clients, each of them connected to a separate daemon,

joining 800 different groups. We could not run a bigger scenario due to memory limitation

using the ns simulator on our machines.

Each of the clients S1 to S800 multicasts to a different group composed of three

different receivers. S1 sends to R1, R2 and R3, S2 sends to R2, R3 and R4, and so on, until
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S800 that sends to R800, R1 and R2. All the senders share the same bottleneck link, A-B.

We ran the simulation with different number of senders, from 5 to 800. As shown

in Figure 4.13 the maximum buffer utilization on the bottleneck link A-B stays about the

same until the number of senders reaches to the buffer soft limit (in our case, 100), and

then it starts increasing. However, the Cost-Benefit framework kept the buffer size under

controllable limits (under 170 packets for 800 senders). The aggregate throughput was

not affected by the number of senders, getting an average of 1.979Mbps for the aggregate

sending rate of 800 senders.
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Figure 4.15: Scenario 1, Emulab: Receiving
throughput

4.6 Simulation validation on an emulated wide area testbed

Spines provides multicast through the mechanism described in Chapter 3, and allows

use of a reliable protocol on the overlay links. However, in the current implementation

Spines offers end-to-end reliability guarantees only for unicast communication, and not for

multicast. Although the global flow control described in this chapter is not dependent

on the end-to-end reliability mechanisms, we chose to evaluate our protocols in a reliable

multicast environment.

We implemented our global flow control algorithm in the Spread wide area group

communication system [50, 51]. The Spread system provides a similar architecture to our

model with daemons running on end-hosts acting as routers in an overlay network. Spread

provides strong semantics for messages including reliable multicast, message ordering guar-

antees (unordered, fifo, total order), and a membership service supporting Extended Virtual

Synchrony (EVS) [52] and Virtual Synchrony (VS) [53] models. It is designed to support a

small to medium number of members of a group (1-1000’s), with a large number of active

groups and many senders. The Spread system provides end-to-end multicast reliability by

using a reliable point-to-point protocol for each link on the overlay network [36] and through

a group membership service.
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We run Spread on the Emulab [54] testbed, where we created the network setups of

Scenario 1 and Scenario 2 presented in Section 4.5. Emulab is a network facility that

allows real instantiation in a hardware network (composed of actual computers and network

switches) of a given topology, simply by using an ns script in the configuration setup. Link

latency, capacity and loss are emulated using additional computers that delay packets or

drop them with certain probability or if their rate exceeds the requested link capacity. The

emulated link latencies for the above scenarios measured with ping were accurate up to a

precision of 3ms, while the throughput measured by TCP flooding was 1.91Mbps for the

2Mbps bottleneck link and 0.94Mbps for the 1Mbp link.

Spread has its own overhead of about 15% of data sent due to headers required for

routing, group communication specific ordering and safety guarantees, as well as to provide

user-friendly group names of up to 32 characters. In addition, any node that is not part of

receiver set of a multicast message does not receive the actual message, but must receive

a 96 byte ordering header required for group communication guarantees to be maintained,

no matter how big the message is. Therefore, receiver D in Scenario 1 receives a message

header for each message sent in the SACFG flow. Note that Spread allows messages to be

as large as 100 KB.

What we measured in our results is actual user data sent and received by clients

connected to Spread, sending 1200 byte messages. For these experiments we gave each

client a $10 salary, and allowed up to $20 of savings. The processing fee was $1. All the

overlay network links had a soft buffer limit of 100 packets.

Figure 4.14 shows the sending throughput of the two flows in Scenario 1, while

Figure 4.15 shows the receiving throughput at the nodes behind bottleneck links.

The Sacfg flow achieved a sending rate of 1.53Mbps while the Scdg flow achieved

664Kbps. Taking into account the Spread overhead and meta-headers this leads to a total

throughput of 1.9Mbps for the Sacfg flow and 904Kbps for the Scdg flow. Comparing these

numbers with the available bandwidth offered by the Emulab setup, we obtain a difference
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Figure 4.17: Scenario 2, Emulab: Receiving
throughput

of about 4% between what we get and the available network resources.

Figure 4.16 and Figure 4.17 show the sending and receiving throughput achieved by

Spread clients in Scenario 2. As we start the Scdg flow at time 300 we see the two flows

fairly share the bottleneck link. Similarly, when the available bandwidth on the bottleneck

link drops to 1Mbps at time 600, both flows adapt to the network conditions by reducing

their rate to half.

The above experiments show that the system implementation of our cost-benefit flow

control achieves good performance on a controlled emulated testbed with real computers and

networks. We achieve similar results to the simulated experiments, showing the feasibility

of our adaptation of the theoretical model to practical networked environments.

4.7 Real-life Internet experiments

To further validate our results and demonstrate real-life behavior we conduct exper-

iments over a portion of the CAIRN network [55]. This is a wide-area network that crosses

the entire United States, and consists of links that range from 1.5Mbps to 100 Mbps. The

CAIRN routers are Intel machines that run FreeBSD. Figure 4.18 shows the portion of the

CAIRN network that we used for our experiments. We measured individual link latencies
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Figure 4.19: CAIRN: Sending throughput

using ping under zero traffic, and the available bandwidth with point to point TCP connec-

tions for each link. Note that our flow control uses the available bandwidth given by the

underlying TCP link protocol, and not the physical bandwidth of the network.

Sender S1 multicasts messages to a group A joined by the receivers RA, while senders

S2 and S3 multicast to a group B joined by the receivers RB . All the clients run directly

on the overlay network machines, connected to the daemons through Unix Domain Sock-

ets. Obviously, S1 was limited by the bottleneck link C-D, while S2 and S3 had to share

the bottleneck link D-E. Taking into account the data overhead in Spread, we can see in

Figure 4.19 that the sending clients use the network resources optimally and share them

fairly between senders S2 and S3, S1 getting 1.417 Mbps, while S2 and S3 got 0.618 and

0.640 Mbps respectively. Comparing these numbers with the available bandwidth offered

by CAIRN we achieve a difference between 1% and 14%.

The uncontrollability of the Internet network conditions did not affect the perfor-

mance of our protocol. The real-life Internet experiments show that different senders located

at different sites and multicasting messages to the same or different groups achieve near op-

timal bandwidth utilization and fairly share the network resources.
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Chapter 5

Reducing Latency in Reliable

Communication Using Overlay

Networks

The overlay network paradigm gives us the flexibility to deploy custom protocols

on the links of the virtual topologies we create. In this chapter, we present a reliable

protocol that uses reliable overlay links in order to reduce the end-to-end latency and jitter

of communication.

Reliable point-to-point communication is one of the main uses of the Internet, where

over the last few decades TCP has served as the dominant protocol. Over the Internet,

reliable communication is performed end-to-end in order to address the severe scalability

and interoperability requirements of a network in which potentially every computer on the

planet could participate. Thus, all the work required in a reliable connection is distributed

only to the two end nodes of that connection, while intermediate nodes route packets without

keeping any information about the individual packets they transfer.

In overlay networks, reliable communication is usually achieved by applying TCP

on the edges of a connection. This surely works. However, in this chapter we argue that
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employing hop-by-hop reliability techniques considerably reduces the average latency and

jitter of reliable communication. When using such an approach one has to consider net-

working aspects such as congestion control, fairness, flow control and end-to-end reliability.

We discuss these aspects and our design decisions in Section 5.1.

In Section 5.2, we demonstrate through simulation that our approach provides tremen-

dous benefit for the application as well as for the network itself, even when very few packets

are lost. Simulations usually do not take into account many practical issues such as process-

ing overhead, CPU scheduling, and most important, the fact that overlay network processing

is performed at the application level of general purpose computers. These may have con-

siderable impact on real-life behavior and performance. Therefore, we test our approach in

practice using our overlay network platform, Spines.

We run the same experiments that were simulated, on a Spines overlay network.

The results are presented in Section 5.3. We show that the benefit of hop-by-hop reliability

greatly overcomes the overhead of overlay routing and achieves much better performance

compared to standard end-to-end TCP connections deployed on the same overlay network.

5.1 Hop-by-hop reliable communication in overlay networks

The easiest way to achieve reliability in Overlay Networks is to use a reliable protocol,

usually TCP, between the end points of a connection. This mechanism has the benefit of

simplicity in implementation and deployment, but pays a high price upon recovery from a

loss. As overlay paths have higher delays, it takes a relatively long time to detect a loss,

and data packets and acknowledgments are sent on multiple overlay hops in order to recover

the missed packet.

5.1.1 Hop-by-hop reliability

We propose a mechanism that recovers the losses only on the overlay hop on which

they occurred, localizing the congestion and enabling faster recovery. Since an overlay link
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has a lower delay compared to an end-to-end connection that traverses multiple hops, we

can detect the loss faster and resend the missed packet locally. Moreover, the congestion

control on the overlay link can increase the congestion window back faster than an end-to-

end connection, as it has a smaller round-trip time.

Hop-by-hop reliability involves buffers and processing in the intermediate overlay

nodes. These nodes need to deploy a reliable protocol, and keep track of packets, ac-

knowledgments and congestion control, in addition to their regular routing functionality.

Although such an approach may not be feasible to implement at the level of the Internet

routers due to scalability limitations, we can easily deploy it at the level of an overlay net-

work, thus allowing us to pinpoint the congestion, limiting the problem to the congested

part of the network.

Let us consider a simple overlay network composed of five 10 millisecond links in a

chain, as shown in Figure 5.1. Such a network may span a continent such as North America

or Europe. Every time a packet is lost (say on middle link C-D), it will take at least 50

milliseconds from the time that packet was sent until the receiver detects the loss, and at

least 50 additional milliseconds until the sender learns about it. The sender will retransmit

the lost packet that will travel 50 more milliseconds until the receiver will get it. This

accounts for a total of at least 150 milliseconds to recover a packet. If the sender continues

to send packets during the recovery period, even if the new packets arrive at the receiver
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in time (assuming no loss for them), they will not be delivered at the receiver until the

missing packet is recovered, as they are not in order. Our experimental results presented

in Sections 5.2 and 5.3 show that the number of packets delayed is much higher than the

number of packets lost.

Let us assume that we use five reliable hops of 10 milliseconds each instead of one

end-to-end connection. Suppose the same message is lost on the same intermediate link,

as in the above scenario. On that particular link (with 10 milliseconds delay) it will take

only about 30 milliseconds for the receiver to recover the missed packet. Moreover, as the

recovery period is smaller, a smaller number of out of order packets will be delayed. This

effect becomes even more beneficial as the throughput increases.

5.1.2 End-to-end reliability and congestion control

Simply having reliable overlay links does not guarantee end-to-end reliability. Inter-

mediate nodes may crash, overlay links may get disconnected. Such events are not likely to

happen and most of the reliability problems (generated by network losses) are indeed han-

dled locally at the level of each hop. However, in order to guarantee end-to-end reliability,

some of the packets can only be recovered from the initial sender in case of intermediate

node failure or route changes. We still need to send some end-to-end acknowledgments

from the end-receiver to the initial sender, at least once per round-trip time, but not for

every packet. This means that for some of the packets we will pay the price of sending two

acknowledgments, one on each of the overlay hops for local reliability, and one end-to-end,

that will traverse the entire overlay path. However, acknowledgments are small and are

piggy-backed on the data packets whenever possible. We believe that the penalty of send-

ing double acknowledgments for some of the packets is drastically reduced by resending the

missed data packets (which are much bigger than the acknowledgments) only locally, on the

hop where the loss occurred, and not on the entire end-to-end path.

Intermediate overlay nodes handle reliability and congestion control only for the links
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to their immediate neighbors and do not keep any state for individual flows in the system.

Packets are forwarded and acknowledged per link, regardless of their originator. This is

essential for the scalability with the number of reliable sessions in the system.

Since the packets are not needed in order at the intermediate overlay nodes, but

only at the final destination, in case of a loss there is no need to delay the following packets

locally on each link in order to forward them FIFO on the next link. We choose to forward

the packets even if out of order on intermediate hops, and reestablish the initial order at

the end receiver.

Our tests show that out of order forwarding reduces the burstiness inside the network.

It also contributes to the reduction of the end-to-end latency (although that contribution

is not as significant as the latency reduction achieved by the hop-by-hop reliability). The

latency effect of out of order forwarding is magnified when multiple flows use the same

overlay link. In that case, they do not need to reorder packets with respect to each other

but only according to their own packets. The same occurs when more than one overlay link

is congested and looses packets.

Overlay links are seen as individual point-to-point connections by the underlying

network. Since overlay flows coexist with external traffic, each overlay link needs to have

a congestion control mechanism in place. Our approach uses a window-based congestion

control on each overlay link, that very closely follows the slow start and congestion avoidance

of TCP [23].

We define the available bandwidth of an overlay link as the throughput achievable by

a TCP-fair protocol on that link. The available bandwidth is different on each overlay link,

depending on the underlying network characteristics, and is also dynamic, as the overlay

link congestion control adjusts to provide fairness with the external traffic.

If, at an intermediate node, the incoming traffic is higher than the outgoing available

bandwidth of the overlay link, that node will buffer the incoming packets, but if the condition

persists it will either store an infinite number of packets or will start dropping them. Since
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end-to-end recovery is expensive, there needs to exist a congestion control mechanism that

will limit, or even better, avoid dropping packet at the overlay level. As opposed to the

regular mechanism in TCP that uses packet losses to signal congestion, we use an explicit

congestion notification scheme [56] where congested routers stamp the header of the data

packets. Upon receiving such a stamped packet, the end receiver will send an end-to-

end acknowledgment signaling the congestion immediately, and the sender’s congestion

control will treat that acknowledgment as a loss, even though the sender will not resend the

corresponding packet. Note that the initial sender still sends retransmissions if necessary

(e.g. in case of node failures and rerouting).

Since end-to-end acknowledgments are not sent for every packet, the end-to-end

window may advance in big chunks once a cumulative acknowledgment is received. If the

network path is not congested, this phenomenon does not affect the burstiness of the traffic,

as the sending throughput is anyway smaller than the size of the window. However, in case

of congestion the receiver sends end-to-end acknowledgments for every packet (stamped by

an intermediate overlay router that is congested) until the congestion is resolved.

We use a daemon-client architecture, where applications connect to overlay nodes

in order to send or receive messages, and overlay daemons are responsible to distribute

messages towards receiving applications. If an application is slow in receiving messages

(even though the overlay network is not congested), an end to end flow control mechanism

should slow down the sender application. We use an approach similar to TCP flow control,

where the end-to-end acknowledgments contain an advertised window parameter, which

represents the number of packets that can be buffered by the receiving overlay node in

case the application does not read them. We assume that the receiving buffer is larger

than the end-to-end congestion window. When running the congestion control mechanism,

the sender will consider the minimum between the computed congestion window and the

advertised window received from the receiver. If the receiving buffer is full, the advertised

window will be zero, and therefore the sender will stop sending. Note that in our approach

every application can be both sender and receiver.
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Figure 5.2: TCP throughput (analytical model)

5.1.3 Fairness

We intend to deploy our protocols on the Internet, and therefore we need to share the

global resources fairly with the external TCP traffic. A “TCP-compatible” flow is defined

in [57] as one that is responsive to congestion notification, and in steady state, it uses no

more bandwidth than a conformant TCP running under comparable conditions (loss rate,

round-trip time, packet size, etc.).

The throughput obtained by a conformant TCP flow is evaluated analytically in [58],

where the authors approximate the bandwidth B of a TCP flow as a function of packet size

s, loss rate p and round-trip time RTT , where T0 is the retransmission timeout and b is the

number of packets that have to be received before sending an acknowledgment.

B =
s

RTT
√

2bp
3

+ T03
√

3bp
8

p(1 + 32p2)

Considering b = 1 and T0 = RTT in the ideal case, on a network topology such as

in in Figure 5.1 the throughput obtained by an end-to-end TCP connection (50 millisecond

delay) and by a short one hop TCP connection (10 millisecond delay on link CD) sending

1000 byte packets are shown in Figure 5.2 as a function of loss rate.

Clearly, an end-to-end reliable connection with a delay of 50 milliseconds will achieve
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less bandwidth than a hop-by-hop flow that will be limited only by the short bottleneck

link C-D with 10 milliseconds delay, where the losses occur. This phenomenon happens

because TCP throughput is biased against long connections. Analytically, RTT appears at

the denominator of the throughput formula, and in practice it will take more time for the

long connection to recover its congestion window (the congestion avoidance protocol adds

one to the congestion window for each RTT ).

Note that achieving more throughput by a hop-by-hop flow does not happen with

respect to external TCP connections that run outside of the overlay traffic. Each of the

overlay links provide congestion control and fairness with respect to the external flows.

However, a fair comparison of the end-to-end throughput obtained by a single flow traversing

multiple hops on the overlay network with one that uses the Internet directly cannot be

done because of several factors:

• Flows that run within the overlay network usually have longer paths (higher delay)

than direct Internet connections (due to the overlay routing which is usually far from

optimal), and therefore achieve less throughput.

• In general, multiple connections coexist within an overlay network, so there is more

than one stream using a single overlay link. In that case, multiple streams will share

a single overlay link using only a part of what they could get if each of them used the

Internet directly by opening a separate TCP connection.

One way to give each flow a fair share of the total bandwidth is to open multiple

connections between two overlay nodes depending on the number of internal flows using

that overlay link. Another way is to modify the congestion control on the overlay links to

take into account the number of independent flows that traverse that link, and behave as

a number of TCP flows run in parallel. Spines, our overlay network system presented in

Section 2.2, provides such an optional mechanism for experimentation purposes. Spines can

determine the number of flows for which packets are kept in the current congestion window,
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Table 5.1: Average latency for under loss

Protocol Tahoe Reno NewReno SACK Fack Vegas Redhat 7.1 Spines

Avg. delay (ms) 407.49 217.52 155.76 144.70 84.66 74.07 90.06 117.55

and consider the congestion window of the overlay link as a sum of multiple windows for each

flow. However, in this work we see an overlay network as a single distributed application,

no matter how many internal flows it carries; therefore, an overlay link gets only one share

of the available bandwidth.

Some mechanisms can be deployed in order to limit the internal hop-by-hop through-

put to the one obtained by an end-to-end connection that uses the overlay network. Such

mechanisms can evaluate the loss rate and round-trip time of a path and adjust the sending

rate accordingly, in a way similar to [59]. We believe such mechanisms are not necessary in

our case - since we provide end-to-end congestion control, obtaining more throughput is just

an effect of pinpointing the congestion and resolving it locally. However, in all the experi-

ments of this chapter we choose a conservative approach and limit the sending throughput

to values achievable by both end-to-end and hop-by-hop flows, and focus only on the packet

latency of the connections.

5.2 Simulation Environment and Results

In this section we analyze the multihop reliability behavior using the ns2 simulator

[49]. We run a simple end-to-end TCP connection from node A to node F on a network

setup as shown in Figure 5.1, while changing the packet loss rate on link C-D. Since we

focus on the latency of reliable connections, we limit the sending throughput to the same

value for end-to-end and hop-by-hop flows in order to keep the same network parameters

for our latency measurements.

For a fair analysis, in the experiments presented in this chapter we compare an end-
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to-end path with an overlay path composed of multiple links that total the same network

latency. Depending on the underlying topology and the placement of overlay nodes, using an

overlay network can reduce or increase the end-to-end latency of a connection. For example,

Akella et al [60] show that in over 30% of the cases, using an overlay network can decrease

the connection latency by optimizing the Internet path selection. If the overlay path chosen

is longer than the direct end-to-end connection, the latency difference manifests itself as a

constant overhead of the overlay approach. However, our results show that the performance

difference between the end-to-end and hop-by-hop approaches grows dramatically with the

increase of the network loss rate, greatly overcoming the latency overhead of using an overlay

network.

We record the delay of each packet for the different sending rates and packet loss for

both end-to-end and hop-by-hop reliability approaches. We define the delay of a packet as

the difference between the time the packet was received at the destination, and the time it

was initiated by a constant rate sending application. Note that there is a difference between

the time a packet is sent by an application and the time that packet is actually put on the

network by the reliable protocol (in our case, TCP). If TCP shrinks its window or reaches a

timeout, it will not accept or send new packets until it has enough room for them. During

this time, the new packets generated by the application will be stored in a buffer owned

either by the host operating system or by the application itself. We believe that a delay

measurement that is fair to the application would count the time spent by packets in these

buffers as well.

The ns2 simulator offers a variety of TCP implementations. Out of these, we used

TCP-Fack - TCP with forward acknowledgments - as we believe it resembles a behavior clos-

est to the actual TCP implementation in the Linux Redhat 7.1, that we use in Section 5.3.

The Linux kernel allows adjustment of different TCP parameters (for example, turning off

forward acknowledgments would give us a version similar to TCP-SACK), however we opted

for leaving the default protocol in the kernel unaltered.
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Figure 5.3: Average delay for a 500 Kbps
stream (simulation)
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Figure 5.4: Average delay for a 1000 Kbps
stream (simulation)

Table 5.1 shows the average packet delay given by different TCP variations in ns2,

as well as the Linux TCP implementation and the Spines reliable link protocol (described

in Section 2.2) when a 500Kbps stream is sent on an end-to-end A-F connection in the

network showed in Figure 5.1, with link C-D experiencing 1% loss. The Redhat 7.1 TCP

and the Spines link protocol delays were measured on an emulated network setup described

in Section 5.3.

We compare the performance of the standard end-to-end approach to that of our hop-

by-hop approach, where we forward packets reliably on each link, A-B, B-C, ... up to link

E-F. For hop-by-hop reliability we use a modified version of TCP-Fack: the initial sender

(at node A) adds its original sequence number in an additional packet header, intermediate

receivers deliver packets out of order, and the destination delivers packets FIFO according to

the original sequence number available in the new header. We did not change the congestion

control or the send and acknowledge mechanisms in any way. We verified that our modified

TCP and the original TCP-Fack in ns2 behave identically with respect to each individual

packet on a point-to-point connection under different loss rates. All the simulations in this

section were run for 5000 seconds, sending 1000 byte messages.

Figure 5.3 shows that the average delay for a 500 Kbps data stream increases faster

with an end-to-end connection while a hop-by-hop flow maintains a low average delay even
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Figure 5.5: Average jitter for a 500 Kbps stream (simulation)

when it experiences a considerable loss rate. This phenomenon is magnified as the through-

put required by the flow increases, as depicted by Figure 5.4 for a 1000 Kbps data stream.

Jitter is an important aspect of network protocols behavior due to its impact both

on other flows at the network level and on the application served by the flow. Figure 5.5

shows that the jitter of an end-to-end connection is considerably higher and increases faster

than the jitter of a hop-by-hop connection for a 500 Kbps stream. We computed the jitter

as the standard deviation of the packet delay.

It is interesting to see the distribution of the packet delay for a certain loss rate.

In Figure 5.6, we see that for a 500 Kbps data stream under 1% loss rate, over 27% of

the packets are delayed more than 60 milliseconds (including the 50 milliseconds network

delay) for an end-to-end connection, while for a hop-by-hop connection only about 3% of

the packets are delayed more than 60 milliseconds. Similarly, about 18% of the packets are

delayed more than 100 milliseconds by the end-to-end connection, while for a hop-by-hop

connection only 1% of the packets are delayed as much. Note that the actual number of

packets delayed is much higher than the number of packets lost.

We studied how the performance is affected by the number of intermediate reliable

hops in an overlay network. We consider the same network of 50 milliseconds delay, and we

measure the percentage of packets that are delayed as we increase the number of interme-
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diate hops from 1 to 10, while keeping the total path latency constant. First, we use two

hops of 25 milliseconds each, then three hops of 16.66 milliseconds each, and so forth. Fig-

ure 5.7 shows the percentage of packets delayed more than 60 milliseconds (10 milliseconds

more than the path latency) for a 500 Kbps data stream with 1% and 2% packet loss as

the number of hops increases. It is interesting to note that two to four hops appear to be

sufficient to capture almost all of the benefit associated with hop-by-hop reliability. This is

encouraging as small overlay networks are relatively easy to deploy.

The important factor in obtaining better performance with hop-by-hop reliability is

the latency of the lossy link rather than the number of hops in the end-to-end connection.

The reason for the phenomenon depicted in Figure 5.7 is that increasing the number of

hops from one to two reduces the latency of the lossy link by approximately 50 percent (25

milliseconds in our case), while increasing the number of hops from nine to ten reduces the

latency of the lossy link only by approximately 1 percent (0.55 milliseconds).

It is important how well we can isolate a potentially lossy or congested Internet link

in an overlay link that is as short as possible. This can be achieved in practice by placing

a few overlay nodes such that we create close to equal latency overlay links, as we do not

usually know in advance which Internet connections will be congested.

We believe that the simulation results are promising. The reminder of this chapter
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Figure 5.9: Spines congestion control
(Emulab)

will investigate whether the same behavior is not limited to our simulation environment but

is in fact achieved in practice.

5.3 Experimental results

In this section we evaluate the hop-by-hop reliability behavior using the Spines over-

lay network deployed on the Emulab testbed [54]. We instantiated on Emulab the network

setup presented in Figure 5.8 that follows the topology used in our Section 5.2 simulations.

All the Emulab machines are also directly connected through a local area network through

which they are managed and can be accessed from the Internet. On this local area network

we constantly monitored the clock synchronization between the computers involved in our

experiments and accurately adjusted our one-way latency measurements.

The routing was set up such that all the experiment traffic went on the 10 millisecond

links, while on the local area network we measured the clock difference continuously (every

100 milliseconds) between the computers making the end nodes of a connection. The one-

way delay of the data packets was calculated as the difference between the timestamp at

the sender and the current time at the receiver, adjusted with the clock difference between

the end nodes.
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On the overlay network, the round-trip delay between nodes A and F measured

with ping under no traffic was 99.96 milliseconds, and the throughput achieved by a TCP

connection on each of the 10 millisecond links was about 9.59 Mbps. On the local area

network the round-trip delay between any two nodes was about 0.135 milliseconds, which

gave us a very good accuracy in measuring the clock difference and one-way delay of the

packets. For each experiment in this section we sent 200000 messages of 1000 bytes each.

We first verified that the congestion control implemented in the Spines overlay link

protocol is TCP-fair. Figure 5.9 shows the throughput obtained by an end-to-end TCP

stream and by the Spines link protocol for a 10 and a 50 millisecond delay link of 10 Mbps

capacity under different levels of losses, and compares it to the analytical TCP model from

[58]. The throughput achieved by Spines is very close to that of a TCP connection under

similar conditions. Note that for a 10 millisecond link, as the throughput of both TCP

and Spines approaches the maximum capacity of 10Mbps, they start developing their own

additional losses in order to probe the available bandwidth. This is why they appear to

achieve less than the analytical model that takes into account only the original losses we

enforced on the link.

We compared the packet delay of a data stream using an end-to-end TCP connection

between nodes A and F, with that of a hop-by-hop connection using Spines on the overlay

nodes, while varying the sending rate (at node A) and the loss rate on the intermediate link

C-D. Note that the end-to-end TCP connection does not go through the Spines application-

level routers, but only through the overlay nodes A, B, ... F - so it is not affected in any

way by the Spines overhead in user-level processing and added headers.

Figure 5.10 and Figure 5.11 show that the low latency effect of hop-by-hop reliability

is very significant also in the experimental setting, overcoming by far the overhead of user-

level processing at the level of the intermediate overlay network nodes. The latency of

a real TCP connection is lower than the simulation result (presented in Figure 5.3 and

Figure 5.4), especially at high loss rates, which shows us that the TCP model we used in
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Figure 5.13: Packet delay distribution for a
500 Kbps stream (Emulab)

the simulation (TCP-Fack), even though the closest, does not resemble exactly the Linux

kernel implementation. The latency achieved by Spines hop-by-hop reliability is slightly

higher than the latency obtained in the simulator, mainly due to simplifying assumptions

of the simulation. However, the hop-by-hop latency remains very low, and increases much

slower compared to the latency of the end-to-end TCP connection.

Jitter follows a similar pattern, as seen in Figure 5.12 (and compared with Figure 5.5).

Packets sent through the Spines overlay network arrive at the destination with a jitter up

to three to four times smaller than the jitter of an end-to-end connection. In Figure 5.13,

although the delay distribution for the end-to-end TCP connection is almost identical to
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the result of the simulation (Figure 5.6), the overhead of the application-level routing is

clearly visible in the hop-by-hop delay distribution. However, even with this overhead, the

number of packets delayed by Spines is significantly (more than three times) lower than the

number of packets delayed by the end-to-end connection.
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Chapter 6

Improving Quality of VoIP Using

Overlay Networks

This chapter describes an overlay architecture that can easily be deployed to address

network loss and failures in voice communication over the Internet. This approach maintains

a high packet delivery ratio even under high loss, and adds minimal overhead under low, or

no loss conditions. This chapter is based on joint work with Stuart Goose, David Hedqvist

and Andreas Terzis.

Although subscribers are accustomed to the consistent voice quality and high reli-

ability provided by traditional Public Switched Telephone Network (PSTN), the promise

of a single converged IP network to carry voice and data – and the cost savings therein –

motivates the interest and adoption of voice-over-IP (VoIP) technologies. As the Internet

evolves into a ubiquitous communication substrate offering a plethora of services including

telephony, it will be expected to meet and exceed the standard of quality long offered by

PSTN.

It is non-trivial to engineer a solution that meets the stringent constraints expected

by humans, of a high quality, reliable, real-time voice communication service. Delays of

100-150 msec and above are detectable by humans and can impair the interactivity of
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conversations. By comparison, humans are far less tolerant of audio degradation than of

video degradation. Hence, to meet these requirements it is crucial to minimize primarily

the network latency and secondarily packet loss as much as possible. To minimize latency,

contemporary VoIP solutions rely upon UDP as the transport protocol. However this has

the potential to expose VoIP packets to network loss and failures. Although the Internet

can offer reasonable quality (relatively low loss and good stability) for the majority of VoIP

streams, it has been shown [61] [62] [63] that it remains vulnerable to occasional bursts of

high loss and link failures that preclude it from delivering a constant, high quality service

demanded for telephony.

Our first observation is that it is often possible to recover packets even given the tight

delay budget of VoIP. While many VoIP streams exhibit large latencies that prohibit timely

end-to-end recovery, it is possible to perform recovery for many short links that are in the

order of up to 30 msec. Our second observation is that by breaking long links into several

smaller links, an overlay network architecture can help localize the packet recovery within

overlay hops. Thus, even for VoIP streams with end-to-end latencies considerably larger

than 30 msec, the vast majority of the packet losses can be rapidly recovered on the shorter

overlay hop on which they were dropped. Overlay networks facilitate the deployment of

flexible routing protocols that can address the needs of a specific application. Our third

observation is that the overlay approach allows the deployment of a routing algorithm that

optimizes the probability of packets being delivered within the delay requirements of VoIP,

hence having a significant impact on the resulting voice quality.

Our overlay network approach is tailored to support VoIP by judiciously combining

two complementary mechanisms: First, a real-time1 packet recovery protocol that imme-

diately delivers newly received packets, similarly to UDP, but this protocol attempts to

recover missing packets. Recovery is attempted only once, and only if a packet is likely

to arrive at the destination within the VoIP delay constraint. This protocol is deployed

1Our definition of real-time refers to timely recovery of packets on short overlay links. Protocols such as

RTP and RTCP, that do not attempt to recover packets, work independently of our protocols and benefit

of our higher packet delivery ratio.
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on every overlay link. Second, an adaptive overlay routing protocol tailored to VoIP, that

optimizes path selection based on an approximation metric that combines the measured

latency and loss of a link. The approximation metric dynamically assigns a cost to each

overlay link by estimating the packet latency distribution and loss rate of the real-time

recovery protocol.

We implemented these protocols as part of the Spines overlay network platform, and

evaluated their behavior under controlled network conditions on the Emulab testbed and

directly in the Internet on the Planetlab [64] network. The performance of the proposed

routing metric was evaluated through extensive simulations, comparing it to other metrics,

on thousands of random topologies with various loss and delay link characteristics. We

show that by leveraging our overlays for disseminating VoIP streams, the loss rate of the

communication can be drastically reduced. For example, for a network loss rate of 5%,

our system can usually recover within the latency constraints all but 0.5% of the packets.

This leads to a commensurate increase in the voice quality of the calls. Our results reveal

that using a standard voice codec, we could achieve PSTN voice quality despite loss rates

of up to 7%. Our routing metric achieves good performance, selecting paths that optimize

packet delivery ratio. It achieves better performance than individual latency, loss or hop-

based routing schemes – especially in high latency networks where the voice delay constraint

becomes more stringent.

The rest of this chapter is organized as follows: In Section 6.1 we present the moti-

vation and background of our work. We present and evaluate our protocols in Section 6.2.

The routing limitations of overlay networks and how they can be addressed in real systems

are described in Section 6.3, and Section 6.4 discusses how we can integrate our approach

with SIP in the current VoIP infrastructure.
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6.1 Background

There are several steps involved in sending voice communication over the Internet.

First, the analog audio signal is encoded at a sampling frequency compatible with the

human voice. The resulting data is partitioned into frames representing signal evolution

over a specified time period. Each frame is then encapsulated into a packet and sent

using a transport protocol (usually UDP) towards the destination. The receiver of a VoIP

communication decodes the received frames and converts them back into analog audio

signal. The quality of Voice over IP depends on the network performance of delivering

frame packets to the destination.

6.1.1 Voice over IP

As opposed to media streaming, VoIP communication is interactive, i.e. participants

are both speakers and listeners at the same time. In this respect, delays higher than 100-

150 msec can greatly impair the interactivity of conversations, and therefore delayed packets

are usually dropped by the receiver codec.

Voice quality can be adversely affected by a number of factors including latency, jit-

ter, node or link failures, and by the variability of these parameters. Their combined impact,

as perceived by the end-users, is that voice quality is reduced at random. Contemporary

VoIP codecs use a buffer at the receiver side to compensate for shortly delayed packets,

and use forward error correction (FEC) or packet loss concealment (PLC) mechanisms to

ameliorate the effect of packet loss or excessive delay. The error correction mechanisms

usually add redundancy overhead to the network traffic and have limited ability to recover

from bursty or sudden loss increase in the network.

Currently, almost any network-based telephony device that converts voice audio to

network packets uses a standard codec, the ITU-T G.711 [65] recommendation. This codec,

combined with its PLC [66] mechanism offers high quality voice communication. The G.711

codec we used in our experiments in this chapter samples the audio signal at a rate of 8kHz
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and partitions the data stream into 20 msec frames, thus sending 160 byte packets at a rate

of 50 packets/sec.

The VoIP quality is evaluated using an objective method described in ITU-T rec-

ommendation P.862 [67], known as Perceptual Evaluation of Speech Quality (PESQ). The

PESQ score is estimated by processing both the input reference and the degraded output

speech signal, similarly to the human auditory system. The PESQ score ranks speech sig-

nals on a scale from -0.5 (worst) to 4.5 (best), where 4.0 is the quality achieved in regular

PSTN.

6.1.2 Internet loss and failure characteristics

Data packets are lost in the Internet due to congestion, routing anomalies and physi-

cal errors, although the percentage of physical errors is very small at the core of the network.

Paxson [62] studied the loss rate for a number of Internet paths and found that it ranged

from 0.6% to 5.2%. Furthermore, in that study and a follow-up [68], Paxson discovered that

loss processes can be modeled as spikes where loss occurs according to a two-state process,

where the states are either “packets not lost” or “packets lost”. According to the same

studies, most loss spikes are very short-lived (95% are 220 msec or shorter), but outage

duration spans several orders of magnitude and in some cases the duration can be modeled
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by a Pareto distribution. In a recent study, Andersen et al [63] confirmed Paxson’s earlier

results but showed that the average loss rate for their measurements in 2003 was a low

0.42%. Most of the time, the 20-minute average loss rates were close to zero; over 95%

of the samples had a 0% loss rate. On the other hand, during the worst one-hour period

monitored, the average loss rate was over 13%. An important finding in [63] is that the con-

ditional probability that a second packet is lost given that the first packet was lost was 72%

for packets sent back-to-back and 66% for packets sent with a 10-msec delay, confirming

the results in [68].

In addition to link errors and equipment failures, the other major factor contributing

to packet losses in Internet is delayed convergence of the existing routing protocols. Labovitz

et al [69] use a combination of measurements and analysis to show that inter-domain routes

in the Internet may take tens of minutes to reach a consistent view of the network topol-

ogy after a fault. They found that during this period of delayed convergence, end-to-end

communication is adversely affected. In [70], Labovitz et al. find that 10% of all considered

routes were available less than 95% of the time and that less than 35% of all routes were

available more than 99.99% of the time. In a followup study [71], Chandra et al showed

that 5% of all failures last more than 2 hours and that failure durations are heavy-tailed

and can last as long as 20 hours before being repaired. In a related study performed in

2003, Andersen et al [63] showed that while some paths are responsible for a large number

of failures, the majority of the observed Internet paths had some level of instability. All

these statistics indicate the Internet today is not ready to support high quality voice service

as we are going to show in the following section.

6.1.3 Voice quality degradation with loss

We evaluated the effect of a loss pattern such as the one reported on the Internet on

the VoIP quality, using the the standardized PESQ measure. To do so, we instantiated a

network with various levels of loss and burstiness (we define burstiness as the conditional
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probability of loosing a packet when the previous packet was lost) in the Emulab2 testbed,

and measured the quality degradation when sending a VoIP stream on that network.

We used the G.711 codec with PLC to transfer a 5 minute audio file using UDP over

the lossy network, repeating each experiment for 20 times. The network had a 50 msec

delay and 10 Mbps capacity, enough to emulate a trans-continental long-distance call over

a wide area network. We finally decoded the audio file at the destination, divided it into

12 second intervals corresponding to normal conversation sentences, and compared each

sentence interval with the original to generate its PESQ score.

Figure 6.1 shows the average PESQ score of all the sentence intervals as a function

of loss rate and burstiness of the link. We can see that on average, the G.711 codec can

handle up to 1% loss rate, while keeping a PESQ score higher than 4.0 (the expected PSTN

quality level). Burstiness does not play a major role until the loss rate is relatively high,

when the voice quality is anyway low. However, given the expectancy of high quality for

phone calls, we also need to analyze the most affected voice streams. Figure 6.2 presents

the 5 percentile of the above measurements. We can see that for the most affected streams

burstiness does have a significant impact, and even at 0.5% loss rate the G.711 codec cannot

provide PSTN standard voice quality. At 0.5% loss and 75% burstiness the PESQ score

dropped to 3.69.

Considering the fact that current loss rate measurements in the Internet average at

about 0.42% with an average burstiness of 72%, and that occasionally loss can be even much

higher, these experiments show that new solutions are required to improve the quality of

VoIP traffic if it is to compete with the existing PSTN.

2Emulab cannot set conditional loss probability on the links. For burstiness experiments we dropped

packets with conditional probability at the application level, before processing them.
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Figure 6.3: Real-time recovery loss - 1 link
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Figure 6.4: Real-time loss recovery - 2 con-
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Figure 6.5: Delay distribution - 1 link, 5%
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6.2 Protocols for increasing VoIP performance

Contemporary VoIP systems use the UDP best effort delivery service to transfer data,

exposing the audio channels to packet losses and path failures. One of the main reasons

for not using packet retransmissions is that lost packets, even when recovered end-to-end

from the source, are not likely to arrive in time for the receiver to play them. Overlay

networks break end-to-end streams into several hops, and even though an overlay path may

be longer than the direct Internet path between the two end-nodes, each individual overlay

hop usually has smaller latency, thus allowing localized recovery on lossy overlay links.
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6.2.1 Real-time recovery protocol

Our overlay links run a real-time protocol that recovers packets only if there is a

chance to deliver them in time, and forward packets even out of order to the next hop. We

describe our real time recovery protocol as follows:

• Each node in the overlay keeps a circular packet buffer per outgoing link, maintaining

packets sent within a time equal to the maximum delay supported by the audio codec.

Old packets are dropped out of the buffer if they have expired, or when the circular

buffer is full.

• Intermediate nodes forward packets as they are received, even out of order.

• Upon detecting a loss on one of its overlay links, a node asks the upstream node for

the missed packet. A retransmission request for a packet is only sent once. We only

use negative acknowledgments, thus limiting the amount of traffic when no packets

are lost.

• When an overlay node receives a retransmission request it checks in its circular buffer,

and if it has the packet it resends it, otherwise it does nothing. A token bucket

mechanism regulates the maximum ratio between the number of retransmissions and

the number of data packets sent. This way we limit the number of retransmissions on

lossy links. In all experiments presented in this chapter the maximum retransmission

rate was set to 20%.

• If a node receives the same packet twice (say because it was requested as a loss, but

then both the original and the retransmission arrive), only the first instance of the

packet will be forwarded towards the destination.

The protocol does not involve timeouts and never blocks for recovery of a packet.

The downside is that this is not a fully reliable protocol and some of the packets will be lost

in case where the first retransmission attempt fails. Such events can appear when a packet
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is lost, the next packet arrives and triggers a retransmission request, but the retransmission

request is also lost. For a symmetric link with independent loss rate p in both directions,

this happens with probability: p · (1− p) · p = p2 − p3. Another significant case is when the

retransmission request does arrive, but the retransmission itself is lost, which can happen

with probability: p · (1 − p) · (1 − p) · p = p2 − 2p3 + p4. Other types of events, that involve

multiple data packets lost can happen, but their probability of occurrence is negligible. We

approximate the loss rate of our real-time protocol by 2p2 − 3p3, assuming a uniform3 loss

probability on the link.

The delay distribution of packets follows a step curve, such that for a link with delay

T and loss rate p, (1−p) fraction of packets arrive in time T , (p−2p2+3p3) are retransmitted

and arrive in time 3T + ∆, where ∆ is the time it takes the receiver to detect a loss, and

(2p2 − 3p3) of the packets will be lost by the real time recovery protocol. For a path that

includes multiple links, the delay of the packets will have a composed distribution given by

the combination of delay distributions of each link of the path. The time ∆ it takes the

receiver to trigger a retransmission request depends on the inter-arrival time of the packets

(the receiver needs to receive a packet to know that it lost the previous one) and on the

number of out of order packets that the protocol can tolerate. For a single VoIP stream,

packets usually carry 20 msec of audio, so they arrive at relatively large intervals. In our

overlay approach, we aggregate multiple voice streams sent by different applications within

a single real-time recovery protocol on each link. The overlay link protocol handles packets

much more often than a single VoIP stream, and therefore the inter-arrival time of the

packets is much smaller. Standard TCP protocol needs three packets out of order before

triggering a loss. Since latency is crucial for VoIP applications, and as packet reordering

happens relatively rarely [72], in our experiments we trigger a retransmission request after

receiving the first out of order packet.

3In many cases, the loss rate probability may not be uniform. Later in this chapter, we investigate the

impact of burstiness on our protocols.
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We implemented the real time protocol in the Spines overlay network platform and

evaluated its behavior by running Spines on Emulab. Figure 6.3 shows the loss rate of the

real time recovery protocol on a symmetric 10 msec link with various levels of loss and

burstiness, and Figure 6.4 shows the combined loss for two concatenated 10 msec links

that experience the same amount of loss and burstiness, in both directions, running Spines

with the real-time protocol on each link. For each experiment, an application sent traffic

representing the aggregate of 10 VoIP streams for a total of two million packets of 160 bytes

each, and then average loss rate was computed. We can see that the level of burstiness

on the link does not affect the loss rate of the real-time protocol. The real-time loss rate

follows a quadratic curve that matches our 2p2 − 3p3 estimate. For example, for a single

link with 5% loss rate, applying the real-time protocol reduces the loss rate by a factor

of 10, to about 0.5% regardless of burstiness, which yields an acceptable PESQ score (see

Figure 6.1).

For the single 10 msec link experiment with 5% loss rate, the packet delay distribution

is presented in Figure 6.5. As expected, 95% of the packets arrive at the destination in about

10 milliseconds. Most of the losses are recovered, showing a total latency of 30 msec plus

an additional delay due to the inter-arrival time of the packets required for the receiver to

detect the loss, and about 0.5% of the packets are not recovered. In the case of uniform

loss probability the delay of the recovered packets is almost constant. However, when the

link experiences loss bursts, multiple packets are likely to be lost in a row, and therefore

it takes longer for the receiver to detect the loss. The increase of the interval ∆ results in

a higher delay for the recovered packets. Obviously, the higher the burstiness, the higher

the chance for consecutive losses, and we can see that the packet delay is mostly affected

at 75% burstiness.

Figure 6.6 shows the delay distribution for the two-link network, where both links

experience 5% uniform distribution loss rate. As in the single link experiment, most of

the losses are recovered, with the exception of 1% of the packets. We notice, however,

a small fraction of packets (slightly less than 0.25%) that are lost and recovered on both
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links, and that arrive with a latency of about 66 msec. This was expected to happen with

the compound probability of loss on each link, pc = 0.05 · 0.05. Burstiness results for the

two-link network, not plotted in the figure, follow the same pattern as shown in Figure 6.5.

In order to evaluate the effect of local recovery on voice quality we ran the same

experiment depicted in Figure 6.1 and Figure 6.2 on top of a Spines overlay network. We

divided the 50 msec network into 5 concatenated 10 msec links as shown in Figure 6.7, ran

Spines with the real-time protocol on each link, and sent 10 VoIP streams in parallel from

node A to node F . We generated losses with different levels of burstiness on the middle

link C − D and set the threshold network latency for the G.711 codec to be 100 msec.

Figure 6.8 presents the average PESQ score of the G.711 streams using Spines, and

compares it with the results obtained when sending over UDP directly. Since most of the

packets are received in time to be decoded at the receiver, we can see that when using

Spines, regardless of burstiness, the G.711 codec can sustain on average even network losses
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Figure 6.10: Two-metric routing decision

of 7% with PSTN voice quality.

As discussed earlier, phone service subscribers expect high quality service. Therefore,

in addition to average performance characteristics, it is important to look at the performance

of the worst cases. Figure 6.9 shows the quality of the worst 5 percentile calls. We can see

that the codec can handle up to 3.5% losses with PSTN quality and even for the worst 5%

calls, the burstiness did not play a major role in the voice quality.

6.2.2 Real time routing for audio

The real time protocol recovers most of the missed packets in case of occasional, or

even sustained periods of high loss, but if the problem persists, we would like to adjust the

overlay routing to avoid problematic network paths.

Given the packet delay distribution and the loss rate of the soft real-time protocol on

each overlay link, the problem is how to find the overlay path between a pair of source and

destination, for which the packet delay distribution maximizes the number of packets that

arrive within a certain delay, so that the audio codec can play them. The problem is not

trivial, and requires a two metric routing optimizer. For example, in Figure 6.10, assuming

a maximum delay threshold for the audio codec to be 100 msec, if we try to find the best

path from node A to node E, even in the simple case where we do not recover packets,

we cannot determine which partial path from node A to node D is better (maximizes the
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Figure 6.11: Comparing routing metrics - 15
node networks
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100 node networks

number of packets arriving at E within 100 msec) without knowing the latency of the link

D-E. On the other hand, computing all the possible paths with their delay distribution and

choosing the best one is prohibitively expensive.

However, if we can approximate the cost of each link by a metric dependent on the

link’s latency and loss rate, taking into account the characteristics of our real-time protocol

and the requirements of VoIP, we can use this metric in a regular shortest path algorithm

with reasonable performance results. Our approach is to consider that packets lost on a

link actually arrive, but with a delay Tmax bigger than the threshold of the audio codec,

so that they will be discarded at the receiver. Then, the packet delay distribution of a link

will be a three step curve defined by the percentage of packets that are not lost (arriving in

time T ), the percentage of packets that are lost and recovered (arriving in 3T +∆), and the

percentage of packets missed by the real-time protocol (considered to arrive after Tmax).

The area below the distribution curve represents the expected delay of the packets on that

link, given by the formula: Texp = (1−p) ·T +(p−2p2 +3p3) · (3T +∆)+(2p2 −3p3) ·Tmax.

Since latency is additive, for a path consisting of several links, our approximation for the

total expected delay will then be the sum of the expected delay of each individual link. We

call this metric expected latency cost function.

We evaluated the performance of the expected latency based routing and compared
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it with other cost metrics. We used the BRITE [73] topology generator to create random

topologies using the Waxman model, where the probability to create a link depends on the

distance between the nodes. We chose this model because it generates mostly short links

that that fit our goal for localized recovery. We assigned random loss from 0% to 5% on

half of the links of each topology, selected randomly. We considered every node generated

by BRITE to be an overlay node, and every link to be an overlay edge. For each topology

we determined the nodes defining the diameter of the network (the two nodes for which the

shortest latency path is longest), and determined the routing path between them given by

different cost metrics.

By adjusting the size of the plane in which BRITE generates topologies, networks

with different diameters are created. For each network diameter we generated 1000 different

topologies and evaluated the packet delivery ratio between the network diameter nodes when

running the real-time protocol on the links of the network, using different routing metrics.

Figure 6.11 shows the average delivery ratio for network topologies with 15 nodes and 30

links, and Figure 6.12 shows the delivery ratio for network topologies with 100 nodes and

200 links. For a link with direct latency T and loss rate p, considering an audio codec

threshold Tmax = 100 msec and the packet inter-arrival time ∆ = 2 msec, the cost metrics

used are computed as follows:

• Expected latency: Cost = (1− p) · T + (p− 2p2 + 3p3) · (3T + ∆) + (2p2 − 3p3) · Tmax

• Hop distance: Cost = 1 (mnimizes the number of hops on a path)

• Link latency: Cost = T (minimizes the total path latency)

• Loss rate: Cost = −log(1 − p) (minimizes the compound loss rate of the path)

• Greedy optimizer: We used a modified Dijkstra algorithm that, at each iteration,

computes the delay distribution of the selected partial paths and chooses the one with

the maximum delivery ratio.
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• Best route: All the possible paths and their delay distributions were computed, and

out of these the best one was selected. Obviously, this operation is very expensive,

mainly because of the memory limitation of storing all combinations of delay distri-

butions . Using a computer with 2GB memory, we could not compute the best route

for networks with more than 16 nodes.

As expected, for small diameter networks the loss-based routing achieves very good

results, as the delay of the links is less relevant. With the increase in the network diameter,

the latency-based routing achieves better results. At high latencies, the packet recovery

becomes less important than the risk of choosing a highly delayed path, with latency more

than the codec threshold. The expected latency routing achieves lower delivery ratio than

the loss-based routing for small diameter networks, but behaves consistently better than

the latency-based routing. The slight drop in delivery ratio for low diameter networks is

causing just a small change in VoIP quality (see Figures 6.1 and 6.2), while the robustness

at high network delays is very important. Interestingly, the greedy optimizer fails at high

latency networks, mainly due to wrong routing decisions taken early in the incremental

algorithm, without considering the full topology.

Our conclusion is that the expected latency metric, while being slightly worse than

other routing metrics for small diameter networks achieves better routing in high latency

networks, exactly where it is needed the most.

6.3 Routing limitations of overlay networks

Running overlay nodes in the user level space gives us great flexibility and usability,

but this comes at the expense of packet processing through the entire networking stack, and

process scheduling on the machines running the overlay nodes.

Executing overlay network functionality on loaded computers naturally degrades

the performance of the overlay system. This degradation is critical especially for latency
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Figure 6.14: Spines forwarding delay

sensitive VoIP streams. For example, if the overlay daemon runs as a user level process on

a computer that has other CPU intensive processes, it is common for the overlay network

system not to be scheduled for several hundred milliseconds, and even seconds, which of

course, is not useful for VoIP. In fact, our experience with another messaging system, the

Spread toolkit [74] that is commonly deployed on large websites, shows that on heavily

loaded web servers a process may be scheduled only after eight seconds. It is common

practice on such systems to assign the messaging system higher priority (real time priority

in Linux). For a VoIP service it is reasonable to expect that the overlay nodes will be well

provisioned in terms of CPU and networking capabilities.

6.3.1 Routing performance in Spines

It is interesting to evaluate the overhead of running the overlay nodes as regular

applications in the user space, and how the routing performance is affected by the amount
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of traffic or load on the computers. We deployed Spines in Emulab on a three node network

as shown in Figure 6.13, where the middle node B had two network interfaces and was

directly connected to nodes A and C through local area links. All the computers used were

Intel Pentium III 850MHz machines. The one-way UDP latency between node A and node

C measured sending 160 byte packets and adjusted with the clock difference between the

nodes was 0.189 msec.

We ran a Spines node on each node, using the real-time protocol on the links A−B

and B − C. Then we sent a varying number of voice streams in parallel (from 1 to 200

streams), consisting of 20000 packets of 160 bytes each, from node A to node C using

Spines. We measured the one way latency of each packet, adjusted by the clock difference

between machines A and C. When forwarding 200 streams, the middle node B running

Spines showed an average CPU load of about 40%. However, the sending node A, on which

both Spines and our sending application were running, reached a maximum 100% CPU

utilization.

Figure 6.14 shows the average latency of packets forwarded through Spines as the

number of parallel streams increases from 1 to 200, and compares it to the base network

latency measured with UDP probes. The standard deviation of all the measurements was a

very low 0.012, and the highest single packet latency measured, which happened when we

sent 200 streams in parallel, was 0.963 msec. What we see is that regardless of the number

of streams, the three Spines nodes add a very small delay totaling about 0.15 msec due to

user-level processing and overlay routing.

We evaluated the routing performance of Spines on a CPU loaded computer by

running a simple while(1) infinite loop program on the middle node B, and repeated the

above experiment. Running Spines with the same priority as the loop program, when

forwarding a single voice stream we achieved a very high packet delay average of 74.815 msec,

and the maximum packet delay was 154.468 msec. When competing with 4 loop programs

in parallel, with the same priority as Spines, the average packet delay for a single stream
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went up even more to 298.354 msec (about 900 times more than without CPU competing

applications), and the maximum packet delay was 604.917 msec. Obviously, such delays

are not suitable for VoIP. However, when we set real-time priority for the Spines process,

the high CPU load did not influence our performance. Even when competing with 10 loop

programs and a load of 200 streams, the average packet delay was a low 0.315 msec and the

maximum packet delay measured was 0.469 msec.

The performance of overlay routing at the application level can be highly affected

by the load on the supporting computers. However, this overhead can be easily reduced to

negligible amounts compared to wide area latencies simply by increasing the priority of the

overlay node applications. This should not be a problem in general, as the overlay node

applications do not use CPU unless they send packets, and if they do need to send packets

in a system dependent on real-time packet arrival, the overlay nodes should not be delayed.

Table 6.1: Planetlab sites

1 CMU 9 Univeristy of California, San Diego

2 Columbia University 10 University of Georgia

3 Dartmouth College 11 University of Maryland

4 Duke University 12 University of Oregon

5 Intel Research Berkeley 13 University of Virginia

6 Intel Research Seattle 14 University of Washington

7 MIT 15 University of Utah

8 Princeton University

6.3.2 Case study: Planetlab

Planetlab [64] is a large overlay testbed that can be seen as a collection of comput-

ers distributed around the world, each of them directly accessing the Internet. Currently

Planetlab has 403 nodes at 169 sites. As opposed to Emulab, which has a reservation mech-

anism that completely allocates computers to a particular experiment, Planetlab uses a

shared environment. Users create slices on each computer they need to run their programs

on, and each slice acts like a virtual machine, sharing the computer resources with other
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Figure 6.15: Planetlab - lost packets
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Figure 6.16: Planetlab - missed packets

users, running within their own slices. In the current deployment of Planetlab it is not pos-

sible to set process priorities higher than other processes in other slices, and the CPU load

and availability on the machines is dependent on the particular applications that various

researchers run at the same time.

Out of the sites in the US we found 15 to have computers synchronized to under

30 msec. The 15 sites are presented in Table 6.1. Note that our overlay protocols do not

require clock synchronization, but we do need synchronized clocks in our experiments to

evaluate the number of packets arriving within a certain delay constraint. The average

load measured on the machines at these sites varied from 0.56 to 5.95, with an average of

2.91 (i.e. at any point in time there are on average 2.91 processes ready and competing for

CPU), with only 2 nodes having a load below 1. Such a high load is expected and normal

for a shared testbed, and can be easily handled by Spines if we run it with real-time priority.

However, as we cannot set higher process priorities against users running in different slices,

we expect that any overlay path that uses at least an intermediate high CPU loaded node on

Planetlab, would delay much more packets than it can recover using the real-time protocol,

and therefore behave worse than the direct Internet connection between the end nodes.

It is interesting though to see how the real time recovery protocol behaves, even

at high CPU load, on the direct connections between the Planetlab nodes. We deployed
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a Spines overlay network consisting of a fully connected graph, such that each of the 15

overlay nodes had a direct overlay link to each of the other 14 nodes. We then sent streams

of 20000 packets, 160 bytes each at a rate of 50 packets/sec from each node to all the other

nodes, directly using UDP and also using Spines. We combined nodes in alternating groups

of 7 pairs, such that each node can only be a sender or a receiver at a time, but not both.

We also alternated UDP and Spines streams, so that we minimized as much as possible the

effect of loss or delay variations between the same nodes when running different streams.

We considered only 94 streams for which the minimum packet delay was less than

30 msec (so that the real-time protocol had a chance to recover any packets) and set the

delay threshold for the codec to be 115 msec (we add 15 milliseconds to compensate for

the 0 to 30 msec clock difference between the nodes). For each UDP and Spines stream we

counted the lost packets, the late packets (arriving at destination after more than 115 msec)

and the packets missed by the codec as the sum of both lost and late packets.

Figure 6.15 presents the CDF of the streams as a function of lost packets. First, we

see that many of the UDP streams in Planetlab are affected by loss. About 22% of the

UDP streams lost more than 0.25% of the packets, and about 4% of the UDP streams lost

more than 1% of their packets. Spines was able to recover almost all the packets for most of

the streams, such that there was only one stream that lost more than 0.25% of the packets.

That stream lost 609 packets total, most of them in three bursts of 102, 359 and 87 packets

respectively. We believe this happened either because of short outages between Planetlab

nodes, but most likely because Spines was not scheduled to run for several seconds.

Figure 6.16 presents the CDF of the streams as a function of missed packets. Even

though Spines did recover almost all of the packets, some of the recoveries did not arrive in

time at the destination, also due to process scheduling delays when sending retransmissions.

Nevertheless, while almost 27% of the UDP streams missed more than 0.25% of the packets,

only about 4% of the Spines streams had more than 0.25% of the packets missed.
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6.4 Integration with SIP in the the current Voice over IP

infrastructure

Given the large installed base of VoIP end clients and the even larger planned fu-

ture deployments, it is imperative that our system integrates seamlessly with the existing

infrastructure. We explain what are the necessary steps to achieve this in the rest of this

section.

The first component of the integration has to do with how VoIP clients are able to

find their closest Spines server. We assume that each domain that wants to take advantage of

the benefits provided by our system will deploy a Spines node as part of their infrastructure.

In this case VoIP clients can use DNS SRV [75] records to locate the Spines node that is

serving their administrative domain. This DNS query will return the IP address of (at least

one) Spines node that can serve as their proxy in the Spines overlay. Once this node is

found the VoIP clients can communicate with it using the interface we described in Section

2.2. Then, the VoIP clients have to direct media traffic to flow through the Spines network.

We have two proposed solutions for this issue: one that requires changes to the end-

clients and one that does not. We begin with the solution that requires “Spines-enabled”

clients. In the current architecture, the Session Initiation Protocol (SIP) [76] is used as

a signaling protocol so that the two communication endpoints can negotiate the session

parameters, including the IP address and ports that each client is waiting to receive me-

dia traffic on. A Spines-enabled VoIP client announces its capability using the parameter

negotiation feature that is part of SIP, within the initial INVITE SIP message. The VoIP

client includes in the same INVITE message the IP address and the Virtual Port that it’s

Spines server is waiting to receive media traffic for the client. If the peering VoIP client is

also Spines-enabled it will reply positively and include in its reply the address and Virtual

Port at its own server. On the other hand, if the peer is not Spines-enabled it will return

an error code indicating to the session initiator that it will have to revert to a “legacy”

session. After the SIP negotiation has successfully finished, each source will send media
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traffic through its local Spines server towards the Spines server indicated by the peer client.

As the traffic is forwarded through the overlay network, the egress Spines node will finally

deliver it to the destination VoIP client.

RTP [77] and RTCP data is sent seamlessly through the Spines network, offering the

end clients information about the network conditions along the overlay path they use.

While this first solution is architecturally pure, it requires changes to the end clients

which may not be initially possible. In this case, we propose to use a solution similar to

the NAT-traversal in SIP [78]. Specifically, Spines nodes will be required to intercept SIP

INVITE messages and change the IP address and ports to point to themselves rather than

to the VoIP clients. This way all the media traffic will flow through the Spines network

which will eventually deliver it to the end-hosts.
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Chapter 7

Conclusions

Overlay networks offer a very powerful concept that allows researchers and practi-

tioners to deploy user-level topologies on which application specific protocols can be used.

The additional flexibility of overlay networks can be used to provide new services, not

available in the current infrastructure, and also to improve performance of demanding ap-

plications. In order to facilitate experimentation for the research presented in this thesis,

and also to allow other researchers to deploy their own protocols, we developed an overlay

network system, and made it publicly available with an open source license.

This thesis introduced an overlay multicast architecture that is scalable with the

number of groups and participants. Our approach provides a transparent interface to ex-

isting multicast applications, and overcomes the deployment and usability limitations of IP

Multicast.

We presented a global flow control approach for reliable multicast and unicast in

overlay networks that is based on sound theoretical foundations. Our Cost-Benefit frame-

work provides a simple and flexible way to optimize flow control to achieve several desirable

properties such as near optimal network throughput and automatic adjustment to dynamic

link capacities. The resulting algorithm provides fairness between equal cost internal flows

and is fair with outside traffic, such as TCP.
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We presented a hop-by-hop reliability approach that considerably reduces the la-

tency and jitter of reliable connections in overlay networks. We quantified these effects in

simulations and in a real network environment.Our results show that the overhead associ-

ated with overlay network processing does not play an important factor compared with the

considerable gain of the approach. We also learned that having a small number of hops is

sufficient to capture most of the performance benefit of hop-by-hop reliability.

We analyzed that current loss and delay characteristics of the Internet and showed

that the current networking infrastructure inhibits the deployment of PSTN quality Voice

over IP. We proposed a deployable solution that can overcome the bursty loss pattern of the

Internet. Our solution uses an overlay network to segment end-to-end paths into shorter

overlay hops and attempts to recover lost packets using limited hop-by-hop retransmissions.

We present an adaptive routing algorithm that avoids chronically lossy paths in favor of

paths that will deliver the maximum number of voice packets within the predefined time

budget.
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