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Abstract

Distributed applications increasingly rely on messaging systems to provide

secure, uninterrupted service within acceptable throughput and latency parameters.

This is difficult to guarantee in a complex network environment that is susceptible

to a multitude of human or electronic threats, especially as network attacks have

become more sophisticated and harder to contain. Security is a critical component

of the survivability of such distributed messaging systems that operate in a dynamic

network environment and communicate over insecure networks such as the Internet.

This dissertation presents how security techniques can be integrated into

group communication systems, a particular case of distributed messaging systems,

while maintaining a reasonable level of performance. Many security services (data

secrecy, data integrity, entity authentication, etc) can be bootstrapped if members

of the group share a common secret, which makes key management a critical build-

ing block. We propose an architecture for secure group communication, relying on

a group key management protocol that is efficient, robust to process crashes and

network partitions and merges, and protects confidentiality of the data even when

long-term keys of the participants are compromised. We show how different group

communication semantics can be supported in the proposed architecture, discuss the

accompanying trust issues and present experimental results that offer insights into its

scalability and practicality.
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Şi pentru bunicii mei

Mitra şi Stancu Melinte

Ortansa Rotaru

iii



Acknowledgements

It never ceased to amaze me how things are linked in what finally becomes

one’s path in life. Family, friends, teachers, they all can have an influence on the

path one chooses. I am very fortunate to have a great family and wonderful friends,

colleagues, teachers and mentors, to whom I am deeply grateful.

I would not be here today if it wasn’t for my advisor, Dr. Yair Amir. I am

deeply grateful to Yair for giving me the opportunity to pursue my research interests,

for teaching me to think outside the box and always strive to be the best. His energy

and enthusiasm were a constant support during my years at the Center for Networking

and Distributed Systems, at Johns Hopkins University. I also learned from him to

look for interesting problems, that although challenging, have the potential of creating

a broad impact.

A great influence on my education as a researcher, had Dr. Gene Tsudik.

I am deeply grateful to Gene for introducing me to cryptography and group key

management, and for providing his expertise, encouragement and guidance during

several research projects that later on became part of my thesis.

I want to thank Dr. Giuseppe Ateniese for all his help during my years

at Hopkins. Giuseppe had always time and answers for all my questions regarding

cryptography. Many thanks to Giuseppe on the insightful comments provided on my

thesis and for agreeing to be on my thesis committee.

I am also thankful to Dr. Baruch Awerbuch for always bringing up interesting

problems to the lab, for helping me to keep up to date with “what’s new in the world

of science” and for the opportunity he gave me to teach interesting topics.

I would also like to thank Dr. Gerald M. Masson, the director of the Johns

iv



Hopkins Information Security Institute, for his support and for encouraging me to

pursue an academic career.

I also want to thank Michal Miskin-Amir for numerous useful discussions and

for her comments on many of the papers that I was involved with.

During my graduate life at Hopkins, there were many people that helped me,

either to focus on my work, or to forget about my work :). A big thank you to all

the people that are or were members of the Center for Networking and Distributed

Systems: Ashima, Ciprian, Chuck, Claudiu, Dave, Jacob, John, Jonathan, Herb,

Ryan C., Ryan S., Sophie, Theo. They helped making the lab a great place to be

part of. Special thanks go to Theo Scholsnaggle for his support in my first years at

Hopkins, to John Schultz and Jonathan Stanton for their help on the Secure Spread

project and to Herb and Dave who introduced me to wireless networks. All of them

are wonderful friends and colleagues. Many thanks also to Yongdae Kim, who always

had answers for any key management related question and who is a great collaborator.

I would also like to thank all the people at Hopkins who made my years here

pleasant, outside work: Ciprian (Chelba), Horatiu, Mihai, Dimitra, Lidia, Paola,

Mariana, Camelia, Silviu, Cristina, Roy, Nicole, Rich, Naomi, Gideon, and Noah.

My deepest thanks go to my long-time friends, now spread all over the world.

They kept me sane and connected to an important part of my life: Mari, Danut,

Monica, Mircea, Radu, AnneMarie, Laur, Natalia(Chiti), Corina, Mirela, Sabina,

Laura, Miki(Pufi), Catri, Sorin, Mihai, Monica, Razvan, Laurentiu, Dana, Marina,

Florin, Eugen and Theo.

All that I am today I owe to my family and to the love they always surrounded

me with. My parents are the most wonderful parents in the world, they supported me

in every thing that I ever attempted and made me believe that I can achieve anything

that I put my mind on. There are many things that I doubted in my life, I never

doubted their love and their support for me. I want to thank my sister Mona from

the bottom of my heart for her continuous support, generosity, and encouragement,

I can not imagine my life without her. I would also like to thank my brother-in-law

Eugen for his support ; My grandparents had a great influence of my life, especially

my grandmothers Mitra and Ortansa, who are role models for me.

v



And because you have to save the best for last, I want to thank my boyfriend,

Hans, for making life a lot easier and pleasant. I just don’t want to think how things

could have been otherwise.

vi



Contents

Abstract ii

Acknowledgements iv

Contents vii

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Group Communication Systems . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Cryptographic Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Group Key Management . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Encryption Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Message Authentication Codes and Digital Signatures . . . . . . . . 9

1.3 Focus and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Group Key Management . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2 Secure Group Communication Systems . . . . . . . . . . . . . . . . . 16

1.6 Spread Group Communication System . . . . . . . . . . . . . . . . . . . . . 18
1.7 Cliques Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Model 23

2.1 Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Group Communication Model . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Virtual Synchrony Semantics . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Extended Virtual Synchrony Semantics . . . . . . . . . . . . . . . . 29

3 Fault-Tolerant Key Agreement 32

3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Trust and Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Overview of the Group Diffie-Hellman Key Agreement Protocol . . . . . . . 35

vii



3.4 A Basic Robust Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.3 Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 An Optimized Robust Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.2 Handling Bundled Events . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.3 Security Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.4 Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Performance of Group Key Agreement Protocols 67

4.1 Layered Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2 Leave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.4 Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Experimental Results in LAN . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.1 Testbed and Basic Parameters . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Test Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.3 Join Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.4 Leave Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.5 Partition Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.6 Merge Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Experimental Results in WAN: An Extreme Case . . . . . . . . . . . . . . . 84
4.4.1 Testbed and Basic Parameters . . . . . . . . . . . . . . . . . . . . . 84
4.4.2 Join Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.3 Leave Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Integrated Secure Group Communication Architecture 89

5.1 Security Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Integrated Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Three-Step Client-Server . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 Integrated VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.3 Optimized EVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.1 Group Key Management . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.2 Data Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Layered Architecture vs. Integrated Architecture . . . . . . . . . . . . . . . 103
5.5 Integrated Architectures Variants Comparison . . . . . . . . . . . . . . . . 104
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Conclusions 107

viii



A Key Management Protocols 110

A.1 Group Diffie-Hellman Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.2 Centralized Key Distribution Protocol . . . . . . . . . . . . . . . . . . . . . 113
A.3 Tree Group Diffie-Hellman Protocol . . . . . . . . . . . . . . . . . . . . . . 114
A.4 STR Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.5 BD Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B Cliques GDH API 120

Vita 134

ix



List of Figures

2.1 Group Communication Service: Virtual Synchrony Semantics . . . . . . . . 27
2.2 Group Communication Service: Extended Virtual Synchrony Semantics . . 30

3.1 Secure Group Communication Service . . . . . . . . . . . . . . . . . . . . . 34
3.2 Basic Robust Key Agreement Algorithm . . . . . . . . . . . . . . . . . . . . 40
3.3 Optimized Robust Key Agreement Algorithm . . . . . . . . . . . . . . . . . 59

4.1 A Layered Architecture for Spread . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Join Average Time (LAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Leave Average Time(LAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Partition Average Time (LAN) . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Partition Clustering Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6 Merge Average Time (LAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7 WAN Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.8 Join and Leave Average Time (WAN) . . . . . . . . . . . . . . . . . . . . . 86

5.1 A Three-Step Client-Server Architecture for Spread . . . . . . . . . . . . . . 92
5.2 An Integrated VS Architecture for Spread . . . . . . . . . . . . . . . . . . . 95
5.3 An Optimized EVS Architecture for Spread . . . . . . . . . . . . . . . . . . 97
5.4 Key Agreement Cost: Layered Architecture vs. Integrated Architecture . . 99
5.5 Scalability with Number of Groups . . . . . . . . . . . . . . . . . . . . . . . 101
5.6 Data Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.1 TGDH Merge Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 TGDH Partition Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.3 STR Merge Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.4 STR Partition Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

x



List of Tables

3.1 Events Received by the Group Key Agreement Algorithm . . . . . . . . . . 39

4.1 Key Management Protocols Comparison: Communication Cost . . . . . . . 71
4.2 Key Management Protocols Comparison: Computation Cost . . . . . . . . 72

5.1 Secure Group Communication Integrated Architectures . . . . . . . . . . . 105

xi



List of Algorithms

1 Initialization of Global Variables . . . . . . . . . . . . . . . . . . . . . . . . 44

2 Code Executed in SECURE (S) State . . . . . . . . . . . . . . . . . . . . . 45

3 Code Executed in WAIT FOR PARTIAL TOKEN (PT) State . . . . . . . 46

4 Code Executed in WAIT FOR KEY LIST (KL) State . . . . . . . . . . . . 47

5 Code Executed in WAIT FOR FINAL TOKEN (FT) State . . . . . . . . . 48

6 Code Executed in COLLECT FACT OUTS (FO) State . . . . . . . . . . . 49

7 Code Executed in WAIT FOR CASCADING MEMBERSHIP (CM) State . 50

8 Code Executed in WAIT FOR SELF JOIN (SJ) State . . . . . . . . . . . . 61

9 Code Executed in WAIT FOR MEMBERSHIP (M) State . . . . . . . . . . 62

10 GDH Merge Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11 GDH Partition Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

12 CKD Merge Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

13 CKD Partition Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

14 TGDH Merge Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

15 TGDH Partition Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

16 BD Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xii



Chapter 1

Introduction

Ubiquitous information access and communication have become essential to ev-

eryday life, global business, and national security. Activities including personal and multi-

national financial transactions, studying and teaching, shopping for goods (such as books,

cars, software and even groceries), or managing modern battlefields have fundamentally

changed over the last decade as a result of the expanding capabilities of computers and

networks. Most such activities are in fact supported by distributed applications which in

turn increasingly rely on messaging systems to provide secure, uninterrupted service within

acceptable throughput and latency parameters. This is difficult to guarantee in a complex

network environment that is susceptible to a multitude of human or electronic threats,

especially as network attacks have become more sophisticated and harder to contain.

A distributed messaging system is an abstraction layer that is built on top of an

underlying network and provides distributed applications with services not available from

the native network (for example built-in security, ordered message delivery, etc) or with

improved services (for example higher availability, improved reliable delivery, etc). Group

communication systems, overlay networks, and middleware are examples of messaging sys-

tems serving as infrastructure for applications such as web clusters, replicated databases,

scalable chat services and streaming video.

In the context when many applications are expected to run over the Internet, the

need for security in computing and communication became a necessity. We note that also

for applications running in local area networks, particularly in commercial environments,

security is required to ensure restricted access to data and to protect communication ac-

cording to regulations and hierarchical structures specific to a company. Although not an

1
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independent service, security is an enabling feature without which the actual end-services

cannot be trusted or relied upon. To this end, the research community has invested a lot

of effort in investigating and developing effective and efficient security services. Numerous

algorithms, protocols, frameworks and policy languages have been developed to provide se-

curity services in point-to-point or group-based communication models. However, there has

not been much research into the integration of security techniques into distributed systems,

while maintaining a reasonable level of performance.

This dissertation focuses on providing security services for a particular type of

distributed messaging systems, group communications systems. More precisely, it presents

how security services can be integrated into group communication systems without sacrific-

ing high-availability and performance. The challenge lies in understanding the advantages

and limitations of security protocols when integrated with group communication systems

and the effect this interaction has on the overall fault-tolerance and performance of the

system.

The rest of the chapter is organized as follows. We first introduce group commu-

nication systems and briefly overview basic cryptographic mechanisms we used in designing

the security services for our secure group communication system. Since a critical building

block of a secure group communication system is group key management, we concentrate

on key management protocols. We then specify the focus and the contributions of this

dissertation. We continue with overviewing related work in the areas of group key manage-

ment protocols and secure group communications systems and describing the roadmap of

the dissertation. We end by presenting in detail Spread, the group communication system

which is the focus of this work and Cliques, the key management cryptographic library that

was used as developing tool in designing our secure group communication system.

1.1 Group Communication Systems

Group communication systems are distributed messaging systems that enable ef-

ficient communication between a set of processes logically organized in groups and commu-

nicating via multicast in an asynchronous environment. More specifically they provide two

services: group membership and reliable and ordered message delivery. The membership

service provides all members of a group with information about the list of current connected

and alive group members (also referred as a view) and notifies the members about every



3

group change. A group can potentially change because of several reasons. In a fault-free

network, the group change can be caused by members voluntarily joining or leaving the

group. However, faults can happen, for example processes can get disconnected or crash,

or network partitions can prevent members from communicating. When faults are healed,

group members can communicate again. All the above events can also trigger changes in

the group membership.

The reliable and ordered message delivery includes several services. The basic

ordering service is FIFO that guarantees that messages are delivered to recipients in the

order they were sent by the sender. Stronger ordering services are CAUSAL that ensures

that messages are delivered to destination in causal order and AGREED that delivers mes-

sage in total order. The strongest service is SAFE delivery, that provides both ordering

and reliability guarantees, messages are delivered in total order and delivered to recipients

unless they crash. More details about these services are provided in Section 2.2.

Group communication systems are strongly connected with fault-tolerance. The

strong services provided by group communication systems made them appealing to be used

as developing tool or infrastructure for numerous fault-tolerant applications ranging from

the classical replications applications to the more recent fault-tolerant CORBA. Examples

of applications that can take advantage of group communication systems include:

• replication using a variant of the state machine/active replication approach (1; 2),

such as (3; 4; 5; 6; 7);

• primary-backup replication (8);

• distributed transactions and database replication (9; 10; 11; 12; 13);

• distributed and clustered operating systems (14; 15; 16);

• collaborative applications such as collaborative computing (17; 18) (19), distance

learning (20), video and audio conferences (21), application sharing (22);

• resource allocation (23; 24) and load balancing (25; 26);

• system management (27), cluster management (28) monitoring (29) and distributed

logging (30);

• highly available servers: management (31), (32) video on demand servers (33);
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• real-time applications (34);

• provision of object group services within CORBA (Electra (35), Eternal (36) and the

Object Group Service (37).

The core mechanism of group communication systems is achieving agreement about

group membership views and about the order of delivering messages, between multiple

participants, communicating in an asynchronous environment with failures. However, many

agreement protocols were proved to have no solution in asynchronous systems with failures

(38). Practical group communication systems overcome the problem by using time-out

based failure detection to detect network connectivity and process faults. The risk of such

an approach is that alive and connected members communicating on links that suffer from

high delay, can be excluded from the group membership. If the network is stable, group

communication systems reflect the current list of connected and alive group members.

The membership and reliable and ordered message delivery services were formal-

ized in two main group communication models: Virtual Synchrony (39) and Extended

Virtual Synchrony (40). The main difference between the models comes from the relation

between the views in which messages are sent and delivered. We discuss this aspect in

details in Chapter 2.

Group communication systems have been built around a number of different archi-

tectural models, such as peer-to-peer libraries, 2- or 3-level middle-ware hierarchies, modular

protocol stacks, and client-server. To improve performance, modern group communication

system use a client server architecture where the expensive distributed protocols are run

between a set of servers, providing services to numerous clients. In this architecture the

client membership service is implemented as a “light-weight” layer that communicates with

a “heavy-weigh” layer asynchronously using a FIFO buffer. In such a model, an application

using the group communication system as infrastructure, will link with the group commu-

nication client library in order to get access to the membership and ordering and reliable

message delivery provided by the servers.

Security is crucial for distributed and collaborative applications that operate in a

dynamic network environment and communicate over insecure networks such as the Internet.

Basic security services needed in such a dynamic peer group setting are largely the same as in

point-to-point communication. The minimal set of security services that should be provided

by any group communication system include: client authentication and access control as
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well as group key management, data integrity and confidentiality. More specifically:

• Client authentication. Any client should be authenticated when it requests access to

the group communication system, e.g., when it connects to a group communication

system server.

• Access control. It is not enough that a client was authenticated, he also must be

authorized to access system resources. Typical group communication resources are:

joining or leaving a group and sending messages to a group.

• Group key management. Group key management protocols specify how members of a

group can compute a shared group key and how that key is refreshed. For example the

key can change when the list of group members changes, or it can change based on a

time-out or data-out indicators. The shared key can be used to bootstrap other group

services, i.e., data integrity and confidentiality. These services cannot be attained

without secure, efficient and fault-tolerant group key management.

• Integrity and confidentiality. All the communication between group members should

be protected both from eavesdropping and undetected modification.

1.2 Cryptographic Mechanisms

Security services or goals are in general achieved by employing a set of crypto-

graphic mechanisms. The set of cryptographic primitives used to provide security services

are referred in cryptography as cryptosystems (41). There are two main ways of designing

cryptosystems. One approach, is based on the assumption that the participants share a

common secret (key). In this case, the secret key is used both for encryption and decryp-

tion. This is referred as symmetric cryptography and cryptosystems using it are known as

symmetric cryptosystems. Another approach uses two different keys: one for encryption

and the other decryption, one of the key is public and the other is secret. The two keys are

mathematically related. This approach is referred as public cryptography and cryptosystems

design based on this concept are referred as asymmetric cryptosystems.

In general public keys are bind to their owners by using a Public Key Infrastructure

(PKI). A PKI not only that provides means to link a specific public key with its owner, but

also allows distribution of these keys in large networks.
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The main components of a PKI are:

• Public Key Certificate: It represents an electronic record that binds a public key to

the owner of the public key. It also digitally binds the certificate to the entity that

issued it and specifies limits to the validity of the certificate.

• Certification Authority (CA): It is an entity that issues and revokes public key certifi-

cates.

• Certificate Revocation List (CRL): It represent a list of certificates that have been

revoked.

Algorithms employing symmetric cryptography are usually about 3-4 orders of

magnitude faster than algorithms employing public cryptography, which makes them more

appealing for encryptions data-streams. Although more expensive, public cryptography

techniques have the advantage that they do not require any secret to be shared between

parties. A common application for public encryption is to distribute secret keys that can

then be used to encrypt data using algorithms based on symmetric cryptography.

In this section we give a high-level description of the main cryptographic techniques

we used to design secure group communication systems: group key management, encryption

algorithms, message authentication codes and digital signatures.

1.2.1 Group Key Management

As discussed above many efficient security services rely of the fact that participants

share a common secret. The process whereby a shared secret becomes available to two or

more parties is known as key establishment. An important aspect with respect to the shared

key, is how it is replaced, when necessary. This is achieved by key management protocols

that in addition to key establishment, provide maintenance of ongoing keying relationships

between parties, including replacing older keys with newer keys. In the context of groups,

the shared secret is referred as group key and the protocols that define how such a key can

be computed and how is it periodically refreshed, is referred in the literature as group key

management protocols.

There are several desirable security properties for key management protocols.

1. Group Key Secrecy. This property guarantees that it is computationally infeasible for

a passive adversary to discover any group key.
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2. Forward Secrecy. This property guarantees that a passive adversary who knows a

contiguous subset of old group keys cannot discover subsequent group keys.

3. Backward Secrecy. This property guarantees that a passive adversary who knows a

contiguous subset group keys cannot discover preceding group keys.

4. Key Independence. This is a strong property that guarantees that a passive adversary

who knows a proper subset of group keys cannot discover any other group key. It

includes the previous three properties.

5. Perfect Forward Secrecy. This is a strong property that specifies that even when long-

term key of participant get compromised, the secrecy of past group keys is preserved.

There are two important aspects of any key management protocol. One defines how

the key is selected or computes (key selection), the other one specifies how the participants

obtain the key (key distribution). Traditional centralized key management relies on a single

fixed key server to generates and distributes keys to the group. This approach does not

work correctly for group communication systems that guarantee continuous operation in

any possible group subset and any arbitrary number of partitions in the event of network

partitions of faults. Although a server can be made constantly available and attack-resistant

with the aid of various fault-tolerance and replication techniques, it is very difficult (in a

scalable and efficient manner) to make a centralized server present in every possible group

subset. We note that centralized approaches work well in one-to-many multicast scenarios

since a key server (or a set thereof) placed at, or very near, the source of communication

can support continued operation within an arbitrary partition as long as it includes the

source.

The requirement of providing continued operation in an arbitrary partition can be

overcome by dynamically selecting a group member to act as a group key server. However,

most centralized key distribution protocols do not provide strong security properties such as

key independence and perfect forward secrecy because they encrypt new group keys using

old group keys using symmetric encryption, or they encrypt group keys with long term

group keys in which case by breaking the long term key an attacker can get access to all

session group keys.

The above strong properties can only be provided if the key server maintains pair-

wise secure channels with each group member in order to distribute group keys and refreshes
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them every time it needs to distribute a new group key. Although this approach seems ap-

pealing, each time a new key server comes into play, significant costs must be incurred to set

up pairwise secure channels. In addition, this method has a minor disadvantage (common

with the centralized fixed server case) in that it relies on a single entity to generate good

(i.e., cryptographically strong, random) keys.

Another approach is to use a fully distributed contributory group key management

where a group key is not selected by one entity, but, instead, is a function of each group

member’s contribution. This avoids the issues with centralized trust, single point of failure

(and attack) and the requirement to establish pairwise secret channels, and provides strong

security properties such as forward and backward secrecy, key independence and perfect

forward secrecy (41).

1.2.2 Encryption Algorithms

One important security concern in network communication is confidentiality or se-

crecy of the data. Encryption algorithms were design to address this problem. As mentioned

before, there are two main ways of designing encryption algorithms: one using symmetric

cryptography and the other using public cryptography. For efficiency reasons, the preferred

method is symmetric cryptography which in turn requires the involved parties to share a

common secret.

There are two main classes of encryption algorithms: block ciphers and stream

ciphers. A block cipher is an encryption scheme which breaks up the plaintext messages

to be sent over the network into strings of fixed length, and encrypts one block at a time.

Examples of block ciphers include DES (42), Triple-DES (42), Skipjack (43), Blowfish (44),

AES (45). Because block cipher algorithms define how to map a block of a fixed length,

when used to encrypt messages of variable and longer size, block cipher algorithms are used

in encryption modes of operation. Encryption modes specify what is the relation between

the encrypted blocks and subsequent data and encrypted data. The four most common

modes are ECB, CBC, CFB and OFB, (46; 47). For a detailed description of the modes

and discussion of the advantages and disadvantages of each of them, the reader is referred

to (41).

In addition to providing confidentiality, block cipher algorithms can be used as fun-

damental building block for construction of other cryptographic primitives such as pseudo-
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random number generators, stream ciphers, message authentication codes and hash func-

tions.

Another important class of encryption algorithms are stream ciphers. They en-

crypt the characters of a message one at a time, using an encryption transformation which

varies with time. The concept behind stream ciphers is to simulate the one-time pad which

is unconditionally secure regardless of the statistical distribution of the plaintext. In such

a scheme the symmetric key used to encrypt must have a length equal to the length of

the data being encrypted and used only once. Examples of stream ciphers include RC4

(48) and SEAL (49). As oppose to block cipher protocols, stream ciphers are faster. How-

ever, they were less used in practice because of proprietary claims, while many block cipher

implementations were in the public domain.

1.2.3 Message Authentication Codes and Digital Signatures

An important security service besides confidentiality is data integrity which ensures

that a message was not modified between source and destination. The simplest method to

achieve this is by having the source to compute a one-way function (hash) on the message

and send it together with the message to the destination. Hash function are not invertible

and therefore it is very difficult for an attacker to be able to recover the message from

the result of applying the hash function. When the destination receives the message, it

computes the hash on the received message and compares it with the received hash. If the

two hash value are different then the message was modified by a potential attacker and

should be rejected. Otherwise, the integrity of the message from source to destination was

preserved. Examples of hash functions include: MD5 (50) and SHA1 (51).

When receiving a message, it is very important for the recipient to be able to

authenticate the source of the message: is it coming from a trusted party or not. The

standard way to do this is by using a shared key, which implies that whoever had the key

was able to generate the result. A largely used scheme is called HMAC (52). It provides

both message integrity by using a one-way hash function and source authentication by

relying on a secret key between the communicating parties.

A different method to provide data source authentication is by using digital sig-

natures. Digital signatures are a direct application of public encryption cryptography: the

sender encrypts the message with the private secret key (“signs the message”), and the
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destination decrypts the message by using the public key (“verifies the message”). When

combined with a hash method(instead of signing the message, the hash of the message is

signed), digital signatures provide both data integrity and authentication.

In addition to source authentication, digital signatures provide non-repudiation

of the source of a message because the secret key used to generate the digital signature

is associated with only one entity. However, because of their increased cost (about 3 to 4

orders of magnitude more expensive than symmetric cryptography based schemes), if non-

repudiation is not a required service, it is desirable to use a method like HMAC, instead of

digital signatures. Examples of digital signatures schemes include RSA (53) and DSS (54).

We note that digital signatures schemes that require a small time to verify the signature

(for example RSA) are more appropriate for systems where communication is achieved via

multicast.

Digital signatures are also used to bind a public key certificate to the CA that

issued it. A CA digitally signs the content of any public key certificate it issued. Another

entity can accept a public key certificate, if it was signed by a CA it trusts and the signature

verifies.

1.3 Focus and Contribution

This dissertation focuses on designing high-performance and efficient secure archi-

tectures for group communication systems. Since many group communication systems are

built around a client-server architecture where a relatively small number of servers provide

group communication services to numerous clients, for performance and scalability reasons,

we focus on a system using this architecture. More precisely, we focus on securing Spread

(55), a local and wide area group communication system.

Secure, robust and efficient key management is a critical building block for secure

group communication. However, designing key management protocols – that are robust and

efficient in the presence of network and process faults – is a big challenge. An important

contribution of the dissertation is showing how multi-round group key agreement protocols

can be made fault-tolerant, by using the membership and reliable and ordered message

delivery services of group communication systems.

Key management protocols have a big impact not only on the fault-tolerance

of the system, but also on the performance, since they can become a bottleneck of the
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system. As part of the dissertation we analyze both theoretically and experimentally four

well-known key agreement protocols and compare them with a centralized key distribution

protocol adapted to provide the same security properties: key independence and perfect

forward secrecy. We believe that the contributions of this work are valuable to both group

communication and security research communities. The actual costs associated with group

key management have been poorly understood in the past. Consequently, there has been

a dual undesirable tendency: on the one hand, adopting suboptimal security for reliable

group communication, while, on the other hand, constructing excessively costly group key

management protocols.

We distinguish among two basic approaches to integrate security services into a

client-server group communication system. The first approach, referred to as the layered

architecture, places security services in a client library layered on top of the group commu-

nication system client library. The second approach entails housing some (or all) security

services at the servers in order to obtain a more scalable design, referred to as the inte-

grated architecture. We show how both such architectures can be achieved for Spread and

provide a comparison and experimental results that offer insights into their scalability and

practicality.

More specifically, the contributions of this dissertation are:

1. We design a secure and robust group communication service by combining contrib-

utory group key agreement protocols with a reliable group communication service

supporting Virtual Synchrony semantics. Specifically , we present two robust contrib-

utory key agreement protocols (basic and optimized) that are resilient to any finite,

potentially cascaded, sequence of events. The protocols are based on the Group Diffie-

Hellman (GDH) (56) key agreement. We prove that our protocols preserve the Virtual

Synchrony group communication properties and does not break the security properties

of the Group Diffie-Hellman key agreement protocol.

2. We provide an insight into the costs of adding security services to group communica-

tion systems, focusing on group key management, by presenting a theoretical analysis

of four notable group key agreement methods with respect to communication and

computation costs and comparing them with a centralized protocol modified to pro-

vide similar security properties (e.g. key independence and perfect forward secrecy).

In addition, we provide an in-depth experimental evaluation of these protocols imple-
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mented in the same framework. We present results obtained from live experiments

with various types of group membership changes (join, leave, partition and merges)

over both local and wide area networks. These results provide valuable insights into

the protocols’ scalability and practicality.

3. We present a high-performance security architecture for Spread, under two well-known

group communication semantics: Virtual Synchrony (39) and Extended Virtual Syn-

chrony (40). Both models support network partitions and merges. Our approach

entails using contributory group key management in a light-weight/heavy-weight (5)

group architecture such that the cost of key management is amortized over many

groups, while each group has its own unique key. We propose three variants of an

integrated architecture that trade off encryption cost for complexity and group com-

munication model support. We discuss their performance and security guarantees and

compare them to a layered approach, demonstrating the increased scalability.

1.4 Organization of the Dissertation

Chapter 1 introduces group communications systems and cryptographic mechanisms

used to provide security services. Then it layouts the focus and contributions of the disser-

tation and presents a survey of notable prior work in the areas of key management protocols

and secure group communication systems. Finally, it describes Spread, the group communi-

cation system that is the focus of this work and Cliques, the key management cryptographic

library used in the implementation of our secure group communication system.

Chapter 2 describes the failure model and the group communication semantics assumed

for this work.

Chapter 3 focuses on fault-tolerant group key agreement, by demonstrating how prov-

ably secure, multi-round group key agreement protocols can be combined with reliable group

communication services to obtain provably fault-tolerant group key agreement solutions.

More precisely, it presents two robust contributory key agreement protocols which are re-

silient to any sequence (even cascaded) of events while preserving group communications

membership and ordering guarantees. Both protocols are based on the Group Diffie-Hellman

contributory key agreement protocol that generalizes on the two-party Diffie-Hellman (57)
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key exchange and uses the services of a group communication system supporting Virtual

Synchrony semantics.

Chapter 4 analyses five popular key management protocols for collaborative peer groups,

integrated with a reliable group communication system They are: Centralized Group Key

Distribution (CKD), Burmester-Desmedt (BD), Steer et al. (STR), Group Diffie-Hellman

(GDH) and Tree-Based Group Diffie-Hellman (TGDH). The chapter describes the frame-

work used to experiment with the protocols, a layered architecture for Spread. It then

provides an in-depth comparison and analysis of the five protocols based on experimental

results obtained in real-life local and wide area networks, for all possible groups events,

including partitions and merges. The analysis of the protocols’ experimentally measured

performance offers insights into their scalability and practicality.

Chapter 5 presents several integrated security architectures for Spread, a client-server

group communication systems. The chapter discusses the benefits and drawbacks of each

proposed architecture and compares them with a layered architecture. It then presents

experimental results that demonstrate the superior scalability of an integrated architecture.

Chapter 6 concludes this work and summarizes the contributions of this dissertation.

1.5 Related Work

There are two major directions in secure group communication research. The first

one aims to provide security services for IP-Multicast and reliable IP-Multicast like groups.

These type of groups are very large and are managed centrally; they assume one sender

and many receivers. Typically, one-to-many settings only aim to offer continued operation

within a single partition that includes the source, and is less concerned with providing a

strong group membership service. Since the presence of a shared secret can be used as a

foundation of efficiently providing data confidentiality and data integrity, a lot of work has

been done in designing very scalable key management protocols.

The second major direction in secure group communication research is securing

application level multicast systems, also known as group communication systems. These

systems assume a many-to-many communication model where each member of the group
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can be both a receiver and a sender, and provide reliability, strong message ordering and

group membership guarantees, with moderate scalability. These systems typically provide

continuous operation in the presence of faults, network partitions and merges, making the

group key management more difficult that in single-source groups because of the availabil-

ity and robustness requirements. Work done in securing group communication systems

goes beyond key management, since these systems aim to provide security services such

as confidentiality, integrity and resilience to different type of attacks on the membership

protocol.

In this chapter we consider related work in two areas: group key management and

secure group communication systems.

1.5.1 Group Key Management

Cryptographic techniques for securing all types of multicast or group-based proto-

cols require all parties to share a common key. Group key management protocols generally

fall into two classes:

• Protocols designed for large-scale (e.g., IP Multicast) applications with a one-to-many

communication paradigm and relatively weak security requirements (58; 59; 60). Most

of these protocols are centralized key distribution schemes, one or a few centralized

authorities distribute keys to all members of the group.

• Protocols designed to support tightly-coupled dynamic peer groups with medium scal-

ability requirements, a many-to-many communication paradigm and strong security

requirements (61; 56). Both distributed group key distribution and contributory group

key agreement methods were designed in such settings.

Many protocols of the first type are being developed in the context of the GSEC

IRTF research group and MSEC IETF working group. Examples of such protocols are:

the Group Key Management Protocol (GKMP) (59), Multicast Key Management Proto-

col (MKMP) (62), the Scalable Multicast Key Distribution (SMKD) (63) approach based

on the Core Based Trees (58), Intra-domain Group Key Management Protocol (IGKMP)

(60), the VersaKey Framework (64), Logical Key Hierarchy Protocol (LKH) (65), One-way

Function Trees (66), Group Secure Association Key Management Protocol (GSAKMP)(67),

GSAKMP-light (68), Group Domain of Interpretation (GDOI) (69), while (70) defines an
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architecture for large scale group key management. Since the focus of our work is on dy-

namic peer groups key management, we discuss only distributed group key distribution and

contributory key agreement protocols.

Most of the group key agreement schemes (56; 71; 61; 72; 73; 74) extend the

well-known Diffie-Hellman key exchange (57) method to groups of n parties.

Steer et al. proposed a group key agreement protocol (71) for static conferencing.

While the protocol is well-suited for adding new group members as it takes only two rounds

and two modular exponentiations, is relatively expensive when excluding members.

In 1994, Burmester and Desmedt (61) proposed an efficient key management pro-

tocol. The goal was to minimize the amount of computation that each group member must

perform. It takes three modular exponentiations per member to generate a group key allows

all members to re-compute the group key for any membership change with a constant small

CPU cost. However, this distribution of the computation effort is achieved by using 2n

simultaneous broadcast messages. The communication overhead can become significant on

wide area networks.

More recently Tzeng and Tzeng designed an authenticated key agreement scheme

based on secure multi-party computation (73). Their protocol is optimized in terms of the

number of the communication rounds, but still uses 2n simultaneous broadcast messages.

Although its cryptographic mechanism is elegant, the resulting group key does not provide

perfect forward secrecy (PFS) which represents a major drawback.

Steiner et al. address dynamic membership issues (56) in group key agreement

and propose a family of Group Diffie-Hellman (GDH) protocols based on straight-forward

extensions of the two-party Diffie-Hellman protocol. Their protocol suite is fairly efficient

in leave and partition operation, but the merge protocol requires as many rounds as the

number of new members to complete the key refresh protocol. All of the protocols in the

suite scale linearly with the group size in the number of serial exponentiations required to

change the group key. The entire protocol suite has been proven secure with respect to

both passive and active attacks (75; 76).

Follow-on work focused on providing more efficient protocols by using tree struc-

tures. In (72), the efficiency is achieved in computation, the protocol scaling logarithmically

with the group size in the number of exponentiations, while in (74) the focus shifts on min-

imizing the communication.
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Dynamic group key distribution methods are also amenable to dynamic peer

groups. CKD is a very simple example of distributed key distribution, where the oldest

group member acts as a key distribution center and in the event of a partition or a leave

of the center, the role shifts to the oldest remaining member. Rodeh et al. proposed

more advanced key distribution protocols, combining a key tree structure with dynamic key

server election (77) or taking advantage of efficient data structures such as AVL trees (78).

Although the communication and computation costs are appreciably lower than those in

CKD, the protocol does not provide forward secrecy, key independence and perfect forward

secrecy.

1.5.2 Secure Group Communication Systems

Research in group communication systems operating in a local area network (LAN)

environment has been quite active in the last 15-20 years. Initially, high availability and

fault tolerance were the main goals. This resulted in systems like ISIS (79), Transis (80),

Horus (81), Totem (82), and RMP (83). These systems explored several different models

of group communication such as Virtual Synchrony (39) and Extended Virtual Synchrony

(40). More recent work in this area focuses on scaling group membership to wide area

networks (WAN) (84; 85).

With the increased use of group communication systems over insecure open net-

works, some research interest shifted to securing group communication systems. Research

on securing group communication is fairly new. The only implementations of group com-

munication systems that focus on security (in addition to ours) are the SecureRing (86)

project at UCSB, the Horus/Ensemble work at Cornell (78; 87) and the Rampart system

at AT&T (88).

The core of any group communication system is a membership protocol. Some of

the work in securing group communication focused on protecting the membership proto-

col in the presence of Byzantine faults. This includes systems such as Rampart (88) and

SecureRing (86). Rampart builds its group multicast over a secure group membership pro-

tocol achieved by the means of two-party secure channels. The SecureRing system protects

the low-level ring protocol by using digital signatures to authenticate each transmission of

the token and each data message received. Both systems exhibit limited performance since

they use costly protocols and make use intensively of public key cryptography.
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In addition to the membership service, group communication systems provide reli-

able ordered message delivery within a group. To make this secure, group members (senders)

must be authenticated and confidentiality and integrity of client data must be guaranteed.

One notable result in this area is the Horus/Ensemble work at Cornell (89; 78; 87). Ensem-

ble achieves data confidentiality by using a shared group key obtained by means of group

key distribution protocols. Although efficient, the scheme does not provide forward secrecy,

key independence and perfect forward secrecy. Ensemble uses as authentication the popular

PGP (90) method. In addition, the system allows application-dependent trust models in

the form of access control lists which are treated as replicated data within a group. Recent

research on Bimodal-Multicast, Gossip-based protocols (91) and the Spinglass system has

largely focused on increasing the scalability and stability of reliable group communication

services in more hostile environments such as wide-area and lossy networks by providing

probabilistic guarantees about delivery, reliability, and membership.

Some other approaches focus on building highly configurable dynamic distributed

protocols. Cactus (92) is a framework that allows the implementation of configurable pro-

tocols as composition of micro-protocols. Survivability of the security services is enhanced

by using redundancy for specific security services. For example, in (93), redundancy of data

confidentiality is obtained by encrypting data multiple times, each time using a different

encryption algorithm. This approach is not appropriate for data-stream applications where

throughput is a concern.

Another toolkit that can be used to build secure group oriented applications is

Enclaves (94). It provides group control and communication (both point-to-point and mul-

ticast) and data confidentiality using a shared key. The group utilizes a centralized key

distribution scheme where a member of the group (group leader) selects a new key every

time the group changes and securely distributes it to all members of the group. The main

drawback of the system is that it does not address failure recovery when the leader of the

group fails.

A collaborative application can have its own specific security requirements and

its own security policy. The Antigone policy (95) framework allows flexible application-

level group security policies in a more relaxed model than the one usually provided by

group communication systems. Policy flavors addressed by Antigone include: re-keying,

membership awareness, process failure and access control. The system implements group

rekeying mechanisms in two flavors: session rekeying - all group members receive a new
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key, and session key distribution - the session leader transmits an existing session key.

Both schemes present some problems: distributing the same key when the group changes

breaks perfect-forward-secrecy, while the session rekeying mechanism although can detect

the leader’s failure, can not recover from it.

Unlike the aforementioned systems, our approach focuses on the use of contributory

key agreement as a building block for other security services in Spread (55). Contributory

key agreement protocols provide strong security properties, they guarantees that the com-

promise of any subset of group keys does not lead to the compromise of a group key and

even that the compromise of a long-term secret key will not lead to the compromise of any

group key. Our work investigates the inter-relation between key agreement and group com-

munication system. We designed and implemented the first robust contributory group key

agreement protocol. Moreover, our secure group communication system supports strong

group communication semantics: Virtual Synchrony and Extended Virtual Synchrony.

1.6 Spread Group Communication System

Spread (55) is a general-purpose group communication system for wide- and local-

area networks. It supports a many-to-many communication paradigm where any group

member can be both a sender and a receiver. Although designed to support small- to

medium-size groups, it can accommodate a large number of collaboration sessions, each

spanning the Internet. Spread scales well with the number of groups used by the application

without imposing any overhead on network routers.

The main services provided by the system are reliable and ordered delivery of mes-

sages (FIFO, causal, total order, safe) and a membership service in a model that considers

benign network and computer faults (crashes, recoveries, partitions and merges).

The system consists of a server and a client library that an application using the

group communication systems as a communication infrastructure must link with. The client

library provides an API interface that allows a client to connect/disconnect to a server, to

join and leave a group, and to send and receive messages.

The client and server memberships follow the model of light-weight and heavy-

weight groups (96). This architecture amortizes the cost of expensive distributed protocols,

since these protocols are executed by a relatively small number of servers, as opposed to

having all clients participating. Another advantage of this architecture is that a simple join
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or a leave of a client process translates into a single message, instead of a full-fledged mem-

bership change. Only network partitions 1 incur the heavy cost of a full-fledged membership

change.

The servers maintain the groups membership, data flow control and the reliability

and ordering of messages. Because all the above services are managed by the servers and

not at the individual process group level, they are more efficient.

A client can be a member of more than one group. The global orderings and

reliability (Causal, Agreed, Safe) are provided across all groups in the system. If two

messages are sent by different clients to different groups, any client who has joined both

groups will receive the two messages according to the requested ordering service, even

though they are received in different groups.

The toolkit is highly configurable, allowing the user to tailor it to their needs.

Spread can be configured to use just one server in the world or to use one server on every

machine running group communication applications. The best performance when there are

no faults is achieved when a daemon is available on every machine, while using a smaller

number of servers decreases the cost of recovery.

Spread supports two well-known group communication semantics, Virtual Syn-

chrony (VS) (5; 97) and Extended Virtual Synchrony (EVS) (40; 4) (see (98) for a com-

prehensive survey of group communication models). The VS service is provided by a client

library implemented on top of the library providing EVS semantics.

Both group semantics guarantee that group members define that group members

will see the same set of messages between two sequential group membership events and that

the order of messages requested by the application is preserved. They also guarantee that

all messages are delivered in the same view. However, there is a major difference in this last

aspect: while VS guarantees that messages are delivered to all recipients in the same view

as the sending application thought it was a member of at the time it sent the message (also

known as Sending View Delivery), EVS guarantees that messages will be delivered in the

same group view to connected members (also known as the Same View Delivery property).

Note that, in the EVS case, the delivery view can be different from the sending view.

The VS service is easier to program and understand, while the EVS service is more

general and has better performance. The VS service is slower, since it requires application-

1By a network partition we mean connectivity changes due to networking hardware, routing, or a machine
crash.
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level acknowledgments for every group change. Moreover, it requires closed groups seman-

tics, allowing only current members of the group to send messages to the group. EVS, in

contrast, allows open groups where non-member clients can send to a group.

When securing a group communication system providing VS semantics, it is both

natural and efficient to use a shared group key associated with a group view (securely

refreshed upon each membership change) for data confidentiality. A message is guaranteed

to be encrypted, delivered and decrypted in the same group view and, hence, with the same

current key. This property does not hold in EVS since a message can be sent in one view

and delivered in another view, and also because of the open groups support. Therefore,

a natural solution for EVS is to use two kinds of shared keys: one key is shared between

the client and the server it connects to, and the other one is shared among the group of

servers. The former is used to protect client-server communication, while the latter is used

to protect server-server communication.

The Spread toolkit is publicly available (see http://www.spread.org) and is being

used by several organizations in both research, educational and production settings. It

supports cross-platform applications and has been ported to several Unix platforms as well

as to Windows and Java environments.

1.7 Cliques Library

Cliques is a cryptographic library that provides support for the implementation of

a number of key agreement protocols for dynamic peer groups. It performs all computations

required to achieve a shared key in a group and is built using the popular OpenSSL (see

http://www.openssl.org) library. The toolkit assumes the existence of a reliable com-

munication platform that transports protocol messages, provides ordering of messages and

information about group membership, as well as synchronization rounds between group

members when required by the protocols. All messages are authenticated by means of

digital signatures (both RSA and DSA signatures are supported).

Currently, Cliques includes five group key management protocols. Four of them

are contributory key agreement protocols: Group Diffie-Hellman (GDH), Tree Group Diffie-

Hellman (TGDH), Steer et al. (STR) and Burmester-Desmedt (BD), and one of them,

Centralized Key Distribution (CKD), is a centralized key distribution protocol modified to

modified to provide key independence and perfect forward secrecy. Each is briefly mentioned
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below and discussed in more detail in Appendix A.

GDH is a protocol based on group extensions of the two-party Diffie-Hellman

key exchange (56) and provides fully contributory key agreement, authenticated my means

of digital signatures. GDH is fairly computation-intensive requiring O(n) cryptographic

operations upon each key change. It is, bandwidth-efficient, especially in handling member

leave and group partition.

CKD is a centralized key distribution (modified to provide key independence and

perfect forward secrecy) where the key server is dynamically chosen from among the group

members (99). The key server uses pairwise Diffie-Hellman key exchange to distribute keys.

CKD is comparable to GDH in terms of both computation and bandwidth costs.

TGDH combines a binary key tree structure with the group Diffie-Hellman tech-

nique (72). In a tree built by TGDH every node has associated a key. The leaves represent

contributions from group members, the root represents the group key and any other nodes

represent Diffie-Hellman between the children. TGDH is efficient in terms of computation

as most membership changes require O(log n) cryptographic operations.

STR (74) is a form of TGDH, using a so-called “skinny” or imbalanced tree. The

main difference between STR and TGDH consists of the method use to maintain the tree

used to compute the group key. The scheme is based on the protocol by Steer et al. (71).

STR is more efficient than the previously mentioned protocols in terms of communication;

whereas, its computation costs for subtractive group events are comparable to those of GDH

and CKD.

BD is another group variation of group Diffie-Hellman proposed by Burmester-

Desmedt (61). It is efficient in computation requiring a constant number of exponentiations

upon any membership (group key) change. However, communication costs are significant.

All protocols supported by the Cliques library provide key independence and per-

fect forward secrecy. Only outside intruders (both passive and active) are considered in

Cliques. In this model, any entity who is not a current group member is considered an

outsider. Based on this definition any former or future member is also considered an out-

sider. Attacks coming from the inside of the group are not considered, as the focus is on

the secrecy of group keys and the integrity of the group membership. Consequently, insider

attacks are not relevant in this context since a malicious insider can always reveal the group

key and/or its own private key(s) thus allowing for fraudulent membership authentication.

All the above protocols were proven secure with respect to passive outside (eaves-
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dropping) attacks (56; 72; 74; 61). Active outsider attacks consist of injecting, deleting,

delaying and modifying protocol messages. Some of these attacks aim to cause denial of

service and we do not address them. Attacks with the goal of impersonating a group mem-

ber are prevented by the use of public key signatures, since every protocol message is signed

by its sender and verified by all receivers. Other, more subtle, active attacks aim to intro-

duce a known (to the attacker) or old key. These are prevented by the combined use of:

timestamps, unique protocol message identifiers and sequence numbers which identify the

particular protocol run.



Chapter 2

Model

In this chapter we define the failure model under which the group communication

system operates in Section 2.1 and present the group communication semantics considered

for this work in Section 2.2

2.1 Failure Model

We consider a distributed system that is composed of a group of processes executing

on one or more CPUs and coordinating their actions by exchanging messages (100). The

message exchange is conducted via asynchronous multicast and unicast messages. While

messages can be lost, we assume that message corruption is masked by a lower layer.

The system is subject to process crashes and recoveries. If a process has several

components, a crash of any component of a process is considered a process crash. We

assume that the crash of any of these components is detected by all the other components

and is treated as a process crash.

Due to network events (e.g., congestion or outright failures) the network can be

split into two or more disconnected subnetwork fragments. We refer to such an event as a

network partition. While processes are in separate disconnected components they cannot

exchange messages. However, processes in the same network component can communicate

with each other.

When a network partition is repaired, the disconnected components merge into a

larger connected component. We refer to such an event as anetwork merge. After a network

merge, processes previously disconnected can exchange messages.

23



24

We consider that the network eventually stabilizes if from some point onward no

processes crash or recover, communication is symmetric and transitive, and no changes

occur in the network connectivity.

Byzantine process failures are not considered in this work.

2.2 Group Communication Model

A group communication system provides two fundamental and interrelated ser-

vices: group membership, and reliable and ordered multicast message dissemination. The

membership service maintains a list of the currently active and connected processes, logi-

cally organized in groups. The output of the membership service is called a group view. The

list of connected processes members of a group, can potentially change over time for several

reasons. In a fault-free network, the group change can be caused by members voluntarily

joining or leaving the group. However, faults can happen, for example processes can get

disconnected or crash, or network partitions can prevent members from communicating.

When faults are healed, group members can communicate again. All the above events can

also trigger changes in the group membership. When the list changes, the membership ser-

vice reports the change to the group members by installing a new view. The membership

service strives to install the same view (e.g. with the same identifier and list of members)

at mutually connected members.

The reliable ordered multicast services deliver messages to the current view mem-

bers, according to some ordering services. Most group communication systems provide

FIFO, causal, agreed (or total order) and safe reliable ordering services. More than one

group can exist in the system, and a process can be a member of more than one group.

The interrelation between the membership service and the multicast service is

given by the fact that the delivery of messages takes place in some view delivered by the

membership service. Group communication systems operating in a network partition failure

model, can not guarantee total order across disconnected components, but they guarantee

total order for a connected component. However, this order is provided with respect to

views, and no guarantee is provided when the views are changing. The reliability property

prevents having holes in the ordering of messages. A particular case is the safe delivery

service that is a “best-effort” with respect to ”all-or-nothing” semantics that specifies that

either all the processes deliver a message or none of them do this. We also note that
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“all-or-nothing” semantics can not be guaranteed in an asynchronous network subject to

partitions, where messages can be lost. The safe delivery service specifies that all members

of the current view have received this message from the network and they will deliver the

message unless they crash, even if the network partitions at that point.

In order to specify when the ordering and safe delivery properties are met inside

a view, group communication systems deliver to the application an additional notification

referred as atransitional signal.

The membership and ordered message delivery services were formalized in several

different group communication models (40; 5), each providing a different set of semantics

to the application. Many models are called Virtual Synchrony or some variant on the name

based on a property, Virtual Synchrony, that states that processes moving together from

one view to another subsequent view deliver the same set of messages in the former view.

However, not all of these models include the same set of properties and to the best of our

knowledge, a canonical “Virtual Synchrony model” has not been defined in the literature. A

good survey describing many of the variations of virtual synchrony semantics can be found

in (98).

Virtual Synchrony is a very useful service for applications that implement data

replication using the state machine approach [Lamport 78; Schneider 1990]. These type

of applications rely on the agreed ordering service to maintain consistency of the replicas.

In a model where network partitions can occur, replicas might diverge and reach different

states. When a network merge occurs, a state transfer is performed to achieve consistency

among all replicas. The Virtual Synchrony property allows processes that “continue to-

gether” from one view to another to avoid state transfer. Determining the set of processes

that continue together can not be done exclusively using the list of current members (see

(98) for a detailed explanation). Therefore, an additional information provided with the

view by a group communication system is what is referred as the transitional set. This

set represents the set of processes that continue together with the process to which the

membership notification was delivered and allows processes to locally determine if a state

transfer is required. Different transitional sets may be delivered with the same view at

different processes.
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2.2.1 Virtual Synchrony Semantics

One property of the Virtual Synchrony model is the Sending View Delivery (98)

property, which requires messages to be delivered in the same view they were sent in.

To satisfy Sending View Delivery without discarding messages from live and connected

members, a group communication system must block the sending of messages before the new

view is installed (101). This is achieved in the following manner. When a group membership

change occurs, the group communication system sends a message to the application, referred

as flush request, asking for permission from all current group members to install a new view.

The application must respond with a flush acknowledgment message agreeing with the

group membership change. Before sending this acknowledgement, the application should

sent all the messages that would like to be delivered in the old view. After sending the

acknowledgment, the application is not allowed to send any more messages until the new

view is delivered.

The properties of the flush mechanism we described above are:

1. Flush Acknowledgment

For processes already part of a group, a new membership is preceded by a flush request

message delivery. The new membership is delivered only after all the processes part

of that group, sent a flush acknowledgment. In case the group membership change is

caused by the join of a new process, no flush request message will be delivered to the

joining process and the membership notification is the first message delivered to it.

2. Block Messages

The group communication system does not allow a process to send messages between

the time the flush acknowledgment was sent by that process, till the time the new

membership is delivered to it. In case the process attempts to send message during

the restriction time, an error will be returned to the client.

The group communication service interacts with the application and the network

through a set of events. The group communication service receives notifications about the

network connectivity and information about process faults, and based on them adjusts the

new group view. It also uses the network as means of communication. An application can

generate events to the group communication service by expressing the desire to join or leave

a specific group, or to send messages. In turn, the group communication service delivers to
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Figure 2.1: Group Communication Service: Virtual Synchrony Semantics

the application messages received from the network and membership and transitional signal

notifications.

Figure 2.1 describes the set of events between the group communication service and

the application and between the group communication service and network. The group com-

munication service receives notifications about the network connectivity through Net change

primitive, while send and receive operation are achieved via network using the Net Send

and Net Deliv operations.

The interaction between the group communication system and an application is

defined by the following set of events:

• deliver a flush request message using the Flush Request primitive.

• deliver a regular message using the Deliver Msg primitive.

• deliver a transition signal using Deliver Trans primitive.

• deliver a group membership change via Deliver Memb. The output of this notification

is a view which specifies the list of the group members. Each view has an associated

transitional set and an identifier.

• send a message (unicast or multicast) by using the Send Msg primitive.

• send a flush acknowledgment message via the Flush Ok primitive.

• join or leave the group via the Join or Leave primitives.
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We define now formally, the virtual synchrony semantics properties for the group

communication system. This set of properties is largely based on the popular survey in (98)

and the definition of related semantics in (40) and (97).

We consider that some event e occurred in view v at process p if the most recent

view installed by process p before the event e was v.

1. Self Inclusion

If process p installs a view v then p is a member of v.

2. Local Monotonicity

If process p installs a view v2 after installing a view v1 then its identifier id2 is greater

than v1’s identifier id1.

3. Sending View Delivery

A message is delivered in the view that it was sent in.

4. Delivery Integrity

If process p delivers a message m in a view v, then there exists a process q that sent

m in v causally before p delivered m.

5. No Duplication

A message is sent only once. A message is delivered only once to the same process.

6. Self Delivery

If process p sends a message m, then p delivers m unless it crashes.

7. Transitional Set

1) Every process is part of its transitional set for a view v.

2) If two processes p and q install the same view and q is included in p’s transitional

set for this view, then p’s previous view was identical to q’s previous view.

3) If two processes p and q install the same view v and q is included in p’s transitional

set for v, then p and q have the same transitional set for v.

8. Virtual Synchrony

Two processes p and q that move together1 through two consecutive views v1 and v2

deliver the same set of messages in v1.

1If process p installs a view v with process q in its transitional set and process q installs v as well, then
p and q are said to move together.
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9. FIFO Delivery

If message m1 is sent before message m2 by the same process in the same view, then

any process that delivers m2 delivers m1 before m2.

10. Causal Delivery

If message m1 causally precedes message m2 and both are sent in the same view, then

any process that delivers m2 delivers m1 before m2.

11. Agreed Delivery

1) Agreed delivery maintains all causal delivery guarantees.

2) If agreed messages m1, and later, m2 are delivered by process p, and m1 and m2

are also delivered by process q, then q delivered m1 before m2.

3) If agreed messages m1, and later, m2 are delivered by process p in view v, and

m2 is delivered by process q in v before a transitional signal, then q delivers m1. If

messages m1, and later, m2 are delivered by process p in view v, and m2 is delivered

by process q in v after a transitional signal, then q delivers m1 if r, the sender of m1,

belongs to q’s transitional set.

12. Safe Delivery

1) Safe delivery maintains all agreed delivery guarantees.

2) If process p delivers a safe message m in view v before the transitional signal, then

every process q of view v delivers m unless it crashes. If process p delivers a safe

message m in view v after the transitional signal, then every process q that belongs

to p’s transitional set delivers m after the transitional signal unless it crashes.

13. Transitional Signal

Each process delivers exactly one transitional signal per view.

2.2.2 Extended Virtual Synchrony Semantics

The Virtual Synchrony Model (due to the Sending View Delivery property) is

slow, since it requires application-level acknowledgments for every group change. Moreover,

it requires closed groups semantics, allowing only current members of the group to send

messages to the group.
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Figure 2.2: Group Communication Service: Extended Virtual Synchrony Semantics

Extended Virtual Synchrony Model avoids blocking the application by weakening

the Sending View Delivery property and requiring only that a message be delivered at the

same view at every process that delivers it (referred as Same View Delivery property).

Although Same View Delivery is strictly weaker than Sending View Delivery, it is sufficient

for applications that do not require knowing in which views messages were multicast.

In terms of the interaction between the group communication service and the

application, the flush request mechanism is not required anymore. The interaction between

the group communication service and the application and the environment is presented in

Figure 2.2.

The Extended Virtual Synchrony Model is given by all the properties described

in Section 2.2.1, with the modification that Property 3 (Sending View Delivery) is replaced

by the Same View Delivery property defined below.

Same View Delivery

If processes p and q both receive message m, they receive m in the same view.

We note that typically group communication systems that provide only Same View

Delivery without providing Sending View Delivery (Transis, Spread) implement a “heavy-

weight” service that provides Sending View Delivery and the corresponding reliability prop-

erty between a set of servers, and compose this service with an asynchronous FIFO buffer

thus yielding weaker semantics (satisfying only Same View Delivery), as a “light-weight”

membership service for clients.
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Both VS and EVS semantics guarantee that group members see the same set of

messages between two sequential group membership events and that the order of messages

requested by the application is preserved. They also guarantee that all messages are de-

livered in the same view. However, there is a major difference in this last aspect: while

VS guarantees that messages are delivered to all recipients in the same view as the sending

application thought it was a member of at the time it sent the message (also known as

Sending View Delivery), EVS guarantees that messages will be delivered in the same group

view to connected members (also known as the Same View Delivery property). Note that

in the EVS case the delivery view can be different from the sending view.

The VS service is easier to program and understand, while the EVS service is more

general and has better performance. The VS service is slower, since it requires application-

level acknowledgments for every group change. Moreover, it requires closed groups seman-

tics, allowing only current members of the group to send messages to the group. In contract,

EVS, allows open groups where non-member clients can send to a group.



Chapter 3

Fault-Tolerant Key Agreement

Secure, robust and efficient key management is critical for secure group communi-

cation. Designing key management protocols that are robust and efficient in the presence of

network partitions and process faults is a challenging task. Most multi-round cryptographic

protocols do not offer built-in robustness with the notable exception of protocols for fair

exchange (102).

In this chapter we focus on fault-tolerant group key agreement, by demonstrating

how provably secure, multi-round group key agreement protocols can be combined with

reliable group communication services to obtain provably fault-tolerant group key agree-

ment solutions. More precisely, we present two robust contributory key agreement protocols

which are resilient to any sequence (even cascaded) of group events while preserving group

communication membership and ordering guarantees. Both protocols are based on the

Group Diffie-Hellman (GDH) contributory key agreement method that generalizes on the

two-party Diffie-Hellman key exchange (57) and uses the services of a group communication

system supporting Virtual Synchrony semantics.

Our first protocol utilizes membership information provided by the group com-

munication system in order to appropriately re-start the GDH scheme, in an agreed-upon

manner, every time the group changes. The second protocol optimizes the performance of

common group changes at the cost of a more sophisticated protocol state machine. We

prove our protocols preserve membership and ordering guarantees of the group communi-

cation system and show that the security properties of the GDH key agreement protocol

are preserved.

The rest of the chapter is organized as follows. We first define more precisely the

32
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problem we set up to solve in Section 3.1, and layout our threat and thrust model in Section

3.2. Since our protocols are based on the GDH key agreement scheme, we give a high level

overview of GDH (56) in Section 3.3, focusing on the GDH merge protocol that is used

as building block for our algorithms. We then present our two robust protocols and prove

their correctness in Section 3.4 and 3.5. Section 3.6 concludes this chapter.

3.1 Problem Definition

Most of the key agreement cryptographic protocols specified in the literature are

not atomic, they require more than one communication round. At the same time, they

make unrealistic assumptions about the network. In particular, they assume that once the

key agreement protocol starts, all group members are reachable and alive. This is not true

in asynchronous distributed systems supporting network partitions and process crashes.

Therefore, these protocols do not operate correctly especially if subtractive events change

the group membership, while the key agreement protocol is in progress.

Since the focus of this work is on providing security services for group communi-

cation systems that are very powerful tools for developing fault-tolerant applications, we

need a key agreement protocol able to handle changes in the group occurring while the key

agreement protocol is performing.

A possible approach is to integrate the key agreement protocol with a failure

detector in order to detect processes that are not connected anymore. However, this solution

is not straight-forward , since processes need to reach also agreement about how to handle

the failures, for example some of the failures will actually require the restart of the key

agreement protocol.

Our approach is to layer the key agreement protocol on top of a group commu-

nication service providing Virtual Synchrony semantics. The output of our algorithm is

a secure group communication service, therefore the Virtual Synchrony (VS) semantics as

defined in Section 2.2.1 must be preserved.

The Virtual Synchrony model enables the use of a shared group key per view,

securely refreshed upon each membership change. This key can be used for example to

provide data confidentiality by encrypting all client data. Because of the Sending View

Delivery property of the Virtual Synchrony model described in Section 2.2.1, any message

is guaranteed to be encrypted, delivered and decrypted in the same group view and, hence,
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Figure 3.1: Secure Group Communication Service

with the same current key.

Figure 3.1 presents our secure group communication service. The group key agree-

ment (GKA) interacts with both the application and the GCS. In order to provide Virtual

Synchrony, the GKA must implement the flush request mechanism described in Section

2.2.1 as follows. When a flush request message is received from the GCS, GKA delivers it

to the application. When the application acknowledgment message is received, the GKA

sends down to the GCS.

Throughout the remainder of this section, we mean by GCS, a group communica-

tion service providing Virtual Synchrony semantics.

The model under which this work is conducted is the failure and group communi-

cation semantics from Chapter 2, and the threat model is presented in the following section.
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3.2 Trust and Threat Model

We consider an adversarial model where attacks can come only from outside. An

outsider is anyone who is not a current group member. Any former or future member is an

outsider according to this definition. We do not consider insider attacks as our focus is on

the secrecy of group keys and the integrity of the group membership. The latter means the

inability to spoof authenticated membership. Consequently, insider attacks are not relevant

in this context since a malicious insider can always reveal the group key or its own private

key, thus allowing for fraudulent membership.

An attacker can eavesdrop the network with the aim of discovering the group

key(s). Also it can inject, delete, delay and modify protocol messages. An attacker can

aim to impersonate a group member. We assume the existence of a PKI infrastructure

that allows the prevention of impersonation by using of digital signatures. Every protocol

message is signed by its sender and verified by all the receivers.

An attacker can also conduct more subtle, active attacks with the goal of introduc-

ing a known (to the attacker) or old key. These attacks can be prevented by the combined

use of timestamps, unique protocol message identifiers and sequence numbers which identify

the particular protocol run. For GDH this modification was formally proven secure against

active adversaries in (75; 76).

We assume that the VS membership service is authenticated my using digital

signatures (for example using 1024-bit RSA keys).

We do not address any attack that aims to cause denial of service. We also do not

consider any form of Byzantine attacks.

3.3 Overview of the Group Diffie-Hellman Key Agreement

Protocol

Group Diffie-Hellman (GDH) IKA.2 (56) (also referred in literature as GDH3)

is a contributory key agreement protocol that is a straight-forward extension of the 2-

party Diffie-Hellman key exchange protocol (57). The group key Kgroup is in the form

Kgroup = gN1N2...Nn, where Ni is the contribution of member i to the group key Kgroup.

The protocol provides strong security properties: key independence, backward

and forward secrecy, and perfect forward secrecy. In order to achieve these properties, the
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shared key is never transmitted over the network, even in encrypted form. Instead, a set

of partial keys, Ki = g
N1N2...Ni...Nn

Ni (that are used by individual members to compute the

group secret) is sent. One particular member – called group controller – is charged with the

task of building and distributing this set. The contributions of new members are collected

by passing a token between the controller and the new members. The group controller is

not fixed and has no special security privileges.

GDH consists of a set of protocols, designed to refresh the group key depending

of the nature of the event that changed the group: join of a new member, leave of a

member, massive join, or massive leave. We note that in the context of group communication

systems, massive join and massive leave are triggered by network partitions or merges. In

the following we informally describe the merge and leaves protocols, for a more formal

description see Appendix A.1.

The core of the GDH suite is the merge protocol, which can also be used for

refreshing the key in case a join occurred. Its goal is to collect contributions to the shared

group key from new members. The protocol works as follows. When a merge event occurs,

the current controller refreshes its own contribution to the group key, generates a new token

and then passes it to one of the new members. When the new member receives the token,

it adds its own contribution and then passes the token to the next new member. The token

passed between the members is referred as a partial token. The set of new members and

its ordering is decided by the underlying group communication system. The actual order is

irrelevant to GDH.

Eventually, the token reaches the last new member. This new member, who is

slated to become the new controller, broadcasts the token to the group without adding its

contribution. This message is referred as final token because its content will be used as a

base of creating all the partial keys as follows. Upon receiving the broadcast token, each

group member (old and new) factors out its contribution and unicasts the result (called a

factor-out token) to the new controller. The new controller collects all the factor-out tokens,

adds its own contribution to each of them, builds the set of partial keys and broadcasts it

to the group. This message is referred as the list of partial keys. Every member can then

obtain the group key by searching the list for their corresponding item and then factoring

in its contribution.

We note that GDH treats merge of two or multiple groups by choosing one group

as a base group, and then adding the rest of the members to the base group.
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The leave protocol defines how the key will be refreshed if one or more members

left the group. The protocol limits the communication to only one message, at the expense

of having the group controller performing a number of exponentiations scaling linearly with

the size of the new group. When some of the members leave the group, the controller (who,

at all times, is the most recent remaining group member) removes their corresponding

partial keys from the set of partial keys, refreshes each partial key in the set and broadcasts

the set to the group. Every remaining member can then compute the shared key. Note

that if the current controller leaves the group, any of the remaining members can become

a group controller, the rule used by GDH is that the last remaining member becomes the

group controller. The leave protocol can handle both individual leaves or multiple leaves.

3.4 A Basic Robust Algorithm

This section discusses in details a basic robust group key agreement algorithm

(GKA). We describe the algorithm and prove its correctness, i.e. that the algorithm pre-

serves the Virtual Synchrony semantics presented in Section 2.2.1.

3.4.1 Algorithm Description

The GDH IKA.2 protocol, briefly presented in Section 3.3, is secure and correct.

Security is preserved independently of any sequence of membership events, while correctness

holds only as long as no additional group change takes place before the key management

protocol terminates.

To elaborate on this claim, consider what happens if a subtractive (leave or parti-

tion) group membership event occurs while the protocol is in progress, e.g., while the group

controller is waiting for individual unicasts from all group members. Since the GDH proto-

col does not employ any fault-detection mechanisms, it is unaware of the fact that certain

members are not alive anymore, or simply left the group. Following the protocol specifi-

cations, the group controller will not proceed until all factor-out tokens (including those

from departed members) are collected. Therefore, the system will block. Similar scenarios

are also possible, e.g., if one of the new members crashes while adding its contribution to a

group key. In this case, the token will never reach the new group controller and the protocol

will, once again, simply block.
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If the nested event is additive (join or merge), the protocol operates correctly.

In other words, it runs to completion and the nested event is handled serially. We note,

however, that this is not optimal since, ideally, multiple additive events can be “chained”

effectively reducing broadcasts and factor-out token implosions.

As the above examples illustrate, the protocol does not operate correctly in the

presence of certain cascaded membership events (specifically, when the interrupting events

are subtractive events). This behavior makes GDH impractical since its integration with a

group communication system will break the high degree of robustness and fault-tolerance

traditionally provided by such a system.

Our solution is to take advantage of the membership and ordering services pro-

vided by a group communication service. A natural and correct solution to this problem

is as follows: every time a group membership change occurs, the group deterministically

chooses a member (say, the oldest) and runs the merge GDH protocol with the chosen

member initializing it. The protocol is informed about the group changes by the member-

ship service. Note that this approach costs twice in computation and O(n) more in the

number of messages for the common case with no cascading membership events. This will

be addressed in the second protocol described in Section 3.5.

The algorithm uses the following types of messages: GDH specific messages (see

(103)) (partial token msg, final token msg, key list msg, fact out msg); membership noti-

fication messages (memb msg); transitional signal messages (trans signal msg); data mes-

sages (data msg); flush mechanism messages (flush request msg, flush ok msg).

A process starts executing the algorithm by invoking the join primitive of the key

agreement module which translates into a group communication join call. In any state of

the algorithm a process can voluntarily leave by invoking the leave primitive of the key

agreement module which translates into a group communication leave call. A process can

crash at any time, and the network connectivity can change at any time causing group

members to be partitioned in two or more components, that can merge later on.

The output of our algorithm is a secure group communication service, therefore the

Virtual Synchrony (VS) semantics as defined in Section 2.2.1 must be preserved. To achieve

this, our algorithm takes extra care to provide delivery of the correct views, transitional

signals and transitional sets to the applications. We will elaborate on these issues later.

The specification of the algorithm is defined in terms of the events presented in

Table 3.1. The events are associated with a specific group and are received by the GKA. Note
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Event Message Source

Partial Token partial token msg GCS

Final Token final token msg GCS

Fact Out factor out msg) GCS

Key List key list msg GCS

User Message data msg App.

Data Message data msg GCS

Transitional Signal trans signal msg GCS

Membership memb msg GCS

Flush Request flush request msg GCS

Secure Flush Ok flush ok msg App.

Table 3.1: Events Received by the Group Key Agreement Algorithm

that both User Message and Data Message events are associated with a data msg message

received by the GKA, but in the first case the source of the message is an application, while

in the second case the source is the GCS.

The algorithm is modeled by a state machine (see Figure 3.2) having the following

states, (all events not mentioned are not possible in that specific state):

• SECURE (S): the secure group is functional, all of the members have the group key and

can communicate securely; the possible events are Data Message, User Message, Se-

cure Flush Ok, Flush Request, and Transitional Signal; receiving a Secure Flush Ok

without receiving a Flush Request is illegal;

• WAIT FOR PARTIAL TOKEN (PT): the process is waiting for a partial token msg

message; the possible events are Partial Token, Flush Request and Transitional Signal;

User Message and Secure Flush Ok are illegal;

• WAIT FOR FINAL TOKEN (FT): the process is waiting for a final token msg mes-

sage; the possible events are Final Token, Flush Request and Transitional Signal;

User Message and Secure Flush Ok are illegal;

• COLLECT FACT OUTS (FO): the process is waiting for N−1 fact out msg messages

(where N is the size of the group); the possible events are Fact Out, Flush Request,

and Transitional Signal; User Message and Secure Flush Ok are illegal;

• WAIT FOR KEY LIST (KL): the process is waiting for a key list msg message; the
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possible events are Key List, Flush Request and Transitional Signal; User Message

and Secure Flush Ok are illegal;

• WAIT FOR CASCADING MEMBERSHIP (CM): the process is waiting for mem-

bership and transitional signal messages (memb msg and trans signal msg); the pos-

sible events are Membership, Transitional Signal, Data Message (possible only the

first time the process gets in this state), Partial Token, Final Token, Fact Out and

Key List (they correspond to GDH messages from a previous instance of the GKA

when cascaded events happen); User Message and Secure Flush Ok are illegal;

The pseudo-code corresponding to the state machine from Figure 3.2 is presented

in Algorithms 1,2, 3, 4, 5, 6, 7.

The algorithm handles an event by performing two types of actions: group com-

munication specific operations (message delivery, message unicast, message broadcast, or

send a flush acknowledgment) and GDH key agreement specific operations (computation or

access to GDH state information).

The Cliques GDH primitives we use in describing our algorithm (clq first member,

clq new member, clq update ctx, clq update key, clq factor out, clq merge), clq destroy ctx,

clq get secret, clq new gc, clq next member) are part of the Cliques GDH API specification

(103) and are described in detail in Appendix B.

The group communication primitives used to describe the algorithm are: deliver,

unicast and broadcast. The broadcast primitive allows specifying the message to be sent, the

ordering service (FIFO, CAUSAL, AGREED) and the group to whom the message should

be sent. The unicast primitive takes as arguments the name of the destination process and

the message that must be sent.

In addition, we use several simple procedures that simplify the presentation of the

algorithm:

• alone: given a list of all members of a group, it returns TRUE if the process invoking

it is the only member of the group, FALSE otherwise;

• ready: given a key list message, it returns TRUE when the list is ready to be broadcast

(it contains all the partial keys), FALSE otherwise;

• last: given a list and a name of a process, it returns TRUE if the process is the last

one on the list, FALSE otherwise;
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• is in: given an item and a list, returns TRUE if the list contains the item, FALSE

otherwise;

• empty: given a list, returns TRUE if the list is empty, FALSE otherwise;

• choose: given a list, deterministically choose a member and returns that member;

• -: the subtraction operator for list;

We also use some important data structures. The Membership data structure keeps

information regarding a membership notification:

• mb id, the unique identifier of the view;

• mb set, the list of all the members of this view;

• vs set, the transitional set associated with this notification;

• merge set, the members from the new view that are not in the transitional set of the

new view;

• leave set, the members from the previous view that are not in the transitional set of

the new view.

Group communication systems usually provide only the first three pieces of in-

formation in a membership notification. The merge set and leave set can be computed

by either the GKA or the GCS by using the membership set of the previous membership

notification, and the current membership notification. To simplify the presentation of the

pseudo-code of the algorithm we assume that the merge set and leave set are provided by

the GCS as part of the membership notification1.

Every process executes the algorithm for a specific group and maintains a list of

global variables (see Figure 1):

• Group name: the name of the group for which the algorithm is executed;

• Group key: the shared secret of the group;

• Me: the name of the process executing the algorithm;

1Note that the way we define the leave set, it includes not only the members that left the group, but also
the members that are not yet completely synchronized with the rest of the group.
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• Event: the current event being handled;

• Clq ctx: maintains all the cryptographic context required by the GDH protocol, and

includes the list of partial keys, the group key and the list of group members;

• New memb msg: the new membership that will be delivered;

• VS set: used to compute the transitional set delivered to the application with a new

secure membership.

A key point of the algorithm is ensuring that all connected and alive mem-

bers either install a new secure membership or restart the protocol. The fact that the

Flush Request events are not ordered with respect to the other messages, makes the prob-

lem more challenging. In order to install a secure view, a member must receive the Key List

message. However, to ensure the correctness, a member must install a secure view only when

the other will do the same way. Because of that it is not enough that a member receives

the Key List message, but it must be able to infer that eventually all connected members

will receive that message and be able to compute the new key and install the secure view.

Five global boolean variables are used in order to facilitate the updating of the

VS set variable, the transitional signal delivery, the correctness of the Secure Flush Ok

events and the delivery of secure membership notifications. They are:

• First transitional: the purpose of this variable is to ensure that only the first transi-

tional signal received from the GCS during a cascaded membership, is delivered by the

GKA to the application. The variable is set to FALSE when a transitional signal was

delivered by the GKA to the application and set to TRUE when a secure membership

was delivered to the application.

• First cascaded membership: this variable is used to compute the new transitional set

delivered to the application when a cascaded membership occurred. The variable is

set to TRUE when a secure membership was delivered to the application, and FALSE

when the first VS membership was received from the GCS.

• Wait for sec fl ok: this variable is used to ensure that the application sends a flush

acknowledgement in response to a flush request. It becomes TRUE when a flush

request was delivered by the GKA to the application, and indicates that a flush
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acknowledgement must be received from the application. It becomes FALSE when

the flush acknowledgement was received by the GKA from the application.

• VS transitional: this variable memorizes if a Transitional Signal was received by the

GKA, in a cascaded membership, unlike to First Transitional that memorizes only

the first such event.

• KL got flush req: this variable memorizes if a Flush Request event was received by

the GKA in the KL state.

The names of all global variables are capitalized whereas all other variables (low-

ercase) are assumed to be local.

For communication, we use the FIFO service to send all of the protocol messages,

with the exception of the list of the partial keys for which we used the AGREED service.

We chose to use a more expensive service for the last broadcast to reduce the complexity

of the algorithm and of the proofs.

Algorithm 1 Initialization of Global Variables

MEMBERSHIP New memb

PROCESS NAME[] VS set := EMPTY

BOOL First transitional := TRUE

BOOL VS transitional := FALSE

BOOL First cascaded membership := TRUE

BOOL Wait for sec flush ok := FALSE

BOOL KL got flush req := FALSE

EVENT Event := NULL

CLQ CTX Clq ctx := NULL

KEY Group key := NULL

STATE State := WAIT FOR CASCADING MEMBERSHIP

/* for opt. Alg., replace the above line with:

State := WAIT FOR SELF JOIN */

New memb msg.vs set := EMPTY

New memb msg.merge set := EMPTY

New memb msg.leave set := EMPTY

New memb msg.mb set := Me

New memb msg.mb id := 0
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Algorithm 2 Code Executed in SECURE (S) State

Case Event is

Data Message:

deliver(data msg)

User Message:

broadcast(data msg)

Flush Request:

Wait for sec flush ok := TRUE

deliver(flush request msg)

Secure Flush Ok:

if(Wait for sec flush ok)

Wait for sec flush ok := FALSE

send flush ok()

State := WAIT FOR CASCADING MEMBERSHIP

/* for opt. Alg., replace above line with:

State := WAIT FOR MEMBERSHIP */

else

illegal, return an error to the user

endif

Transitional Signal:

deliver(trans signal msg)

First transitional := FALSE

VS transitional := TRUE

All other events:

not possible
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Algorithm 3 Code Executed in WAIT FOR PARTIAL TOKEN (PT) State

case Event is

Partial Token:

if (!last(Clq ctx, Me))

partial token msg := clq update key(Clq ctx, NULL, partial token msg)

next member := clq next member(Clq ctx)

unicast(FIFO, partial token msg, next member)

State := WAIT FOR FINAL TOKEN

else

final token msg := partial token msg

broadcast(FIFO, final token msg)

State := COLLECT FACT OUTS

endif

Flush Request:

send flush ok()

State := WAIT FOR CASCADING MEMBERSHIP

Transitional Signal:

if (First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

VS transitional := TRUE

User Message, Secure Flush Ok:

illegal, return an error to the user

All other events:

not possible
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Algorithm 4 Code Executed in WAIT FOR KEY LIST (KL) State

case Event is

Key List:

if (!VS transitional)

Group key := clq update ctx(Clq ctx, key list msg)

New memb msg.vs set := Vs set

deliver(New memb msg)

First transitional := TRUE

First cascaded membership := TRUE

State := SECURE

if (KL got flush req)

Wait for sec flush ok := TRUE

deliver(flush request msg)

endif

endif

Flush Request:

if (VS transitional)

send flush ok()

State := WAIT FOR CASCADING MEMBERSHIP

else

KL got flush req := TRUE

endif

Transitional Signal:

if (First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

if (KL got flush req)

send flush ok()

State := WAIT FOR CASCADING MEMBERSHIP

endif

VS transitional := TRUE

User Message, Secure Flush Ok:

illegal, return an error to the user

All other events:

not possible
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Algorithm 5 Code Executed in WAIT FOR FINAL TOKEN (FT) State

case Event is

Final Token:

fact out msg := clq factor out(Clq ctx, final token msg)

new gc := clq get new gc(Clq cxt)

unicast(FIFO, fact out msg, new gc)

KL got flush req := FALSE

State := WAIT FOR KEY LIST

Flush Request:

send flush ok()

State := WAIT FOR CASCADING MEMBERSHIP

Transitional Signal:

if (First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

VS transitional := TRUE

User Message, Secure Flush Ok:

illegal, return an error to the user

All other events:

not possible
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Algorithm 6 Code Executed in COLLECT FACT OUTS (FO) State

case Event is

Fact out:

key list msg := clq merge(Clq ctx, fact out msg,key list msg)

if (ready(key list msg))

broadcast(AGREED, key list msg)

KL got flush req := FALSE

State := WAIT FOR KEY LIST

endif

Flush Request:

send flush ok()

State := WAIT FOR CASCADING MEMBERSHIP

Transitional Signal:

if (First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

VS transitional := TRUE

User Message, Secure Flush Ok:

illegal, return an error to the user

All other events:

not possible
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Algorithm 7 Code Executed in WAIT FOR CASCADING MEMBERSHIP (CM) State

Case Event is

Data Message:

deliver(data msg)

Transitional Signal:

if (First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

VS transitional := TRUE

Membership:

if (First cascaded membership)

VS set := New memb msg.mb set

First cascaded membership := FALSE

endif

VS set := VS set - memb msg.leave set

if (!empty(memb msg.leave set) && First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

New memb msg.mb id := memb msg.mb id

New memb msg.mb set := memb msg.mb set

if (!alone(memb msg.mb set))

if (choose(memb msg.mb set) == Me)

clq destroy ctx(Clq ctx)

Clq ctx := clq first member(Me, Group name)

merge set := memb msg.mb set - Me

partial token msg := clq update key(Clq ctx, merge set, NULL)

next member := clq next member(Clq ctx)

unicast(FIFO, partial token msg, next member)

State := WAIT FOR FINAL TOKEN

else /* not chosen */

clq destroy ctx(Clq ctx)

Clq ctx := clq new member(Me, Group name)

State := WAIT FOR PARTIAL TOKEN

endif

else /* alone */

clq destroy ctx(Clq ctx)

Clq ctx := clq first member(Me, Group name)

Group key := clq extract key(Clq ctx)

New memb msg.vs set := Me

deliver(New memb msg)

First transitional := TRUE

First cascaded membership := TRUE

State := SECURE

endif

VS transitional := FALSE

Partial Token, Final Token, Fact out, Key List:

ignore

User Message, Secure Flush Ok:

illegal, return an error to the user

All other events:

not possible
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3.4.2 Security Considerations

The GDH protocol was proven secure against passive adversaries in (56). As

evident from the state machine in Figure 3.2, the protocol remains intact, i.e., all protocol

messages are sent and delivered in the same order as specified in (56). More precisely, with

no cascaded events, our protocol is exactly the same as the original GDH mass join or

merge protocol (56). In case of a cascaded event, the protocol is the same as the IKA.2

(56) group key agreement protocol. Since both of these protocols are proven secure, our

robust group key agreement protocol is, therefore, also provably secure. In this context,

security means that it is computationally infeasible to compute a group key by passively

observing any number of protocol messages. As discussed in Section 3.2, stronger, active

attacks are averted by the combined use of timestamps, protocol message type and protocol

run identifiers, explicit inclusion of message source and destination, and, most importantly,

digital signatures by the source of the message. These measures make it impossible for the

active adversary to impersonate a group member or to interfere with the key agreement

protocol and thereby influence or compute the eventual group key (75; 76).

3.4.3 Correctness Proof

We now prove that the above algorithm preserves the Virtual Synchrony Model

described in Section 2.2.1.

In the following, the term secure membership notification denotes a notification

delivered by the GKA to the application. The term VS membership notification denotes

a notification delivered by the GCS to the GKA. A secure view is a view installed by the

GKA and a VS view is a view installed by the GCS.

Some useful observations can be made about membership notifications and appli-

cation messages. The GKA discards VS membership events, not every VS view delivery

event has a corresponding secure view delivery event. The secure membership notification

is built and saved in the CM state (see Figure 7). For every VS membership received in the

CM state, the list of members, the view identifier and the transitional set of the new se-

cure membership are updated in the New memb msg variable. User messages are delivered

immediately as they are received, they are not delayed or reordered.

The following two lemmas are obvious from the algorithm description and they

represent the flush mechanisms properties.
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Lemma 3.4.1 The GKA blocks an application from sending messages between the time a

secure flush ok msg message was sent and the delivery of the new secure membership.

Lemma 3.4.2 When a group membership change occurs, the GKA delivers a flush request msg

message to processes already part of the group. The new secure membership is delivered only

after they answer with a secure flush ok message. For a joining process no flush req is de-

livered and the secure membership is the first message delivered to it.

We now prove the following lemmas.

Lemma 3.4.3 The only state where VS membership notifications are received by the GKA

is CM.

Proof: By the Flush Acknowledgment property of the GCS, a membership notification

delivery is preceded by the process sending a flush ok msg message, unless the process is

the joining process. By the algorithm, immediately after sending a flush ok msg message,

the process transitions to the CM state and does not leave the CM state until it receives a

Membership event. A joining process starts executing the algorithm in the CM state and

does not leave it until it receives a membership event.

Lemma 3.4.4 The only states where user messages are received by the GKA from the GCS

are S and CM. User messages are delivered by the GKA to the application only in the S

and CM states.

Proof: After receiving a VS membership notification in the CM state (by Lemma 3.4.3 this

is the only state where membership notifications are received) the process moves to one of

the states FT, PT, FO, KL, or S. The transition to state S installs a new secure view, so in

that state the process can send and receive user messages. In any of the FT, PT, FO, KL

or CM states the process is not allowed to send application messages.

If an application message is received in any of the FT, PT, FO or KL states,

this can be a message sent in the previous secure view in state S, or a message sent by a

process that completed the key agreement before this process did, have already installed

the new secure view and sent messages. The first case is not possible because it contradicts

the Sending View Delivery property. In the second case, note that the key list message

is broadcast as an agreed message, so a user message can not be received in the KL state
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before the key list message because it was sent after its sender processed the key list message

(it contradicts the Causal Delivery property). Therefore, the only states where a process

can receive user messages are S and CM. Since user messages are delivered as soon as they

are received, they are delivered only in the S and CM states.

Lemma 3.4.5 When process p installs a secure view v, the view includes p and the v’s

identifier is the identifier of the most recently installed VS view.

Proof: By the algorithm, the view-to-be-installed is updated only when a membership

notification is received from GCS (see Figure 7, Marks 1 and 2), which, by Lemma 3.4.3,

occurs only in the CM state.

There are two transitions that install secure views. The first transition corresponds

to a Membership event occurrence in the CM state, indicating that process p is alone. In

this case, the secure membership notification is immediately delivered with p (the only one)

in it and it contains the most recent VS identifier.

The second transition corresponds to a Key List event occurrence in the KL state.

In this case, at the time the new secure view is delivered, it indicates the VS group members

list, and as GCS provides Self Inclusion, p is guaranteed to be on that list. In this case,

when the secure view is delivered, it indicates the most recent VS identifier.

Self Inclusion

Theorem 3.4.1 When process p installs a secure view, the view includes p.

Proof: This holds due to Lemma 3.4.5.

Local Monotonicity

Theorem 3.4.2 If process p installs a secure view v sec after installing a secure view v sec ′,

then the identifier of v sec is greater than the identifier of v sec′.

Proof: The algorithm does not create view identifiers, but uses the identifiers provided by the

VS membership notifications without reordering them. By Lemma 3.4.5, p always delivers

a secure view with the same identifier as the most recent VS identifier. Therefore, because

it delivers a subsequence of VS identifiers and because GCS provides Local Monotonicity,

the GKA provides Local Monotonicity too.
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Sending View Delivery

Theorem 3.4.3 A message is delivered by the GKA in the secure view that it was sent in.

Proof: By Lemma 3.4.4, messages are delivered by the GKA only in the S and CM states.

In the S state, the secure view is the most recent VS view (by Lemma 3.4.5), so by the

Sending View Delivery of GCS, the theorem holds.

As specified by the algorithm, a process moves to the CM state after the application

agreed to close the group membership by sending a flush ok message (see Algorithm 2).

Since the GKA delivers a message immediately after it was received and GCS provides

Sending View Delivery, all the messages sent in a VS view will be delivered before the next

VS view was received, and therefore, before a new secure view is installed.

Delivery Integrity

Theorem 3.4.4 If a process p delivers a message m in a secure view v, then there exists

a process q that sent m causally before p delivered m.

Proof: If a process p delivers a message m in v, then there exists a process q that sent m in

v, by Theorem 3.4.3. Also, by transitivity, the GKA delivers a message m causally after it

was sent because:

• GKA sends m immediately after it was sent by the application.

• GCS delivers message m causally after it was sent (Delivery Integrity).

• GKA delivers m immediately after it was received from the GCS.

No Duplication

Theorem 3.4.5 A message is sent only once using the GKA. A message is delivered only

once to the same process by the GKA.

Proof: By the algorithm, an application can send messages only in the S state, so a message

is sent only once. Also, messages are delivered only in the S and CM states, immediately

upon receipt from the GCS. Since GCS guarantees no duplication, the theorem holds. The

GKA generates GDH messages, but these are never delivered to the application so they do

not affect the No Duplication property.
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Self Delivery

Theorem 3.4.6 If a process p sends a message m, then p delivers m unless it crashes.

Proof: By the algorithm, a message is sent by the application via the GCS, the GKA never

discards application messages and it delivers them immediately after receiving them. Since

GCS provides Self Delivery, the theorem is true.

Transitional Set

Theorem 3.4.7 Every process is part of its transitional set for a secure view v sec.

Proof: This is true by the protocol (the way the transitional set is computed for a secure

view), and by the Self Inclusion property of the GCS.

Lemma 3.4.6 If a process p installed a secure view v sec with process q in the members

set, they both install the same next VS view, and p’s VS transitional set includes q, then q

must have installed v sec.

Proof: By the protocol, a process installs a secure view with more than one member only

in the KL state. A process in the KL state installs a secure view if and only if it receives

a key list msg message before a transitional signal for the current VS view. Because p and

q move together to the new VS view and the key list msg is an agreed message, by the

Agreed Delivery properties of GCS, q must also receive the key list msg message before the

transitional signal. Therefore, q must also have installed v sec.

Theorem 3.4.8 If two processes p and q install the same secure view v sec, and q is

included in p’s transitional set for this view, then p’s previous secure view was identical to

q’s previous secure view.

Proof: By the algorithm, the transitional set for a new secure membership notification is

initialized to be the same as the previous secure view member set. Furthermore, members

reported by VS membership notifications as not being in the VS transitional set (i.e. the

leave set), are removed from this set and no members are added. Due to this, if q is included

in p’s secure transitional set then q must have been included in all of p’s VS transitional sets

since the last secure view delivered at p. Additionally, p and q must have installed the same

sequence of VS views prior to v sec because they both installed the VS view corresponding
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to v sec and because of the GCS Transitional Set property number two. Therefore, by

Lemma 3.4.6, q must have installed the same previous secure view as p.

To show that q installed no intermediary secure views, the same proof is repeated

reversing p and q’s roles with the additional information that p is in q’s secure transitional

set because of the way the set is computed and because of the GCS Transitional Set property

number two.

Theorem 3.4.9 If two processes p and q install the same secure view, and q is included in

p’s transitional set for this view, then p is included in q’s transitional set for this view.

Proof: Assume p and q install the same secure view, q is included in p’s transitional set

for this view, but p is not included in q’s transitional set for this view. Two cases are

possible. First, q’s previous secure view was not the same as p’s secure view. In this case,

by theorem 3.4.8, q is not included in p’s transitional set, contradicting our assumption.

Second, q’s previous secure view was the same, but an intermediary VS notification

delivered to q did not include p in its transitional set. Since p and q install the same secure

view, it must be that p and q install the same VS view at some point. The first such

view installed at q preserves the property that p is not in q’s transitional set by the GCS

Transitional Set property number one. By GCS Transitional Set property number two, p

must not have q in its transitional set for that view. In addition, by the protocol, then q

is removed from p’s secure transitional set, and because p’s transitional set never grows q

will not be in p’s secure transitional set when p and q install the new secure view, which

contradicts our assumption.

Virtual Synchrony

Theorem 3.4.10 Two processes p and q that move together through two consecutive secure

views, deliver the same set of messages in the former view.

Proof: User messages are delivered by the GKA only in the S or CM states (Lemma

3.4.4) and VS membership notifications are received by the GKA only in the CM state

(Lemma 3.4.3). By the way we compute the transitional set), if process p and q move

together from v1 sec to v2 sec, then p and q moved together through the sequence of VS

views v1 to v11, ..., v1n−1 to v1n, v1n to v2 2. Therefore, by the GCS Virtual Synchrony,

2Note that n can be zero with the in-between set potentially empty (v1 to v2).
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processes p and q deliver the same set of messages between v1 and v11, v11 and v12, ... v1n

and v2. No other messages are delivered between v2 and v2 sec installations because any

such message has to be sent in v2 according to the GCS Sending View Delivery property.

By the protocol, upon sending the flush ok msg message that concludes v1 each

process moves to the CM state and will not send data messages before installing v2 sec. In

particular, it will not send messages between v2 and v2 sec. Therefore, p and q deliver the

same set of messages in v1 sec.

FIFO, Causal, Agreed and Safe Delivery

Lemma 3.4.7 All the user messages delivered by the GCS are immediately delivered by the

GKA, maintaining the ordering properties indicated by the GCS delivery for each message.

Proof: By the protocol, the messages delivered by a process in secure view v sec, are mes-

sages delivered by the GCS in a VS view v. Since messages are delivered to the application

in the order they were received from the GCS, without being delayed, no application mes-

sages are dropped or duplicated, and no phantom messages are generated, the messages

delivered in v sec, support the same ordering requirements as they were delivered in v.

Theorem 3.4.11 If message m is sent before message m′ by the same process in the same

secure view, then any process that delivers m′ delivers m before m′.

Proof: This holds by Lemma 3.4.7.

Theorem 3.4.12 If message m causally precedes message m′, and both are sent in the

same secure view, then any process that delivers m′ delivers m before m′.

Proof: This is true by Lemma 3.4.7.

Theorem 3.4.13 If messages m and m′ are delivered at process p in this order, and m

and m′ are delivered by process q then q delivers m′ after it delivered m.

If messages m and m′ are delivered by process p in secure view v1 sec in this order, and

m′ is delivered by process q in secure view v2 sec and message m was sent by a process r

which is a member of secure view v2 sec, then q delivered m.

Proof: This is true by Lemma 3.4.7 and because the secure transitional set is the intersection

of all the VS transitional sets.
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Theorem 3.4.14 If process p delivers a safe message m in secure view v sec before the

transitional signal, then every process q of v sec delivers m unless it crashes.

If process p delivers a safe message m in secure view v sec after the transitional signal, then

every process q that belongs to p’s transitional set delivers m after the transitional signal

unless it crashes.

Proof: The claims are true because the GKA delivers messages with the same ordering

guarantees with which they were delivered by the GCS (by Lemma 3.4.7), the first tran-

sitional signal received from GCS is delivered to the application and because the secure

transitional set is the intersection of all the VS transitional sets.

Transitional Signal

Theorem 3.4.15 Each process delivers exactly one transitional signal per view.

Proof: GCS Transitional Signal property guarantees that exactly one transitional signal

per view will be delivered by the GCS. In case of cascaded memberships, more than one

transitional signal is received by the GKA from the GCS, but only the first one will be

delivered to the application (see Mark 3 in Figures 2, 4, 3, 5, 6, 7).

3.5 An Optimized Robust Algorithm

In this section we show how the algorithm presented in the previous section can

be optimized, resulting in lower-cost handling of common, non-cascaded events, while pre-

serving the same set of group communication semantics and security guarantees.

3.5.1 Algorithm Description

The basic algorithm presented in Section 3.4 is robust even when cascaded group

events occur. Every time a membership notification is delivered by the GCS, the algorithm

“forgets” all the previous key agreement information (e.g. the list of partial keys) and starts

the merge protocol choosing a member from the new group to initialize it. Therefore, this

algorithm pays more than necessary to compute a group key in the regular case, because it

does not use the existing key agreement information and treats every change as a cascaded

membership.
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A natural idea is to give every membership change a chance to be handled accord-

ing to its nature (join, leave, partition, merge or a combination of partition and merge), to

take advantage of the already existing list of partial keys, and if a cascaded membership

happens, invoke the more expensive basic algorithm. For join, leave, partition and merge,

the GDH protocol suite defines specific optimized protocols, that we take advantage of.

For example, in the case when a leave occurs, the leave protocol is invoked which requires

the group controller to remove the leaving members from the list, refresh the list of partial

keys and then broadcast it. Thus, leave events can be handled immediately with a lower

communication and computation cost than the basic algorithm required. We discuss in

Section 3.5.2 how a combined event including both joins and leaves simultaneously can be

handled by a modified version of the GDH merge protocol.

The optimized algorithm (see Figure 3.3) utilizes the following two states in ad-

dition to those of the basic algorithm (all events not mentioned are not possible in that

specific state):

• WAIT FOR SELF JOIN (SJ): this is the initial state in which a process that joins a

group enters the state machine; the process is waiting for the membership message

that notifies the group about its joining. In case a network event happens between the

join request and the membership notification delivery, the GCS will report the cause

of the group change as being a network event and the transitional set will contain

only the joining member. The possible event is a Membership. User Message and

Secure Flush Ok events are illegal.

• WAIT FOR MEMBERSHIP (M): the process is waiting for a membership notifica-

tion. The possible events are: Transitional Signal, Data Message and Membership.

The membership notification can be caused by client initiated events such as join or

leave, or network events. User Message and Secure Flush Ok events are illegal.

While a process starts the basic algorithm in the CM state, in the optimized

algorithm a process starts the algorithm in state SJ, by invoking the Join primitive. At

any moment, a process can voluntarily leave the algorithm by invoking the Leave primitive.

The main difference between the robust and the optimized algorithm is that in case a

membership change happens, the process moves to the M state and tries to handle the

event depending on its nature (subtractive, additive or both). In the case of a cascading
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Algorithm 8 Code Executed in WAIT FOR SELF JOIN (SJ) State

Case Event is

Membership:

VS set := New memb msg.mb set

New memb msg.mb id := memb msg.mb id

New memb msg.mb set := memb msg.mb set

First cascaded membership := FALSE

if (!alone(memb msg.mb set))

if (choose(memb msg.mb set) == Me)

Clq ctx := clq first member(Me, Group name)

merge set := memb msg.merge set

partial token msg := clq update key(Clq ctx, merge set, NULL)

next member := clq next member(Clq ctx)

unicast(FIFO, partial token msg, next member)

State := WAIT FOR FINAL TOKEN

else

Clq ctx := clq new member(Me, Group name)

State := WAIT FOR PARTIAL TOKEN

endif

else

Clq ctx := clq first member(Me, Group name)

Group key := clq extract key(Clq ctx)

New memb msg.vs set := Me

deliver(New memb msg)

First cascaded membership := TRUE

State := SECURE

endif

VS transitional := FALSE

User Message, Secure Flush Ok:

illegal, return an error to the user

All other events:

not possible
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Algorithm 9 Code Executed in WAIT FOR MEMBERSHIP (M) State

Case Event is

Data Message:

deliver(data msg)

Transitional Signal:

if (First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

VS transitional := TRUE

Membership:

VS set := New memb msg.mb set

VS set := VS set - memb msg.leave set

New memb msg.mb id := memb msg.mb id

New memb msg.mb set := memb msg.mb set

New memb msg.vs set := Vs set

First cascaded membership := FALSE

if (!alone(memb msg.mb set))

merge set := memb msg.merge set

leave set := memb msg.leave set

if (!empty(leave set) && empty(merge set))

if (choose(memb msg.mb set) == Me)

key list msg := clq leave(Clq ctx, leave set)

broadcast(AGREED, key list msg)

endif

State := WAIT FOR KEY LIST

else

if (is in(choose(memb msg.mb set), memb msg.vs set)) /* old member */

if(choose(memb msg.mb set) == Me)

partial token msg := clq new update key(Clq ctx, leave set, merge set, NULL)

next member := clq next member(Clq ctx)

unicast(FIFO, partial token msg, next member)

endif

State := WAIT FOR FINAL TOKEN

else /* new member */

clq destroy ctx(Clq ctx)

Clq ctx := clq new member(Me, Group name)

State := WAIT FOR PARTIAL TOKEN

endif

endif

else /* alone */

Clq ctx := clq first member(Me, Group name)

Group key := clq extract key(Clq ctx)

New memb msg.vs set := Me

deliver(New memb msg)

First transitional := TRUE

First cascaded membership := TRUE

State := SECURE

endif

VS transitional := FALSE

User Message, Secure Flush Ok:

illegal, return an error to the user

All other events:

not possible
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membership, everything is abandoned and the basic algorithm is executed by moving to the

CM state.

The merge set and leave set fields of the membership notification are used to

determine the cause of the group view change. In addition, we assume that the pro-

cedure clq update key procedure can handle combined network events, and we name it

clq new update key (see Appendix B).

The pseudo-code corresponding to the state machine from Figure 3.3 is presented

in Algorithms 2, 3, 4, 5, 6, 7, 8, 9.

3.5.2 Handling Bundled Events

Most group events are homogeneous in nature: leave (partition) or join (merge)

of one or more members. However, a group communication system can decide to bundle

several such events if they occur in close proximity, i.e., within a very short time interval.

The main incentive for doing so is to reduce communication costs and to limit the impact

and overhead on the application.

As mentioned above, GDH defines two separate protocols that handle leave and

merge events. Each of these protocols can trivially handle bundled events of the same type,

i.e., the GDH merge protocol can accommodate any combination of bundled merges and

the GDH leave protocol can do the same for any combination of leaves and partitions.

A more interesting scenario occurs when a single membership event bundles merges

or joins with leaves or partitions. One obvious way to handle this type of event is to

first invoke GDH leave to process all leaves or partitions and then invoke GDH merge

to process joins or merges. However, this is inefficient since the group would essentially

perform two separate key agreement protocols where only one is truly needed. We can take

advantage of the fact that both protocols in GDH are initiated by the group controller. After

processing all leaves or partitions, the group controller can suppress the usual broadcast

of new partial keys and, instead, forward the resulting set to the first merging or joining

member thereby initiating a merge protocol. This saves an extra round of broadcast and

at least one cryptographic operation for each member.
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3.5.3 Security Considerations.

Recall that in the merge protocol, the current controller begins by refreshing its

contribution (to the group key) and forwarding the result to the first merging member. This

message actually contains a set of partial keys, one for each ”old” member and an extra

partial key for the first new member. This message is also signed by the controller and

includes the list of all members believed by the controller to be in the group at that instant.

In the optimized protocol, the controller effectively suppresses all partial keys

corresponding to members who are leaving the group. This modification changes nothing

as far as any outside attacks or threats are concerned. The only issue of interest is whether

any members leaving the group can obtain the new key. We claim that this is impossible

since the set of partial keys forwarded by the controller is essentially the same as the partial

key set broadcast in the normal leave protocol. Therefore, former members are no better

off in the optimized than in the leave protocol.

In addition, the new (merging) members are still unable to compute any prior

group keys just as in the plain merge protocol. This is because the information available

to (seen by) the new members in the optimized protocol is identical to that in the plain

merge.

3.5.4 Correctness Proof

The proof that the optimized algorithm described above provides the Virtual Syn-

chrony semantics presented in Section 2.2.1 is very similar to the proof we provided for the

basic algorithm. There are some differences in the optimized algorithm:

• secure memberships can be installed in three states, CM, SJ and M;

• application messages are delivered in the S and M states;

• membership notifications are received from the GCS in the CM, SJ, and M states;

• a process is not allowed to send user messages while performing the GKA, therefore

a process can not send user messages in any of the SJ, M, CM, PT, FT, FO, or KL

states.

Using a reasoning similar to the one we used in the proof for the basic algorithm,

the following lemmas can be proved.
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Lemma 3.5.1 The only states where VS membership notifications are received are the SJ,

CM and M states.

Lemma 3.5.2 The only states where user messages can be received are S and M. User

messages are delivered to the application only in the S and M states.

All the Virtual Synchrony Model properties described in Section 2.2.1 can be

proven by using the above lemmas and the properties provided by the underlying GCS

communication system. We exemplify this, by proving the Virtual Synchrony property.

Due to the similarity with the proofs we presented for the basic algorithm, we do not

include a proof for each property. The full proof can be found in (104).

Virtual Synchrony

Theorem 3.5.1 Two processes p and q that move together through two consecutive secure

views, deliver the same set of messages in the former view.

Proof: User messages are delivered to the application only in the S and M states (by Lemma

3.5.2) and VS membership notifications are received only in the SJ, CM and M states ( by

Lemma 3.5.1).

By the way we compute the transitional set, if process p and q move together from

v1 sec to v2 sec, then they moved together through the sequence of VS views v1 to v11,

..., v1n−1 to v1n, v1n to v2. If n is zero, v2 will be received in the M state, otherwise, v11

is received in the M state and all other possible VS views (including v2) will be received

in the CM state. Therefore, by the GCS Virtual Synchrony property, processes p and q

deliver the same set of messages between v1 and v11, v11 and v12, ... v1n and v2. No other

messages are delivered between v2 and v2 sec installations because any such message has

to be sent in v2 by the GCS Sending View Delivery property.

By the protocol, upon sending the flush ok msg message that concludes v1 each

process moves to the M state and will not send data messages before installing v2 sec. In

particular, it will not send messages between v2 and v2 sec. Therefore, p and q deliver the

same set of messages in v1 sec.
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3.6 Conclusions

In this chapter, we demonstrated that implementing secure and robust handling

of cascaded group membership is crucial in order to have a complete secure group commu-

nication system. It is possible, albeit difficult, to harden security protocols to make them

robust to asynchronous network events. This chapter presented two robust contributory

key agreement algorithms. We proved that, by integrating them with a group communica-

tion system supporting Virtual Synchrony, group communication membership and ordering

guarantees are preserved.



Chapter 4

Performance of Group Key

Agreement Protocols

In this chapter we focus on analyzing four popular contributory key management

protocols for collaborative peer groups, and compare them with a centralized key manage-

ment protocol, modified to provide the same security properties (e.g. key independence

and perfect forward secrecy). They are: Centralized Group Key Distribution (CKD) (105),

Burmester-Desmedt (BD)(61), Steer et al. (STR) (74), Group Diffie-Hellman (GDH) (56)

and Tree-Based Group Diffie-Hellman (TGDH) (72) (for a detailed description of these pro-

tocols see also Appendix A). The protocols are integrated in the same framework, Spread,

our reliable group communication system. We provide an in-depth comparison and analysis

of the five protocols based on experimental results obtained in real-life local and wide area

networks, by examining the time it takes to recompute a new group key for all possible

events that can change the group membership: join, leave, partitions and merges. The

analysis of the protocols’ experimentally measured performance offers insights into their

scalability and practicality.

All the above group key agreement protocols are extension to group of the Diffie-

Hellman protocol and therefore they use exponentiations intensively. Some protocols, as

Burmester-Desmedt, try to minimize the computation by distributing it to all participants,

which in turn trigger an increase in the number of messages used by the protocol. Some

other protocols use the opposite approach, their goal is to minimize the communication by

increasing the amount of computation done by one participant.

67
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Figure 4.1: A Layered Architecture for Spread

Section 4.1 presents the framework we used for our evaluation, Secure Spread, a

layered architecture for the Spread group communication system. We first analyze theoret-

ically the above mentioned key management protocols in Section 4.2 and then we present

experimental results in local and wide area networks in Sections 4.3 and 4.4. Section 4.5

concludes this chapter.

4.1 Layered Architecture

We evaluated the above mentioned protocols in the same framework, Secure Spread.

a layered architecture for the Spread group communication system. Secure Spread is a client

library providing data confidentiality and integrity, in addition to reliable and ordered mes-

sage dissemination and membership services. The library is built on top of the Virtual

Synchrony Spread client library; it uses Spread as its communication infrastructure and

Cliques (106) group key management library primitives for key management implementa-

tion.

The Sending View Delivery property of the Virtual Synchrony model enables the

use of a shared group view-specific key to encrypt client data, since the receiver is guaranteed

to have the same view as the sender and, therefore, the same key. Therefore, the approach

taken is to refresh the group secret key every time the view changes.

Figure 4.1 presents the layered architecture for Spread. The library has as main

functionalities providing confidentiality of the data by encrypting/decrypting client data
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using a group shared key and managing the shared key for each group in the system. A

client that desires to communicate securely is required to connect to a server and then join

a group before proceeding with the communication. The library provides an API interface

very similar with the Spread interface allowing a client to connect/disconnect to a server,

to join and leave a group, and to send and receive messages.

The core of Secure Spread is the Client Agreement Engine who operates as follows:

every time the group membership changes, the Client Agreement Engine receives notifica-

tions from the membership service about the changes. Whenever the group membership

changes, the Client Agreement Engine initiates an instance of the group key agreement

protocol, ensuring its correct execution (making sure that the messages are sent to the

correct destinations in the right order, and that all the members make consistent decisions

with respect to installing the new secure view) . When this protocol terminates, a secure

group membership change is delivered to the application and a new group key is ready for

use. Applications are not allowed to send any messages while the key agreement proto-

col is executed. In addition, the library ensures that the Virtual Synchrony semantics are

preserved.

The computation of a group key is group-specific. A client can be a member of

multiple groups, each group managing its shared key with its own key agreement protocol.

A Key Agreement Selector and an Encryption Selector modules are used to identify a group-

specific key management and encryption algorithms. The Client Agreement Module is the

one that manages the key agreement for each group.

Secure Spread currently supports five key management protocols. One of them

implements centralized key distribution and is referred to as the Centralized Group Key

Distribution (CKD). The protocol is adapted to provide the same security properties as the

other four key agreement protocols. The other four are key agreement protocols: Burmester-

Desmedt (BD) (61), Steer et al. (STR) (74), Group Diffie-Hellman (GDH) (56) and Tree-

Based Group Diffie-Hellman (TGDH) (105). Each of the latter four protocols are based

on various group extensions of the well-known (2-party) Diffie-Hellman key exchange (57)

and provide similar security properties: key independence and perfect forward secrecy. For

encryption, Secure Spread supports only one algorithm (Blowfish (44).
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4.2 Theoretical Analysis

In this section, we analyze the conceptual costs of the five protocols previously

mentioned. We evaluate the time to compute a new group key when the group membership

changes. There are four events that can lead to a change in group membership. The first

two are determined by actions initiated by users: a new user wants to become a member of

the group or a current member leaves the group. We refer to these events as join and leave,

respectively. Note that the latter can also happen when one member gets disconnected or

simply crashes.

Another category of membership change events is related with the connectivity

of the network. An unreliable network can split into disjoint components such that com-

munication is possible within a component but not between components. For members in

one component, it appears that the rest of the members have left. After the network fault

heals, members previously in different components can communicate again. From the group

perspective, it appears as if a collection of new members are added to the group. We refer

to these events as partition and merge, respectively.

From the conceptual perspective, we are interested in two cost aspects: the cost of

communication (number of rounds, number and service type of messages) and the cost of

computation (number of exponentiations, signature generation and verification). Although

the cost of communication in a modern high-speed LAN setting can appear negligible in

comparison with the cost of, say, modular exponentiations, we discuss it nonetheless, since

it becomes meaningful in LANs for protocols that trade off low computation for high com-

munication costs. Of course, communication cost is very important in high-delay networks

(e.g., WANs). Because of the distributed nature of group communication systems, we con-

sider only serial cost of computation (e.g. computation that needs to be processed strictly

serial). Computation that can be processed in parallel is collapsed accordingly.Thus, we

stress that the number of cryptographic operations expressed in the Table 4.2 (for each

protocol) is not the sum total for all participants.

Tables 4.1 and 4.2 summarize the communication and the computation costs as-

sociated with the five protocols we investigate. We make the following notations: n is

the number of current group members, m is the number of merging members and p is the

number of leaving members.
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Protocols Rounds Messages Unicast Multicast

GDH

Join 4 n + 3 n + 1 2
Leave 1 1 0 1
Merge m + 3 n + 2m + 1 n + 2m − 1 2

Partition 1 1 0 1

TGDH
Join, merge 2 3 0 3

Leave 1 1 0 1
Partition h 2h 0 2h

STR
Join 2 3 0 3

Leave, partition 1 1 0 1
Merge 2 3 0 3

BD

Join 2 2n + 2 0 2n + 2
Leave 2 2n − 2 0 2n − 2
Merge 2 2n + 2m 0 2n + 2m

Partition 2 2n − 2p 0 2n − 2p

CKD

Join 3 3 2 1
Leave 1 1 0 1
Merge 3 m + 2 m 2

Partition 1 1 0 1

Table 4.1: Key Management Protocols Comparison: Communication Cost
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Protocols Exponentiations Signatures Verifications

GDH

Join n + 3 4 n + 3
Leave n − 1 1 1
Merge n + 2m + 1 m + 3 n + 2m + 1

Partition n − p 1 1

TGDH
Join, merge 3h

2 2 3

Leave 3h
2 1 1

Partition 3h h h

STR
Join 7 2 3

Leave, partition 3n
2 + 2 1 1

Merge 3m + 4 2 3

BD

Join 3 2 n + 3
Leave 3 2 n + 1
Merge 3 2 n + m + 2

Partition 3 2 n − p + 2

CKD

Join n + 2 3 3
Leave n − 2 1 1
Merge n + 2m 3 m + 2

Partition n − p − 1 1 1

Table 4.2: Key Management Protocols Comparison: Computation Cost
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The height of the key tree constructed by the TGDH protocol is denoted by h1.

The cost of the TGDH protocol depends on the tree height, the balancedness of the key

tree, the insertion point of the joining tree (or node) and the location of the leaving node(s).

To err on the side of safety, we compute the worst case cost for the TGDH.

The number of modular exponentiations for STR upon a leave event is determined

by the location of the deepest leaving node. We, therefore, compute the average cost, i.e.

the case when the n
2 -th node left the group. All other protocols, except TGDH and STR,

show exact cost numbers.

Our current implementations of TGDH and STR recompute a blinded key even

though it has been computed already by the sponsor. This provides a form of key con-

firmation, since a user who receives a token from another member can check whether his

blinded key computation is correct. This computation, however, can be removed for better

efficiency, and we consider this optimization when counting the number of exponentiations.

The BD protocol has a hidden computation cost which is not reflected in Table 4.2.

In Step 3 (see Algorithm 16), BD protocol has n − 1 modular exponentiations with small

exponents (ranging from n to 2) and n−1 modular multiplications. Although a single small

exponentiation is negligible, the sum of all n− 1 exponentiations is clearly not. Because of

this hidden cost, it is difficult to compare the computational overhead of BD to the other

protocols.

4.2.1 Join

All protocols excepting CKD require two communication rounds. CKD uses three

rounds because the new member must first establish a secure channel (via Diffie-Hellman

key exchange) with the current group controller. The most expensive protocol in terms of

communication is BD which uses n broadcast messages for each round. The rest of the

protocols use a constant number of messages, either two or three.

GDH and CKD are the most expensive protocols in terms of the computation

overhead. Both schemes require a linear number of exponentiation operations relative to

the group size.

1Instead of fully balancing the key tree, TGDH uses best-effort approach: it tries to balance the key tree
only upon an additive event. The height of the key tree, however, is smaller than 2 log n (maximum group
size: n) (72). The tree can be better balanced when using the AVL tree management technique described
in (78). However, this will incur a higher communication cost for a leave operation.
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TGDH is comparatively efficient, scaling logarithmically in the number of expo-

nentiations. STR, in turn, uses a constant number of modular exponentiations. BD requires

the least modular exponentiations, but has the above discussed hidden cost.

4.2.2 Leave

Table 4.1 shows that, for a leave operation, the BD protocol is the most expensive

from the communication point of view. The cost order between the CKD, GDH, STR and

TGDH schemes is determined strictly by the computation cost, since they all have the same

communication overhead, one round consisting of one message. Therefore, TGDH is best

for handling leave events.

The computation overhead of STR, GDH and CKD scales linearly with the group

size. We note that the cost of CKD is actually higher than the one listed in Tables 4.1 and

4.2, because in the case when the controller leaves the group, the new group controller must

establish secure channels with all group members. Since BD, again, has a hidden cost, it is

difficult to compare with other algorithms.

4.2.3 Merge

We first analyze the communication cost. Note that GDH scales linearly with the

number of the members added to the group in communication rounds, while BD, CKD,

STR and TGDH are more efficient using a constant number of rounds. Since BD uses n

messages for each round and CKD uses m + 1 messages, STR and TGDH are the most

communication-efficient for handling merge events.

Looking at the computation costs, it seems that BD has the lowest cost: only three

exponentiations. However, the impact of the number of small exponent exponentiations is

difficult to evaluate. TGDH scales logarithmically with the group size, being more efficient

than STR, CKD and GDH which scale linearly with both the group size and the number

of new members added to the group.

4.2.4 Partition

Table 4.1 shows that the GDH, STR and CKD protocols are bandwidth efficient:

only one round consisting of one message. BD is less efficient with two rounds of n messages
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each. Partition is the most expensive operation for TGDH, requiring a number of rounds

bounded by the tree height.

As before, computation-wise it is difficult to compare BD with the other protocols

because of its hidden cost in Step 3 (see Figure 16). TGDH requires a logarithmic number

of exponentiations. GDH, STR, and CKD scale linearly with the group size.

4.3 Experimental Results in LAN

In this section we present, compare and evaluate the experimental costs of the five

protocols discussed above, in two network environments: local area networks and high delay

wide area networks.

We measure the “total elapsed time” from the moment the group membership

changes until the moment when the group key agreement protocol finishes and the applica-

tion is notified about the group change and the new key.

In case of join and leave which are events initiated by clients, this time includes all

the communication and computation costs of the key agreement protocol as well as the cost

of the membership service provided by the group communication system. In other words it

represents the total delay experienced by an application (or user) using the Secure Spread

group communication system, when it performs a join or a leave operation to a group.

In case of a merge or partition, where the group change happens due to a network

connectivity change, this time includes all the communication and computation costs of the

key agreement protocol as well as the cost of the membership service provided by the group

communication system, but it does not include the time needed by Spread to detect that a

network partition or merge occurred.

We begin by presenting performance results of the five protocols we investigate in

a local area network setting. First, we present the testbed used in our tests, then discuss

the particularities of the scenarios we considered and finally present results for join, leave,

partition and merge operations.

4.3.1 Testbed and Basic Parameters

We used an experimental testbed consisting of a cluster of thirteen 666 MHz

Pentium III dual-processor PCs running Linux. On each machine runs a Spread server.

Group members are uniformly distributed on the thirteen machines. Therefore, more than
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one process can be running on a single machine (which is frequent in many collaborative

applications).

As communication services we used FIFO and AGREED ordering. Tests per-

formed on our testbed show that the average cost of sending and delivering one Agreed

multicast message is almost constant, ranging anywhere from 0.75 milliseconds to 0.92 mil-

liseconds for a group size ranging from 2 to 50 members. Also, in a scenario (similar to a BD

round) where each member of the group sends an Agreed broadcast message and receives

all the n − 1 messages from the rest of the members (n being the group size), the average

cost is about 2 milliseconds for a group of 2 members and about 21 milliseconds for a group

of size 50.

The cost of the membership service (see Figures 4.2 and 4.3) is negligible with

respect to the key agreement overhead, varying between 2 and 8 milliseconds for a group

between 2 and 50 members.

Message origin and data authentication are achieved via RSA (53) digital signa-

tures. We chose RSA because the signature verification is quite inexpensive and all group

key agreement protocols described in this paper rely heavily on source authentication, i.e.,

most protocol messages must be verified by all receivers. If all processes are located on

different CPU platforms, verification is performed in parallel. In practice, however, a CPU

may have multiple group processes and expensive signature verification (e.g., as in DSA

(54)) noticeably degrades performance.

We used 1024-bit RSA signatures with the public exponent of 3 to reduce the

verification overhead, although a quasi-standard in RSA parameter selection is 65, 537.

This is because 1) there are no security risks for using 3 as a public exponent in RSA

signature scheme (107), 2) BD and GDH require n simultaneous signature verifications,

and 3) in our current topology, some machines can have multiple group member processes.

On our hardware platform, the RSA sign and verify operations take 9.6 and 0.2 milliseconds,

respectively.2 In case the public exponent is chosen to be 65, 537, it takes 0.5 milliseconds

to verify a RSA digital signature on our platform.

For the short-term group key, we use both 512- and 1024-bit Diffie-Hellman pa-

rameter p and 160-bit q. The cost of a single exponentiation is 1.7 and 5.3 milliseconds for

a 512- and a 1024-bit modulus, respectively. Although the use of a 512-bit exponentiations

2This is not surprising since OpenSSL uses the Chinese Remainder Theorem to speed up RSA signatures.
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might be considered insecure, we decided to include the results for 512-bit exponentiations

to show the quantitative effect of the exponent (key generation) on the performance of the

protocol.

4.3.2 Test Scenarios

The cost for each protocol, depends on several factors. We tried to design our

tests such that we take into account all the factors, keeping experiments as similar and as

less complex as possible.

Some of the protocols maintain specific data structures. The GDH and CKD

schemes maintain a list, while TGDH and STR maintain a tree. The BD protocol is

stateless. Depending on where the operations are performed in these data structures, the

communication and computation cost might vary or not. For example, the cost of the

GDH and BD protocols does not depend on the position of the joining or leaving member,

i.e., all leave and all join operations cost the same in these protocols, while CKD can be

expensive for a leave event if the leaving member is the current group controller. For STR

the computation cost in case of a leave operation depends on the position in the tree of the

leaving member. TGDH cost depends on many factors: the location of the leave or join

node, tree height, and the balancedness of the tree.

Motivated by the above observations, we designed our tests as follows. For CKD,

we take into the possibility that the controller might leave by factoring in the 1/n probability

of the group controller leaving the group. Since the estimated cost presented for STR leave

event is the average cost, we also tested the average case: the leaving member is the leaf

node at height n/2, in the middle of the STR key tree.

TGDH is the most difficult protocol to evaluate because its cost depends on the

location of the leave or join node, tree height, and the balancedness of the tree. For a

truly fair comparison, Secure Spread must be first run with TGDH for a long time (with

a random sequence of joins and leaves) in order to generate a random-looking tree. The

experiments must then be conducted on this random tree. However, such tests are very

difficult to perform. Instead, we chose a simpler experimental setting by measuring join

and leave costs on an artificially balanced TGDH key tree with n members. We note that

for a random tree, the cost of join will be less expensive since the member will be joined

closer to the root, while leave will be more expensive, but still less expensive than GDH.
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Figure 4.2: Join Average Time (LAN)

In case of partition and merge we run the same scenarios for all protocols: we

partition the group is two subgroups of about the same size, and then merge them back.

STR and TGDH have a clustering effect (See Section 4.3.5 for details) when partition events

will be repeated in the same configuration. To emphasize this property, we partitioned the

group in two subgroups, merge it back, and then partition it again. We analyze the cost of

the partition operations.

4.3.3 Join Results

Figure 4.2 shows the total average time for a group to establish secure membership

following a join of a new member.

In the graph on the left (512-bit modulus) it looks, overall, that STR outperforms

other protocols. Closer inspection reveals that BD is actually the most efficient for small

group sizes (less than 7 or so). Recall that BD involves only three full-blown exponentiations

as opposed to STR’s seven. However, BD has (n + 3) signature verifications, whereas STR

only has 3. Furthermore, BD requires O(n log n) modular multiplications in Step 3 (to

compute the key, see Figure 16). Finally, BD has two rounds of all-to-all broadcasts. Small

group size makes all of these factors negligible. However, as the group size grows, BD

deteriorates rapidly since both modular multiplications, RSA signature verifications and

broadcasts add up. In fact, after passing the group size of thirty, BD becomes the worst

performer if Diffie-Hellman parameter is 512. For 1024-bit modulus, GDH is the worst due

to the sharp increase in modular exponentiation.
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Another interesting observation about BD’s performance in all measurements is

that its cost roughly doubles as the group size grows in increments of 13. Recall that 13 is

the number of machines used in the experiments. Because BD is fully symmetric, as soon

as just one machine starts running one additional group member (process), the cost of BD

doubles. Moreover, it can be noted that starting with the group size of 26, the performance

degrades significantly. As mentioned before the machines we used are dual processors, so

up to a group size of 26 it can be assumed that there is one client on one processor. For

the other protocols this behavior is less obvious since in all of them, the most costly tasks

are performed by a single member (controller or sponsor).

The graph on the right (1024-bit modulus) does not show the same deterioration

in BD. It remains the best for very small groups up to 14 members. This is because the

cost of exponentiations rises sharply from 512 to 1024 bits, while the cost of RSA signature

verifications and broadcasts (which weighs BD down in the 512-bit case) is not felt nearly

as much, while the other protocols are more affected since their cost is mainly determined

by the number of exponentiations.

In both graphs, TGDH and STR are fairly close with the latter performing slightly

better. Although the numbers in Table 4.2 show constant cost for STR, the measured

cost increases slightly because: 1) a CPU may experience an increasing number processes

as the number of members increases, and, 2) other minor overhead factors such as tree

management. Conceptually, TGDH can never outperform STR in a join, since the latter’s

design includes the optimal case (i.e., join at the root) of the former. Experimental results,

however, show that TGDH can sometimes outperform STR (see small dips in TGDH graph

at around 18 and 34 members). This is because most members in a fully balanced TGDH

tree compute two modular exponentiations in the last protocol round, as opposed to four

in STR.

The difference between CKD and GDH comes from exponentiation and signature

verifications: extra operations in GDH include n verifications, one RSA signature and one

(DH) modular exponentiation. GDH and BD each have n+3 signature verifications, which

is, as mentioned above, relatively expensive even with a 512-bit RSA modulus.
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Figure 4.3: Leave Average Time(LAN)

4.3.4 Leave Results

Figure 4.3 shows the average time for a group to establish secure membership

upon a member leave event. In line with the conceptual evaluation, TGDH outperforms

the rest, as it requires the fewest (O(log n)) modular exponentiations. This sub-linear

behavior becomes particularly evident past the group size of 30. Note that for a random

tree although leave will be more expensive, it will be less expensive than leave for the GDH

protocol (72) which is the second best.

BD is the worst in 512-bit leave; recall that BD is a stateless protocol and uses

the same method to recompute the key, independent of the event that changed the group

membership, therefore, leave and join incur the same cost. STR, CKD and GDH all exhibit

linear increase in cost. CKD and GDH are quite close while STR’s linear factor is 2n which

makes its slope steeper. In addition, while STR, TGDH, CKD and GDH require only one

broadcast, BD uses two rounds of n messages each.

In case of the 1024-bit modulus, STR is the most expensive protocol, since it

involves (costlier in 1024- than in 512-bit case) modular exponentiations. TGDH exhibits

the cost roughly twice that of the 512-bit case and remains the leader. BD, however,

is no longer the worst and, at least for small group sizes, (less than 37 or so) performs

close to, or better than, GDH. Once again, we attribute this to the relatively cheap cost

of RSA signature verifications in the commensurately small number of full-blown 1024-bit

exponentiations in BD.
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4.3.5 Partition Results

The results in Figure 4.4 present the time required to establish a new secure

membership when a group is splitted in two groups of about the same size. The partition is

generated by simulating a network partition between the servers. The evaluated time does

not include the time needed by Spread servers to detect that a network partition happened.

GDH outperforms the other protocols. We note that STR and TGDH are very

costly in this specific scenario where half of the group is partitioned away because they need

to rebuild the tree. In particular, STR is the most expensive since it also scales linearly in

computation with respect to the new group size.

The cost associated with the CKD protocol is higher than we estimated in Table

4.2. When the group is partitioned in two subgroups, the old group controller will be part

of one of the partitions. In this case, the cost is similar with the one we estimated in Table

4.2. However, in the other partition, all member will perceived the old group controller as

being gone, so a new group controller will be chosen. In this case, all group members need

to establish secure channels with the new group controller.

TGDH and STR have an advantage over the other protocols in case of partition.

Due to the tree structure, both TGDH and STR have a clustering effect which basically

decreases the cost of a partition when this happens multiple times in the same configuration

(which statistical results show that it is a common case). To show this feature, we ran the

following experiment. We partitioned a group in two equal groups, such that after the

partition occurred, the odd numbered users are in one group (we refer to it as Group 1 )
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Figure 4.5: Partition Clustering Effect

and the even numbered users are in the other group (referred to as Group 2 ), merged it

back and then repeat the partition event. The first partition (we refer to it as Partition 1 ),

and the second partition (we refer to it as Partition 2 ) are identical.

The time needed to establish a key and install a secure membership in the two

partitioned subgroups for Partition 1 and Partition 2 events are presented in Figure 4.5.

As it can be noticed, for the BD, GDH and CKD protocols the time is about the same.

For BD and GDH the only important factor in the cost of the protocol is the number of

the remaining members. BD and GDH take the same amount of time, since the cost of

partition depends only on the group size and the number of leaving members.

In case of CKD, there is a difference between the cost of the key agreement in

Group 1 and Group 2, since in Group 2 all new members need to establish secure channels

with the new group controller.

Unlike BD, GDH and CKD, for STR, a decrease can be noticed in the cost of

Partition 2 for Group 2 (even numbered members). This is because the merge event we

generated in between the two partitions, changed the structure of the tree, and the refresh

for the second partition happened at a higher level in the tree. However, for Group 1, there

is no improvement, since the refresh happens very low in the tree.

In case of TGDH, the partition protocol may cost as many as log n rounds. Then,

when the partition heals, the previously separate groups are merged into a single key tree,

however, they are still clustered along the lines of the partition. If another partition happens

on the same link, the partitioned members are not scattered across the key tree any longer.
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Figure 4.6: Merge Average Time (LAN)

Therefore, any subsequent partition on the same link will take only one round to complete.

This improves the communication cost (also the number of signature generation) and we

can see clear distinction between the first and the second partition.

4.3.6 Merge Results

The results in Figure 4.6 present the time required to establish a new secure

membership when two groups of about the same size that were previously partitioned, are

then merged together. This time does not include the time needed by the Spread servers

to detect that the network healed. GDH is the most expensive protocol in case of merge

because it scales linearly in computation with the number of the new group members and has

the highest number of communication rounds. The CKD protocol has less communication

rounds, however the computation required for merge is quite high since all new members

(in our case n/2) need to establish a secure channel with the group controller.

The STR scheme has a comparable cost with CKD due to the fact that its tree

is “almost” a list, so when n/2 members are merged, the refresh in the tree happens very

deep so triggers a significant computational task. The high computation cost of STR and

GDH, make BD competitive in case of a merge operation. The balanced tree structure and

the small number of communication rounds allow TGDH to obtain the best performance in

case of merge.
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Figure 4.7: WAN Testbed

4.4 Experimental Results in WAN: An Extreme Case

In this section we present results in a WAN environment with high-delays. We

focused on evaluating the total time needed to perform a join or a leave operation, from

the moment the group membership changes due to the join or leave of a member, till the

moment a new key was computed and delivered to all members of the group. This time

includes all communication and computation costs of the key agreement protocol as well as

the cost of the membership service of the group communication system. We present first

the testbed used in our tests, then show results for join and leave operations.

4.4.1 Testbed and Basic Parameters

Figure 4.7 presents the network configuration we used for our experiments on WAN

which uses three sites.

To achieve the same computation distribution as for the LAN experiments, we

used an experimental testbed of thirteen PCs running Linux: ten 666 MHz Pentium III

dual-processor PCs, one 1.1 MHz Athlon and one 930 MHz Pentium III PCs, located as

follows: first eleven machines at Johns Hopkins University (JHU), Maryland, one machine at

University of California at Irvine (UCI) and one at the Information and Communications

University (ICU), Korea. We uniformly distributed group members among the thirteen

machines with more than one group member process running on a single machine. Each
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machine runs a Spread server. Approximate round-trip latencies (ping times) as reported

by the ping program are: JHU - UCI 70 milliseconds, UCI - ICU 300 milliseconds and ICU

- JHU 270 milliseconds. We emphasize that because of the message dissemination protocols

employed by Spread, the determinant factor in the performance of our communication

infrastructure is the diameter of the network.

The average delay of sending and delivering one Agreed multicast message depends

on the sender’s location. The actual delay (in milliseconds) is: sender at JHU – 392, sender

at UCI – 328, and sender at ICU – 334. When each group member sends a broadcast

message and waits to receive n − 1 messages from the rest of the group (similar to a BD

communication round), the average cost is about 1000 milliseconds for a group of size 50.

It is important to notice that, in a LAN setting, the cost of the group membership

service provided by the underlying group communication system is negligible with respect

to the key agreement overhead, e.g., about 7 milliseconds vs. hundreds of milliseconds.

However, this relative cost becomes significantly higher in a WAN setting. The cost of the

membership service as it can be seen in Figure 4.8, varies between 400 and 670 milliseconds

for a join operation and between 250 and 650 for a leave operation, for a group of 2 to 50

members.

As in the LAN experiments, we used RSA 1024-bit with the public exponent of

3 to compute message signatures. On our test PCs, the RSA sign and verify operations

take 6.9 − 17.9 and 0.2 − 0.4 milliseconds, respectively, depending on the platform. For the

short-term group key, we use 512-bit Diffie-Hellman parameter p and 160-bit q. The cost

of a single modular exponentiation is between 0.8 and 1.7 milliseconds.

4.4.2 Join Results

Figure 4.8 (left) presents our results for the average time required to establish a

secure group membership when a new member joins the group. The graph also separately

plots the cost of the insecure group membership service. The difference between the total

time required by each protocol and the insecure group membership service cost, represents

the overhead of the key agreement itself (both communication and computation).

The first observation is that the GDH protocol performs significantly worse than

others. The main difference between GDH and the other protocols comes from communi-

cation. First, the number of rounds is greater than that of the other protocols as shown in
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Figure 4.8: Join and Leave Average Time (WAN)

Table 4.1. GDH requires 4 rounds while others require only 2 rounds.

The rest of the protocols are more or less in the same range, with BD becoming

more expensive for a group size bigger than 30, while STR and TGDH show similar per-

formance. It is interesting to notice that both STR and TGDH come closer to the BD

performance. This is also because of the communication aspect of the protocols. As stated

in Table 4.1 and Sections A.4 and A.3, both STR and TGDH have 2 rounds, out of which

the first round consists of two “simultaneous” broadcasts. In our implementation, these

broadcasts are not simultaneous, since to achieve ordered delivery of the messages, group

communication systems use a mechanism, where a token is passed between participants and

only the entity that has the token is allowed to send. Because in our particular WAN setup,

there are three main sites, JHU, UCI and ICU (the cost of passing the token inside a site is

significantly smaller than the cost between sites), the cost of a STR and TGDH scenario -

2 members are sending two broadcasts and all the members need to receive them - is close

to the cost of a BD scenario - n members broadcast and all members need to receive n − 1

messages. 3

BD deteriorates faster than other protocols due to the number of broadcast mes-

sages. Though CKD has three rounds, two of them involve single-message unicasts. This

helps CKD to remain competitive with respect to the other protocols.

We can clearly conclude that communication costs (the number of rounds and the

3This is because if one member missed the token, it needs to wait for the token to pass the whole ring,
while in the BD scenario if the token completes a cycle, no matter where it started, everybody succeeds to
send.



87

numbers of messages sent in one round) of a group key agreement scheme affects severely

its performance on the wide area network, particularly in one with high-delays as the one

we used in our experiments.

4.4.3 Leave Results

In case of leave (see Figure 4.8, right), BD is the most expensive protocol in our

WAN setup, due to the two rounds on n broadcasts and its high computational cost.

GDH, CKD and TGDH require only a single broadcast, thus, they exhibit similar

performance results. Although STR also requires only one broadcast, it has significantly

higher computation cost with respect to the rest.

We observe that TGDH exhibits a behavior more dynamic than GDH and CKD.

We attribute this to the fact that, in CKD and GDH, the controller (who does the bulk

of computation and broadcasts) was running on a fixed machine. Whereas, in TGDH, the

sponsor (who also does most of computation and broadcasts) was running on any of the

13 testbed machines. If tested with a fixed sponsor, we suspect that TGDH, GDH, CKD

would have almost identical cost.

4.5 Conclusions

We presented a framework for cost evaluation of group key agreement protocols in

a realistic network setting. The focus was on four notable group key agreement protocols

and a centralized key management protocol integrated with a reliable group communica-

tion system (Spread). After analyzing the protocols’ conceptual costs, we measured their

behavior in both LAN and WAN settings.

Following our experiments and their interpretation (as discussed above), we con-

clude that computation cost is most important in a low delay network and communication

cost is most important in a high delay network.

In a LAN setting, TGDH is the best performing protocol overall. However, we also

note that for small groups – no greater than, say, a dozen members – BD is a slightly better

performer. Another factor in BD’s favor is its simplicity: all operations are symmetric and

are implemented via the same protocol with few data structures to manage. In contrast,

TGDH involves some non-trivial tree management. (See (72) for details.)
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An additional factor can skew the comparable performance of the evaluated pro-

tocols. TGDH was evaluated with a well-balanced tree. In a random (unbalanced) tree

the join cost would have been less expensive since the joining node would have been in-

serted nearer the root node, while the leave cost would have been more expensive, but less

expensive than GDH (72).

In a high-delay WAN setting, TGDH and CKD exhibited the best performance.

Since TGDH has smaller computation overhead, we expect it to outperform CKD in a

medium delay wide area network (70 − 100 milliseconds round-trip links).

The results we presented indicate that TGDH is the protocol that is the best

compromise in performance in both environments.



Chapter 5

Integrated Secure Group

Communication Architecture

There are two basic approaches to integrate security services into a client-server

group communication system. The first approach (referred to as the layered architecture)

places security services in a client library layered on top of the group communication system

client library. The second approach entails housing some (or all) security services at the

servers in order to obtain a more scalable solution (referred to as the integrated architecture).

In this chapter we present a scalable architecture for secure group communication,

relying on a group key management protocol that is efficient, robust to process crashes and

network partitions and merges, and protects confidentiality of the data even when long-term

keys of the participants are compromised. We show how both the Virtual Synchrony and

Extended Virtual Synchrony group communication semantics can be supported in the pro-

posed architecture, discuss the accompanying trust issues and present experimental results

that offer insights into its scalability and practicality. Because the scalability is achieved by

integrating the group key management protocols in the server, we refer to this architecture

as integrated architecture.

The rest of the chapter is organized as follows. First, we define our security goals

in Section 5.1. Then, we propose three variants of an integrated security architecture in

Section 5.2 and show the improved scalability of our integrated architecture in Section 5.3.

We compare the advantages and drawbacks of each of the proposed architectures in Sections

5.4 and 5.5.

89
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5.1 Security Goals

One of our main goals is to protect the data generated by a client and sent to a

group, from being eavesdropped by both passive and active adversaries that are not current

members of the group. Insider attacks are not relevant for this work since the confidentiality

of the data relies on the secrecy of the group key, and any malicious insider can always reveal

the group key or its own private key, thus compromising the communication.

The way the group key is computed is essential for the security of the system. A

group key agreement protocol should provide: Key Independence, Perfect Forward Secrecy

and Backward/Forward Secrecy. Informally, key independence means that a passive adver-

sary who knows any proper subset of group keys cannot discover any future or previous

group key. Forward Secrecy guarantees that a passive adversary who knows a subset of old

group keys cannot discover subsequent group keys, while Backward Secrecy guarantees that

a passive adversary who knows a subset of group keys cannot discover preceding group keys.

Perfect Forward Secrecy means that a compromise of a member’s long-term key cannot lead

to the compromise of any short-term group keys. For a more precise definition of the above

terminology, the reader is referred to Section 1.2.1 and (41), (56).

The key agreement protocol we use in our design is called Tree-Based Group Diffie-

Hellman (74) (TGDH). It provides key independence and perfect forward secrecy; it was also

proven secure with respect to passive outside (eavesdropping) adversaries (108). In addition,

active outsider attacks – consisting of injecting, deleting, delaying and modifying protocol

messages – that do not aim to cause denial of service are prevented by the combined use of

timestamps, unique protocol message identifiers, and sequence numbers which identify the

particular protocol execution.

Group members are authenticated when they connect to a server. Spread, the

group communication system that is the subject of this work, provides a framework for

authentication and access control.

Impersonation of group members is prevented by the use of public key signatures:

every protocol message is signed by its sender and verified by all receivers.

Any form of attacks that aims to cause denial-of-service are not considered in this

work.
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5.2 Integrated Architecture

Early group communication systems were implemented as libraries, which meant

that all distributed protocols were performed between all clients, per group. A substantial

increase in performance and scalability was obtained by applying a client-server architecture

to this model: a smaller number of servers run the expensive distributed protocols and, in

turn, serve numerous clients.

Group key agreement protocols are, by nature, distributed and represent the most

expensive security building block. Therefore, to improve the performance of the system in

settings with multiple groups (or many clients) we amortize the cost of key management by

placing the key agreement protocols at the servers and having the servers generating client

group keys in a light-weight manner. This follows the integrated architecture model where

security services are implemented at the server.

Since the server population is smaller and more stable than that of clients, server-

based key agreement is both faster and less frequent. Specifically, the servers’ shared secret

key is refreshed only when network connectivity changes, and not when some client group

changes. This results in fewer costly key refreshes in contrast to client-based key agreement

because network connectivity changes are far less frequent than normal client group changes.

Note that the shared server key can be vulnerable if it changes very infrequently and a

security policy should impose additional refreshing operations, triggered, for example, by

maximum elapsed time between successive key changes (time-out) or maximum volume of

data exchanged (data-out).

Generating client group keys is much less costly in the integrated architecture,

since, if no change occurs in the servers configuration, the cost of generating a new key for

a group amounts to one keyed MAC (HMAC (52)) operation. When network connectivity

does change (and so does the membership of the servers’ group), the group key shared by

the servers is refreshed using a full-blown group key agreement protocol. For this, we use

the TGDH (74) protocol because of its superior performance.

The use of encryption for bulk data confidentiality results in decreased system

throughput due to the extra consumption of CPU resources. Regardless of the location

and particulars of the key management, bulk data encryption can be done by either clients

or servers. In the following, we describe three integrated architecture variants that trade

off encryption cost for complexity, overhead and group communication model support. We
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Figure 5.1: A Three-Step Client-Server Architecture for Spread

first discuss their different performance and security guarantees and then compare them to

a layered approach.

5.2.1 Three-Step Client-Server

The most intuitive architecture is one derived from the the client-server model

of the group communication system. The architecture can support both VS and EVS

semantics at the expense of decreased (due to encryption) throughput. We refer to it as

Three-Step Client-Server.

We note that the communication taking place in the system can be classified in two

logical communication channels: client-server and intra-servers. The goal is to protect these

two channels. Spread’s architecture uses a TCP connection when a client connect remotely

to a server. In this case, the best approach to protect the client-server communication is is

using a standard two-party secure communication protocol, such as SSL/TLS (109). If a

client connects to a server running on the same machine, Spread architecture uses IPC. In

this case, no data protection is needed and client-server communication is not encrypted.

The intra-server communication channel is provided by a multicast protocol de-

veloped on top of UDP. In order to provide confidentiality of this communication, a block

cipher encryption protocol based on a key shared by the servers is a good solution.

Figure 5.1 presents such an architecture. The Servers Agreement Engine detects
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changes in the server group connectivity and for each connectivity change performs a key

management protocol between servers. In addition, time-based or data-based key refresh

can be enforced. As mentioned above, we use the TGDH (74) protocol for key management,

due to its good performance and strong security properties.

Servers can distinguish between communication coming from peer servers and

communication from the clients, and therefore, use the appropriate key in order to en-

crypt/decrypt the information.

One of the challenges with integrating a key agreement protocol into a group

communication system is the interactions between the former and the membership protocol.

Until the membership protocol completes, the key agreement protocol cannot run, since

there is no fixed group of servers among which to perform key agreement. While the

membership protocol is running, the set of known servers may change again (referred to

as cascaded membership), and basic communication services between them may become

unavailable.

To cope with this issue, the group key is provided only when the server group

membership is stable and while the group communication membership protocol is not ex-

ecuting. This allows the key agreement protocol to run with its normal assumptions once

the membership protocol completes, yet prior to notifying the client applications about the

change. Thus, applications do not experience any change in semantics or the APIs (such as

a new key message) but do experience an additional delay during each server membership

change. (This is in order for the key agreement protocol to execute following the completion

of the membership protocol.)

The membership protocol can be secured by using public key cryptography to

encrypt and sign all membership messages, since the shared key is not available during its

execution. The small number of messages sent during the membership algorithm and their

small size, ensures that the overhead of public-private encryption can be tolerated.

The Three-Step Client-Server architecture allows individual policies for rekeying

the server group key and the per-client SSL keys, as each is handled separately.

Once the master server group key is generated, the servers communication is pro-

tected by encryption using a key derived from it. The default protocol to encrypt com-

munication between servers is Blowfish in CBC mode; however, the system supports any

encryption algorithm in the OpenSSL (110) library, including AES (45).

The total end-to-end cost of sending an encrypted data message from one client



94

to another (both are connected to the Spread server remotely) includes six encryption and

decryption operations: client encrypts the message and sends it over SSL to the server;

server decrypts it and then re-encrypts using the server group key; servers that receive this

message decrypt it and then re-encrypt it again using SSL for the receiving client; finally,

each receiving client decrypts the message.

Note that the receiving servers need to encrypt the message separately for each

remote client who needs to receive it. This is potentially a large number since each server

can support about 1, 000 client connections. Thus, if more than one receiver is connected

remotely on the same server, the load on the server will increase linearly with each remote

receiver, since each remote receiver receives the same message encrypted separately on its

own SSL connection. Local receivers do not require client-server encryption.

If two clients (sender and receiver) are executing on the same machine as the server

that they connect to, then the cost of encryption under the Three-Step Client Server model

reduces to one encryption by the sending server and one decryption by the receiving server.

5.2.2 Integrated VS

Although the Three-Step Client-Server architecture previously presented has the

advantage that is less complex, it suffers from a decreased throughput due to the encryption

load on the servers, and therefore is not recommended when clients connect remotely. The

goal is to design an architecture that had a reasonable level of performance not only in key

management, but also in throughput. This can be achieved if the encryption is pushed to

the clients, which in turn requires client group keys.

We propose as second variant an architecture, referred to as Integrated VS, that

supports the VS group communication model and combines the advantages of having a

less expensive key management building block (by integrating it in the servers) with the

advantage of having the encryption done in the client library. In this aspect, Integrated

VS is similar to the layered architecture. The client groups are closed, i.e., a client needs

to be a member of a group in order to send messages to that group. This design requires

client groups keys. However, unlike the layered architecture where the key agreement was

performed individually by each group, in this case, client group keys are generated by

servers without involving costly key agreement protocols. Since the library operates in the

VS model, in a manner similar to the layered architecture (see Section 4.1), a per-view
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Figure 5.2: An Integrated VS Architecture for Spread

shared key associated with the group can be used to provide confidentiality. The key is

refreshed by the servers when the group view changes.

Figure 5.2 depicts the Integrated VS architecture. The Servers Agreement Engine

(SAE) initiates a key agreement protocol between the servers whenever it detects a change

in server group connectivity. The Group Keys Engine (GKE) generates, for each group, a

shared key whenever group membership changes. In case of a network connectivity change,

the SAE is invoked first, followed by the GKE. The latter refreshes the key for each group

that suffered changes in membership due to a change in server connectivity. The new group

key is attached to the membership notification and delivered to the group. Client group

keys are generated by the servers based on three values:

1. server group shared key Ks,

2. group name,

3. unique number that identifies the group view (list of members at a certain time).

The group key for group g in view i, uniquely identified by view id(g, i) is

Kg,i = HMAC(Ks, g‖view id(g, i))
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The shared server group key is computed in a manner identical with the one used

by the Three-Step Client-Server architecture and can be refreshed as needed. The client

group key is changed whenever a group event (join, leave, etc.) occurs. The new key

is delivered within the secure membership message informing the clients about the group

change. All client group members receive the same key for the same membership as a result

of the VS semantics. If a key change is required because of the security policy (not caused

by an underlying group membership change), the key refresh notification is delivered as an

“artificial” group membership change. This is needed to preserve the semantic guarantees

of VS that messages encrypted by a client with one key will be received by everyone while

they also perceive as current key (have) that same key.

The encryption and decryption costs for Integrated VS consist of one encryption

by the sender and multiple decryptions, one for each receiver. The worse case is when all

receivers are situated on the same machine, whereas, the best case is when all receivers are

running on distinct machines. In the latter case, decryption takes place in parallel. Once

again, Blowfish is the preferred encryption algorithm.

5.2.3 Optimized EVS

Out of the architecture variants presented thus far, only Three-Step Client-Server

supports the EVS model and open groups. As discussed in Section 2.2, EVS is faster, thus,

it is desirable to have a secure group communication system supporting this model. The

Three-Step Client-Server serves this purpose, but incurs a heavy encryption overhead when

clients connect remotely to servers.

One method to alleviate the large number of encryption and decryption operations,

is to have clients performing the encryption by using a shared per-view group key, in a

manner similar to the Integrated VS architecture. However, unlike VS, EVS does not

guarantee that all messages are delivered to receivers in the same view in which they were

sent. Therefore, there might be messages that group members will not be able to decrypt

as they do not have the key used to encrypt that message in the first place. Our next

architecture variant addresses this issue.

In order to support EVS semantics and client message encryption, we developed

an architecture that relies on the servers not only to generate client group keys, but also

to “adjust” messages that are not encrypted with the current group key. The clients will
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Figure 5.3: An Optimized EVS Architecture for Spread

operate without any disruption since the servers will guarantee that all messages delivered

to the clients are encrypted with the current group key.

Figure 5.3 presents this architecture, referred to as Optimized EVS. The Servers

Agreement Engine and Group Keys Engine perform key management of the servers’ shared

secret and client group keys, respectively. The method of generating client group keys is

the same as the Integrated VS variant. The main change is that we add a new EVS-Fix-

Messages module, that detects when a message for a certain group is encrypted with a key

that is no longer valid. Each such message is decrypted and then re-encrypted with the

current group key before being delivered to the clients. The clients, in turn, decrypt all

group messages normally. TGDH is used as the server group key agreement protocol and

Blowfish is used for data encryption.

The EVS-Fix-Messages module solves two problems:

1. Detects whenever a message is encrypted with the wrong key.

2. Determines the correct key to use for encrypting the message.

The first problem is addressed by having the sender include in each message a

unique Key id of the group key that was used to encrypt it. This Key id is independently

and randomly computed each time a new key is generated (it is also distributed along

with each new client group key). However, since it does not provide integrity, but merely

identifies the client group key, the Key id can be relatively short, e. g., 32 bits. It is



98

transported in the un-encrypted portion of the message header.

To detect messages encrypted with an “old” key, the server stores each client

group along with its Key id. The server also tags one key as the “current” key for each

client group. The current key is the key that matches the last membership (or key refresh)

delivered to the group members. Then, before delivering a message to a client, it checks if

the Key id on the message matches that of the current key. If so, the message is immediately

delivered. Otherwise, the message is decrypted with the appropriate stored “old” key and

re-encrypted under the current key. Since the message stream delivered to each client is a

reliable FIFO channel, the client eventually receives the message in the same view that the

server expects it to.

Accumulating old keys and Key ids ad infinitum is not a viable solution. Thus, old

keys have to be periodically flushed from by each server. Two different expiration metrics

can be used either alone or in concert: time-outs and key-outs. A time-out occurs when

no message encrypted under a given key has been received for a certain length of time. A

key-out takes place when some pre-set maximum number of keys-per-group is exceeded.

Many combinations and variations on the theme are clearly possible.

The choice of a key expiration methodology can affect the risk of a message being

“indecipherable” even when the server, in theory, could have kept the required key.

5.3 Experimental Results

In this section we present experimental results for the group key management

and data encryption building blocks. The experiments cover all architecture variants de-

scribed in Section 5.2 measured in a local-area network environment and show the superior

scalability of an integrated, over that of a layered, architecture.

5.3.1 Group Key Management

We now compare the cost of establishing a shared group key in a layered archi-

tecture and in an integrated architecture. For the layered architecture we chose the most

efficient key agreement protocol that we have experimented with, TGDH (72). For the

integrated architecture we also chose TGDH as the key agreement protocol between the

servers.
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We used an experimental testbed consisting of a cluster of thirteen 667 MHz

Pentium III dual-processor PCs running Linux. On each machine there is a Spread server

running. Clients are uniformly distributed on the thirteen machines. Therefore, more than

one process can be running on a single machine (which is frequent in many collaborative

applications).

For the most common group changes, join and leave, the cost of establishing a

new group key is reduced to almost the cost of the group communication membership

protocol, since the servers can compute a new group key without performing any other key

agreement protocol, just one HMAC operation is needed per group change. The results

presented in Figure 5.4(a) and Figure 5.4(b) for the integrated architecture are for a VS

group membership protocol. This is because the cost of the VS group membership protocol

is in some sense the worst case: VS uses closed groups and it requires acknowledgments

from each group member before changing the group membership. In the EVS case, the

results for the integrated architecture will be much smaller.

In Figure 5.4(c) and Figure 5.4(d) we present the cost of establishing a secure

membership for merge and partition. Remember that such a group event is triggered by a

network connectivity change which determines a modification in the servers configuration,

or by a server crash. In this case, a new servers’ key needs to be computed by the servers,

and only then the client group keys are computed. In Figure 5.4(c) and Figure 5.4(d) we

present the cost of establishing a secure group membership for a test scenario where the

servers are partitioned in half and then brought back together.

As it can be seen in Figures 5.4(c) and 5.4(d) the cost of the key management for

the integrated architecture is slightly higher than in the case of join and leave because of the

cost of the key agreement protocol performed between servers. However, since the number

of servers is much smaller than the number of clients, the impact of the key agreement

protocol is less significant. The cost of the secure membership decreases from about 220

milliseconds, to about 90 milliseconds where the size of the group after partition is 100

users, in case of a merge and from about 680 milliseconds to about 60 milliseconds for a

partition, where the size of the group before partition is about 100 members.

The above results were obtained for a scenario when only one group exists in the

system. In practice, this is not the case. When more than one group exists in the system and

a change in the servers’ configuration that affects more than one group occurs, the layered

architecture performs a key agreement protocol for each of the existing groups affected by
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Figure 5.5: Scalability with Number of Groups

the change. For the integrated architecture, there is only one small scale key agreement

performed between servers, and then a number of HMAC operations equal with the number

of groups affected by the change.

Figure 5.5 shows the average cost of recomputing a shared key for all groups,

when more than one group exists in the system. All the groups have the same number of

clients, 13 respectively. We chose this number, because this is also the number of the servers

in our configuration. Even in this favorable setup for the layered architecture (small size

groups), the integrated architecture scales much better than the layered architecture when

the number of groups in the system increases. Based on the results we present in Figure 5.5

we estimate that even with a very small group size (13 in our case), it will take more than 4

seconds to refresh the key for 200 groups in a layered architecture, while it will take about

50 times less to perform the same operation for an integrated architecture.

5.3.2 Data Encryption

Besides the membership service, group communication systems provide reliable

and ordered message delivery, therefore an important metric used to characterize the per-

formance of the system is data throughput.

We evaluated the throughput of the secure system in a 100 MBits local area

network. The testbed consists of a cluster of 13 667 MHz dual-processor machines running

Linux. On each machine there is a Spread server running.
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We are interested in the throughput of the system, for the following architectures:

the Layered Architecture, the Integrated VS and the Three-Step Client-Server, in a local

area network. We consider a scenario where clients connect to servers running locally, so in

the Three-Step Client-Server setup, encryption is performed only between servers.

In Figure 5.6 we present the data throughput for the above setups, when there is

only one sender multicasting to a group, only one group in the system and the encryption

algorithm used is Blowfish.

As expected, the results for the Integrated VS are similar with the results for the

Layered Architecture, because in both models encryption and decryption are performed by

the clients. The Three-Step Client-Server exhibits about 0.66 of the throughput achieved

in the other two models. The major reason for this decrease is due to the fact that in the

Three-Step Client-Server case both headers and data are encrypted and the message delivery

protocol employed by our system is not able to decide if it needs to process a message or

not, without first decrypting it. Additional cost is due to the fact that the maximum

message size exchanged by the servers is about the size of an Ethernet frame (minus the

UDP protocol header), so a message of large size that gets encrypted in a client in only one

encryption operation, translates into a number of encryption operations in the server. We

note that for the Three-Step Client-Server since the encryption operation takes place at the

data link layer, the servers encrypt not only client data, but also control information, so

this model provides a stronger service than the other two models.

This experiment only had one sender and that server was the bottleneck. In cases

where several servers are sending messages, this cost will be amortized and the throughput
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will considerably increase (by a bit less than a factor of 2).

We did not include results for the Three-Step Client Server architecture when

clients connect remotely, but from the results in Figure 5.6 we can extrapolate that the

achieved throughput in this case will be much smaller, and therefore unacceptable. In case

of the Optimized EVS architecture, the throughput will be similar with the one for the

Integrated VS if the servers membership does not change, and smaller, but still better than

the Three-Step Client-Server performance, when changes occurs, so some messages will need

to be decrypted and re-encrypted under new keys.

The drop in throughput for all of the methods (as seen in Figure 5.6) at a message

size of around 700 bytes is actually a positive thing. Up to 700 bytes Spread is able to

pack multiple messages into one network packet, thus paying less per packet and increasing

throughput considerably. Above 700 bytes, that optimization can not be employed because

of the Ethernet maximum packet size.

5.4 Layered Architecture vs. Integrated Architecture

The layered and each of the integrated architectures have benefits and limitations.

In this section we compare a layered architecture approach to an integrated architecture

approach, when providing security services to a group communication system. We compare

them by investigating the following aspects: trust, key management scalability, impact of

the compromise of the shared secret and, complexity and ability to efficiently support other

group services.

The layered architecture has the advantage that no trust is put into anything

outside of the end user’s control with respect to protecting the data generated by a client.

The client needs to trust the servers with respect to the membership service and ordered

and reliable delivery, but these are outside the scope of our security goals for this work.

The compromise of a group key, does not affect the security of the rest of the groups

in the system, since each group is running its own protocol and computes its shared key

independently of the other groups. In addition, this architecture is less complex and easier

to develop, allowing us to explore the inter-relationship between key agreement and group

communication 1. However, this model, due to the security strong, but expensive key

1For example, we used this architecture to design robust contributory protocols, resilient to any sequence
of group changes, possibly cascading.
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agreement protocols we used, has limited scalability, to no more than 100 members for the

protocol with the best performance.

The integrated architectures we proposed overcome the key management scalabil-

ity problem by using a secret key shared by the servers, and thus putting more trust in the

servers. However, the security of the groups relies on the security of the servers shared key

which is used in generating the group keys. If the servers’ key is compromised, the security

confidentiality of the communication of all the groups in the system is compromised, as

opposed to the layered model where in order to compromise all the groups in the system,

an attacker needs to compromise the shared key for each group.

An integrated architecture is also more appropriate for providing other security

services such as client authentication upon connection and access control to perform group

specific operations. A security policy can be easily configured and enforced by an adminis-

trator controlling a server configuration file.

Another advantage of an integrated architecture vs. a layered architecture regards

the protection of the control information messages exchanged by the servers. If designed

appropriately, an integrated architecture can provide this service based on the secret key

shared between servers, while the layered architecture can not.

Choosing the most appropriate architecture depends on the desired scalability and

trust guarantees. An integrated approach scales better, but the security of all groups relies

on one key; a layered architecture scales worse, but the security of a group is independent

of the security of the rest of the groups and gives more control to the client.

5.5 Integrated Architectures Variants Comparison

As we discussed in Section 5.2 there is no one-size-fits-all architecture solution

that will perform the best in all possible environments, under both VS and EVS group

communication semantics. Therefore, we proposed three integrated architecture variants

that trade off encryption cost for complexity, overhead and group communication model

support. In this section we compare them by focusing on the group communication model

supported, design and implementation of the key management building block (do they use

or not client group keys) and the place where the encryption and decryption operations

are performed performed (only between clients, only between servers, or between client and

server).
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Group Keys Encryption Group Comm. Model

Three-Step No Client-Server, VS and EVS
Client-Server Server-Server
Integrated VS Yes Client-Clients VS
Optimized EVS Yes Client-Clients mostly EVS

Table 5.1: Secure Group Communication Integrated Architectures

Table Table 5.1 summarizes their features. The Three-Step Client-Server approach

does not use client group keys, but requires a client to share a key with the server it

connects to. The approach is very appealing because is uses a less complex key management

mechanism. However, it is expensive in encryption and decryption operations when clients

connect to servers remotely. If clients connect to servers locally this is the best architecture

since theoretically it only requires one encryption/decryption of each message and it can

easily protect not only client data, but also the control information exchanged by the servers.

Note, that depending on the implementation, even when clients connect locally, more than

one one encryption/decryption of each message can take place as discussed in Section 5.3.2.

This architecture supports both the VS and the EVS semantics.

Both the Integrated VS and the Optimized EVS architectures use client group

keys generated by servers. Our experimental results in Section 5.3 show that the scalability

of the system is improved substantially with respect to the layered architecture.

For all the integrated architectures the confidentiality of the data ultimately relies

on the secret shared by the servers.

The smallest encryption overhead is exhibited by the Integrated VS approach The

Optimized EVS solution has the same encryption cost as the Integrated VS if the group

membership is stable. When membership changes and there are messages not delivered in

the membership they were sent in, four additional encryption/decryption operations per

message are performed, to decrypt the messages encrypted with an old key and re-encrypt

them under the current key. The encryption overhead incurred by the Three-Step Client-

Server approach, even when clients connect locally, is larger that that of Integrated VS.

However, it provides a stronger service since it also protects the information exchanged by

the servers.
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5.6 Conclusions

In this chapter we presented several secure integrated architectures for client-

server group communication system, discussing their different performance and security

guarantees. The experimental results we present demonstrate the increased scalability of

integrated approaches over layered approaches.



Chapter 6

Conclusions

This dissertation investigated how security mechanisms can be integrated with

reliable group communication systems, such that the resulted secure group communication

system does not suffer from a severe degradation of the performance and preserves its

fault-tolerance properties. In this chapter we summarize the contributions of this work and

present our conclusions.

With the increased use of collaborative applications such as voice- and video-

conferencing, white-boards, distributed simulations, games and replicated servers of all

types, designing protocols that enable robust, secure and reliable delivery of critical infor-

mation and services is essential to reduce the impact of security breaches on critical infras-

tructure. Since group communication systems are a powerful tool in designing collaborative

applications, enhancing group communication systems with security services provides a

strong platform for easily developing secure and efficient secure collaborative services.

In spite of the progress in the cryptography community in designing secure and

scalable protocols to provide specific security services, such as data secrecy, data integrity,

entity authentication and access control, to multicast and group applications, less emphasis

has been put on how to integrate security protocols with modern, highly efficient group

communication systems and address problems arising as a result of the integration. This

work fills this gap by focusing on designing efficient secure group communication systems.

Key management protocols represent a critical building block of a secure group

communication system. While taking advantage of the advances in the cryptographic re-

search community in designing secure key management protocols, this work points out the

limitations and incorrect assumptions that these protocols usually have about network and
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group services and proposes practical solutions. In particular, we identified the effect that

key management has on the robustness of the system, and showed how multi-round group

key management protocols can be made fault-tolerant, by using the membership and reliable

and ordered message delivery services of group communication systems. A major contribu-

tion of this dissertation is the design of the first robust contributory group key agreement

protocol, for a general group communication service supporting Virtual Synchrony group

communication semantics.

As opposed to previous work, we investigated the use of key agreement protocols

as building blocks for our security services. Such protocols have the advantage that they

provide strong security services such as key independence and perfect forward secrecy. The

security of our system relies on a group key management protocol that is efficient, robust

to process crashes and network partitions and merges, and protects confidentiality of the

data even when long-term keys of the participants are compromised.

Besides the theoretical contributions, this work maintained a practical aspect by

focusing on securing Spread, a local and wide area group communication system. Therefore,

maintaining the performance of the membership and message delivery services is essential.

The actual costs associated with group key management have been poorly understood in

the past. Consequently, there has been a dual undesirable tendency: on the one hand,

adopting suboptimal security for reliable group communication, while, on the other hand,

constructing excessively costly group key management protocols. We considered a number

of key agreement protocols and not only analyzed them theoretically, but also implemented

them in the same framework and evaluated them in experiments conducted on both local

and wide area networks. The experiments considered scenarios describing all types of group

changes, including partitions and merges. The software resulted from this work, which we

refer to as, layered architecture, was publicly made available and is used by other research

groups, both in academic and industry environments.

The main focus of this work was designing a high-performance security architec-

ture for a client-server group communication system. In particular, we focused on designing

a security architecture for Spread, under two well-known group communication semantics:

Virtual Synchrony and Extended Virtual Synchrony. Both models support network par-

titions and merges and present their particular challenges. Contributory key agreement

protocols when used in a layered architecture have limited scalability. We overcame this by

using an integrated approach that relies on contributory group key management in a light-
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weight/heavy-weight group architecture such that the cost of key management is amortized

over many groups, while each group has its own unique key.

When designing an efficient architecture supporting the Virtual Synchrony model,

we took advantage of the fact that Virtual Synchrony provides a form of synchronization

between the group membership changes and data messages delivery. Our approach was to

use of a shared group key per view, securely refreshed upon each membership change. Data

confidentiality can be relatively easily provided in a system supporting Virtual Synchrony

because the synchronization between membership notifications and message delivery (guar-

anteed by the Sending View Delivery Property defined in Section 2.2.1) ensures that any

message is guaranteed to be encrypted, delivered and decrypted in the same group view

and, hence, with the same current key.

Although it provides a more efficient and relaxed model, the Extended Virtual

Synchrony is more challenging when providing security services, because there is no syn-

chronization between membership notifications and data delivery to the clients. However,

there is some knowledge about what was the application group membership when the mes-

sage was generated (and also encrypted) and the group membership when the message will

be delivered (and also decrypted). We provided also solutions for handling security for

systems supporting Extended Virtual Synchrony, by using information shared by the group

communication servers that provide the membership and message ordering and delivery

services.

We proposed three variants of an integrated architecture that trade off encryption

cost for complexity and group communication model support. We showed how both group

communication semantics could be supported in the proposed architecture, discussed the

accompanying trust issues and presented experimental results that offered insights into its

scalability and practicality.
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Key Management Protocols

A.1 Group Diffie-Hellman Protocol

GDH IKA.2 is a contributory key agreement protocol that extends the two-party

Diffie-Hellman protocol to groups. It consists of a suite of protocols, each of them specifying

how the group key will be refreshed depending of the event that occurred in the group. More

specifically, it defines how the group key changes when a new members joins the group (join),

when more than one member becomes part of the group (merge), one member leaves the

group (leave), more than one member leaves the group (partition).

The group key Kgroup is in the form Kgroup = gN1N2...Nn, where Ni is the contribu-

tion of member i to the group key Kgroup. The protocol is designed based on the idea that

the shared key is never transmitted over the network, even in encrypted form. Instead, a

set of partial keys, Ki = g
N1N2...Ni...Nn

Ni (that are used by individual members to compute the

group secret) is sent. One member of the group – referred as group controller– is charged

with the task of building and distributing this list. The controller is not fixed and has no

special security privileges.

In the following we describe only how GDH handles merge and partition, since

join and leave can be seen as special cases of merge and partition, respectively.

The merge protocol runs as follows. When a merge event occurs (see Algorithm

10), the current group controller generates a new key token by refreshing its contribution

to the group key and then passes the token to one of the new members. When the new

member receives this token, it adds its own contribution and passes the token to the next
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Algorithm 10 GDH Merge Protocol

Assume that k members are added to a group of size n.

Step 1:

Mmeber Mn:

generates a new exponent r′n,

computes gr1...rn−1r′

n ,

unicasts the message to Mn+1.

Step j + 1 for j ∈ [1, k − 1]:

New merging member Mn+j :

generates an exponent rn+j ,

computes gr1...rn

′

...rn+j ,

forwards the result to Mn+j+1.

Step k + 1:

Upon receipt of the accumulated value, Mn+k:

broadcasts the accumulated value to the entire group.

Step k + 2:

Upon receipt of the broadcast, every member Mi, ∀i ∈ [1, n + k − 1]:

computes gr1...rn

′

...rn+k−1/ri ,

sends it back to Mn+k.

Step k + 3:

After collecting all the responses Mn+k:

generates a new exponent rn+k ,

produces the set S = {gr1...rn

′

...rn+k/ri |∀i ∈ [1, n + k − 1]},

broadcasts it to the group.

Step k + 4:

Upon receipt of the broadcast, every member Mi, ∀i ∈ [1, n + k]:

computes the key K = (gr1...rn

′

...rn+k/ri)ri = gr1...rn

′

...rn+k .
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new member1. Eventually, the token reaches the last new member. This new member, who

is slated to become the new group controller, broadcasts the token to the group without

adding its contribution. Upon receiving the broadcast token, each group member (old and

new) factors out its contribution and unicasts the result (called a factor-out token) to the

new group controller. The new group controller collects all the factor-out tokens, and adds

its own contribution to each of them. Each such a factor-out token on which the group

controller added its contribution represents a partial key. Once all the partial keys were

computed, the list of partial keys is broadcasted to the group. Every member can then

obtain the group key by factoring in its contribution from the corresponding partial key

from the list.

Algorithm 11 GDH Partition Protocol

Assume that a set L of members is leaving a group of size n.

Step 1:

The controller Md:

generates a new exponent rd
′

,

produces the set S = {gr1...rd

′

/ri |Mi /∈ L},

broadcasts it to the remaining group.

Step 2:

Upon receipt of S, every remaining member Mi, ∀i /∈ L:

computes the key K = (gr1...rd

′

/ri)ri = gr1...rd

′

In case a leave event occurs in the group, the protocol runs as follows (see Al-

gorithm 11). The group controller removes their corresponding partial keys from the list,

refreshes its share from each partial key in the list to ensure the freshness of the new com-

puted key and broadcasts the list to the group. Each remaining member can then compute

the shared key from their partial key. In case among the leaving members there is the group

controller, the last remaining member becomes the group controller of the group. Note that

since the list is broadcasted to the group any from the remaining members can take on the

task of the group controller.

1The new member list and its ordering is decided by the underlying group communication system; Spread
in our case. The actual order is irrelevant to GDH.
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A.2 Centralized Key Distribution Protocol

Centralized Key Distribution ()CKD) protocol is a simple centralized group key

distribution scheme. The group key is not contributory, but it is always generated by one

member, namely, the current group controller. We use the term current to mean that,

even in the CKD protocol suite, a controller can fail or be partitioned out thus causing the

controller role to be reassigned to another member.

Algorithm 12 CKD Merge Protocol

Assume that k members are added to a group of size n. M1 is the group controller.

Step 1:

M1:

selects random r1 mod q (this selection is performed only once),

computes {gr1 mod p | j ∈ [1, k]},

sends it to {Mn+j | j ∈ [1, k]}.

Step 2:

For each j ∈ [1, k], Mn+j :

selects random rn+j mod q,

sends it to Mn+j : grn+j mod p.

Step 3:

M1:

selects a random group secret Ks,

computes Ks
gr1ri mod p,

sends it to Mi, ∀i ∈ [2, n + k].

Step 4:

From the broadcast message, every member can compute the group key.

The group controller establishes a separate secure channel with each current group

member by using authenticated two-party Diffie-Hellman key exchange. Each such key

stays unchanged as long as both parties (controller and regular group member) remain in

the group. The controller is always the oldest member of the group. Whenever the group

membership changes, the group controller generates a new secret and distributes it to the

group using the long-term pairwise key. In case of a merge (see Algorithm 12), the controller
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also establishes a secure channel with each new member.

Algorithm 13 CKD Partition Protocol

Assume that a set L of members is leaving a group of size n.

Step 1:

The controller M1:

selects a random group secret Ks,

computes Ks
gr1ri mod p, Mi /∈ L,

sends it to Mi, Mi /∈ L.

Step 2:

From the broadcast message, every member can compute the group key.

When a partition occurs (see Algorithm 13), in addition to refreshing the key

and distributing it via secure channels to the remaining members, the controller discards

the long-term key it shared with each leaving member. A special case is when the group

controller itself leaves the group. In this case, the oldest remaining member becomes the new

group controller. An additional cost is incurred since before distributing the key, the new

group controller must first establish secure channels with all of remaining group members.

A.3 Tree Group Diffie-Hellman Protocol

Tree Group Diffie-Hellman (TGDH) is an adaptation of key trees (111; 112) in the

context of fully distributed, contributory group key agreement. TGDH computes a group

key derived from the contributions of all group members using a binary tree.

The tree is organized in the following manner: each node 〈l, v〉 is associated with a

key K〈l,v〉 and a corresponding blinded key BK〈l,v〉 = gK〈l,v〉 mod p. The root is associated

with the group and a leaf with a member. The key at the root node represents the group key

shared by all members, and a key at the leaf node represents the random session contribution

by a group member. Each internal (non-leaf) node has an associated secret key and a public

blinded key. The secret key is the result of a Diffie-Hellman key agreement between the

node’s two children. Every member knows all the keys on the path from its leaf node to

the root, as well as all blinded keys on the key tree.

The protocol relies on the observation that every member can compute a group
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Figure A.1: TGDH Merge Operation

key when all blinded keys on the key tree are known. After any group membership change,

in order to preserve backward and forward secrecy, every member unambiguously adds or

removes some nodes related with the event, and invalidates all keys and blinded keys related

with the affected nodes. A special group member – the sponsor– , then, takes on a role to

compute keys and blinded keys and to broadcast the key tree2 to the group. If a sponsor

could not compute the group key, then the next sponsor comes into play. Eventually, some

sponsor will compute the group key and all blinded keys, and broadcast the entire key tree

to facilitate the computation of the group key by the other members of the group.

Algorithm 14 TGDH Merge Protocol

Round 1:

request for merge by both groups

Ms1

Ts1(BK∗

s1
)

−−−−→ {M1, ...,Mn+k}

Ms2

Ts2
(BK∗

s2
)

−−−−→ {M1, ...,Mn+k}

Round 2:

update tree Ts′ to get T̂s′ and broadcast it

M ′
s

T̂s′(BK∗

s′
)

−−−−→
{M1, ...,Mn+k}

When a merge event happens (See Figure 14), each sponsor (the rightmost member

of each group) broadcasts its tree information to the merging sub-group after refreshing its

2The keys are never broadcasted.
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Figure A.2: TGDH Partition Operation

session random and blinded keys. Upon receiving this message, all members uniquely and

independently determine the merge position of the two trees.3 As described above, all the

keys and blinded keys on the path from the merge point to the root node are invalidated.

The rightmost member of the subtree rooted at the merge point becomes the sponsor of the

key update operation. The sponsor computes all the keys and blinded keys and broadcasts

the tree with the blinded keys to all the other members. All members now have the complete

set of blinded keys, which allows them to compute all keys on their key path. Figure A.1

shows an example of the merge protocol. Members M6 and M7 are added to a group

consisting of members M1, M2, M3, M4 and M5.

Algorithm 15 TGDH Partition Protocol

for all Msi
:

Msi

T̂si
(BK∗

si
)

−−−−→
{M1, . . . ,Mn}

Round 1 to h′ + 1:

update tree Tsi
to get T̂si

Following a partition, the protocol runs as follows (see Figure 15). In the first

round, each remaining member updates its view of the tree by deleting all leaf nodes as-

sociated with the partitioned members and (recursively) their respective parent nodes. To

prevent re-use of an old group key, one of the remaining members changes its key share.

To this end, in the first protocol round, the shallowest rightmost sponsor changes its share.

Each sponsor then computes the keys and blinded keys as far up the tree as possible, and,

3Authors’ heuristic is to choose the joining node as the rightmost “shallowest” node, which does not
increase the height. For more details, see (72)
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then, broadcasts the set of new blinded keys. Upon receiving the broadcast, each member

checks whether the message contains a new blinded key. This procedure iterates until all

members obtain the group key. Figure A.2 shows a partition example where members M1

and M4 are removed from the group.

A.4 STR Protocol

STR (74) is basically an “extreme” version of TGDH, where the key tree structure

is completely imbalanced or stretched out.

Like TGDH, the STR protocol uses a tree structure that associates the leaves

with individual session random contributed by the group members. Every internal (non-

leaf) node has an associated secret key and a public blinded key. The secret key is the result

of a Diffie-Hellman key agreement between the node’s two children. The group key is the

key associated with the root node.

The merge protocol runs in two rounds. In the first round, each of the two sponsors

(topmost members or right children of the respective root nodes in each tree) exchange

their respective key trees containing all blinded keys after refreshing its session random and

computing keys and blinded keys up to the root node. The highest-numbered member of the

larger tree becomes the sponsor of the second round in the merge protocol (see Figure A.3).

Using the blinded session random of the other group, the sponsor computes every (key,

blinded key) pair up to the intermediate node just below the root node. It then broadcasts
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the key tree with the blinded keys and blinded session random to the other members. All

members now have the complete set of blinded keys which allows them to compute the new

group key.

In a partition, the sponsor is the lowest-numbered remaining member. After delet-

ing all leaving nodes (see Figure A.4), the sponsor refreshes its session random, computes

keys and blinded keys up the tree terminating with the root key. It then broadcasts the

updated key tree containing only blinded values. Each member can compute then the group

key.

A.5 BD Protocol

Unlike the other protocols discussed thus far, the Burmester-Desmedt (BD) pro-

tocol (61) is independent of the type of group membership change. Furthermore, it has no

sponsors, controllers or any other members charged with any special duties.

The main idea in BD is to distribute the computation among members, such

that each member performs only three exponentiations. This is achieved by using two

communication rounds, each of them consisting of n broadcasts. Figure 16 depicts the

protocol.
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Algorithm 16 BD Protocol

Assume a group of size n.

Step 1:

Each member Mi:

selects random ri mod q,

computes Zi = gr1 mod p,

broadcasts the message to the group.

Step 2:

Each member Mi, after receiving Zi−1 and Zi+1:

computes Xi = (Zi+1/Zi−1)
ri = gri+1ri−riri−1 ,

broadcasts it to the group.

Step 3:

Each member Mj, after receiving all Xi, i 6= j:

computes

K = Kj = (Zj−1)
nrj Xi

n−1...Xi+(n−2) mod p = gr1r2+r2r3+...+rn−1rn mod p.
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Cliques GDH API

CLQ CTX clq first member(PROCESS NAME p, GROUP NAME g)

This function is called by the first member of the group. It takes as arguments

the name of the process calling it, p, and the name of the group to be created, g , and it

returns the CLQ CTX associated for that group.

CLQ CTX clq new member(PROCESS NAME p, GROUP NAME g)

This function is called by a new member, that wants to be added to a group. It

takes as arguments the name of the process calling it, p, and the name of the group it wants

to become part of, g , and it returns the CLQ CTX associated for that group.

VOID clq destroy ctx(CLQ CTX ctx)

This function cleans a CLQ CTX structure specified by ctx .

KEY clq update ctx(CLQ CTX ctx, MSG key list msg)

This function is called by all participants to compute the group key. It takes as

argument the CLQ CTX associated with the group, and the key list message key list msg ,

and it returns the key.

120
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MSG clq update key(CLQ CTX ctx, PROCESS NAME[] merge set, MSG

partial token msg)

First member that calls the function, it passes the context associated with that

group, ctx , the list of the new members that will be added, merge set . For subsequent calls,

the list of processes that will be added should be NULL, and the message m is the partial

token message received.

PROCESS NAME clq next member(CLQ CTX ctx)

The function returns the name of the next process that a partial token should be

passed to. The first member that generated a partial token specified the list of the new

members added to the group. That list is maintained in the CLQ CTX structure. It takes

as argument the group associated context, ctx .

MSG clq factor out(CLQ CTX ctx, MSG final token msg)

This function is called by all group members to factor out their contribution from

the token. It takes as arguments the CLQ CTX associated with the group, ctx , and the

final token message, final token msg , and it returns a factor out message.

PROCESS NAME clq get new gc(CLQ CTX ctx)

This function returns the name of the process that is the new group controller,

given a CLQ CTX structure, ctx .

MSG clq merge(CLQ CTX ctx, MSG fact out msg, MSG key list msg)

This function builds the set of partial keys. It takes as argument a CLQ CTX,

ctx and two messages, the factor out message, fact out msg , and the key list message,

key list msg . The output is a modified message list message. In order to check if the list is

ready, the function ready(MSG key list msg) should be called.

KEY clq extract key(CLQ CTX ctx)

This function returns the current valid key for a group, given the associated

CLQ CTX, ctx .
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MSG clq leave(CLQ CTX ctx, PROCESS NAME[] leave set)

This function is used to refresh the key when a set of members left the group. The

function removes the contributions of the members that left from the list of partial keys

and refreshes each item of the list. It takes as arguments the associated CLQ CTX for that

group, ctx , and the list of the processes that left the group, leave set , and it generates a

key list message.

MSG clq new update key(CLQ CTX ctx, PROCESS NAME[] leave set,

PROCESS NAME merge set, MSG partial token msg)

This is a modified version of the clq update key function, that can handle additive

and subtractive group events in one step. First it removes the processes that left the group,

then it handles the list of processes that must be added to the group. It takes as arguments

the CLQ CTX associated with the group, ctx , the set of processes that left, leave set ,the

set of processes that must be added to the group, merge set , and a partial token message,

partial token msg . The list of processes that left the group can be NULL. First member

that calls the function, it passes the list of the new members that will be added. For

subsequent calls, the list of processes that will be added or removed should be NULL, and

the message m is the partial token message received.
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