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“The time has come,” the Walrus said,
“To talk of many things:

Of shoes – and ships – and sealing-wax –
Of cabbages – and kings –

And why the sea is boiling hot –
And whether pigs have wings.”

Lewis Carroll, Through the Looking-Glass,
and What Alice Found There, 1872.

“Goo Goo Goo Joob”

John Lennon / Paul McCartney, I Am The Walrus, 1967.
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Abstract

The explosion of the content on the World Wide Web has created a situation

where most Internet traffic is Web related.  At the same time, practically all of the

popular Web sites are still served from single locations. This combination of

circumstances necessitates frequent long distance network data transfers (potentially

repeatedly), which in turn result in a high response time for users, and are wasteful of the

available network bandwidth. In addition, the frequent use of single locations to serve

from creates a single point of failure between the Web site and its Internet provider.

This paper presents a new approach to Web replication, the Walrus system, which

is intended to remedy these problems.  Under Walrus, each of the Web server replicas

may reside in a different part of the network, and the client’s browser is automatically

and transparently directed to the best server for this client.

“Best” is a relative term, dependent on where the client is located on the network,

and which of the collection of replicated servers is most able to answer the client’s

request.  Weighting is also a factor, and in the extreme case, server load may be more

significant than network topology, as it is probably a better decision for the client to be

sent to a more distant and less busy server than to one that is extremely overloaded but

closer.

Implementing this architecture for popular Web sites will result in a better

response time and a higher availability for these sites. Equally important, this architecture

will potentially cut down a significant fraction of Internet traffic, freeing bandwidth for

other uses.
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1. Introduction

The explosion of content on the World Wide Web has created a situation where

the majority of Internet traffic is Web related.  In fact, as of the beginning of 1995, Web

traffic became the single largest load on the Internet [NSF-Traf95].  This explosive

growth shows no sign of slowing down.  In spite of the widespread acknowledgement of

the problems related to this growth, practically all of the popular Web sites are still

served from single locations, as per an earlier network model. This combination of

circumstances necessitates frequent long distance network data transfers (potentially

repeatedly), which in turn result in a high response time for users, and are wasteful of the

available network bandwidth.  In addition, this frequent use of single locations to serve

from creates a single point of failure between the Web site and its Internet provider.

Figure 1.1: The Common Web Server Model.

Most existing Web replication architectures involve a cluster of servers that reside

at the same site. These architectures improve performance by sharing the load between

the different replicas, and improve availability by having more than one server to fulfill

Web server

Clients

Web queries and responses
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data requests.  However, replicated servers alone cannot address the performance and

availability problems embedded in the network itself.

The Walrus (Wide Area Load Re-balancing User-transparent System) system

resolves these problems via a Web replication system where each of the replicas may

reside in a different part of the network.  The client Web browser automatically and

transparently contacts the best replica, taking into account:

• Network topology – which replica is “closest” to the client, network-wise.

• Server availability – which servers are currently active.

• Server load – which server is currently able to return the most rapid response.

Popular Web sites that implement this system will result in better response times

and higher availability of data from these sites.  Equally important, this system will

potentially cut down a significant fraction of Internet traffic, freeing bandwidth for other

uses.

Figure 1.2: The Walrus System Model.

Web server

Clients

Web queries and responses
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2. Related Work

The two most common methods used today to alleviate problems related to slow

Web server responsiveness are caching and replication.

2.1 Caching

Systems that employ caching use one main Web server to store data.  On demand

by the client browser, a caching process makes copies of requested data closer to the

client.  The cache then serves subsequent requests for the same data, which obviates the

need to re-access the main Web server.  Data items have a “Time To Live” (TTL), which

allows items to “expire” from the cache.  This prevents the cache from serving stale data.

As it is most frequently implemented on the Internet today, Web caching uses a

special proxy on either the client or the server side. This proxy acts as the go-between for

the browser and the server.  Client-side caching is when a client makes all requests for

data through the proxy.  The proxy then makes the actual request and caches the response

for other clients (who are presumably at the same site as the original client).  Many

browsers, including Netscape’s Navigator and Communicator and Microsoft’s Internet

Explorer, support this capability internally and perform client-side caching on a per-user

basis. This per-user caching is independent of any other caching done at the server or

client side.  Some caches used on a per-site basis include the Squid [Squid], Harvest

[CDNSW95], and Apache [Apache] caches.

The Squid caching system is a hierarchical cache where the parent caches are

intended to reside close to the main transit points on the Internet.  If a child cache does

not have an object, the request is passed up to the parent, who fetches the object from the

master Web server, caches it itself, and sends it to the child.  The child, in turn, caches it

itself and sends it to the client that requested it (which could either be a child of the child

cache or a browser).  Squid also supports the notion of “sibling” caches to spread out the

load on the child caches. The Squid cache is based on the cache from the Harvest project.

The Harvest cache is one part of a set of tools to gather, organize, replicate, and cache

information on the Internet.
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The Apache cache is a simple proxy-based cache.  All browsers at a site may use

it as a proxy, and it retrieves documents for the browsers and caches them.  As the

Apache cache is integrated into the popular Apache Web server, it is a commonly used

solution for single sites that do not need to participate in a large caching hierarchy.

In server-side caching, one or more caching servers act as front ends to the main

server.  When a user requests a document, the caching server attempts to serve the

document from its own cache, or from that of another caching server, before resorting to

retrieving the document from the main Web server. Frequently accessed documents will

therefore be quickly and widely cached, and thus the load for serving them will not fall

onto the main Web server.  The server and client-side caching methods do not conflict

with one another, and they may be used singly or together as needed.

An intrinsic limitation of caching arises when the client sends information along

with a request to the Web server for more than a static page (e.g., CGI scripts, or other

similar server-side programming).  Since the Web server’s response to the request is

dependent on the parameters sent along with the request, the Web server’s response

cannot be cached on either a caching server or client machine.

Freshness of data also limits the efficiency of caching. Given a particular

document, data may be found in any or all of numerous caches between the client and the

server. This creates a consistency problem as there is no to way guarantee the validity of

any particular cache.  No cache can guarantee complete freshness of data without a built

in invalidation mechanism, updating invalid cache entries, or waiting for the expiration

of invalid cached data.  If this lack of knowledge of the consistency between the cache

data and that of the main Web server is unacceptable, it quickly defeats the purpose of a

caching system, as every request will need to be served, however indirectly, by the main

Web server.

Historically, caching has been a poor response to the load problem because the

cache management abilities of HTTP 1.0 [RFC-1945] (and earlier versions) were poor.
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This has been rectified in HTTP 1.1 [RFC-2068], and Web document authors, as well as

Web server managers, now have the ability to exercise considerable control over the

caching (or non-caching) of their documents.  However, HTTP 1.1 does not yet have

universal support.

2.2 Replication

Web replication, sometimes referred to as mirroring, seeks to bridge this gap by

duplicating the Web server, including its data and any ancillary abilities.  A user can

access any one of the replicas, as any of them will provide a valid – and presumably

identical – response.  Replication addresses some of the problems created with non-

cacheable server requests, including those that require client-server interaction such as

CGI scripts, database lookups, and server-generated pages.

Moreover, replication correctly handles situations such as advertising, which

require that the system keep an accurate count of server requests.  Under these types of

conditions, caching must be disabled since the individual caches may not always be

under the Web server’s control (as in the case where caching is performed by the

browser), so there is no way to count the number of actual hits [Goldberg].

There are two commonly used forms of replication.  Primary Backup (a example

of which is detailed in [TM96]), where one “master” server is simply duplicated to form

replicas, and Active Replication (an example of which is detailed in [Amir95]), where if

any of the replicas are modified, the changes will propagate back to all of the replicas.

There are no “master” servers in Active Replication.

A problem that arises in both caching and replication is that there is no immediate

way for the client to determine and select the “best” server when requesting data.  This

paper proposes a method to address this problem.  This replication-based method which

transparently routes the client to the most ideal server is applicable to both replicated and

cached servers, as the benefits for connecting a client to the “best” replica are similar,

though not identical, to those for connecting the client to the best cache.
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3. The Walrus System Architecture

The Walrus system is designed in four separate pieces: The Replicator, the

Reporter, the Controller, and the Director.  The fact that these components are separate

ensures future expandability of any of the pieces with minimal effect on the remaining

three.

Replicator Director

Controller Reporter
Web
Server

Web
Client

Group Communication 

System
Manager

Figure 3.1: The Walrus System Architecture.

For communication between its various segments, the Walrus system uses the

Spread Multicast Toolkit [Spread].  Spread is a cross-platform reliable multicast and

group communication system.

3.1 Design Goals

Walrus is designed to be platform independent.  With that independence in mind,

Walrus was implemented in C, with special attention paid to ensure platform

independence, and thus the basic source should be usable on any POSIX [POSIX-1003.1]

compliant operating system.
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A major design goal of the Walrus system was that it would function without

requiring any modification of the network infrastructure.  Walrus uses readily available

building blocks in the form of standard unmodified name (DNS) and Web servers.

In addition, Walrus employs the most common “differing fiefdom” model of the

Internet today.  It does not require any degree of trust between differing sites to work,

nor does it require that different sites run the same Web server, name server, or operating

system software.

Walrus Terminology

Each geographical area that is to be controlled by Walrus has one name server.  In

the Walrus system, this is known as an area.  Each area has 1 or more Web servers

assigned to it, collectively known as a cluster.  Thus every area is assigned to a cluster,

and every cluster is located near an area.  If an area is assigned to its nearby cluster, then

that cluster is home.

A threshold is a value, above which a server is deemed to be overloaded and not

to be used for new clients except in case of dire need.  Naturally, in a choice between no

service at all, or overloaded service, Walrus will elect to use the slower – yet still

functional – overloaded server.

A cluster is assigned to an area if the name server for that area points to one or

more of the Web servers within this cluster.

3.2 The Replicator

To ensure that all of the different Web servers return equivalent responses, they

must be kept in a consistent state.  The Replicator manages this task by reconciling

changes among all of the replicated servers.  Details of the Replicator implementation

used in Walrus are described in Section 4.
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}

}

}

}

Cluster 1

Cluster 2

Cluster 3

Cluster n

Name Server
for Area 1

Controller   1

Name Server
for Area 2

Controller   2

Name Server
for Area 3

Controller   3

Name Server
for Area n

Functioning Web Server (with Reporter)

Web Server over threshold

Non-functioning Web Server

Non-functioning
Controller

Master
Controller

Backup
Controller

Figure 3.2: The Walrus System in Action.

3.3 Information Gathering – The Reporter

Every Web server has a background process (or “daemon”) running on it known

as a Reporter.  The Reporter monitors the status of the local Web server and reports it to

the rest of the system so decisions on how to balance the system can be made.  Details of

the Reporter implementation used in Walrus are described in Section 5.

3.4 Decision Algorithm – The Controller

In the Walrus system, there are one or more programs known collectively as

Controllers.  These programs use the information the Reporters send to control which

parts of which cluster are in use, and which parts should (for reason of load or otherwise)

be taken out of use.  The location of the Controllers does not have to be related to the

different areas.
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To prevent multiple incarnations of the Controller from interfering with each

other, only one Controller may be active at any one time (see Section 6.3 for the mutual

exclusion protocol used).  There may be any number of non-active Controllers which

will function as backups against the failure of the main Controller.

As a practical matter, optimum service occurs when there is at least one

Controller in each area.  This would ensure that if a portion of the network becomes

isolated, every area is still guaranteed to have a Controller.  For convenience and

efficiency in performing updates, this Controller can run on the same physical machine

that provides name service for that area. Details of the Controller implementation used in

Walrus are described in Section 6.

3.5 The Director

The Director defines the method used by the Controller to cause the client

browser to go to the appropriate server.  There are many possible methods for directing

the client to the correct server.  However, to ensure the system can be used by the widest

range of users, it is crucial that any method chosen must be completely transparent – the

client must not be forced to do anything special to benefit from the system.  To allow for

the extremely wide range of software and hardware in common use on the Internet today,

the Director cannot in any way be system or browser dependent.  Details of the Director

implementation used in Walrus are described in Section 7.

3.6 The Communications System – The Spread Group

Communication Toolkit

Walrus uses the group communication capabilities of the Spread Multicast and

Group Communication Toolkit to communicate between the Controllers and the

Reporters.  Spread is a system that provides multicast and group communications support

to applications across local and wide area networks.  It uses a simple but powerful API to

simplify group communication issues
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Spread employs a group paradigm for its communication framework.  Processes

can join or leave any number of groups at will.  A process may multicast a message to

any group or set of groups, and all of the processes that are members of at least one of

these groups will receive the message.  Spread conforms to open group semantics where

a process does not have to be a member of a group to send to it.

Walrus uses several of Spread’s capabilities.  The Controller sends a message to a

special group that only the Reporters join to request their current status.  All operational

Reporters receive this message.  The Reporters, in turn, send their status to a special

Controller group.  All operational Controllers will receive this message.

In Spread, messages can be sent with different levels of reliability, ranging from

“best effort” to FIFO, to several levels of guaranteed deliveries.  Messages can also be

sent with a defined order or unordered, and this ordering holds across different group

members participating in the communications.

Spread provides membership services to all processes.  When a process joins a

group, all members of that group will receive notification of the new membership list.

This is useful to determine what other processes are able to see messages that were sent

to that group.  If a process fails, or is rendered unreachable via a network partition, this

fact will be detected by Spread, and all other processes that share a group with the failed

process will be notified.

Spread provides several additional capabilities which are not used by Walrus.  For

a complete description see [Spread, MAMA94].
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4. Replication

In the Walrus system, the selection of one particular Web replication scheme over

another to maintain the consistency of the Web servers is unimportant.  Any of the

commonly used primary-backup [TM96], active replication [Amir95], or lazy replication

[LLSG92] techniques may be adequate to use either independently or working together

with other schemes.  Currently, Walrus is distributed with scripts to drive “rdist”, a

commonly used UNIX-based primary backup file synchronization package, which

creates or updates a simple copy of all files from one server to another.  Some efficiency

is gained by only copying those files that are out of date or missing on the recipient

server. For non-UNIX platforms, comparable replication systems are available.

Under UNIX, when the rdist application is run on the master Web server, it uses

rsh (remote shell) or a similar program such as ssh, to execute a copy of rdist on the

remote server.  These two copies of rdist then compare update times on all of the files in

question.  If any file is out of date, the master rdist sends it to the client, which then

replaces the out of date copy of the file on its side.

Figure 4.1: The Rdist Method of Replication.
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Generally speaking, primary backup is the most appropriate replication system for

the Web.  Given that the most common document type served on the Web is static text,

and the next most common document type is a server-side script that does not reference

other data sources, the duplication of one master server is usually the best solution to the

problem of keeping all of the servers synchronized.

It is important to point out that in some cases, particularly where there is a

database application as a backend to the replicated Web server, this database must also be

kept consistent.  An active replication scheme is likely to work better in this particular

situation, as it allows for modification from any of the replicated servers rather than from

one primary “master” server.  However, such replication is outside the scope of the

Walrus system.
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5. Information Gathering – The Reporter

The Reporter is comprised of three pieces.  The major piece containing the code

to communicate with the rest of Walrus is designed to be platform independent, while out

of necessity, the other two pieces (code to read the current status from the running

system, and code to retrieve statistics from the Web server process) must be written

specifically for each platform and Web server respectively.

After every time unit, the Reporter gathers statistics and stores them for later use.

The time unit is a configurable value, and is usually system dependent.  Generally that

value is set at around 1 minute, but it can go higher for systems where the reading of

statistics is expensive, or lower for systems where statistics gathering is cheaper.

5.1 Information about the System

The Reporter gathers statistics from the system while it is running.  Since Walrus

is intentionally designed to be platform independent, these statistics are at a high enough

level to obscure platform-related differences.  The statistics that the Reporter gathers are

as follows:

General Information

• The time duration that the statistics represent (e.g., over the last five minutes).

CPU Statistics

• The portion of time the CPU spent on user code, including the Web server

and the Reporter process itself.

• The portion of time the CPU spent on system code.

• The portion of time the CPU was idle.

Note that on UNIX systems the time spent on user code includes all time spent on

“niced”, or lowered priority user code.
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Memory Statistics

• Free memory

Since every type of system seems to have a different definition of “free,”

free memory, as used here, is memory which is either available now, or

would be made available if needed, such as memory being used as cache.

In simple C-based terms, if a user process could malloc() (request in a

block) this memory, and the memory resides completely in physical

RAM, it qualifies as free memory.

• Amount of memory paged out

Since there are many different virtual memory systems in use, most with

different terminology for the same concepts, this value is defined as the

amount of memory that has been forced out of physical memory and onto

disk due to a physical memory shortfall.  Note that some systems (e.g.,

BSD-derived UNIX systems) also employ the concept of “swapping,”

which is the removal of an entire process from physical memory,

generally due to an extreme memory shortfall.  This statistic includes, but

is not limited to, all memory lost via swapping.

• Amount of free virtual memory space

This is the amount of free space on the virtual memory device (usually a

disk).  This is a crucial value, as most systems will panic and fail when

virtual memory space is exhausted.
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Process Information

• The number of runnable processes

Even though only one process can be running at any given moment

(barring more than one processor), this is the number of processes that

could theoretically be running as they are not sleeping or blocked for any

reason.  This statistic roughly compares to what is known in UNIX as the

load average.  In an architecture that does not use process-level

accounting, this can just as easily be the number of runnable threads, or

any other similar concept.

• The number of blocked processes

These are processes or threads that are waiting for some sort of I/O – such

as disk or network access – to complete.  Presumably, once this I/O is

complete, the processes would become runnable.

Note that this number does not include “sleeping” processes.  A sleeper is

sleeping on its own merits and is not waiting for any system resources.

In addition to the sleeping process, many BSD-derived UNIX systems

also have an “idle” process.  These are sleeping processes that have been

sleeping for more than a certain period of time, and thus become better

candidates for virtual memory activity if that becomes necessary.  As an

idle process is just a long-time sleeping process, and Walrus does not deal

with sleeping processes, it also does not deal with idle processes.
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5.2 Information About the Web Server

The Apache Web server [Apache] is distributed with an optional module known

as “mod_status”.  This module returns the status of the local server.

The Reporter makes a connection to the Web server running on the local host,

and retrieves the information which is then parsed and rendered into the form used by

Walrus.

The items returned are:

• The number of Web requests (“hits”) served.

• The number of busy servers – how many requests are being served at that moment.

This can be thought of as the Web server’s “load average.”

• Maximum number of servers – this is a configuration command in the Web server

that roughly corresponds to the question of how many requests can be served at once.

This may be a software licensing issue, or a physical limitation of the server

hardware or software, or both.

5.3 Additional Information

In addition to the items discussed above, the Reporter can return three special

replies to notify the Controller that it must address special circumstances:

• TEMPFAIL

This is returned if the Reporter could not gather the statistics for some reason.

The proper action for the Controller to take under these circumstances is to

continue to use the statistics gathered in the last round.  This message is most

commonly returned when the Reporter has just started up and the statistics have

not yet stabilized.
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• BYPASS

This is returned by the Reporter to request that the Controller take this server out

of consideration for this round.  BYPASS occurs if the Reporter knows

something crucial that cannot necessarily be told to the Controller via the usual

statistics.  For example, the BSD UNIX version of the Reporter will request

BYPASS if there is any swapping activity.  Since swapping only happens in case

of an extreme memory shortfall, the Web server is in serious trouble and should

not be used.

• PANIC

This message is similar to BYPASS, and is treated the same way by the

Controller with the difference that it also notifies a human being.  PANIC is to be

used only in case of extreme trouble that requires outside attention.  For example,

a Web server process failure would result in a PANIC.

5.4 Getting this Information to the Controllers

The Spread Multicast and Group Communication Toolkit [Spread] is used to

return the collected statistics to the Controllers.  Although Spread was originally

incorporated into Walrus to benefit from Spread’s group membership capabilities (see

Section 3.6), using a group communication system also simplifies the task of returning

this data without the Reporter knowing which Controller is currently the master.  The

Reporters need just send the data to a particular group, and the current master Controller

– which is the only one that can receive the message, as per Section 6.3 – will receive the

data.
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6. Decision Algorithm – The Controller

To determine the Controller’s action for each round of reports, Walrus uses a four

phase algorithm.  The goal of the algorithm is to ensure that all three of these design

principles are followed in order of importance:

• Every area must have at least one functioning server.

• As much as possible, every area should use Web servers that are local to it.

• As much as possible, all of the other areas and Web servers should be load balanced.

6.1 The Decision Algorithm

Phase One: Problem Notification

For every server returning PANIC

      notify a human being.

Phase Two: Locality Preference

For every area whose home cluster has at least one functioning server below the threshold

      assign it to this home cluster.

Phase Three: Ensure Availability

For every area that is pointing to a cluster with no functioning servers

      assign it in to a functioning cluster in a round-robin, starting with the best cluster.

Phase Four: Load Balancing

For every area still unassigned

      assign it to an unassigned cluster, matching the worst area to the best cluster.

Figure 6.1: The Decision Algorithm.
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Phase One: Problem Notification

Phase One of the algorithm checks to see if the Web servers are trying to notify

the Controller of a problem by iterating over every responding server to see if any server

has requested either BYPASS or PANIC.  When either message is returned, Walrus treats

the server as if it was dead and non-responsive.  In the case of a PANIC, the Controller

notifies a human being in charge of the server about the problem.

It might seem odd that a human being in charge is notified in the case of a

PANIC, but not in the case of a dead server.  The reason for this is that due to the nature

of the Internet, a “dead” server may only be temporarily unreachable and not truly dead

at all.  Because no system can tell the difference between a dead server and an isolated or

unreachable one, Walrus does not notify the controlling user in this case.  In addition,

given an unstable network connection, a server could appear to oscillate between dead

and live many times per minute, which could cause many spurious alarms.  A possible

future modification of Walrus would be to implement user notification after a server is

dead for a period of time.

Phase Two: Locality Preference

Whenever possible, Walrus assigns each cluster to its home area.  This is to

ensure that if at all possible, clusters will be bound to their geographically closest area.

This assignment is considered possible if at least one of the servers in the cluster is below

the threshold value defined earlier.

Phase Three: Ensure Availability

During this phase, Walrus ensures that every area is assigned to a functioning

cluster.  If there are any areas that are assigned to clusters with no functioning servers,

they will be assigned to functioning clusters in a round robin, starting with the best

current cluster.  This happens even if the clusters were already assigned or are over

threshold – the goal is to ensure that every area has at least one functioning server

associated with it.  As before, it is better to be overloaded than non-functional.
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Phase Four: Load Balancing

For every area that was not assigned in Phase Two or Phase Three, starting with

the worst area, this phase attaches it to the best cluster that is still unassigned, assuming

such a cluster exists and assuming it is worthwhile to do so.  To make the assignment

worthwhile, the candidate cluster must be performing significantly better that the original

cluster in order to offset the DNS updating cost. This phase will improve the efficiency

of the system by assigning the most used area to the least used cluster.

6.2 Oscillation and Conservatism

Rapid oscillation may occur in some load balancing environments when one

cluster has a light load, so every area is assigned to it, driving up its load.  Then every

area is re-assigned to a different cluster due to the induced high load on the original

cluster, and the process repeats itself.

The Load Balancing phase of the Walrus decision algorithm is deliberately

conservative in its assignments to prevent this oscillation problem.  At most, one area

will be assigned to each cluster during Phase Four of each round.

6.3 Mutual Exclusion

The Controller is a crucial component of the Walrus system, and its failure would

be problematic for the efficient functioning of Walrus.  The incorporation of multiple

Controllers into the system is used to avert this.  To prevent one Controller from

interfering with another, a feature of the Spread Multicast and Group Communication

Toolkit is used.  As mentioned in Section 3.6, all Controllers listen on a particular

multicast group for the responses from the Reporters. When a new Controller comes on-

line, or an existing Controller is taken down or fails, all Controllers will receive a

membership message from Spread on the Controller group.  As Spread maintains a

consistent order in the membership list, all Controllers can immediately detect their status

from their position in the list. The “master” Controller, which is the only one to pass its

decisions onto the Director, is determined  by being the first group member on this list.
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7. The Director

The Walrus system uses the DNS Round Trip Times method we proposed in

[APS98] to transparently direct the user to the correct server.  A brief recap of this

method, which uses the domain name system (DNS) [RFC-1034, RFC-1035] follows:

7.1 DNS Resolution

• Every server on the Internet has a fully qualified domain name (FQDN).

• FQDN are usually read from left to right, and each segment is rooted in the segment

after it.

• Thus, “www.cnds.jhu.edu” is a machine known as “www” located in the Center for

Networking and Distributed Systems (CNDS), which is part of the Johns Hopkins

University (JHU), which is an educational (EDU) institution in the US.

• There is an assumed dot (“.”) at the end of each FQDN, which stands for the root

domain at the top of the domain name tree.

• Barring any information cached on a local name server, a query for

www.cnds.jhu.edu is sent to one of the root (“.”) name servers.

• This server, which due to the enormous size of the entirety of the domain name

system cannot know every address, returns a list of domain name servers for “edu.”

Then the process repeats, with one of the “edu.” servers returning a list of name

servers for “jhu.edu.” and one of the “jhu.edu.” name servers returning a list of name

servers for “cnds.jhu.edu.” one of which then returns the requested IP address(es) for

“www.cnds.jhu.edu.”

• Unless specifically configured not to, all name servers aggressively cache the

responses to any queries that pass through them.
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• This caching is used to reduce the difficulty of the problem. If at any stage, a server

has already cached he address being requested (or the address of a name server

authoritative for that domain), it will return it directly, short-cutting the above

process.

• If a query is made for a name with more than one address associated with it, all of

these addresses are returned by the server.

foo.bar.edu ns.bar.edu

Who is www.cnds.jhu.edu ?

Do I know www.cnds.jhu.edu ?  NO
Do I know DNS for cnds.jhu.edu ? NO
Do I know DNS for jhu.edu ? Yes 128.220.1.5

Who is www.cnds.jhu.edu ?

ns.jhu.edu
128.220.1.5

Do I know www.cnds.jhu.edu ?  NO
Do I know DNS for cnds.jhu.edu ? Yes 128.220.221.5

ns.cnds.jhu.edu
128.220.221.5

Do I know www.cnds.jhu.edu ?  Yes 128.220.221.1

cnds.jhu.edu can be resolved by 128.220.221.5

Who is www.cnds.jhu.edu ?

www.cnds.jhu.edu is 128.220.221.1

www.cnds.jhu.edu is 128.220.221.1

HTTP   request

HTTP   response

www.cnds.jhu.edu
128.220.221.1

Time

Figure 7.1: The DNS Resolution Process.

7.2 Using Multiple Authoritative Name Servers

The DNS Round Trip Times method takes advantage of the fact that each local

server, when querying a remote server, tracks the round trip time (RTT) of packets to

that server.  This is done for optimization reasons, as over time the local server will favor

those servers that respond the quickest.  Given otherwise similar servers, this favoritism

usually results in selecting a server that is closer network-wise.
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This optimization can be leveraged for the Web server selection problem by

changing one concept in the DNS.  Normally, all servers for a particular domain (called a

“zone” in DNS parlance) carry the same data, but this is not a requirement. From the

perspective of a querying server, all that is significant is whether the remote server

answers “authoritatively”, as well as being in the chain of authority for the domain the

querying server is interested in.  An “authoritative” answer indicates that the data in

question came from the name server’s own configuration, rather than having been cached

from another server.

Thus, under the example set above, where multiple name servers exist on a

network, each serving an authoritative, but different IP address for www.cnds.jhu.edu,

the selection of the Web server to respond to a client’s query depends on which

authoritative name server the client’s local name server happens to ask.  Since, as already

established, the client’s local name server tends to favor those remote name servers that

are closest to it, by using the dynamic update facility of DNS [RFC-2136] to load the

name server closest to a particular client with the IP addresses of Web servers that we

wish that client to use, an excellent system for forcing a client to use a particular Web

server emerges.

It can be pointed out that using DNS optimization gives a good idea of how close

the chosen name server is to the client’s name server, but that may say nothing about

where the Web server is located relative to the client itself.  It is assumed that when the

system is set up, the chosen name server and the Web server will be placed in close

network proximity.  In addition, the local name server the client is querying is expected

to be in close network proximity to the client, as is the usual setup on the Internet today.

7.3 Convergence

The RTT method DNS uses to determine the best name server for a particular

zone is not necessarily optimal, but over time is a reasonable approximation of

optimality.  The time it takes to establish this reasonable approximation is the chief

problem with this method.  In order for the local name server to query the fastest

responding authoritative name server, it needs to try them all at least once to determine
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which will return the fastest response.  Thus, until all authoritative name servers for the

remote zone are queried at least once, the local name server may query an authoritative

name server that is very far away network-wise, and thus get the IP address of a Web

server that is very far away from the client. The local name server is unlikely to repeat its

error as this distant authoritative name server will likely have a larger RTT value than the

other authoritative servers in the list, but for this one connection this DNS-based system

will not be effective.  It should be emphasized that in no case is this “harm” greater than

the contacting of a single-location server that is located in the remote area.

Due to the necessity for the client’s local name server to cycle through and

establish timings for all of the authoritative name servers for the zone in question, the

Web server must receive a fairly large quantity of hits from a relatively concentrated area

(generally one institution such as an ISP or a university, which would have a set of local

name servers) for this method to work.  Thus it is fairly unlikely to be an efficient

Director for less busy servers over the short term.  It will, however, work in the long

term, once the local name servers learn the distances involved via contacting the remote

authoritative name servers for the zone in question.

Figure 7.2: The DNS Round Trip Times Method in Action.

DNS+ nearby
Web server

Local DNS serving
all local clients

Potential replica

Selected replica

Client: Where is www.cnds.jhu.edu?
Authoritative DNS: try ns1, ns2, ns3.

ns1

ns2

ns3
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Figure 7.2 illustrates the DNS Round Trip Times method. The server

www.cnds.jhu.edu is replicated in three places, and has an accompanying name server in

each place. Clients that want to query this Web server will ask their local name server to

resolve the name.  The local name server will eventually try all three of the name servers

that are authoritative for www.cnds.jhu.edu.  Ultimately, the local name server learns

which remote name server is closest to it and concentrates on the Web server that this

name server points to.

7.4 Using Time To Live Values to Speed Convergence

Another concept from DNS can be used to help the convergence process along.

In DNS, each name-to-address mapping can have a variable time-to-live (TTL) value.

This value specifies a time, after which the address returned should be regarded as

invalid, and should not be used again.  Setting a lower than usual TTL on the Web

server’s address record can force the name to be re-requested with greater frequency.  Of

course, this can be a disadvantage as well, as each additional request causes extra traffic

and occasionally a perceptible delay to the client, as the name is re-resolved.  A period of

around 5 minutes is recommended as the limit for this value, as it is short enough to

cause a frequent refreshing of the data, but yet is not so short as to cause excessive

network traffic to re-resolve the name.

Until convergence takes place, one connection (defined as one or more “hits” to

the Web server within a certain TTL, from a client using a particular local name server)

has a 1/n chance of getting the “correct” server, where n is defined as the number of

name servers serving that zone.  Therefore, given the characteristics of the zone, one can

estimate the optimal number of name servers for that zone.  For example, a very popular

site that gets continual connections from around the world such as Yahoo or CNN could

support many more name servers than a site that gets a slower stream of connections.
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The larger number of connections that a busy site will receive can minimize the

delay of being forced to try all of the name servers for a zone before optimizing on the

best one.  However, beyond a certain level of traffic (at least one connection per TTL

value), a site with fewer authoritative name servers will converge faster as the local name

server will have fewer servers to check.

The TTL value may also be tuned to give the best results in the particular

environment where it is used.  Note that the TTL time period is timed relative to the local

name server, and not to the client or the Web server – if several clients sharing a local

name server all request a document from the same Web server within the time period,

that still counts as one “connection.”
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8. Additional Considerations

8.1 Experience

Some tests of the DNS Round Trip Times routing method were done for

[APS98].  This experience produced the following recommendations:

• The time it takes for the DNS system to converge on the best authoritative name

server increases linearly with the number of name servers.  At the same time, the law

of diminishing returns dictates that the added benefit derived from each additional

name server decreases as more name servers are added.  Since the system is not

effective until it converges, using a smaller number of areas (each of which requires

at least one authoritative name server) will provide the best overall performance.

• The name server that delegates authority to the multiple authoritative name servers

must not simultaneously be used as a local name server for users.  Where such misuse

occurs, that name server would soon learn which replica was best for its own users,

cache the answer, and then return that answer to any remote name server.  This

distorting effect will only last until the TTL of the Web server’s address expires, but

can happen any time that name server is used by a local client to look up the address

of the replicated server.
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8.2 Deployment Tradeoffs in Walrus

There are some efficiency tradeoffs learned while implementing Walrus:

DNS Setup

To maximize the efficiency of using the DNS Round Trip Times method as a

Director under Walrus, the following setup is suggested:

• Every area name server is authoritative for its own zone (e.g., area1.cnds.jhu.edu,

area2.cnds.jhu.edu, and so on), as well as authoritative for the zone containing the

address that the Walrus system is balancing for (e.g., “www.cnds.jhu.edu”).

• When a cluster is assigned to an area, it is assigned to a name under the area name

(e.g., “www.area-1.cnds.jhu.edu”, “www.area-2.cnds.jhu.edu”, etc.).

• Each area name server has an alias (called a CNAME) pointing the balanced address

to the local name (“www.cnds.jhu.edu” to “www.area-n.cnds.jhu.edu”).

• This extra level of redirection minimizes network traffic when updates occur, since

otherwise the update data would have to reach every one of our authoritative name

servers on the net.  If every area is authoritative for a different zone, the update only

needs to reach one name server.

Area Setup

As discussed in Section 8.1, there are some inefficiencies when there are a large

number of Walrus areas in use.  We recommend that Walrus areas are only placed in

relatively widespread geographical areas.  This will limit the slow convergence time

from becoming excessive.
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Cluster Setup

Similar to the limits on areas, there are also practical limits on how many servers

can reside in each cluster.  The reason for this particular limitation is that some DNS

resolvers in use today cannot properly deal with a DNS reply from the name server that

contains too many addresses.  Most DNS replies are UDP-based.  If a reply cannot fit in

one UDP datagram, the client’s resolver is supposed to retry the query using TCP.

Unfortunately this takes extra time, and worse, some resolvers in use today will not do

this, and merely fail.  Therefore, we recommend testing to ensure that all server

addresses for each cluster can fit within a single DNS reply datagram.  There are many

tools (for example, “dig” on UNIX platforms) that can perform this test.  A good starting

point would be a maximum of between 20 and 30 Web servers in each cluster.

If it is absolutely necessary to have more Web servers than will fit into one DNS

reply datagram, the collection of Web servers should be split, and a different area added

to cover the other servers.

8.3 Failure Modes

Walrus is designed to automatically handle system failures.  If a Web server fails,

but the machine it is running on remains functioning, the Reporter will return PANIC to

the Controller, causing the System Administrator to be notified.  If the whole machine

fails, then it will not respond and thus is automatically excluded from consideration by

Walrus, and will not be used until it recovers.

A name server failure is also handled automatically and transparently by the name

server system – in the case of a non-responsive name server, other servers for that zone

are queried in RTT-order until an answer is received.  In other words, the users that

would have queried that server will automatically and transparently fall back to the next-

best server to query.

If a Controller fails, there can be any number of backup Controllers waiting to be

promoted to the primary Controllers.
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9. Conclusions

This thesis presents Walrus, a new method for utilizing multiple Web servers

across a geographically distributed area, and automatically arranging them to guarantee

service, efficiency, and load balancing.  Walrus will continually seek to improve the

speed and reliability of the Web servers that are presented to the public, but the public

does not need to do anything special to benefit.  Indeed, the public does not even have to

know that the Walrus system is being employed to benefit from it.

The Walrus system is a significant improvement over the current method of using

one server (or cluster of servers) to cover the entire planet.  Even in its worst case

scenario, Walrus will perform equally as well as the best case of the one server method.

There are many possibilities for future growth of the Walrus system.  For

example, the underlying DNS-based method used to connect the user to the correct server

is not inextricably tied into the Walrus system – if necessary, a different method can be

used.  [APS98] discussed and compared a number of Directors which could be used in

the Walrus system.  One possibility is if all of the Web server replicas reside within one

network, then the shared IP address scheme proposed in that paper would be a good

possibility.

The shared IP address scheme works only on a single autonomous network, and

cannot cross network boundaries.  Using “closest exit routing,” where the destination

network is presumed to know best how to find a host within that network, packets for

that host are handed to its network as soon as possible.  The network then uses the

Shortest Path First algorithm to reach the nearest server answering to the IP address in

question.  To get around possible problems with routing instabilities, [APS98]

recommends sharing the IP address of several authoritative name servers, which will

each return a unique address for a Web server. As name servers commonly use the

connectionless UDP (User Datagram Protocol) for communication, a possible routing

change cannot break communication in the manner that a TCP (Transmission Control

Protocol) based connection can.  This is similar to the DNS Round Trip Times method,
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but does not require any convergence time, as the choice of which name server is closest

is determined by the network routing.

Another possible enhancement would be the incorporation of the level of

consistency for the Web server as well as any database backend in the data returned by

the Reporter.  This will allow automatic downgrading of any out-of-date server, which

will result in the more up to date servers being used with greater frequency.

Last but not least, it should be noted that there is no particular requirement that

Walrus be used for the World Wide Web only.  In fact, the same method is directly

usable by any name-based service, which includes email, news, and most other network

services.
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