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Abstract 
 
View-oriented group communication systems (GCSs) are powerful tools for building 
distributed applications. Over the past fifteen years, group communication researchers 
developed a multitude of group communication semantics and implementations. Today, 
researchers commonly design their group communication algorithms on top of simple 
existing services such as a network membership service or a reliable FIFO multicast 
framework. A natural extension of this idea is to implement one set of group 
communication semantics using another. This approach is not usually utilized due to the 
expensive overhead of running one set of group communication algorithms on top of 
another. 
 
This thesis argues that the Extended Virtual Synchrony (EVS) model of group 
communication, implemented using a client-daemon architecture, is of such high 
performance that the overhead of constructing another group communication model on 
top of it is acceptable. It demonstrates that the strong safety properties provided by the 
EVS model can be leveraged to create very simple algorithms that implement more 
powerful group communication models. 
 
This thesis presents several EVS algorithms for implementing a partitionable Virtual 
Synchrony (VS) model of group communication. It first explicitly defines the VS and 
EVS models through the presentation of their safety and liveness properties. Then, one 
simple algorithm is formally proved to implement the VS model by utilizing the safety 
and liveness properties of the underlying EVS system. Finally, the paper discusses 
several other simple variants and algorithms that were developed during the course of this 
work. 
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1 Introduction 
 
View-oriented group communication systems (GCSs) are powerful tools that can greatly 
simplify the development of distributed systems and services. GCSs provide two 
interrelated services to their clients: a membership service and a multicast service. The 
multicast service allows client processes to intercommunicate by multicasting datagram 
messages, while the membership service tracks and reports the set of currently connected 
clients with which a client can communicate. The exact semantic guarantees of the 
membership and multicast services are specified by the particular GCS’s safety and 
liveness properties. 
 
Group communication is an active area of research that has been under development for 
more than fifteen years [Bir86]. During that time, researchers proposed many different 
systems that offered tradeoffs between performance, fault-tolerance and semantic 
guarantees (see [VKCD99] for comprehensive references). With the multitude of 
available semantics and implementations, it becomes interesting to look at how these 
different systems are realized. Almost all of these systems can be built “from scratch” 
using only an unreliable packet service such as UDP or even IP [MPS91, ADKM92, 
BvR94, HvR96, AS98]. However, it usually does not make sense for a GCS researcher to 
“reinvent the wheel” in this manner every time. Instead, GCS researchers will often 
design their algorithms on top of simple services such as an existing membership service 
or a reliable FIFO multicast framework (e.g. [KK00]).  
 
A natural extension of this idea is to implement one set of GCS semantics using another. 
This would allow a designer to leverage all of the strong services provided by the 
underlying GCS’s semantics in order to develop simpler algorithms. Researchers, 
however, do not normally take this approach due to the excessive overhead of 
implementing one GCS algorithm on top of another. In most cases, this supposition is 
correct. The Extended Virtual Synchrony (EVS) model [MAMSA94, Ami95], when 
implemented using a client-daemon model [AS98], however, provides uniquely high 
performance services to its clients. This high-performance GCS allows a stronger set of 
GCS semantics to be built on top of it without excessive overhead. 
  
The main objective of this thesis is to explore the simple and effective implementation of 
a stronger set of GCS semantics built on top of EVS semantics. This exploration is done 
using the Virtual Synchrony (VS) model [GS95], one of the best-understood and most-
used group communication models. This thesis demonstrates that a partitionable Virtual 
Synchrony model can be implemented effectively on top of the Extended Virtual 
Synchrony model with relatively simple and efficient algorithms. 
 
The major contributions of this work are: it presents (1) precise specifications of the VS 
and EVS models using I/O automata and mathematical notation, (2) an EVS algorithm 
that implements the VS model of group communication, (3) rigorous proofs of that 
algorithm’s correctness and (4) it allows EVS systems to support the VS model with a 
simple client module. 
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1.1 Outline 
This thesis is divided into three main parts: the first part presents the VS and EVS 
models, the second presents an algorithm that implements VS on top of EVS and proves 
the algorithm’s correctness and the last part discusses several algorithm optimizations 
and model variants along with their respective tradeoffs. 
 
Section 2 gives a brief overview of related work. 
 
Section 3 states and discusses the safety properties that specify the VS and EVS models 
for the purposes of this thesis. [MAMSA94] specified the canonical definition of EVS. 
The VS model, on the other hand, has no canonical definition and the usage of this name 
is somewhat confusing throughout the literature. By defining the exact VS model used in 
this thesis there should be no further confusion generated by this work. 

 
Section 4 lays out the problem of implementing VS on top of EVS and briefly discusses 
some membership liveness properties that most GCSs maintain. This section explains the 
general approach and algorithm this work used for implementing VS on top of EVS. 

 
Section 5 presents an algorithm in pseudo-code that implements the presented VS model 
on top of the presented EVS model. 

 
Section 6 formally proves that the presented algorithm correctly implements the VS 
model by leveraging the safety and liveness properties of the underlying EVS model. 
 
Section 7 discusses several algorithmic and model variants and discusses their respective 
tradeoffs. 
 
Section 8 presents some real-world performance statistics from one of the algorithm 
variants that were developed by this work. 
 
Finally, section 9 concludes this thesis and summarizes the contributions of this work. 
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2 Related Work 
 
Reliable group communication is an active research area, rich with specifications, 
implementations and applications. In the past, most works concentrated on the 
performance and capabilities of systems, often with a particular application in mind. 
Several different group communication systems were built, such as ISIS [BvR94], Horus 
[RKM96], Transis [ADKM92], Totem [AMMS+95], RMP [WMK94] and Spread 
[AS98]. All of these systems are based on the ideas of virtual synchrony [Bir86] and 
generally provide different “flavors” of the two most popular semantic models: Virtual 
Synchrony [BvR94] and Extended Virtual Synchrony [MAMSA94]. 
 
Recently, precise specifications of system properties with accompanying proofs of 
correctness have become more important. Researchers aided this movement by 
developing several formal specification systems well suited to modeling distributed 
systems, such as the I/O automaton paradigm [LT89, Lyn96, GL98] and Vitenberg’s 
multi-sorted algebra [Vit98]. These systems allow for precise and easy to understand 
property specifications of distributed systems and have been used recently for specifying 
and reasoning about GCSs [DPFLS98, KK00]. These specification systems allow 
reasoning about composition and arbitrary combinations of properties in an unambiguous 
manner. In addition, these systems can lead to modular specifications, which can easily 
translate to modular or layered system designs. Automatic theorem proving tools have 
also been developed to work with these types of specification systems, such as the Larch 
Prover [GG91, GHG+93] and have been used to prove the correctness of several 
algorithms [SAGG+93, PPG+96, LSGL95].  
 
In [VKCD99], the I/O automaton model was used to specify a host of logic formulae 
specifying most common group communication safety and liveness properties. That 
seminal work laid the groundwork for formal specifications of group communication 
systems for the future. This paper strongly adopts and endorses the use of their 
specification style. It allows for unambiguous and clear statements of system properties 
that lend themselves both to manual and automatic proofs. 
 
Other related work is sited throughout this thesis in the particular sections where that 
related work is most pertinent. 
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3 The VS and EVS Group Communication Models 
 
This section specifies the Virtual Synchrony (VS) and Extended Virtual Synchrony 
(EVS) models in four subsections. The first subsection discusses the formalism used for 
specifying the models and the following three subsections actually present the two sets of 
safety properties. The second subsection presents the commonalities that the two models 
share, the third subsection presents the additional properties that EVS provides and the 
last subsection presents the additional properties that VS provides. 

3.1 Presentation Formalism 
This thesis presents a GCS model as a set of safety and liveness properties that defines 
the system’s membership and multicast services. This thesis adopts and relies heavily on 
the specification style of [VKCD99], where properties are formalized as trace properties 
of an I/O automaton [LT89] in logical axioms using set-theoretic notation. This thesis 
precisely specifies the safety properties of each model while it informally discusses the 
liveness properties of group communication systems. This thesis concentrates on 
formally proving that the discussed algorithms maintain the models’ safety properties 
while maintaining their liveness properties without formal proofs. For explicit 
specifications and more in-depth discussions of GCS liveness properties, please consult 
[VKCD99]. 
 
In this thesis, GCS processes are modeled as untimed I/O automata [LT89, Lyn96].  The 
safety and liveness properties presented herein are with respect to the external behavior 
of the GCS processes, as reflected in their external signature and in their fair traces. The 
external signature of an automaton consists of the possible atomic input and output 
actions with which it can interact with its environment. A trace of an I/O automaton is the 
sequence of external actions that occur at that automaton in an execution. An automaton 
is said to implement a GCS model if it has the same external signature as that model and 
for all of that automaton’s fair traces the safety and liveness properties of that model 
hold. For formal definitions and a more in-depth discussion of I/O automatons, please 
consult [Lyn96], Chapter 8. 
 
The GCSs that this work considers function on top of a communication network that 
provides asynchronous, unreliable message delivery. The group communication models 
allow for the following external events: messages may be lost, processes may crash and 
recover, the network can partition into disjoint network components and previously 
disjoint network components may merge. The models considered herein are partitionable, 
meaning that a client process can make progress in any network component. This thesis 
assumes that no Byzantine failures occur, meaning that no client or component of the 
GCS processes acts in a non-specified manner. 
 
For simplicity’s sake, this thesis makes the following assumptions in its presentations: (1) 
it is assumed there exists one GCS process for each client process and they are, in fact, 
one in the same, therefore, if any part of the GCS process or client fails, this results in a 
GCS process crash; (2) all properties and algorithms presented in this thesis are with 
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respect to a single client group, whereas most GCS systems provide multiple groups to 
and from which clients can send and receive messages; (3) that group is a closed group, 
meaning that only members of that group can send and receive messages to and from it; 
(4) the mechanisms of joining and leaving that group are considered external operations – 
upon recovery, a process immediately tries to join the group and only leaves that group as 
a result of crashing. None of these assumptions have important side effects and they can 
be removed. These assumptions are only used to simplify the presentation of the models, 
algorithms and proofs. 

3.2 Shared GCS Model  
This section presents the portions of the VS and EVS models that they share in common. 

3.2.1 Automaton External Signature 
The specifications of the GCS models use the following basic sets: 
 

B – the Boolean set 
N – the set of natural numbers 
P – the set of processes 
M – the set of sent client messages 
VID – the set of delivered view ids with a strict partial order by the < operator 
MT := { R, F, C, A, S } the set of messages types 
∅ – the null or empty set 

 
Throughout the rest of this thesis, variables named a, b, c, d, i, j, k and l are members of 
N, variables named p and q are members of P, variables named D, S and T are members 
of 2P, variables named m are members of M and variables named id are members of VID. 
Any variable name that has a prime(s) or star(s) appended to it is from the same set as the 
base variable. 
 
The basic functionality or signature of a view-oriented GCS is that it allows a client to 
send messages to other clients, receive messages from other clients, and get information 
about the other clients with which it is communicating. 
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Figure 1: External signature of the Shared GCS Model. 

 
Each action in the GCS external signature is parameterized by a unique process p ∈ P at 
which that action occurs.  Each GCS process interacts with its client and environment as 
depicted in Figure 1. The external signature of the GCS consists of the following actions: 
 
Interaction with the Client 

• input send(p, m), p ∈ P, m ∈ M 
Note that each sent message is associated with one sender and one message type – this 
information is assumed to be encoded with the message. I refer to the message sender 
as m.sender (∈ P) and the message type as m.type (∈ MT). 

• output deliver(p, m), p ∈ P, m ∈ M 

• output view(p, id, D, T), p ∈ P, id ∈ VID, D ∈ 2P, T ∈ 2P 
D represents the membership set of the view and T represents the transitional set of the 
view for this process. 

• output trans_sig(p), p ∈ P 

Interaction with the Environment 

• input crash(p), p ∈ P 

• input recover(p), p ∈ P 

3.1 Definition (Event) An event is an occurrence of an action from an automaton’s 
external signature. 

 
3.2 Definition (Trace) A trace is a sequence of events. 
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3.2.2 Mathematical Model 
This section presents the mathematical model for stating trace properties of a GCS 
automaton with the external signature above described. The properties are stated in 
logical axioms using set-theoretic notation and use the following sets: 
 
B, N, P, M, VID, MT, ∅ – the basic sets above described 
 
Actions  The set of actions is: 

{ send(p, m) | p ∈ P, m ∈ M } ∪ { deliver(p, m) | p ∈ P, m ∈ M } ∪ 
{ view(p, id, D, T) | p ∈ P, id ∈ VID, D ∈ 2P,  T ∈ 2P } ∪ 
{ trans_sig(p) | p ∈ P } ∪ { crash(p) | p ∈ P } ∪ { recover(p) | p ∈ P } 

 
Traces – sequences of actions 
 
Events – actions that are members of traces 
 
Since all of the following axioms classify automaton traces, they all take a trace as a 
parameter. For clarity of presentation, the trace parameter is considered implicit and is 
omitted – all axioms are with respect to a fixed trace (Trace = t1, t2, …). In the following 
axioms, universal quantifiers are omitted – when a variable is unbound it is universally 
quantified for the scope of the entire formula. 

3.2.3 Definitions 
Since each event occurs atomically at a single process, the function pid : Events → P, 
which returns the process at which each event occurs, is defined. 
 
3.3 Definition (pid) The pid of an event ta is the process at which that event occurred.  

Formally: 
pid(ta) := p if  ta = trans_sig(p) ∨ ta = crash(p) ∨ ta = recover(p) ∨ 

 (∃m : ta = deliver(p, m) ∨ ta = send(p, m)) ∨ (∃id∃D∃T : ta = view(p, id, D, T)) 
 
In a view-oriented GCS, events occur at processes within the context of views. The 
function vid : Events × P → VID ∪ {⊥} returns the view in the context of which an event 
occurred at a specific process. Note that for a view event, it is not the new view 
introduced, but rather the process’ previous view. Up until the first view event at a 
process and immediately after a crash event, a process is not considered to be in any 
view (modeled by ⊥). 
 
3.4 Definition (vid) The vid of an event tc at a process p is the view identifier delivered 

in a view event ta at p which precedes tc such that there are no view or recover 
events between ta and tc at p. If there is no such view event then the vid is the null 
view identifier, ⊥. Formally: 
vid(tc, p) := id if ∃a b∃D∃T : a < b < c ∧ ta = view(p, id, D, T) ∧  

(tb = recover(p) ∨ ∃id’∃D’∃T’ : tb = view(p, id’, D’, T’)) 
⊥ otherwise 
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Event tb is the first event at a process p: 

first_event(tb, p) ≡ a : a < b ∧ pid(ta) = pid(tb) = p 
Event ta is the previous event before tc at process p: 

prev_event(ta, tc, p) ≡ a < c ∧ pid(ta) = pid(tc) = p ∧ b : pid(tb) = p ∧ a < b < c 
Event tc is the next event after ta at process p: 

next_event(tc, ta, p) ≡ a < c ∧ pid(ta) = pid(tc) = p ∧ b : pid(tb) = p ∧ a < b < c 

Table 1: Shorthand predicates. 

The Causal order [Lam78] defines a strict partial order on events in a trace. 
 
3.5 Definition (→) The → relation defines the causally precedes strict partial order on 

events. Formally: 

ta → ti ≡ (pid(ta) = pid(ti) ∧ a < i) ∨ (ta = send(p, m) ∧ ti = deliver(q, m)) ∨  
(∃b : ta → tb ∧ tb → ti) 

 
The ord : M → N function is used by the GCS to determine the delivery order of Agreed 
messages1. This function is not necessarily available to client processes. 
 
3.6 Definition (ord) The ord function is a one-to-one mapping from M to the set of 

natural numbers that is consistent with the causally precedes strict partial order of 
send events. Formally: 
ord : M → N ∧ (ord(m) = ord(m’) ⇔ m = m’) ∧ 

   (ta = send(p, m) ∧ ti = send(q, m’) ∧ ta → ti ⇒ ord(m) < ord(m’)) 
 
Several shorthand predicates are also defined in Table 1. 

3.2.4 Assumptions about the Environment 
In the following models, no events occur at a process between crash and recovery. 
 
3.1 Assumption (Execution Integrity) The first event that occurs at a process is a 

recover event. If a recover event occurs at a process, then it is either the first event 
at that process or the previous event was a crash event. The next event that occurs 
at a process after a crash event is a recover event. Formally: 
(first_event(tb, p) ⇒ tb = recover(p)) ∧  
(tb = recover(p) ⇒ (prev_event(ta, tb, p) ∧ ta = crash(p)) ∨ first_event(tb, p)) ∧  
(ta = crash(p) ∧ next_event(tb, ta, p) ⇒ tb = recover(p)) 

 

                                                 
1 Agreed messages are delivered in a strong total order [WS95, VKCD99]. 
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In order to distinguish between messages sent in different send events, each message sent 
by a client is tagged with a unique message identifier. This assumption is not essential 
and is, again, used to simplify the presentation of the models. 
 
3.2 Assumption (Message Uniqueness) There are no two different send events with 

the same content. Formally: 
ta = send(p, m) ∧ ti = send(q, m) ⇒ a = i 

3.2.5 Shared GCS Membership Service Safety Properties 
This section presents the safety properties of the membership service that both the VS 
and EVS models maintain. 
 
3.1 Property (Initial View Event) Every send, deliver, and trans_sig event at a 

process occurs within some view. Formally: 
ta = send(p, m) ∨ ta = deliver(p, m) ∨ ta = trans_sig(p) ⇒ vid(ta, p) ≠ ⊥ 

 
3.2 Property (Self Inclusion) If a process p installs a view, then p is a member of the 

membership set. Formally: 
ta = view(p, id, D, T) ⇒ p ∈ D 

 
3.3 Property (Membership Agreement) If a process p installs a view with identifier id 

and a process q installs a view with the same identifier, then the membership sets of 
the views are identical. Formally: 
ta = view(p, id, D, T) ∧ ti = view(q, id, D’, T’) ⇒ D = D’ 

 
3.4 Property (Local Monotonicity) If a process p installs a view with identifier id’ 

after installing a view with identifier id, then id’ is greater than id. Formally: 
ta = view(p, id, D, T) ∧ tb = view(p, id’, D’, T’) ∧ i < j ⇒ id < id’ 

3.2.6 Shared GCS Multicast Service Safety Properties 
This section presents the safety properties of the multicast service that both the VS and 
EVS models maintain. 
 
3.5 Property (No Duplication) A process never delivers a message more than once. 

Formally: 
ta = deliver(p, m) ∧ tb = deliver(p, m) ⇒ a = b 

 
3.6 Property (Delivery Integrity) A deliver event in a view is the result of a preceding 

send event by a member of that view2. Formally: 
ta = view(p, id, D, T) ∧ tb = deliver(p, m) ∧ vid(tb, p) = id ⇒ ∃i∃q : i < a ∧ ti = send(q, m) ∧ q ∈ D 

 

                                                 
2 Note that the requirement that a sender be a member of the view in which its message is delivered is not 
required for open group GCSs. 
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Property (Self-Delivery) is actually a liveness property of the multicast service. It is 
formally presented here because it is utilized in the section of proofs. 
 
3.7 Property (Self-Delivery) If a process p sends a message m, then p delivers m 

unless it crashes. Formally: 

ta = send(p, m) ∧ b : a < b ∧ tb = crash(p) ⇒ ∃c : tc = deliver(p, m) 
 
3.8 Property (Same View Delivery) If processes p and q both deliver a message m, 

then they both deliver m in the same view. Formally: 
ta = deliver(p, m) ∧ vid(ta, p) = id ∧ ti = deliver(q, m) ∧ vid(ti, q) = id’ ⇒ id = id’ 

 
The following properties are not usually explicitly stated in specifications of the EVS and 
VS models. They are specified here because, unlike most specifications, this EVS model 
does not assume any form of Sending View Delivery (defined below) and, therefore, 
requires more explicit properties to maintain the usual message reliability (no-holes) 
safety properties. These properties are sanity constraints on the views in which a process’ 
messages can be delivered. All of the GCSs studied by this work maintain these 
properties. 
 
3.9 Property (Sane View Delivery) 

1. A message is not delivered in a view earlier than the one in which it was sent.  
Formally: 
ta = send(p, m) ∧ vid(ta, p) = id ∧ ti = deliver(q, m) ∧ vid(ti, q) = id’ ⇒ id ≤ id’ 
 

2. If a process p sends a message m, crashes and later recovers in a view id and a 
process q delivers m, then m is delivered in a view before id. Formally: 
ta = send(p, m) ∧ tc = view(p, id, D, T) ∧ vid(tc, p) = ⊥ ∧ a < c ∧ ti = deliver(q, m) ⇒  
vid(ti, q) < id 
 

3. If two messages m and m’ are sent, respectively, by processes p and p’ such that 
the send of m’ is causally preceded by the send of m and a process q’ delivers 
both messages, then q’ does not deliver m in a later view than m’. Formally: 
ta = send(p, m) ∧ td = send(p’, m’) ∧ ta → td ∧ tj = deliver(q’, m) ∧ tk = deliver(q’, m’) ⇒  
vid(tj, q’) ≤ vid(tk, q’) 
 

3.10 Property (Virtual Synchrony) If processes p and q are virtually synchronous in a 
view (defined below), then any message delivered by p in that view is also delivered 
by q. Formally: 
vsynchronous_in(p, q, id) ∧ ta = deliver(p, m) ∧ vid(ta, p) = id ⇒ ∃i : ti = deliver(q, m) 

 
This thesis presents the usual message ordering and reliability safety properties 
differently than most GCS papers. In this thesis, the different message ordering and 
reliability safety properties are explicitly presented as a hierarchy of different message 
types. In this hierarchy, each higher level of service maintains all of the safety properties 
of the lower levels. For example, a FIFO message maintains the FIFO and Reliable 
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message properties, while a Causal message maintains the Causal, FIFO and Reliable 
message properties. This hierarchy implicitly makes the presented GCSs use weak 
incorporated [WS95] delivery semantics when delivering two different types of 
messages. (Recall that a sent message m is of one specific message type, indicated by 
m.type ∈ MT) 
 
3.11 Property (Reliable Messages) All messages are reliable. The Self-Delivery, Same 

View Delivery and Virtual Synchrony properties implicitly define the safety 
properties of Reliable messages.  Formally: 

reliable(m) ≡ m.type ∈ { R, F, C, A, S } 
 
3.12 Property (FIFO Messages) 

1. FIFO messages are reliable messages.  Formally: 

fifo(m) ≡ m.type ∈ { F, C, A, S } 
 

2. If a process sends a FIFO message after sending a previous message, then these 
messages are delivered in the order in which they were sent at every process that 
delivers both.  Formally: 
ta = send(p, m) ∧ tb = send(p, m’) ∧ a < b ∧ fifo(m’) ∧ 
ti = deliver(q, m) ∧ tj = deliver(q, m’) ⇒ i < j 

 
3. If a process p sends a FIFO message m’ after sending a previous message m and 

a process q’ delivers m’, then if any process delivers m, then q’ either delivers m 
or installs a view without p in its transitional set between the delivery views of m 
and m’, or if no process delivers m, then p crashed between sending m and m’ and 
q’ installs a view without p in its transitional set between the recovery view of p 
and the delivery view of m’. 
ta = send(p, m) ∧ tc = send(p, m’) ∧ a < c ∧ fifo(m’) ∧ tl = deliver(q’, m’) ⇒ 
(∃i∃q : ti = deliver(q, m) ⇒ (∃j : tj = deliver(q’, m)) ∨  
 (∃k∃id’∃D’∃T’ : tk = view(q’, id’, D’, T’) ∧ p ∉ T’ ∧ vid(ti, q) < id ≤ vid(tl, q’))) ∧ 
( i∃q : ti = deliver(q, m) ⇒ ∃b∃id∃D∃T : a < b < c ∧ tb = view(p, id, D, T) ∧ vid(tb, p) = ⊥ ∧ 
 ∃k∃id’∃D’∃T’ : tk = view(q’, id’, D’, T’) ∧ p ∉ T’ ∧ id ≤ id’ ≤ vid(tl, q’)) 

 
3.13 Property (Causal Messages) 

1. Causal messages are FIFO messages.  Formally: 

causal(m) ≡ m.type ∈ { C, A, S } 
 

2. If a process sends a causal message m’ such that the send of another message m, 
causally precedes the send of m’, then any process that delivers both messages, 
delivers m before m’. Formally: 

ta = send(p, m) ∧ td = send(p’, m’) ∧ ta → td ∧ causal(m’) ∧  
ti = deliver(q, m) ∧ tj = deliver(q, m’) ⇒ i < j 
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3. If a process p’ sends a causal message m’ such that the send of another message 
m causally precedes m’, then if any process delivers m, then q’ either delivers m 
or installs a view without p’ in its transitional set between the delivery views of m 
and m’, or if no process delivers m, then p crashed between sending m and m’ and 
q’ installs a view without p in its transitional set between the recovery view of p 
and the delivery view of m’. 
ta = send(p, m) ∧ tc = send(p’, m’) ∧ ta → tc ∧ causal(m’) ∧ tl = deliver(q’, m’) ⇒ 
(∃i∃q : ti = deliver(q, m) ⇒ (∃j : tj = deliver(q’, m)) ∨  
 (∃k∃id’∃D’∃T’ : tk = view(q’, id’, D’, T’) ∧ p’ ∉ T’ ∧ vid(ti, q) < id ≤ vid(tl, q’))) ∧ 
( i∃q : ti = deliver(q, m) ⇒ ∃b∃id∃D∃T : a < b < c ∧ tb = view(p, id, D, T) ∧ vid(tb, p) = ⊥ ∧ 
 ∃k∃id’∃D’∃T’ : tk = view(q’, id’, D’, T’) ∧ p’ ∉ T’ ∧ id ≤ id’ ≤ vid(tl, q’)) 

 
3.14 Property (Agreed Messages) 

1. Agreed messages are causal messages.  Formally: 

agreed(m) ≡ m.type ∈ { A, S } 
 

2. If a process p delivers an agreed message m’, then after that event it will never 
deliver a message that has a lower ord value.  Formally: 
ta = deliver(p, m) ∧ tb = deliver(p, m’) ∧ agreed(m’) ∧ ord(m) < ord(m’) ⇒ a < b 
 

3. If a process p delivers an agreed message m’ before a trans_sig event in its 
current view, then p delivers every message with a lower ord value than m’ 
delivered in that view by any process. Formally: 
tc = deliver(p, m’) ∧ agreed(m’) ∧ ( b : b < c ∧ tb = trans_sig(p) ∧ vid(tb, p) = vid(tc, p)) ⇒  
∀i∀q∀m : ti = deliver(q, m) ∧ vid(ti, q) = vid(tc, p) ∧ ord(m) < ord(m’); ∃a : ta = deliver(p, m) 

 
4. If a process p delivers an agreed message m’ after a trans_sig event in its current 

view, then p delivers every message with a lower ord value than m’ sent by any 
processes in p’s next transitional set that were delivered in the same view as m’.  
Formally: 
ta = trans_sig(p) ∧ tc = deliver(p, m’) ∧ td = view(p, id’, D’, T’) ∧ a < c < d ∧ agreed(m’) ∧  
vid(ta, p) = vid(tc, p) = vid(td, p) = id ⇒  
∀i∀q∈T’∀m∀l∀p’ : ti = send(q, m) ∧ tl = deliver(p’, m) ∧ vid(tl, p’) = id ∧ ord(m) < ord(m’);  
∃b : tb = deliver(p, m) 
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3.15 Property (Safe Messages) 

1. Safe messages are agreed messages.  Formally: 

safe(m) ≡ m.type ∈ { S } 
 

2. If a process p delivers a safe message m before a trans_sig event in its current 
view id, then every member of that view delivers m, unless it crashes in id. 
Formally: 
ta = view(p, id, D, T) ∧ tc = deliver(p, m) ∧ safe(m) ∧ vid(tc, p) = id ∧  

b : a < b < c ∧ tb = trans_sig(p) ⇒  
∀q∈D; ∃i∃D’∃T’∃j : ti = view(q, id, D’, T’) ∧ (tj = deliver(q, m) ∨ (tj = crash(q) ∧ vid(tj, q) = id)) 

 
3. If a process p delivers a safe message m after a trans_sig event in its current view 

id, then every member of p’s transitional set from p’s next view delivers m, unless 
it crashes in id. Formally: 
ta = view(p, id, D, T) ∧ tb = trans_sig(p) ∧ tc = deliver(p, m) ∧ td = view(p, id’’, D’’, T’’) ∧  
safe(m) ∧ b < c ∧ vid(tb, p) = vid(tc, p) = vid(td, p) = id ⇒  
∀q∈T’’; ∃i∃D’∃T’∃j : ti = view(q, id, D’, T’) ∧  
(tj = deliver(q, m) ∨ (tj = crash(q) ∧ vid(tj, q) = id)) 

 
3.16 Property (Transitional Signals) 

1. At most one trans_sig event occurs at a process per view.  Formally: 
ta = trans_sig(p) ∧ vid(ta, p) = id ⇒ 

b : b ≠ a ∧ tb = trans_sig(p) ∧ vid(tb, p) = id 
 

2. If two processes p and q are virtually synchronous (defined below) in a view id 
and p has a trans_sig event occur in that view, then q also has a trans_sig event 
occur in that view and they both deliver the same sets of agreed messages before 
and after their trans_sig events in that view. Formally:  
vsynchronous_in(p, q, id) ∧ tb = trans_sig(p) ∧ vid(tb, p) = id ⇒ 
∃j : tj = trans_sig(q) ∧ vid(tj, q) = id ∧ 
(∃a∃m : a < b ∧ ti = deliver(p, m) ∧ vid(ta, p) = id ∧ agreed(m) ⇔ 
 ∃i∃m : i < j ∧ ti = deliver(q, m) ∧ vid(ti, q) = id ∧ agreed(m)) ∧ 
(∃c∃m’ : b < c ∧ tc = deliver(p, m’) ∧ vid(tc, p) = id ∧ agreed(m’) ⇔ 
 ∃k∃m’ : j < k ∧ tk = deliver(q, m’) ∧ vid(tk, q) = id ∧ agreed(m’)) 
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3.3 Extended Virtual Synchrony Model Extensions 
This section presents the safety properties that the EVS model provides above and 
beyond the safety properties that the VS and EVS models share in common. 
 
3.7 Definition (EVS vsynchonous_in) If processes p and q both install the same view 

in the same previous view, then they were virtually synchronous in that previous 
view. Formally: 

vsynchronous_in(p, q, id) ≡ ∃a∃id’∃D∃T∃i∃D’∃T’ :  
ta = view(p, id’, D, T) ∧ ti = view(q, id’, D’, T’) ∧  
vid(ta, p) = vid(ti, q) = id 

 
3.17 Property (EVS Transitional Set) 

1. The transitional set for the first view installed at a process following a recover 
event is the empty set. Formally: 
ta = view(p, id, D, T) ∧ vid(ta, p) = ⊥ ⇒ T = ∅ 

2. If a process p installs a view in a previous view, then the transitional set for the 
new view at p is a subset of the intersection between the two views’ membership 
sets. Formally: 
ta = view(p, id, D, T) ∧ tb = view(p, id’, D’, T’) ∧ vid(tb, p) = id ⇒ T’ ⊆  D ∩ D’ 

 
3. If processes p and q install the same view, then q is included in p’s transitional set 

for that view if and only if p’s previous view was identical to q’s previous view.  
Formally: 
ta = view(p, id’’, D, T) ∧ vid(ta, p) = id ∧ ti = view(q, id’’, D’, T’) ∧ vid(ti, q) = id’ ⇒  
(q ∈ T ⇔ id = id’) 

 
4. If processes p and q install the same view in the same previous view, then they 

have the same transitional sets in their new views.  Formally: 
ta = view(p, id, D, T) ∧ ti = view(q, id, D’, T’) ∧ vid(ta, p) = vid(ti, q) ⇒ T = T’ 
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3.4 Virtual Synchrony Model Extensions 
This section presents the extensions to the external signature and additional safety 
properties that the VS model provides beyond those that the VS and EVS models share in 
common. 

 

Figure 2: External signature of the VS Model. 
 
Additional Interaction with the Client: 

• input flush(p), p ∈ P 

• output flush_req(p), p ∈ P 

Actions := Actions ∪ { flush(p) | p ∈ P } ∪ { flush_req(p) | p ∈ P } 
 
3.8 Re-Definition (VS pid) The pid of an event ta is the process at which that event 

occurred. Formally: 
pid(ta) := p if  ta = trans_sig(p) ∨ ta = crash(p) ∨ ta = recover(p) ∨  

ta = flush(p) ∨ ta = flush_req(p) ∨ (∃m : ta = deliver(p, m) ∨ ta = send(p, m)) ∨  
(∃id∃D∃T : ta = view(p, id, D, T)) 

 
3.9 Definition (VS vsynchonous_in) If processes p and q both install a view in the 

same previous view, id, and q is in p’s transitional set, then they are virtually 
synchronous in id3. Formally: 

vsynchronous_in(p, q, id) ≡ ∃a∃id’∃D∃T∃i∃D’∃T’ :  
ta = view(p, id’, D, T) ∧ ti = view(q, id’, D’, T’) ∧  
vid(ta, p) = vid(ti, q) = id ∧ q ∈ T 

 
 

                                                 
3 The following definition of the VS transitional set makes VS vsynchronous_in a reflexive, symmetric and 
transitive relation on processes in a view. 
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3.18 Property (VS Initial View Event) Every flush, flush_req, send, deliver, and 
trans_sig event occurs within some view. Formally: 
ta = flush(p) ∨ ta = flush_req(p) ∨ ta = send(p, m) ∨ ta = deliver(p, m) ∨ ta = trans_sig(p) ⇒  
vid(ta, p) ≠ ⊥ 

 
3.19 Property (Sending View Delivery) Messages are delivered in the view in which 

they are sent. Formally: 
ta = deliver(p, m) ∧ vid(ta, p) = id ⇒ ∃i∃q : ti = send(q, m) ∧ vid(ti, q) = id 

 
3.20 Property (Flush Requests and Flushes) 

1. At most one flush_req event occurs in a view at a process. Formally: 
ta = flush_req(p) ⇒ b : b ≠ a ∧ tb = flush_req(p) ∧ vid(ta, p) = vid(tb, p) 

 
2. At most one flush event occurs in a view at a process. A flush event is preceded 

by a flush_req event in that view at that process. No send events follow a flush 
event in a view at a process. Formally: 
tb = flush(p) ⇒ d : d ≠ b ∧ td = flush(p) ∧ vid(tb, p) = vid(td, p) ∧ 
∃a c∃m : a < b < c ∧ ta = flush_req(p) ∧ tc = send(p, m) ∧ vid(ta, p) = vid(tb, p) = vid(tc, p) 

 
3. Every view event, except for the first following a recover event, at a process is 

preceded by a flush event. Formally: 
tb = view(p, id, D, T) ⇒ ∃a : a < b ∧ (ta = flush(p) ∨ ta = recover(p)) ∧ vid(ta, p) = vid(tb, p) 

 
3.21 Property (VS Transitional Set) 

1. The transitional set for the first view installed at a process following a recover 
event is the empty set. Formally: 
ta = view(p, id, D, T) ∧ vid(ta, p) = ⊥ ⇒ T = ∅ 

 
2. If a process p installs a view in a previous view, then the transitional set for the 

new view at p is the union of p with a subset of the intersection between the two 
views’ membership sets.  Formally: 
ta = view(p, id, D, T) ∧ tb = view(p, id’, D’, T’) ∧ vid(tb, p) = id ⇒ p ∈ T’ ∧ T’ ⊆  D ∩ D’ 

 
3. If processes p and q install the same view and q is included in p’s transitional set 

for that view, then p’s previous view was identical to q’s previous view.  
Formally: 
ta = view(p, id’, D, T) ∧ vid(ta, p) = id ∧ ti = view(q, id’, D’, T’) ∧ q ∈ T ⇒ vid(ti, q) = id 

 
4. If processes p and q install the same view and q is included in p’s transitional set 

for that view, then p and q have the same transitional sets for that view.  
Formally: 
ta = view(p, id’, D, T) ∧ ti = view(q, id’, D’, T’) ∧ q ∈ T⇒ T = T’ 
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4 VS Algorithm Design 
 
This section describes some of the problems involved with implementing VS on top of 
EVS. It also describes, in general terms, the algorithms that this work developed to solve 
those problems. 

4.1 Differences between EVS and VS 
The main difference between the EVS and VS models is that the VS model offers 
Sending View Delivery semantics while EVS only offers Same View Delivery semantics.  
 
This difference in message delivery semantics is responsible for the differences in the 
models external signatures. Friedman and van Renesse have shown [FvR95] that in order 
to maintain Sending View Delivery without violating other useful safety properties, such 
as Self-Delivery and Virtual Synchrony, clients must not be allowed to send messages for 
a certain period of time before each VS view is installed. Therefore, a VS implementation 
must signal its clients that an underlying membership change has occurred and request 
that the client stop sending messages in its current view, so that this new view 
information can be delivered. The client, when it is ready, responds to this request with a 
flush message that closes its current view. After closing its previous view a client is not 
allowed to send more messages until a new view is installed. Thus, to enable Sending 
View Delivery for a client, the VS model has the additional flush and flush request events 
that the EVS model does not. 
 
EVS systems never request authorization from clients in order to install new views; they 
simply determine and install new views as they deliver messages while maintaining the 
appropriate properties. This makes the EVS model uniquely suited for a client-daemon 
implementation. Most GCSs are implemented such that each client process acts a GCS 
process, meaning that the client process itself, or a subcomponent of the client process 
ensures that the safety and liveness properties of the system are maintained. In a client-
daemon system, a set of dedicated, long-lived daemon processes is responsible for 
maintaining the safety and liveness properties of the system. Client processes connect to 
one of the daemons and send and receive messages through that daemon. That daemon 
acts as a representative for that client in the group communication system, ensuring all of 
the safety and liveness properties of the model.  
 
This client-daemon architecture has many performance advantages over client-based 
architectures. First, almost every variable algorithmic cost in a GCS is tied to how many 
processes are involved in a procedure. In practice, the number of daemons is small 
relative to the number of client processes. This means that almost every algorithmic cost 
is drastically reduced in this architecture. Second, in this kind of system, client process 
membership changes can be implemented with a single Agreed message4 [Spread]. This 
kind of membership change is far less expensive than membership changes in client 
based systems, which often consist of multiple n-to-n communication rounds during 

                                                 
4 In this architecture, Same View Delivery is not maintained in certain rare scenarios. 
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which messages cannot be sent. The client-daemon architecture also has these more 
expensive membership changes, however, these heavyweight membership changes only 
occur due to daemon membership changes. Daemon membership changes only occur 
when particular network components partition or merge and daemons crash or recover. In 
most environments, these are relatively rare events compared to client processes joining 
or leaving the group communication system. The high performance of this client-daemon 
EVS architecture, along with its inexpensive and non-blocking client level memberships 
are what make it a prime candidate on top of which to implement a client level VS 
system. 

4.2 Problem Description: Maintaining Safety and Liveness Properties 
As mentioned in the previous major section, a GCS consists of a set of safety and 
liveness properties. In the previous section, the safety properties of the EVS and VS 
systems were laid out in detail. This section informally discusses the liveness properties 
that must also be maintained to correctly implement a GCS model. This section also 
points out some of the constraints that maintaining these different properties enforces on 
any VS algorithm and comments on how they apply, in particular, to implementing VS 
on top of EVS. 

4.2.1 Membership Liveness Properties 
The main purpose of a GCS is to allow its clients to communicate with other clients 
connected to the system. To be truly useful, most GCSs maintain a membership liveness 
property that requires a certain level of precision from their membership service. The 
main point of this liveness property is to require a GCS’s membership service to 
eventually reflect the underlying communication connectivity of its clients. This GCS 
liveness property is difficult to formulate [ACBMT95] and has been proven impossible to 
maintain in every situation [CHTCB96]. Roughly speaking, this liveness property 
requires that if an underlying connectivity change occurs and the new connectivity exists 
forever, then the new connectivity must eventually be uniformly and accurately presented 
to the connected clients. 
  
In order to accomplish this feat, any VS algorithm must use some form of distributed 
agreement to get all of the members of the underlying stable membership to agree upon 
and install the same VS view. For the purposes of this work, maintaining this property 
requires that if an EVS view persists forever, that eventually the VS algorithm will install 
the same VS view to all of the members of the underlying view and that it will not install 
any further views.  
 
If an algorithm installs a view that does not match the underlying system’s view (as the 
algorithm knows it) at the time of installation, then the installed view is said to be 
obsolete. If an algorithm installs an obsolete view it will eventually have to re-execute to 
install a more accurate view. An algorithm that installs obsolete views will usually 
generate more views than one that does not, which often causes client processes to do 
unnecessary state synchronization work. Therefore, algorithms that generate obsolete 
views are generally considered less desirable than those that do not. 
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4.2.2 Membership Safety Properties 
The safety properties that the membership service must maintain are relatively few. In 
particular, it must maintain the Self-Inclusion, Membership Agreement and Local 
Monotonicity properties. 
 
A VS algorithm can take two approaches to maintaining these properties. These 
properties can either be provided by a separate membership service, or the algorithm 
itself can use a form of distributed agreement to agree upon view identifiers and 
membership sets. 

4.2.3 Multicast Liveness Properties 
The other common liveness properties of GCSs concern the eventual delivery of 
messages in stable views. If the connectivity of the underlying communication system 
eventually stabilizes forever, then, as described above, an algorithm built on top of such a 
system must eventually reflect that connectivity to its clients in a stable view. 
Furthermore, messages that are sent in such a stable view must eventually be delivered to 
all the members of that view. 
 
For the purposes of this work, this means that a VS algorithm cannot drop messages in a 
stable view. Of course, there is no practical way for an algorithm to determine if a stable 
view has been reached. Therefore, if the algorithm installs a view and no further 
underlying changes have occurred yet, then messages received from the underlying 
system must eventually be delivered to all of the members of that view. 

4.2.4 Multicast Safety Properties 
There are a host of safety properties on the multicast service. Most of these properties 
concern the ordering and reliability of different message types. Many algorithms have 
been developed that maintain the safety properties of the respective message types. 
 
A VS algorithm must either implement some of these algorithms itself, or it can have 
many of those services done for it by a separate multicast service. In this latter case, the 
algorithm simply must ensure that the underlying service, along with injected alterations 
such as inserting, dropping or reordering messages maintains the correct safety 
properties. 

4.3 Single Round VS Algorithm Using FIFO Messages 
This section discusses the particular algorithm that this work developed to implement VS 
on top of EVS. 

4.3.1 VS Algorithm Design Philosophy 
The main thrust of this work was to develop an algorithm that maintained the safety and 
liveness properties provided by the EVS system below it and with minimal additional 
work added the additional safety properties of the VS model. In effect, the algorithm 
should “interfere” with the operation of the EVS system just enough to implement the 
extra safety semantics of the VS model. If done correctly, the liveness properties of the 
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underlying EVS layer will be implicitly maintained and many of the EVS system’s safety 
properties will “bleed through” as well. This leveraging of GCS properties is the reason 
why the algorithms implemented in this manner can be so much simpler than “native” 
algorithms. 
 
First and foremost, the VS algorithm will exploit the EVS membership service as much 
as possible. It does this by using the views provided by the EVS system as potential VS 
views to be installed. This heuristic will almost implicitly maintain the safety properties 
of the underlying membership service. Furthermore, if new VS views are only installed in 
response to EVS views being installed, and the algorithm eventually installs the most 
recent EVS view, then the liveness properties of the EVS membership service will 
implicitly be maintained as well. 
 
Second, the VS algorithm will implicitly maintain many of the safety properties of the 
underlying multicast service by only performing minimal reordering of messages before 
they are either dropped or delivered. Obviously, the basic multicast safety properties such 
as Property (No Duplication) and Property (Delivery Integrity) are easily maintained.  

4.3.2 Algorithm Description 
The VS algorithm’s presentation is broken into two sections. The first discusses the 
membership portion of the algorithm that installs VS views. The second discusses the 
message delivery portion of the algorithm. 

4.3.2.1 VS View Installation 
The core concept of the VS membership algorithm this work developed is quite simple. 
When a client process attempts to install a VS view, it attempts to install a view that 
matches its most recent EVS view. It does this by first multicasting a FIFO “flush 
message” marked with the view identifier of that EVS view. The client then tries to 
collect a flush message marked with that view identifier from each of the members of that 
EVS view. If it achieves this, then it installs that VS view. If before the client can collect 
all of the necessary messages another EVS view is installed at the client, then it abandons 
the previous view and tries to install a new VS view that matches its new most recent 
EVS view. 
 
A client tries to install a new VS view only in two cases: (1) upon startup/recovery and 
(2) when an EVS view is received while the process is in an established VS view. In this 
second case, the algorithm notifies the client that the underlying connectivity has changed 
by generating a flush request event. When the client is ready, it responds with a flush 
event that authorizes the client’s algorithm to try and actively install the next VS view. 
The algorithm then generates its first flush message and proceeds as above described. 
While actively trying to install the next VS view a client is blocked from sending 
messages. 
 
It is easy to see how this heuristic for installing VS views maintains both the safety and 
liveness properties of the EVS membership service. The safety properties are almost 
trivially maintained, because the VS algorithm uses EVS views as VS views in the order 
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that they are installed at clients. The membership liveness property is maintained, 
because if an EVS view is installed that is the stable EVS view, then once all of the 
member processes flush5 their previous VS views those flush messages will be delivered 
to all of the other members. Therefore, all of the members of the stable EVS view will 
install the VS view that matches the stable EVS view. Also, because the stable EVS view 
is the last view ever installed by the EVS system, this algorithm will not attempt to install 
any further VS views. 

4.3.2.2 VS Message Delivery 
The core concept of the VS multicast algorithm this work developed is also fairly simple. 
All VS messages are marked with the VS view in which they are sent. A process also 
maintains a set of processes, called Vs_Survivors, from its most recent VS view, if any, 
that have been in the transitional set of every EVS view installed since the process’ most 
recent VS view. The name of this set is apt because it is the set of processes that the EVS 
system hypothesizes have been virtually synchronous with this process since it installed 
its last VS view. 
 
If a process receives a message from the EVS system that is marked with the view 
identifier of its most recent EVS view and that identifier is different than its most recent 
VS view’s identifier, then it buffers the message. If another EVS view is installed at the 
process before it receives all the necessary flush messages to install its most recent EVS 
view, then any buffered messages are dropped. When a process installs a VS view it then 
delivers any messages that it currently has buffered. If a process receives a message 
marked with its current VS view identifier, then if the sender is in the process’ 
Vs_Survivors set, it immediately delivers the message. In all other cases, all messages are 
dropped. 
 
It is more difficult to understand the reasoning behind these message delivery heuristics 
than the membership installation heuristics. The buffering of messages is fairly easy to 
understand. If a process’ most recent EVS view is different than its most recent VS view, 
then that process’ next VS view could be its current EVS view. Therefore, if it receives 
messages that were sent in that VS view it should buffer them, in case this process 
installs that VS view. If it does not install that VS view, then by EVS Property (Local 
Monotonicity), the algorithm will never install that view and can safely drop those 
messages.  
 
The buffering the algorithm performs does not reorder messages from the point of view 
of the VS system. The only way the algorithm could violate the ordering properties 
provided by the EVS system is if it buffered a message m and then later received and 
delivered a message m’ that was ordered after m, before it delivered m. A process never 
delivers any message that does not match its VS or EVS view identifier upon receipt and 
it buffers every message marked with its EVS view identifier when that identifier is 
different than its VS identifier. If after buffering some messages a process receives a 
                                                 
5 Note, that if a member never authorizes closing its previous VS view, then it is completely legal (i.e. – not 
a violation of the liveness property) to never install the stable VS view. Not installing the stable VS view is 
due to a client willfully blocking the system and is not due to any deficiency of the algorithm. 
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message m for its current VS view, then it is legal to deliver m immediately. This is 
because, as is shown below in the proof of Lemma 5.7 (VS Message Ordering), a process 
only buffers non-Causal messages. Therefore, if the process immediately delivers m in its 
current VS view, then the only ordering violation that could be violated is the FIFO 
message ordering constraint. But this violation cannot occur because in order for the 
sender to have installed a new VS view (it did because the message in the queue was 
marked with the process’ current EVS view identifier) it must have sent a FIFO flush 
message for the view it installed after sending m. Therefore, because the process just 
received m, due to the FIFO ordering requirement, no FIFO message sent after m could 
have been received by this process yet. Any messages from the sender that this process 
already buffered must be Reliable messages it sent in a following VS view. Therefore, 
delivering m immediately while messages have been buffered cannot violate the FIFO 
ordering property. Therefore, the algorithm maintains all of the ordering properties given 
by the underlying EVS system. 
  
The only other way the algorithm delivers messages is if a message is marked with the 
process’ most recent VS view identifier and the message’s sender is in its Vs_Survivors 
set. The reasoning behind this heuristic is that the EVS message reliability (no-holes) 
safety properties span multiple EVS views for messages it delivers from processes that 
have been in the transitional sets of each of those EVS views. For senders not in all of 
those transitional sets, the reliability guarantees may or may not hold across all of those 
EVS views. Therefore, it is only correct to deliver messages in a VS view if the sender 
has been in the transitional sets of all the EVS views that followed the EVS view 
corresponding to their current VS view. If this policy was not followed then this 
algorithm could introduce a causal hole in the stream of messages in the VS view at this 
process. 
 
In all other cases, messages are dropped as they are received from the EVS system. These 
cases are the result of: (1) messages sent in VS views that the process will never install 
and (2) messages sent in VS views that the process previously installed, but has since 
installed another VS view. By Property (Sane View Delivery) the identifier of the EVS 
delivery view of a message is greater than or equal to the identifier of the EVS view in 
which the message was sent. Therefore, because the identifier on the message does not 
match the process’ current EVS view identifier it must be less than the process’ current 
EVS view identifier.  
 
If the message was sent in a VS view that the process had not previously installed, then 
the process will never install that VS view. This is because the algorithm always tries to 
install a VS view matching its most recent EVS view and the message’s VS view 
identifier is less than the process’ most recent EVS view identifier.  
 
If the message was sent in a VS view that the process had previously installed, then the 
receiver must have partitioned away from the sender at some point and installed a VS 
view without the sender in the membership set. This is because, if the receiver had not 
partitioned away at some point, the sender would have been in the membership set of 
every following EVS view installed at the receiver up until it received the message in 
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question. Therefore, in order to install another VS view, the recipient would be required 
to receive a flush message from the sender. Recall, that once a process generates a flush 
message in a VS view it can no longer send any messages. Therefore, because flush 
messages are FIFO messages and the recipient installed a following VS view, the sender 
must not have been in a membership set of at least one of the VS views installed at the 
recipient. 
  
These heuristics for message delivery also maintain the necessary message delivery 
liveness properties. Recall, that if a stable underlying view is reached, then all the 
members of that view must install the same VS view and all the members of that view 
must deliver any messages sent in that view. It was shown above that once a stable EVS 
view is reached and all the members of that view close their previous VS view, that all 
the members of that EVS view would install the corresponding VS view. When they 
install that view, each member’s Vs_Survivors set contains all of the members of that 
view. Therefore, since there are no more following EVS views, Vs_Survivors will always 
contain the sender of any message delivered in that EVS view, by EVS Delivery 
Integrity. Therefore, the algorithm will always deliver messages sent in the stable VS 
view and the multicast liveness property is implicitly maintained. If any messages are 
sent in the stable VS view that are received in the corresponding EVS view before a 
process installs the stable VS view, then the receiving process will buffer those messages 
and deliver them upon installing the stable VS view. 

4.3.2.3 VS Transitional Sets and Signals 
The only other non-trivial properties that the algorithm must maintain are the safety 
properties of the transitional sets and signals.  
 
When the EVS system generates a transitional signal in an EVS view, the algorithm 
generates a transitional signal if it subsequently delivers an agreed message or an EVS 
view event occurs in its VS view. The algorithm also generates a transitional signal in a 
VS view if an EVS view event removes a member from its Vs_Survivors set. The 
algorithm generates at most one transitional signal per VS view. By delivering the 
transitional signal immediately before an Agreed message is delivered or when an EVS 
view event occurs, processes that are virtually synchronous through VS views will 
deliver the transitional signal at the same point in the stream of agreed messages in that 
VS view. 
 
The transitional set of a VS view is simply the process’ Vs_Survivors set when it installs 
a VS view. This is because the members of a process’ Vs_Survivors set were virtually 
synchronous to it through all the EVS views since the last one corresponding to their 
previous VS view up to the EVS view corresponding to the process’ following VS view. 
If a process receives a flush message from a process q that is one of the members of its 
Vs_Survivors set, then it received and delivered all the messages that q sent in their 
previous view. As is proved later, such members will have the same Vs_Survivors sets 
and if they both install the same following VS view they both delivered the same set of 
messages in their previous VS view. 
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4.4 Algorithm Evaluation 
The previous subsection laid out the VS algorithm this work developed and informally 
showed how it maintains the important safety and liveness properties of the VS model. 
This section attempts to evaluate the good and bad attributes of this algorithm, in terms of 
its algorithmic overhead and the quality of the semantics that it offers. 

4.4.1 VS View Installation Heuristics 
This algorithm is very responsive to its underlying layer’s membership service. Once the 
lower layer installs a view, the VS algorithm immediately abandons the VS view it was 
trying to install and attempts to install a VS view matching the current client 
connectivity. In fact, the only time the algorithm installs an obsolete view is when it 
installs a VS view after it receives an EVS transitional signal in its current EVS view. In 
this case, the transitional signal indicates that a new view is about to be installed, so the 
algorithm has knowledge of an impending view change. However, the algorithm is 
designed to work with FIFO flush messages and transitional signals have no guaranteed 
ordering with respect to these messages. Therefore, the algorithm cannot use transitional 
signals to decide on whether or not to install VS views. If this algorithm did, then several 
processes might install a VS view while others might not, which is a very undesirable 
situation. Regardless, this situation occurs very rarely in practice. 
  
This membership algorithm’s performance is competitive with other client-based VS 
algorithm implementations. Any VS algorithm effectively has to conduct an n-to-n round 
of communication among the potential members to agree on views to install and to close 
previous views. This n-to-n round of communication can be done hierarchically to reduce 
the number of messages generated [ACDV97], but each process must authorize installing 
the view and each process must receive some form of agreement from each of the other 
potential members of the view. The algorithm described here uses inexpensive FIFO 
messages for its one round of agreement. In order to “flush out” messages sent in the 
previous view and to close those views, any VS algorithm will effectively use at least 
FIFO messages for its round(s) of communication. 
 
The additional overhead that this algorithm pays beyond what most other algorithms 
would pay is the time it takes for the EVS system to install its views. As was discussed 
previously, lightweight client membership changes can be implemented in a non-
blocking manner using a single Agreed message sent amongst the daemons. Therefore, 
this algorithm pays the additional cost of first waiting for a sent message to become 
stable amongst the daemon processes, while other implementations could begin working 
on installing a new view immediately. This additional cost effectively translates to 
receiving an acknowledgement of receipt of the message from each of the daemons in a 
configuration. This additional latency depends on the number of daemons and the 
configuration of the network between the daemons.  
 
In the case of a heavyweight daemon membership changes, this algorithm performs 
poorly compared to other implementations of VS algorithms. In this case, this algorithm 
must wait for the heavyweight daemon membership to be established before it tries to 
install a corresponding VS view. A heavyweight membership algorithm usually consists 
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of at least one, if not multiple, n-to-n round(s) of communication between the daemons. 
The additional overhead that the algorithm pays in this case is the time for those rounds 
of communication to complete. This additional latency depends on the number of 
daemons, the configuration and stability of the network and the complexity of the 
synchronization algorithm that the daemons use to establish and close their heavyweight 
views. 

4.4.2 VS Message Delivery Heuristics 
The algorithm effectively delivers messages as it receives them from the EVS system. 
Therefore, it directly inherits the high-performance characteristics of the client-daemon 
EVS model for message delivery. In fact, the only additional latency that the algorithm 
adds to message delivery is for when it buffers non-Causal messages that were received 
too early to deliver. Of course, any VS algorithm would have to do this kind of buffering 
– almost any algorithm would have to buffer or drop a message it received for a potential 
VS view it had not yet installed. The only costs that this algorithm pays that others would 
not pay is that the EVS system maintains its ordering and reliability guarantees for 
messages that may not be pertinent to the VS ordering and reliability guarantees. For 
example, when two network components merge together, processes in multiple VS views 
are all potentially sending messages. These messages sent in different views are not really 
dependent upon one another from the VS system’s point of view, but the EVS system 
will still maintain its safety properties and will introduce causal dependencies based on 
send and deliver events in the new EVS view. Therefore, the EVS layer may generate 
some unneeded overhead as it seeks to maintain safety properties that are unnecessary 
from the VS system’s point of view. 
 
This algorithm performs no message recovery and drops messages from live and 
connected components. Normally, these attributes would be considered fatal flaws in a 
group communication algorithm. However, the underlying EVS system already performs 
powerful message recovery for the VS algorithm. The expense of adding additional 
message recovery on top of the EVS’s might, in fact, not be worth the potential benefit. 
Additionally, any VS algorithm will occasionally need to drop messages from connected 
clients, even when those messages are sent in VS views that this process previously 
installed. This observation is best-illustrated by example: 
 

Client processes p and q have both installed the same VS view id, of which they are the 
only members. An underlying view change partitions p and q away from each other into 
lower level singleton views. The client’s VS algorithms dutifully deliver notification that 
the underlying client connectivity has changed to p and q. Process p flushes its view and 
installs a new singleton VS view id’, while process q ignores its signal and continues 
sending messages in id. Another underlying view change then merges p and q back 
together, while q continues sending messages in id. The VS algorithm cannot deliver any 
of q’s new messages to p because they were sent in id and p has already installed a later 
view id’. 

 
Client processes p and q have both installed the same VS view id, of which they are the 
only members. An underlying view change partitions p and q away from each other into 
singleton views. The client’s VS algorithms dutifully deliver notification that the 
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underlying client connectivity has changed to p and q. Neither process flushes its current 
VS view and continues to send messages. Another underlying view change merges p and 
q back together. If the VS algorithm buffered the messages that p and q sent while they 
were partitioned, then a complex algorithm could recover and deliver some of the Causal 
and weaker service messages that they sent. 
 

This second example is a little overly optimistic about message recovery. A process can 
remain in a VS view for an arbitrarily long period of time, although this does not usually 
happen. Therefore, a process cannot buffer all the messages sent by the process in a view 
unless, theoretically, it has infinite memory. Furthermore, if any Agreed messages were 
sent and delivered by the processes while they were partitioned, the other process will be 
unable to deliver these messages due to the Agreed ordering requirement. After the first 
such message the other process will not be able to recover even subsequently sent FIFO 
messages. This example demonstrates that message recovery and re-synchronization is 
only really useful to capture and correct short-term network instabilities. In that case, the 
message recovery that the EVS system performs should be just as effective as a VS 
algorithm’s even though it will only attempt to recover messages over a potentially 
shorter “message horizon.” 
  
By making this VS algorithm attempt to perform message recovery the clean separation 
that previously existed between the VS algorithm and the EVS system would be ruined. 
The VS algorithm would either have to run its own message ordering and recovery 
algorithms on top of the underlying system’s, or understand and manipulate the 
underlying layer’s message delivery subsystem. Either of these options would completely 
destroy the simplicity of the algorithm to achieve very questionable benefit. 
 
One last interesting point about this algorithm’s behavior – because of the heuristics it 
uses, the usual test of whether or not two processes were virtually synchronous in a view 
cannot be used. In almost every GCS specification, two processes were virtually 
synchronous in a view id if they both installed the same new view in id. To maintain this 
property, an algorithm has to perform message recovery and/or potentially install 
obsolete views. This point is demonstrated by the second example above. In that 
example, after the two processes remerged if they attempted to install a new VS view and 
there were messages delivered in their previous view that the other could not deliver, then 
the processes would have to install an obsolete view. This is because, otherwise, they 
would install the same new view in the same previous view. If they did that, Property 
(Virtual Synchrony) would require them to deliver the same set of messages in the former 
view. But as was just shown, this is not possible if they deliver certain types of messages 
while partitioned from one another. Of course, using this same example, if the processes 
did not deliver Agreed messages while partitioned, then they could recover the messages 
that they delivered while partitioned. In this case, the processes could either potentially 
continue in their previous view as if nothing had happened, or they could install a new 
view. However, as pointed out above, this solution theoretically requires a process to 
potentially buffer all of the messages that it sends in a view. 
 
Instead of dealing with these problems, this work changed the test for virtual synchrony 
to not only require the processes to install the same view in their same previous view, but 
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to also require those processes to be in each others transitional sets. If they are not in each 
other’s transitional sets, then the fact that they installed the same view in their same 
previous view does not imply that they were virtually synchronous in their previous view. 
This model is actually no weaker than the original specification of virtual synchrony. It 
does allow the GCS to use more trivial solutions, but a good implementation can 
maintain the same strength of semantics as the original virtual synchrony property. The 
only other difference this change makes is that applications that depend on using view 
identifiers to determine if two processes were virtually synchronous or not in a view must 
now also remember their transitional sets for those views. Changing the model this way 
allows processes not to install obsolete views while also not requiring them to do 
message recovery. 
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5 Single Round VS Algorithm Pseudo-code 
 
This section presents an event driven pseudo-code algorithm for implementing a VS 
system on top of an EVS system from the viewpoint of a single client or GCS process. 
The EVS system generates events that the algorithm intercepts and handles. This 
algorithm then operates and generates client visible VS events. In effect, the trace of 
events at a GCS automaton has both EVS and VS events intermingled, but a client of the 
system will only see the VS events. 
 
In this presentation, events generated by the EVS system have evs_ as a prefix and VS 
events generated by the algorithm have vs_ as a prefix. The two events, request_flush and 
request_send are generated by the client process and do not directly generate VS events 
as the corresponding events can only be generated legally under certain preconditions. 
 
Process_Variables :=  

{ Vs_id | Vs_id ∈ (VID ∪ {⊥}) } ∪  
{ Vs_Survivors | Vs_Survivors ∈ 2p } ∪  
{ Vs_Flushers | Vs_Flushers ∈ 2P } ∪ 
{ Vs_delivd_trans_sig | Vs_delivd_trans_sig ∈ B } ∪  
{ Vs_delivd_flush_req | Vs_delivd_flush_req ∈ B } ∪ 
{ Vs_sent_flush | Vs_sent_flush ∈ B } ∪ 
{ Evs_id | Evs_id ∈ (VID ∪ {⊥}) } ∪  
{ Evs_Members | Evs_Members ∈ 2P } ∪  
{ Evs_delivd_trans_sig | Evs_delivd_trans_sig ∈ B } ∪ 
{ Delay_Queue } 

 
case Event is 
 
recover: 

Vs_id := ⊥   // identifier of most recent VS view 
Vs_Survivors := ∅  // tracking set for VS transitional set and msg delivery 
Vs_Flushers := ∅  // members that have flushed EVS view Evs_id 
Vs_delivd_trans_sig := true // has a transitional signal been delivered in the current VS view? 
Vs_delivd_flush_req := true // has a flush request been delivered in the current VS view? 
Vs_sent_flush := true  // has a flush message been sent in the current VS view? 
Evs_id := ⊥   // identifier of most recent EVS view 
Evs_Members := ∅  // membership set of most recent EVS view 
Evs_delivd_trans_sig := false // has a transitional signal been delivered in the current EVS view? 
Delay_Queue := new Queue() // a FIFO message queue 

 
evs_trans_sig: 

Evs_delivd_trans_sig := true 
 

request_flush: 
if (Vs_delivd_flush_req ∧ ¬Vs_sent_flush) 
 // distinguishes flush msgs from all other msgs and marks with the current EVS view id 

vs_flush := evs_send(new flush_msg(Evs_id)) 
Vs_sent_flush := true 

else 
illegal, generate user error 
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request_send(m): 
if (¬Vs_sent_flush) 

// marks every sent message with the id of the VS sending view  
vs_send(m) := evs_send(new msg(m, Vs_id))               

else 
illegal, generate client error 
 

evs_view(id, D, T): 
if (¬Vs_delivd_flush_req) 

vs_flush_req 
Vs_delivd_flush_req := true 
 

else if (Vs_sent_flush) 
// distinguishes flush msgs from all other msgs and marks it with the current EVS view id 
evs_send(new flush_msg(id))  

 
if (¬Vs_delivd_trans_sig ∧ (Evs_delivd_trans_sig ∨ (Vs_Survivors ∩ T ⊂ Vs_Survivors))) 

vs_trans_sig 
Vs_delivd_trans_sig := true 

 
Vs_Survivors := Vs_Survivors ∩ T 
Vs_Flushers := ∅ 
Evs_id := id 
Evs_Members := D 
Evs_delivd_trans_sig := false 
Delay_Queue.clear()   // drops any messages that were pushed onto Delay_Queue 
 

evs_deliver(m): 
if (is_flush_msg(m)) 

if (flush_memb_id(m) = Evs_id) 
Vs_Flushers := Vs_Flushers ∪ m.sender 
if (Vs_Flushers = Evs_Members) 

vs_view(Evs_id, Evs_Members, Vs_Survivors) 
Vs_id := Evs_id 
Vs_Survivors := Evs_Members 
Vs_Flushers := ∅ 
Vs_delivd_trans_sig := false 
Vs_delivd_flush_req := false 
Vs_sent_flush := false 
while (¬Delay_Queue.empty()) 

vs_deliver(Delay_Queue.pop_head()) 
 

else if (msg_vs_id(m) = Vs_id)   // gets the id of the VS view in which m was sent 
if (m.sender ∈ Vs_Survivors)  

if (agreed(m) ∧ ¬Vs_delivd_trans_sig ∧ Evs_delivd_trans_sig) 
vs_trans_sig 
Vs_delivd_trans_sig := true 

vs_deliver(reg_mess(m))  // reg_mess removes the marked sending VS view id 
 

else if (group_id(m) = Evs_id) 
Delay_Queue.push_tail(reg_mess(m)) // reg_mess removes the marked sending VS view id 

 
// if m is not vs_delivered or pushed onto Delay_Queue then it is dropped 
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6 Proof of Correctness 
 
This section formally proves that the previously presented algorithm maintains all of the 
safety properties of the VS model. Section 3 informally discussed how the algorithm 
maintains the liveness properties of the VS model. 
 
6.1 Definition (Variable Function) A variable function is a function with the name of 

a process variable that takes a process and an event as parameters and returns the 
value of the process variable exactly when that event occurred at that process. If 
the variable is undefined at that point in the trace for that process, then the 
variable function is undefined as well. Formally: 
var(ti, p) := (value of var at p at ti)      if pid(ti) = p ∧ ti ≠ crash(p) ∧ tj ≠ recover(p) 

undefined                        otherwise 
 
6.1 Lemma (Evs_id) Evs_id at a process is equal to the view identifier of the most 

recent evs_view event at that process, or ⊥ if no evs_view event has occurred at 
that process since its most recent recover event. Formally: 
pid(tl) = p ∧ tl ≠ crash(p) ∧ tl ≠ recover(p) ∧  
(∃a b∃id∃D∃T : a < b < l ∧ ta = recover(p) ∧ tb = evs_view(p, id, D, T) ⇔ Evs_id(tl, p) = ⊥) ∧ 
(∃i j∃id’∃D’∃T’ : i < j < l ∧ ti = evs_view(p, id’, D’, T’) ∧  
 (tj = recover(p) ∨ ∃id’’∃D’’∃T’’ : tj = evs_view(p, id’’, D’’, T’’)) ⇔ Evs_id(tl, p) = id’ ∧ id’ ≠ ⊥) 
 
(Evs_id(tl, p) = ⊥ ⇔ Evs_Members(tl, p) = ∅) ∧ 
(Evs_id(tl, p) = id ∧ id ≠ ⊥ ∧ Evs_Members(tl, p) = D ⇒ ∃a∃T : a < l ∧ ta = evs_view(p, id, D, T)) 

 
Proof: From the algorithm, after a recover event occurs Evs_id and Evs_Members are 
immediately set, respectively, to ⊥ and ∅. After an evs_view event occurs, Evs_id and 
Evs_Members are immediately set, respectively, to the identifier and membership set of 
that EVS view. There are no other cases under which either Evs_id or Evs_Members is 
modified. By the definition of the evs_view action, the identifier of an EVS view is never 
⊥ and the membership set of an evs_view event is never ∅, due to EVS Property 2.2 
(Self-Inclusion). 
 
6.2 Lemma (VS Views) If a process installs a VS view, then the identifier and 

membership set of that view are, respectively, the view identifier and membership 
set of the most recent evs_view event at that process. Formally: 
tc = vs_view(p, id, D, T) ⇒ ∃a b∃T’ : a < b < c ∧ ta = evs_view(p, id, D, T’)  ∧  
(∃id’∃D’∃T’’ : tb = evs_view(p, id’, D’, T’’)) 

 
Proof: By the algorithm, vs_view events only occur immediately in response to an 
evs_deliver event. Furthermore, the view identifier and membership set of a VS view are, 
respectively, Evs_id and Evs_Members at the time of the instigating evs_deliver event. 
By EVS Property 2.1 (Initial View Event) every evs_deliver event at a process occurs 
within some EVS view at that process. Therefore, by Lemma 5.1 (Evs_id) when a 
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vs_view event occurs at a process Evs_id and Evs_Members are, respectively, equal to 
the most recent evs_view’s identifier and membership set at that process.   
 
6.3 Lemma (Vs_id) Vs_id is equal to the view identifier of the most recent vs_view 

event at the process or ⊥ if no vs_view event has occurred at the process since the 
most recent recover event. Formally: 
pid(tl) = p ∧ tl ≠ crash(p) ∧ tl ≠ recover(p) ∧  
(∃a b∃id∃D∃T : a < b < l ∧ ta = recover(p) ∧ tb = vs_view(p, id, D, T) ⇔ Vs_id(tl, p) = ⊥) ∧ 
(∃i j∃id’∃D’∃T’ : i < j < l ∧ ti = vs_view(p, id’, D’, T’) ∧  
 (tj = recover(p) ∨ ∃id’’∃D’’∃T’’ : tj = vs_view(p, id’’, D’’, T’’)) ⇔ Vs_id(tl, p) = id ∧ id ≠ ⊥) 

 
Proof: From the algorithm, after a recover event occurs, Vs_id is immediately set to ⊥. 
After a vs_view event occurs, Vs_id is immediately set to the identifier of that VS view. 
There are no other cases under which Vs_id is modified. Vs_view events only occur in 
response to evs_deliver events. Therefore, by EVS Property 2.1 (Initial View Event) and 
Lemma 5.2 (VS Views) the identifier for a VS view is the most recently installed EVS 
view identifier, which by the definition of the evs_view event is never ⊥. 
 
6.4 Lemma (id-vid) Evs_id and Vs_id, where defined, are respectively equivalent to 

evs_vid and vs_vid. Formally: 
pid(tl) = p ∧ tl ≠ crash(p) ∧ tl ≠ recover(p) ⇒ evs_vid(tl, p) = Evs_id(tl, p) ∧  
vs_vid(tl, p) = Vs_id(tl, p) 

 
Proof: Lemma 5.1 (Evs_id) proved that Evs_id is ⊥ after a recover event and before the 
first following evs_view event. That lemma also proved that Evs_id equals the identifier 
of the most recent evs_view event at the process. Therefore, by the definition of evs_vid, 
Evs_id, where it is defined, is equivalent to evs_vid. A similar argument is made for 
Vs_id’s equivalence to vs_vid. 
 
6.5 Lemma (Vs_Survivors)  

1. A process’ Vs_Survivors set at a particular event is ∅, if and only if a vs_view 
event has not occurred at the process since the most recent recover event at that 
process. Formally:  
Vs_Survivors(tc, p) = ∅ ⇔ pid(tc) = p ∧ tc ≠ crash(p) ∧ tc ≠ recover(p) ∧ 
∃a b∃id∃D∃T : a < b < c ∧ ta = recover(p) ∧ tb = vs_view(p, id, D, T) 

2. A process’ Vs_Survivors set at a particular event is the intersection of the most 
recent vs_view event’s membership set with the transitional sets of the evs_view 
events that occurred at this process since that most recent vs_view event up to the 
event in question. Formally: 

Vs_Survivors(td, p) = S ∧ p ∈ S ⇔ pid(td) = p ∧ td ≠ crash(p) ∧ td ≠ recover(p) ∧ 
∃a b∃id∃D∃T : a < b < d ∧ ta = vs_view(p, id, D, T) ∧  
(tb = recover(p) ∨ ∃id’∃D’∃T’ : tb = vs_view(p, id’, D’, T’) ∧ 
S = D ∩ ∀T’’ : ∀c∀id’’∀D’’ : a < c < d ∧ tc = evs_view(p, id’’, D’’, T’’) 
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Proof: Immediately after a recover event at a process’, its Vs_Survivors set is set to the 
empty set. Thereafter, Vs_Survivors is only modified immediately after vs_view and 
evs_view events. In the case of a vs_view event, Vs_Survivors is set to the membership 
set of that VS view. In the case of an evs_view event, Vs_Survivors is set to the 
intersection of itself with the transitional set of the EVS view. This proves that before the 
first vs_view event following a recover event at a process, Vs_Survivors is ∅ at that 
process. 
 
By EVS Property 2.2 (Self-Inclusion) a process is always a member of any EVS view 
event that it installs. By EVS Property 2.17 (Transitional Set 1,3) a process is always in 
the transitional set of any EVS view that it installs, except for the first following a 
recover event. Lemma 5.2 (VS Views), EVS Property 2.17 (Transitional Set) and the 
calculation of the Vs_Survivors set proves that after the first vs_view event following the 
most recent recover event at a process, that a process is always in its own Vs_Survivors 
set. Therefore, after installing the first such VS view, Vs_Survivors is not the empty set, 
which completes the proof of the first property. By the direct construction of the 
algorithm, the Vs_Survivors set is equal to the most recent VS view’s membership 
intersected with each subsequent evs_view event’s transitional set occurring at that 
process until the next vs_view event at the process. 
 
6.6 Lemma (Flush Messages) A process generates at most one flush message marked 

with a particular view identifier. Formally: 
tb = evs_send(p, m) ∧ is_flush_msg(m) ∧ flush_msg_id(m) = id ⇒ 
∃a∃D∃T c∃m’ : a < b ∧ ta = evs_view(p, id, D, T) ∧ 
c ≠ b ∧ tc = evs_send(p, m’) ∧ is_flush_msg(m’) ∧ flush_msg_id(m’) = id 

 
Proof: Flush messages are only sent in two cases: (1) in response to a request_flush event 
when Vs_delivd_flush_req is true and Vs_sent_flush is false and (2) in response to an 
evs_view event when Vs_delivd_flush_req is true and Vs_sent_flush is true. 
Vs_delivd_flush_req and Vs_sent_flush are only set to false after a vs_view event occurs 
at the process. 
  
Immediately after a recover event both Vs_delivd_flush_req and Vs_sent_flush are set to 
true. Therefore, until the next vs_view at this process, flush messages are generated only 
by case (2) and each flush message is marked with the view identifier of the instigating 
evs_view event. Immediately after a vs_view event neither case can be triggered. 
Vs_delivd_flush_req is only6 set to true in response to the first evs_view event following 
a vs_view event at the process. Vs_sent_flush is only7 set to true in response to a 
request_flush event when Vs_delivd_flush_req is true and Vs_sent_flush is false, 
therefore, in this state, only case (1) can generate a flush message. If case (1) is triggered, 
the flush message is marked with Evs_id, which by Lemma 5.1 (Evs_id) is the view 
identifier of the most recent EVS view, a vs_flush event is generated and Vs_sent_flush 
is immediately set to true. After that, again, only case (2) can generate flush messages in 
response to subsequent evs_view events until after the next vs_view event. 
                                                 
6 Ignoring Vs_delivd_flush_req’s initialization to true upon recovery. 
7 Ignoring Vs_sent_flush’s initialization to true upon recovery. 
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Case (1) only generates one flush message (and a corresponding vs_flush event) in a VS 
view that is marked with the view identifier of the most recent EVS view. Case (2) only 
generates one flush message per triggering evs_view event, marked with the view 
identifier of that EVS view, in a VS view after case (1) has already been triggered. 
Therefore, by EVS Property 2.4 (Local Monotonicity) these two cases together produce 
at most one flush message marked with a particular view identifier.  
 
6.1 Theorem (VS Initial View Event) Every vs_flush, vs_flush_req, vs_send, 

vs_deliver, and vs_trans_sig event occurs within some VS view. Formally: 
ta = vs_flush(p) ∨ ta = vs_flush_req(p) ∨ ta = vs_send(p, m) ∨  
ta = vs_deliver(p, m) ∨ ta = vs_trans_sig(p) ⇒ vs_vid(ta, p) ≠ ⊥ 

 
Proof: After a recover event Vs_sent_flush, Vs_delivd_flush_req and 
Vs_delivd_trans_sig are immediately set to true. Vs_sent_flush, Vs_delivd_flush_req, 
and Vs_delivd_trans_sig are set to false only immediately after a vs_view event. 
 
By the algorithm, Vs_sent_flush is false whenever a vs_flush event occurs, 
Vs_delivd_flush_req is false whenever a vs_flush_req event occurs, Vs_sent_flush is 
false whenever a vs_send event occurs, and Vs_delivd_trans_sig is false whenever a 
vs_trans_sig event occurs. Therefore, no vs_flush, vs_flush_req, vs_send and 
vs_trans_sig events can occur after a recover event until after a following vs_view event 
occurs, and therefore due to Lemma 5.2 (VS Views) and Lemma 5.4 (id-vid) the vs_vid 
of those events is not ⊥. 
 
By the algorithm, messages are vs_delivered in only two cases: the message is not a flush 
message and (1) the message is marked with the same identifier as the receiver’s Vs_id 
and the sender is in the receiver’s Vs_Survivors set and (2) the message is not marked 
with the same identifier as the receiver’s Vs_id, but it is marked with the receiver’s 
Evs_id and the receiver installs the corresponding VS view. 
 
Due to Lemma 5.2 (VS Views) and Lemma 5.4 (id-vid) the vs_vid of delivery events due 
to (2) is not ⊥. Above, it was proved that no vs_send events occur at a process before the 
first vs_view event following a recover event. By Lemma 5.2 (VS Views) this means 
that no regular message is ever marked with VS view identifier ⊥. Therefore, by Lemma 
5.3 (Vs_id) no regular messages can be delivered by a process before it installs its first 
VS view following a recover event because its Vs_id is ⊥ during that time. 
 
6.2 Theorem (VS Self-Inclusion) If a process p installs a view, then p is a member of 

the membership set. Formally: 
ta = vs_view(p, id, D, T) ⇒ p ∈ D 

 
Proof: EVS Property 2.2 (Self-Inclusion) and Lemma 5.2 (VS Views) prove this theorem. 
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6.3 Theorem (VS Membership Agreement) If a process p installs a view with 
identifier id and a process q installs a view with the same identifier, then the 
membership sets of the views are identical. Formally: 
ta = vs_view(p, id, D, T) ∧ ti = vs_view(q, id, D’, T’) ⇒ D = D’ 

 
Proof: EVS Property 2.3 (Membership Agreement) and Lemma 5.2 (VS Views) prove 
this theorem. 
 
6.4 Theorem (VS Local Monotonicity) If a process p installs a view with identifier id’ 

after installing a VS view with identifier id, then id’ is greater than id. Formally: 
ta = vs_view(p, id, D, T) ∧ tb = vs_view(p, id’, D’, T’) ∧ a < b ⇒ id < id’ 

 
Proof:  EVS Property 2.4 (Local Monotonicity) and Lemma 5.2 (VS Views) together 
imply: ta = vs_view(p, id, D, T) ∧ tb = vs_view(p, id’, D’, T’) ∧ a < b ⇒ id ≤ id’ 
 
The algorithm never installs two VS views with the same view identifier. Vs_Flushers is 
the set of members from which this process has received flush messages marked with the 
same view identifier as Evs_id. If Vs_Flushers becomes equal to Vs_Members 
immediately after an evs_deliver event, only then is a vs_view event is generated. If this 
process already installed a vs_view event with an identifier id, then this process must 
have received a flush message marked with id from each of the members of id. Lemma 
5.6 (Flush Messages) proved that a process sends at most one flush message marked with 
a particular EVS view identifier. That lemma, together with EVS Property 2.5 (No 
Duplication) and the fact that Vs_Flushers is cleared after every vs_view event proves 
that a process could not possibly collect the necessary flush messages in order to install a 
VS view that it had already previously installed. 
 
6.5 Theorem (VS No Duplication) A process never delivers a message more than 

once. Formally: 
ta = vs_deliver(p, m) ∧ tb = vs_deliver(p, m) ⇒ a = b 

 
Proof: As described above, messages are only vs_delivered in response to evs_deliver 
events. They are either immediately delivered, dropped or they are later popped off of the 
Delay_Queue and delivered immediately after a vs_view event occurs. Messages are only 
pushed at most once onto the Delay_Queue upon receipt and are at most delivered once – 
when messages are delivered off of the Delay_Queue they are popped off until the queue 
is empty.  This argument and EVS Property 2.5 (No Duplication) prove the theorem. 
 
6.6 Theorem (VS Delivery Integrity) A vs_deliver event in a view is the result of a 

preceding vs_send event by a member of that view. Formally: 
ta = vs_view(p, id, D, T) ∧ tb = vs_deliver(p, m) ∧ vs_vid(tb, p) = id ⇒  
∃i∃q : i < a ∧ ti = vs_send(q, m) ∧ q ∈ D 

 
Proof: EVS Property 2.6 (Delivery Integrity) ensures that for every evs_deliver event 
there is a preceding evs_send event of the same message. The algorithm only sends 
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messages through evs_send events without generating an accompanying vs_send event 
when the message being sent is a flush message. However, flush messages are never 
delivered and the algorithm does not generate any vs_deliver events that are not 
originally caused by evs_deliver events, as previously described. This proves that every 
vs_deliver event of a message is preceded by a vs_send event of that message. Theorem 
5.9 (Sending View Delivery) proves that messages are only vs_delivered when a 
message is marked with the same view identifier as the receiver’s current VS view. 
Therefore, if a message is marked in that manner, the sender installed that VS view as 
well and by Theorem 5.2 (VS Self-Inclusion) must be a member of that VS view. 
 
6.7 Theorem (Flush Requests and Flushes) 

1. At most one vs_flush_req event occurs in a view at a process. Formally: 
ta = vs_flush_req(p) ⇒ b : b ≠ a ∧ tb = vs_flush_req(p) ∧ vs_vid(ta, p) = vs_vid(tb, p) 

 
2. At most one vs_flush event occurs in a view at a process. A vs_flush event is 

preceded by a vs_flush_req event in that view at a process. No vs_send events 
follow a vs_flush event in a view at a process. Formally: 
tb = vs_flush(p) ⇒ d : d ≠ b ∧ td = vs_flush(p) ∧ vs_vid(tb, p) = vs_vid(td, p) ∧ 
∃a c∃m : a < b < c ∧ ta = vs_flush_req(p) ∧ tc = vs_send(p, m) ∧  
vs_vid(ta, p) = vs_vid(tb, p) = vs_vid(tc, p) 

 
3. Every vs_view event, except for the first following a recover event, at a process is 

preceded by a vs_flush event. Formally: 
tb = vs_view(p, id, D, T) ⇒  
∃a : a < b ∧ (ta = vs_flush(p) ∨ ta = recover(p)) ∧ vs_vid(ta, p) = vs_vid(tb, p) 

 
Proof: A vs_flush_req event only occurs in response to an evs_view event when 
Vs_delivd_flush_req is false. A vs_flush event only occurs in response to a request_flush 
event when Vs_delivd_flush_req is true and Vs_sent_flush is false. 
 
Vs_delivd_flush_req is only set to false immediately after a vs_view event and is only8 
set to true immediately after the first evs_view event following a vs_view event at a 
process. This proves that only one vs_flush_req event occurs per VS view per process. 
Immediately after a vs_view event a vs_flush event cannot occur because 
Vs_delivd_flush_req is set to false. Vs_delivd_flush_req is only set to true when a 
subsequent evs_view event occurs and Vs_delivd_flush_req is false. In this case, 
immediately before Vs_delivd_flush_req is set to true a vs_flush_req event occurs. This 
proves that any vs_flush event at a process is preceded by a vs_flush_req event at that 
process in that VS view. 
  
As stated above, Vs_sent_flush must be false for a vs_flush event to occur. 
Vs_sent_flush is only set to false immediately after a vs_view event and is only9 set to 
true immediately after a vs_flush event occurs. This proves that only one vs_flush event 
                                                 
8 Ignoring Vs_delivd_flush_req’s initialization to true upon recovery. 
9 Ignoring Vs_sent_flush’s initialization to true upon recovery. 
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occurs per VS view at a process. When Vs_sent_flush is true, request_send events, which 
are the only events that can generate vs_send events, are illegal and generate an error. 
This proves that no vs_send events can occur after a vs_flush event before a following 
vs_view event occurs at that process. 
 
In order to install a VS view a process must collect a flush message marked with the 
identifier of that view from each of the potential members of that view. Due to Lemma 
5.2 (VS Views) and EVS Property 2.2 (Self-Inclusion), this implies that a process itself 
must send (and receive back) a flush message marked appropriately in order to install a 
VS view. The proof of Lemma 5.6 (Flush Messages) demonstrated that in order to 
generate a flush message in a VS view a request_flush event must first occur, which in 
turn generates a vs_flush event. This proof, along with Theorem 5.1 (VS Initial View 
Event) proves that any vs_view event is preceded either by a recover or a vs_flush event 
in the same view as the view in which that vs_view event is delivered. 
 
6.8 Theorem (VS Self-Delivery) If a process p sends a message m, then p delivers m 

unless it crashes. Formally: 

ta = vs_send(p, m) ∧ b : a < b ∧ tb = crash(p) ⇒ ∃c : tc = vs_deliver(p, m) 
 
Proof: A process will immediately vs_deliver its own non-flush message received in an 
evs_deliver event of that message. Messages are only immediately delivered if the 
message is marked with the identifier of the receiver’s current VS view and the sender is 
in the receiver’s Vs_Survivors set. 
  
Theorem 5.1 (VS Initial View Event) proved that no vs_send events can occur at a 
process until after the first vs_view event following a recover event at that process. In the 
proof of Theorem 5.7 (Flush Requests and Flushes) it was shown that a vs_flush event 
must occur at this process before it can install any following vs_view events. 
Furthermore, it was also shown that no vs_send events occur in a VS view after a 
vs_flush event and before the following vs_view event. The flush messages generated by 
the vs_flush event and possibly subsequent evs_deliver events are FIFO messages. 
Therefore, by EVS Property 2.7 (Self-Delivery), EVS Property 2.12 (FIFO Messages) 
and EVS Property 2.9 (Sane View Delivery) before a flush message generated in this VS 
view by this process could be delivered back to this process, all previous messages sent in 
that VS view by this process must be received by it. Therefore, because any message sent 
by the process since its last vs_view event is marked with that view’s identifier and 
because the process can not install another VS view until it receives back its own flush 
message, all messages sent by that process in that VS view will be evs_delivered in the 
process’ current VS view (i.e.- will match its Vs_id). Lemma 5.5 (Vs_Survivors) proved 
that a process is always in its own Vs_Survivors set after installing the first VS view 
following a recover event. Therefore, a process will always immediately deliver its own 
non-flush messages upon receipt. This argument and EVS Property 2.7 (Self-Delivery) 
prove this theorem. 
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6.9 Theorem (Sending View Delivery) Messages are delivered in the view in which 
they are sent. Formally: 
ta = vs_deliver(p, m) ∧ vs_vid(ta, p) = id ⇒ ∃i∃q : ti = vs_send(q, m) ∧ vs_vid(ti, q) = id 

 
Proof: By the algorithm, messages are vs_delivered in only two cases: the message is not 
a flush message and (1) the message is marked with the same identifier as the receiver’s 
Vs_id and the sender is in the receiver’s Vs_Survivors set and (2) the message is not 
marked with the same identifier as the receiver’s Vs_id, but it is marked with the 
receiver’s Evs_id and the receiver installs the corresponding VS view. Messages that 
meet criteria (2) are placed in Delay_Queue and are only delivered after installing the 
corresponding VS view. 
 
From the algorithm, if a message is vs_delivered by matching criteria (1) then it was sent 
in the same VS view because messages are marked with the identifier of the VS view in 
which they are sent. If a message is vs_delivered due to criteria (2) then it was sent in the 
VS view that this process installs immediately before delivering it. This is because the 
message was marked with the same identifier as the receiver’s Evs_id. If the receiver 
installs a VS view without any intervening evs_view events occurring then its new VS 
view identifier is Evs_id by Lemma 5.2 (VS Views). The messages in the Delay_Queue 
are then delivered in the VS view in which they were sent. If an intervening evs_view 
event had occurred, then the algorithm would drop all of the messages in Delay_Queue. 
By Theorem 5.2 (VS Self-Inclusion), this proves that when any message is vs_delivered, 
the recipient’s Vs_id matches the identifier on the message and that the sender is in the 
recipient’s Vs_Survivors set. 
 
6.10 Theorem (VS Transitional Set) 

1. The transitional set for the first view installed at a process following a recover 
event is the empty set. Formally: 
ta = vs_view(p, id, D, T) ∧ vs_vid(ta, p) = ⊥ ⇒ T = ∅ 

 
Proof: The transitional set of a vs_view event at a process is the Vs_Survivors set at that 
process when the last necessary flush message to install that VS view is received. Lemma 
5.5. (Vs_Survivors) proved that Vs_Survivors is the empty set only before the first 
vs_view event at a process following the most recent recover event at that process. 
 

2. If a process p installs a view in a previous view, then the transitional set for the 
new view at p is the union of p with a subset of the intersection between the two 
views’ membership sets. Formally: 
ta = vs_view(p, id, D, T) ∧ tb = vs_view(p, id’, D’, T’) ∧ vs_vid(tb, p) = id ⇒  
p ∈ T’ ∧ T’ ⊆ D ∩ D’ 

 
Proof: From the algorithm, the transitional set of a vs_view at a process is the 
Vs_Survivors set at that process when the last necessary flush message is evs_delivered.  
Lemma 5.5 (Vs_Survivors) proved that a process is always a member of its own 
Vs_Survivors set after installing the first VS view following the most recent recover 
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event. That lemma also proved that at any point, Vs_Survivors is the intersection of the 
most recent VS view’s membership with the transitional sets of the subsequent EVS 
views up until that point (assuming no intervening crashes). Therefore, by Lemma 5.2 
(VS Views) and EVS Property 2.17 (Transitional Set), the transitional set of EVS view 
id’ is a subset of the membership of VS view id’. Furthermore, Vs_Survivors is set to the 
membership set of the most recent previous VS view immediately after that view is 
installed. Therefore by Lemma 5.5 (Vs_Survivors) and EVS Property 2.17 (Transitional 
Set), the transitional set of a VS view at a process is a subset of the intersection between 
that VS view’s membership set and the previous VS view’s membership sets and always 
contains this process. 
 

3. If processes p and q install the same view and q is included in p’s transitional set 
for that view, then p’s previous view was identical to q’s previous view.  
Formally: 
ta = vs_view(p, id’, D, T) ∧ vs_vid(ta, p) = id ∧ ti = vs_view(q, id’, D’, T’) ∧ q ∈ T ⇒  
vs_vid(ti, q) = id 
 

Proof: If q is in p’s transitional set for a VS view, then by Lemma 5.2 (VS Views), 
Lemma 5.5 (Vs_Survivors) this implies that q was in the transitional set of every EVS 
view at p that followed id up to and including EVS view id’. From the assumption, q 
installed VS view id’, which by Lemma 5.2 (VS Views) implies it also installed EVS 
view id’. From EVS Property 2.17 (Transitional Set), because p and q install the same 
EVS view id’ and q is in p’s transitional set, then q installed the same previous EVS view 
and p was in q’s transitional set for id’. Now a reverse iterative argument can be made for 
the chain of EVS views that occurred between the two VS views at p – because both 
processes eventually install the same EVS view and one of the processes has the other in 
its EVS transitional set for that view, then they both installed the same previous EVS 
view. This argument can be repeated back along the chain of EVS views starting with 
EVS view id’ all the way back to EVS view id. 
 
I have shown that both processes installed EVS view id and all subsequent EVS views up 
to and including id’, and from EVS Property 2.17 (Transitional Set 3) that they were in 
each other’s EVS transitional sets throughout that chain of views. From the definition of 
EVS vsynchronous_in, both p and q were vsynchronous_in in EVS view id, which by 
EVS Property 2.10 (Virtual Synchrony) implies that they delivered the same set of 
messages in that view. Delivering a vs_view event is only dependent on receiving a flush 
message from each of the potential members of the next VS view in the corresponding 
EVS view. Therefore, due to the algorithm, EVS Property 2.4 (Local Monotonicity), EVS 
Property 2.9 (Same View Delivery) and EVS Property 2.10 (Virtual Synchrony) process 
q also received all of the flush messages in EVS view id and therefore installed VS view 
id. Also, because q was virtually synchronous to p throughout the chain of EVS views 
that they moved through together, q could not install any VS views that p did not.  
Therefore, q installed VS view id’ in VS view id. 
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4. If processes p and q install the same view and q is included in p’s transitional set 
for that view, then p and q have the same transitional sets for that view.  
Formally: 
ta = vs_view(p, id’, D, T) ∧ vs_vid(ti, p) = id ∧ ti = vs_view(q, id’, D, T’) ∧ q ∈ T⇒ T = T’ 

 
Proof: Theorem 5.10 (VS Transitional Set) proved that if two processes install the same 
VS view and one of the processes is in the others transitional set for that view, then they 
both installed the same previous VS view. Furthermore, the theorem proved that they 
were EVS virtually synchronous throughout the chain of EVS views that they moved 
through together before installing their next VS view. EVS Property 2.17 (Transitional 
Set 4) states that if two processes install the same next EVS view in the previous view, 
then they have the same transitional sets for the new view. The transitional set of a VS 
view is Vs_Survivors at the point of installation. Vs_Survivors is immediately set to the 
membership set of a VS view upon installation and is then intersected with any 
subsequent EVS views’ transitional sets until the next VS view at the process. Because 
both processes install the same previous VS view id and move together through the same 
chain of EVS views before they both install their next VS view id’, they see the same 
transitional set for each EVS view, by EVS Property 2.17 (Transitional Set 4). Therefore, 
due to EVS (Membership Agreement), EVS Property 2.17 (Transitional Set) and Lemma 
5.5 (Vs_Survivors), throughout the chain of intermediate EVS views and at the point of 
installing VS view id’, their Vs_Survivors sets are virtually synchronously identical and, 
therefore, their transitional sets for the VS view id’ are identical. 
 
6.11 Theorem (VS Sane View Delivery) 

1. A message is not delivered in a view earlier than the one in which it was sent.  
Formally: 
ta= vs_send(p, m) ∧ vs_vid(ta p) = id ∧ ti = vs_deliver(q, m) ∧ vs_vid(ti, q) = id’ ⇒ id ≤ id’ 

 
Proof: Theorem 5.9 (VS Sending View Delivery) proves this theorem. 
 

2. If a process p sends a message m, crashes and later recovers in a view id and a 
process q delivers m, then m is delivered in a view before id. Formally: 
ta = vs_send(p, m) ∧ tb = crash(p) ∧ tc = vs_view(p, id, D, T) ∧ a < b < c ∧  
vs_vid(tc, p) = ⊥ ∧ ti = vs_deliver(q, m) ⇒ vs_vid(ti, q) < id 

 
Proof: Theorem 5.9 (VS Sending View Delivery) proved that messages are only 
delivered in the view in which they are sent. Message m is sent by p in a VS view 
installed at p earlier than id, therefore, Theorem 5.4 (VS Local Monotonicity) proves this 
theorem. 
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3. If two messages m and m’ are sent, respectively, by processes p and p’ such that 
the send of m’ is causally preceded by the send of m and a process q’ delivers 
both messages, then q’ does not deliver m in a later view than m’. Formally: 
ta = vs_send(p, m) ∧ td = vs_send(p’, m’) ∧ ta → td ∧  
tj = vs_deliver(q’, m) ∧ tk = vs_deliver(q’, m’) ⇒ vs_vid(tj, q’) ≤ vs_vid(tk, q’) 
 

Proof: In order for m to be sent causally before m’, it must be sent in a VS view with 
identifier less than or equal to the sending view of m’ by Theorem 5.4 (VS Local 
Monotonicity). Theorem 5.9 (Sending View Delivery), therefore, proves this theorem. 
 
6.7 Lemma (VS Message Ordering) All messages delivered by the VS algorithm 

maintain their respective ordering properties. 
 
Proof: If it can be shown that the reordering of messages that the algorithm performs does 
not violate any of the ordering guarantees of the EVS properties, then because vs_send 
events are, effectively, evs_send events and vs_deliver events of message only occur as a 
result of earlier evs_deliver events of those messages, then the algorithm implicitly 
maintains the EVS ordering guarantees on the messages it delivers. The only reordering 
of messages delivered by evs_deliver events occurs when messages are pushed onto the 
Delay_Queue to potentially be vs_delivered in a later VS view. For all other messages, 
the algorithm either delivers them immediately when they are evs_delivered or 
immediately drops and never delivers them.  
 
The messages that are pushed onto Delay_Queue can only be non-causal messages. From 
the algorithm, messages are marked with the VS view identifier in which they were sent. 
For a message to be pushed onto Delay_Queue, the received message must be marked 
with the receiver’s current Evs_id, which is different than its current Vs_id. By the 
algorithm, this implies that the sender already installed a VS view with the same 
identifier as the receiver’s Evs_id and then sent a message. 
 
From the algorithm, in order to install that VS view the sender must have received an 
appropriately marked flush message from each of the potential members of the VS view. 
Because the message’s view identifier matches the receiver’s Evs_id, by Lemma 5.2 
(Evs_id) and EVS Property 2.2 (Self-Inclusion) the receiver of the causal message is one 
of the view’s potential members. If the sender sent a message in the new VS view, then it 
must have sent the message after receiving all of the flush messages, including the one 
from the receiver. By EVS Property 2.13 (Causal Messages) only two cases are possible 
for a causal message sent after receiving all of those flush messages: (1) before the 
recipient could receive the causal message it would receive all of the flush messages and, 
by the algorithm, install the same VS view or (2) the receiver received one or more 
evs_view events before receiving all of the flush messages for the VS view in question. 
Case (1), conflicts with the Delay_Queue push assumption because the Causal message’s 
view identifier would either match the receiver’s Vs_id or, by EVS Property 2.4 (Local 
Monotonicity) and Lemma 5.2 (Evs_id), it would not match the receiver’s Evs_id. In case 
(2), by the algorithm, the receiver does not install that VS view. Furthermore, by EVS 
Property 2.4 (Local Monotonicity) and Lemma 5.2 (VS Views) its Evs_id is now higher 
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than the sender’s installed view and its Vs_id will never match the sender’s. Therefore, 
the receiver drops the causal message. In neither of the two possible cases will a causal 
message ever be placed in Delay_Queue. Therefore, only non-causal messages can be 
placed in Delay_Queue. 
 
The only way the EVS ordering properties could be violated is if by postponing the 
vs_delivery of messages in Delay_Queue the algorithm violated the FIFO, Causal or 
Agreed ordering properties. The above argument showed that the postponing of these 
non-causal messages can not violate the Causal or Agreed VS ordering properties. This is 
because any messages that are causally dependent on messages in Delay_Queue would 
also be causally dependent on the flush messages for that VS view. Therefore, these 
causal messages would only be received after this process either installs that VS view and 
vs_delivers all of the messages in Delay_Queue or it drops the messages in 
Delay_Queue. The only way the postponing could violate the FIFO ordering property is 
if a FIFO message was delivered from a sender, when one of the messages in 
Delay_Queue was sent by that sending process before the FIFO message. 
 
Assume that this ordering violation occurs. This implies that the later FIFO message was 
marked with the receiver’s current Vs_id (which is different than its Evs_id), that the 
sender was in the recipient’s Vs_Survivors set and that the previously sent message was 
marked with the recipient’s Evs_id. But, by Lemma 5.2 (Vs Views) and EVS Property 
2.4 (Local Monotonicity) the recipient’s Evs_id is greater than the recipient’s Vs_id. 
Messages are marked with the identifier of the VS view in which they are sent. 
Therefore, by Theorem 5.4 (VS Local Monotonicity) and EVS Property 2.12 (FIFO 
Messages) this violation could not happen. 
 
Messages in Delay_Queue are delivered upon installing a VS view and the queue is 
cleared after every evs_view event. Messages are pushed onto the end of the queue as 
they are received and popped off of the front as they are vs_delivered, therefore, any 
FIFO ordering of the messages in the queue is maintained. Since the only reordering of 
messages delivered by evs_deliver events is compatible with all of the message types’ 
ordering guarantees and all other messages are delivered in the order in which they are 
received or dropped, the ordering guarantees provided by the respective EVS Properties 
are maintained. 
 
6.12 Theorem (VS Virtual Synchrony) If processes p and q are virtually synchronous 

in a view, then any message delivered by p in that view is also delivered by q.  
Formally: 
vs_vsynchronous_in(p, q, id) ∧ ta = vs_deliver(p, m) ∧ vs_vid(ta, p) = id ⇒  
∃i : ti = vs_deliver(q, m) 

 
Proof: Theorem 5.10 (VS Transitional Set) proved that if two processes install the same 
VS view and one of the processes is in the other’s transitional set for that view, then they 
both installed the same previous VS view. Furthermore, the theorem proved that they 
were virtually synchronous throughout the chain of EVS views that they moved through 
together before installing their next VS view. From EVS Property 2.10 (Virtual 
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Synchrony), these two processes received the same set of messages in each EVS view 
starting with the EVS view corresponding to the first VS view installed (id) up to the last 
EVS view corresponding to the second VS view they installed (id’).  
 
Any messages sent in VS view id that were received in EVS view id would be delivered 
by both p and q. By EVS Property 2.9 (Sane View Delivery) and Lemma 5.2 (VS Views), 
the EVS views in which messages sent in VS view id are delivered are greater than or 
equal to id. Any messages received in EVS view id would be received by p or q either 
before it installed VS view id or after it installed VS view id. If such a message was 
received in EVS view id before the process installed VS view id, then by the assumption 
and Lemma 5.2 (VS Views) the identifier marked on the message would match the 
process’ Evs_id and be different than its Vs_id. In this case, the algorithm buffers the 
message in Delay_Queue and delivers it after it installs VS view id, which by the 
assumption it does. If any message was received in EVS view id after the process 
installed VS view id, then the message would be marked with the receiver’s Vs_id and 
the sender would be in the receiver’s Vs_Survivors set, by Lemma 5.5 (Vs_Survivors), 
Theorem 5.2 (VS Self-Inclusion) Theorem 5.3 (VS Membership Agreement) and, 
therefore, the message would be delivered. 
 
Theorem 5.10 (VS Transitional Set) proved that the two processes had virtually 
synchronously identical Vs_Survivors sets and Vs_ids in VS view id throughout the 
chain of EVS views [id, id’] after they installed VS view id. Therefore, because any 
messages sent in VS view id that are received in EVS view id are delivered and in later 
EVS views p and q have virtually synchronously the same Vs_ids and Vs_Survivors sets, 
any messages that p or q delivered in EVS views in the view range [id, id’), they both 
delivered. 
 
From the assumption, both p and q installed VS view id’. In order for this to happen, both 
processes must have collected appropriate flush messages from each of the members of 
id’ in EVS view id’. Since flush messages are at least FIFO messages, then by EVS 
Property 2.12 (FIFO Messages) any messages sent by these processes prior to their flush 
messages that were delivered in EVS view id’ must have already been delivered to both p 
and q before they installed VS view id’. Therefore, due to the fact that regular messages 
for a VS view cannot be sent by a process after it sends a flush message in that view and 
any messages not destined for VS view id would be either dropped or buffered, both p 
and q receive the same set of messages sent in VS view id in EVS view id’ before 
installing VS view id’. Since p and q still have the same Vs_id and Vs_Survivors sets 
while receiving those messages, as shown above, they both deliver the same set of those 
messages in the previous VS view. 
 
6.13 Theorem (VS Transitional Signals) 

1. At most one vs_trans_sig event occurs at a process per view. Formally: 
ta = vs_trans_sig(p) ∧ vs_vid(ta, p) = id ⇒ 

b : b ≠ a ∧ tb = vs_trans_sig(p) ∧ vs_vid(tb, p) = id 
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Proof: Vs_trans_sig events are only generated when Vs_delivd_trans_sig is false. This 
variable is only set to false after every vs_view event and is immediately set to true 
whenever a vs_trans_sig event occurs. Therefore, at most one vs_trans_sig event can be 
generated per VS view. 
  

2. If two processes p and q are virtually synchronous in a VS view, id, and p has a 
vs_trans_sig event occur in that view, then q also has a vs_trans_sig event occur 
in that view and they both deliver the same sets of agreed messages before and 
after their vs_trans_sig events. Formally:  
vs_vsynchronous_in(p, q, id) ∧ tb = vs_trans_sig(p) ∧ vs_vid(tb, p) = id ⇒ 
∃j : tj = vs_trans_sig(q) ∧ vs_vid(tj, q) = id ∧ 
(∃a∃m : a < b ∧ ta = vs_deliver(p, m) ∧ vs_vid(ta, p) = id ∧ agreed(m)   
 ∃i∃m : i < j ∧ ti = vs_deliver(q, m) ∧ vs_vid(ti, q) = id ∧ agreed(m)) 
(∃c∃m’ : b < c ∧ tc = vs_deliver(p, m’) ∧ vs_vid(tc, p) = id ∧ agreed(m’)  
 ∃k∃m’ : j < k ∧ tk = vs_deliver(q, m’) ∧ vs_vid(tk, q) = id ∧ agreed(m’)) 

 
Proof: If two processes are virtually synchronous in a VS view, then by Theorem 5.12 
(VS Virtual Synchrony) they both deliver the same set of messages in that view and are 
virtually synchronous through the same chain, if any, of intermediate EVS views, before 
installing the following VS view. From the algorithm, vs_trans_sig events are only 
generated in three cases: (1) an evs_view event removes a member from the process’ 
Vs_Survivors set, or an evs_trans_sig occurred in the current EVS view and no 
vs_trans_sig event has yet occurred in the current VS view when (2) an agreed message 
is subsequently vs_delivered or (3) a subsequent evs_view event occurs.  
 
It has been shown that two processes that are virtually synchronous in a VS view have 
virtually synchronously identical Vs_Survivors sets throughout that VS view. Therefore, 
if an evs_view  event caused one process to deliver a vs_trans_sig, the other process also 
delivers a vs_trans_sig event. Furthermore, because they have delivered the same set of 
Agreed messages in that VS view up to that point, by EVS Property 2.10 (Virtual 
Synchrony) and EVS Property 2.9 (Same View Delivery), they deliver the same set of 
Agreed messages before and after the vs_trans_sig event. 
 
From EVS Property 2.16 (Transitional Signals), since the two processes were virtually 
synchronous through the chain of EVS views, they both receive the same transitional 
signals in those EVS views (if any) with the same set of agreed messages in each view 
before and after each signal. Therefore, if a transitional signal was generated in one of 
those EVS views, both processes would receive it. If they vs_delivered any subsequent 
agreed messages in that VS view, then by Theorem 5.12 (VS Virtual Synchrony) and the 
algorithm they would both deliver a VS transitional signal immediately before the same 
message in that VS view. If there was an evs_view event before they installed their 
following VS view, then by EVS Property 2.10 (Virtual Synchrony) they would  both 
generate a VS transitional signal at the same point in the their stream of VS agreed 
messages. If neither of these cases occurred then by the algorithm neither process would 
generate a transitional signal in the VS view in which they were virtually synchronous. 
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6.14 Theorem (VS Reliable Messages) All messages are reliable.  The Self-Delivery, 
Same View Delivery and Virtual Synchrony properties implicitly define the safety 
properties of reliable messages. Formally: 

reliable(m) ≡ m.type ∈ { R, F, C, A, S } 
 
Proof: The algorithm does not affect messages’ types. Theorem 5.8 (VS Self-Delivery), 
Theorem 5.9 (VS Sending View Delivery) and Theorem 5.12 (VS Virtual Synchrony) 
satisfy the definition of VS Reliable Messages.   
 
6.15 Theorem (VS FIFO Messages) 

1. FIFO messages are reliable messages.  Formally: 

fifo(m) ≡ m.type ∈ { F, C, A, S } 
 
Proof: The algorithm does not affect messages’ types. 
 

2. If a process sends a FIFO message after a previous message, then these messages 
are delivered in the order in which they were sent at every process that delivers 
both.  Formally: 
ta = vs_send(p, m) ∧ tb = vs_send(p, m’) ∧ a < b ∧ fifo(m’) ∧ 
ti = vs_deliver(q, m) ∧ tj = vs_deliver(q, m’) ⇒ i < j 

 
Proof: Lemma 5.7 (VS Message Ordering) proves this theorem. 

 
3. If a process p sends a FIFO message m’ after a previous message m and a 

process q’ delivers m’, then if any process delivers m, then q’ either delivers m or 
installs a view without p in its transitional set between the delivery views of m and 
m’, or if no process delivers m, then p crashed between sending m and m’ and q’ 
installs a view without p in its transitional set between the recovery view of p and 
the delivery view of m’. Formally: 

ta = vs_send(p, m) ∧ tc = vs_send(p, m’) ∧ a < c ∧ fifo(m’) ∧ tl = vs_deliver(q’, m’) ⇒ 
(∃i∃q : ti = vs_deliver(q, m) ⇒ (∃j : tj = vs_deliver(q’, m)) ∨  
 (∃k∃id’∃D’∃T’ : tk = vs_view(q’, id’, D’, T’) ∧ p ∉ T’ ∧ vs_vid(ti, q) < id’ ≤ vs_vid(tl, q’))) ∧ 
( i∃q : ti = vs_deliver(q, m) ⇒ ∃b∃id∃D∃T : a < b < c ∧ tb = vs_view(p, id, D, T) ∧ vs_vid(tb, p) = ⊥ ∧ 
 ∃k∃id’∃D’∃T’ : tk = vs_view(q’, id’, D’, T’) ∧ p ∉ T’ ∧ id ≤ id’ ≤ vs_vid(tl, q’)) 

 
Proof: Assume m and m’ were sent in the same VS view id. In this case q’ delivers m. 
Assume that this is a false statement. Lemma 5.7 (VS Message Ordering) proved that any 
messages sent in VS view id that are delivered in EVS view id are delivered by any 
member process that receives them. Therefore, by the assumption m is not delivered by 
the EVS system in EVS view id, which implies that q’ already installed VS view id if it 
received m. The fact that q’ delivers m’ implies that p was a member of its Vs_Survivors 
set when it received m’. Lemma 5.5 (Vs_Survivors), therefore, implies that there was not 
an EVS view installed at q’ in the range (id, EVS delivery view of m’] that did not have p 
in its transitional set. Therefore, EVS Property 5.12 (FIFO Messages 3) implies that q’ 
received m. Furthermore, EVS Property 5.12 (FIFO Messages 2) implies m was received 
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by q’ before m’. Therefore, by Lemma 5.5 (Vs_Survivors) p was in q’’s Vs_Survivors set 
when it received and consequently delivered m, which contradicts the assumption. 
 
Assume that m and m’ were sent in different VS views id and id’. Assume that some 
process delivers m, but q’ does not. The only way the axiom can hold then is if q’ installs 
a VS view without p in its transitional set between id and id’. Assume that this event does 
not occur. Then for every VS view that q’ installs in the open range of VS views (id, id’] 
p’ must be is in its transitional set. From Theorem 5.9 (Sending View Delivery), both p 
and q’ install VS view id’. Therefore, p and q’ install the same chain of VS views in the 
range [id, id’] and by Theorem 5.12 (VS Virtual Synchrony) they deliver the same set of 
messages delivered in those views in the open range [id, id’). Theorem 5.8 (VS Self-
Delivery) proved that a process must deliver the messages it sends in a VS view before 
installing any subsequent VS views. Therefore, both p and q’ deliver m in id, which 
contradicts the assumption. 
 
Assume that m and m’ were sent in different VS views id and id’. Assume that no process 
delivers m. In this case the only way the axiom can hold is if q’ installs a VS view 
without q’ in its transitional set between the recovery view id* of p and the delivery view 
of m’. Assume that this event does not occur. This implies that all of the VS views 
installed at q’ with identifiers in the range [id*, id’] had p in the transitional set. Since 
both processes install VS view id’, p’ and q’ install the same set of VS views in the range 
[id*, id’]. However, p’ cannot be in q’’s transitional set for VS view id*. This is because 
p’ is recovering from a crash and therefore has an empty transitional set. Therefore, 
Theorem 5.10 (VS Transitional Set 1,3) forces q’ not to have p’ in its transitional set, 
which contradicts the assumption. 
 
6.16 Theorem (VS Causal Messages) 

1. Causal messages are FIFO messages.  Formally: 

causal(m) ≡ m.type ∈ { C, A, S } 
 
Proof: The algorithm does not affect messages’ types. 
 

2. If a process sends a causal message m’ such that the send of another message m 
causally precedes the send of m’, then any process that delivers both messages 
delivers m before m’. Formally: 
ta = vs_send(p, m) ∧ td = vs_send(p’, m’) ∧ ta → td ∧ causal(m’) ∧ 
ti = vs_deliver(q, m) ∧ tj = vs_deliver(q, m’) ⇒ i < j 

 
Proof: Lemma 5.7 (VS Message Ordering) proves this theorem. 
 

3. If a process p’ sends a Causal message m’ such that the send of another message 
m causally precedes the send of m’, then if any process delivers m, then q’ either 
delivers m or installs a view without p’ in its transitional set between the delivery 
views of m and m’, or if no process delivers m, then p crashed between sending m 
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and m’ and q’ installs a view without p in its transitional set between the recovery 
view of p and the delivery view of m’. Formally: 

ta = vs_send(p, m) ∧ td = vs_send(p’, m’) ∧ ta → td ∧ causal(m’) ∧ tl = vs_deliver(q’, m’) ⇒ 
(∃i∃q : ti = vs_deliver(q, m) ⇒ (∃j : tj = vs_deliver(q’, m)) ∨  
 (∃k∃id’∃D’∃T’ : tk = vs_view(q’, id’, D’, T’) ∧ p’ ∉ T’ ∧ vs_vid(ti, q) < id’ ≤ vs_vid(tl, q’))) ∧ 
( i∃q : ti = vs_deliver(q, m) ⇒ ∃b∃id∃D∃T : a < b < c ∧ tb = vs_view(p, id, D, T) ∧ vs_vid(tb, p) = ⊥ ∧ 
 ∃k∃id’∃D’∃T’ : tk = vs_view(q’, id’, D’, T’) ∧ p’ ∉ T’ ∧ id ≤ id’ ≤ vs_vid(tl, q’)) 

 
Proof: Assume m and m’ were sent in the same VS view id. In this scenario, q’ delivers 
m. The fact that q’ delivers m’ implies that p’ was in its Vs_Survivors set when it 
received m’. Lemma 5.5 (Vs_Survivors), therefore, implies that there was not an EVS 
view installed at q’ in the range (id, EVS delivery view of m’] that did not have p in its 
transitional set. By EVS Property 2.13 (Causal Messages) this implies q’ received all of 
the messages sent in VS view id whose sends causally preceded m’, including m. Assume 
q’ does not deliver m. Lemma 5.7 (VS Message Ordering) proved that any messages sent 
in VS view id that are delivered in EVS view id are delivered by any member process 
that receives them. Therefore, by the assumption m is not delivered by the EVS system in 
EVS view id, which implies that q’ already installed VS view id before it received m. 
 
The fact that p’ was in q’’s Vs_Survivors set when it received m’, implies, by EVS 
Property 2.9 (Sane View Delivery) and Lemma 5.5 (Vs_Survivors) that p’ was in its 
Vs_Survivors set when it received m. Therefore if p’ sent m, q’ would deliver m upon 
receipt, which violates the assumption. If p’ VS delivered m then p’ and q’ would receive 
m in the same EVS view, by EVS Property 2.8 (Same View Delivery) and because p’ is 
in q’’s Vs_Survivors set when it receives m, they were virtually synchronous in the EVS 
views [id, delivery view of m). Therefore, by Lemma 5.5 (Vs_Survivors) and EVS 
Property 2.17 (Transitional Set) they would have the same Vs_Survivors sets when they 
receive m. Therefore, because p’ VS delivers m, so would q’, which violates the 
assumption. The only other way m’ could be causally preceded by m is if p’ VS delivered 
a message m*, sent by process p*, whose send causally preceded the send of m’ and was 
causally preceded by the send of m.  
 
The fact that p’ delivered m* implies that p* was a member of its Vs_Survivors set when 
it received m*. Processes p’ and q’ received m* in the same view, by EVS Property 2.8 
(Same View Delivery). Q’ received m’ in a view no earlier than the delivery view of m*, 
by EVS Property 2.9 (Sane View Delivery 3), therefore, p’ was in q’’s Vs_Survivors set 
when it received m*. Because both p’ and q’ installed the EVS delivery view of m* and 
because p’ was in q’’s Vs_Survivors set when it received m*, p’ and q’ were virtually 
synchronous in the sequence of EVS views [id, delivery view of m*). Therefore, by 
Lemma 5.2 (Vs_Survivors) and EVS Property 2.17 (Transitional Set), p’ and q’ had the 
same Vs_Survivors sets when they received m* and, therefore, q’ also VS delivered m*, 
which implies p* is in q’’s Vs_Survivors set when it receives m*.  
 
This implies, by EVS Property 2.9 (Sane View Delivery), that if p* sent m, then q’ would 
deliver m upon receipt, which violates the no delivery assumption. If p* VS delivered m, 
then p* and q’ would receive m in the same EVS view, by EVS Property 2.8 (Same View 
Delivery). Furthermore, because p* is in q’’s Vs_Survivors set when it receives m, again 
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by EVS Property 2.9 (Sane View Delivery), they were virtually synchronous in the EVS 
views [id, delivery view of m). Therefore, by Lemma 5.5 (Vs_Survivors) and EVS 
Property 2.17 (Transitional Set) they would have the same Vs_Survivors sets when they 
receive m. Therefore because p* VS delivers m, so would q’, which contradicts the 
assumption. The only other way m’ could be causally preceded by m is if p’ VS delivered 
a message m**, sent by process p**, whose send causally preceded the send of m* and was 
causally preceded by the send of m. 
 
This argument can be iteratively applied back along the chain of causally preceding 
messages between m and m’. At every step, the assumption forces the sender of a 
message in this causal chain to have not sent and not VS delivered m. Therefore, because 
there are a finite number of messages in the causal chain of precedence, a contradiction is 
eventually reached where the send of m cannot causally precede the send of m’. 
Therefore, if m and m’ are sent in the same view such that the send of m causally 
precedes the send of m’ and a process delivers m’, it delivers all messages sent in that 
view that causally precede m’. 
 
Assume that m and m’ were sent in different VS views id and id’. Assume that a process 
delivers m and that q’ does not deliver m. In this case the only way the axiom can hold is 
if q’ installs a VS view without p’ in its transitional set between the delivery views of m 
and m’. Assume that this event does not occur. This implies that all of the VS views 
installed at q’ with identifiers in the open range (id, id’] had p’ in the transitional set. 
Both processes p’ and q’ install id’, which implies that the two processes go through the 
same set of VS views in the range [id, id’] and that they are virtually synchronous in the 
VS views that they installed in the open range [id, id’). Therefore, q’ delivers m if and 
only if p’ delivers m. By Lemma 5.5 (Vs_Survivors), because p’ and q’ are in each others 
transitional sets for each of the VS views they installed in the range (id, id’] they were in 
each others transitional sets for of the EVS views they installed in the range (id, id’]. 
Furthermore, the fact that p’ was in q’’s Vs_Survivors set when it received m’ in EVS 
view id’’, implies that there was not an EVS view installed at q’ in the range (id, id’’] that 
did not have p’ in the transitional set. By EVS Property 2.13 (Causal Messages) this 
implies that q’ received all of the messages whose sends Causally preceded the send of 
m’ that were EVS delivered in the EVS views that they installed in the range (id, id’’], 
including m. Now the exact same iterative argument used above to prove that if m and m’ 
were sent in the same VS view then q’ delivered m, can be applied to this situation, with 
the additional complexity of multiple Vs_Survivors sets for different VS views. 
 
Assume that m and m’ were sent in different VS views id and id’. Assume that no process 
delivers m. In this case the only way the axiom can hold is if q’ installs a VS view 
without q’ in its transitional set between the recovery view of p’ and the delivery view of 
m’. Assume that this event does not occur. This implies that all of the VS views installed 
at q’ with identifiers in the range [id, id’] had p’ in the transitional set. Since both 
processes install VS view id’ and p’ is in q’’s transitional set for that view, they installed 
the same set of VS views in the range [id, id’]. However, p’ cannot be in q’’s transitional 
set for VS view id. This is because p’ is recovering from a crash and therefore has an 
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empty transitional set. Therefore, Theorem 5.10 (VS Transitional Set 1,3) forces q’ not to 
have p’ in its transitional set, which contradicts the assumption. 
 
6.17 Theorem (VS Agreed Messages) 

1. Agreed messages are causal messages.  Formally: 

agreed(m) ≡ m.type ∈ { A, S } 
 
Proof: The algorithm does not affect messages’ types. 
 

2. If a process p delivers an agreed message m’, then after that event it will never 
deliver a message that has a lower ord value.  Formally: 
ta = vs_deliver(p, m) ∧ tb = vs_deliver(p, m’) ∧ agreed(m) ∧ ord(m) < ord(m’) ⇒ a < b 

 
Proof: Lemma 5.7 (VS Message Ordering) proves this theorem. 
 

3. If a process p delivers an agreed message m’ before a vs_trans_sig event in its 
current view, then p delivers every message with a lower ord value than m’ 
delivered in that view by any process. Formally: 
tc = vs_deliver(p, m’) ∧ agreed(m’) ∧  
( b : b < c ∧ tb = vs_trans_sig(p) ∧ vs_vid(tb, p) = vs_vid(tc, p)) ⇒  
∀i∀q∀m : ti = vs_deliver(q, m) ∧ vs_vid(ti, q) = vs_vid(tc, p) ∧ ord(m) < ord(m’); ∃a : 
ta = vs_deliver(p, m) 

 
Proof: The algorithm generates one vs_trans_sig event per view in only three cases: (1) 
an evs_view event occurs which removes one or more members from the process’ 
Vs_Survivors set, or after an evs_trans_sig event the algorithm (2) subsequently 
vs_delivers an agreed message or (3) an evs_view event occurs. The guarantees provided 
by EVS Property 2.14 (Agreed Messages) directly apply up to either the first 
evs_trans_sig event in a VS view or first evs_view event that removes members from a 
process’ Vs_Survivors set. Delaying the vs_trans_sig event caused by an evs_trans_sig 
event until either VS delivering an Agreed message or a subsequent evs_view event does 
not affect the guarantees provided by that property. This is because no Agreed messages 
are being delivered before the VS transitional signal that were after the EVS transitional 
signal. 
 

4. If a process p delivers an agreed message m’ after a vs_trans_sig event in its 
current view, then p delivers every message with a lower ord value than m’ sent 
by all processes in p’s next transitional set that were delivered in that view.  
Formally: 
ta= vs_trans_sig(p) ∧ tc= vs_deliver(p, m’) ∧ td = vs_view(p, id’, D’, T’) ∧ a < c < d ∧  
agreed(m’) ∧ vs_vid(ta, p) = vs_vid(tc, p) = vs_vid(td, p) ⇒  
∀i∀q∈T’∀m∀l∀p’ : ti = vs_send(q, m) ∧ tl = vs_deliver(q’, m) ∧  
vs_vid(tl, q’) = vs_vid(tc, p) ∧ ord(m) < ord(m’); ∃b : tb = vs_deliver(p, m) 
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Proof: A process’ transitional set for a VS view id’ is its Vs_Survivors set upon installing 
that view. The fact that p installs id’ implies that it received a flush message marked 
appropriately from each of the members of its Vs_Survivors set. This implies that all of 
those members installed the EVS view id’. Therefore, because they all installed EVS 
view id’ all of those members were virtually synchronous with one another in the EVS 
views that they installed since their previous VS view id. Furthermore, during that time 
their Vs_Survivors sets were virtually synchronous, therefore, they all delivered the same 
set of messages that they received in the EVS views they installed in the open range [id, 
id’). This process received FIFO flush messages from each of the members of its 
Vs_Survivors. Therefore, because a process cannot send messages in a VS view after 
flushing it and the flush message is a FIFO message, this process received and delivered 
all of the messages that the members of its Vs_Survivors set sent in the previous VS 
view. 
 
6.18 Theorem (VS Safe Messages) 

1. Safe messages are agreed messages.  Formally: 

safe(m) ≡ m.type ∈ { S } 
 
Proof: The algorithm does not affect messages’ types. 
 

2. If a process p delivers a safe message m before a vs_trans_sig event in its current 
view, then every member of that view delivers m, unless it crashes.  Formally: 
ta = vs_view(p, id, D, T) ∧ tc = vs_deliver(p, m) ∧ safe(m) ∧ vs_vid(tc, p) = id ∧  

b : a < b < c ∧ tb = vs_trans_sig(p) ⇒  
∀q∈D; ∃i∃D’∃T’∃j : ti = vs_view(q, id, D’, T’) ∧  

(tj = vs_deliver(q, m) ∨ (tj = crash(q) ∧ vs_vid(tj, q) = id)) 
 
Proof: If a process delivers a Safe message in a VS view id before a vs_trans_sig event 
this implies that no evs_trans_sig events had occurred in the EVS views at this process 
since installing EVS view id. It also implies that no evs_view events removed members 
from the process’ Vs_Survivors set. Therefore, because no evs_trans_sig events have 
occurred yet, every member of the EVS delivery view of m will receive m or crash. 
Furthermore, those members that do not crash will receive m in the same EVS view id* as 
p. Those processes, therefore, will have the same Vs_Survivors set as p, due to being 
virtually synchronous in the EVS views they installed in the range [id, id*). Since at that 
point, Vs_Survivors contains the entire membership of the VS view, all of the members 
of that VS view that receive m will deliver m. This argument and EVS Property 2.15 
(Safe Messages) prove this theorem. 
 

3. If a process p delivers a safe message m after a vs_trans_sig event in its current 
view, then every member of p’s transitional set from p’s next view delivers m, 
unless it crashes.  Formally: 
ta = vs_view(p, id, D, T) ∧ tb = vs_trans_sig(p) ∧ tc = vs_deliver(p, m) ∧ b < c ∧ safe(m) ∧ 
td = vs_view(p, id’’, D’’, T’’) ∧ vs_vid(tb, p) = vs_vid(tc, p) = vs_vid(td, p) = id ⇒  
∃i∃D’∃T’∃j : ∀q∈T’’ : ti = vs_view(q, id, D’, T’) ∧  
(tj = vs_deliver(q, m) ∨ (tj = crash(q) ∧ vs_vid(tj, q) = id)) 



 

50 

 
Proof: EVS Property 2.15 (Safe Messages) guarantees that a Safe message received after 
a transitional signal in an EVS view will be received by all of the members of the 
process’ transitional set of the following EVS view, unless they crash. The transitional set 
of a VS view is simply the intersection of all the transitional sets of EVS views that have 
occurred at this process since the most recent VS view was installed. Therefore, any 
members of a VS transitional set will receive a Safe message m that p delivers after a 
vs_trans_sig event in a VS view, unless they crash. Furthermore, those members in 
Vs_Survivors that do not crash receive m in the same EVS view id* as p. Therefore, 
because p and its Vs_Survivors that do not crash all install that EVS view and they were 
in each others transitional sets, they were virtually synchronous in the EVS views that 
they installed in the range [id, id*). Therefore, at the point of receiving m they have the 
same Vs_Survivors sets and will all deliver m because p does. This argument and EVS 
Property 2.15 (Safe Messages) prove this theorem. 
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7 VS Algorithm Variants 
 
The algorithm presented in this work used one round of n-to-n communication using 
FIFO messages to install views. This work also explored very similar algorithms that use 
more rounds and more powerful message types in order to achieve even more powerful 
semantics than the described VS model. 

7.1 Single Round VS Algorithm Using Agreed Messages 
This algorithm is almost an exact duplicate of the algorithm presented in this paper. The 
only difference, in fact, is that this algorithm uses Agreed messages for its flush messages 
and it does not install obsolete views at all. When a process receives the last necessary 
flush message in order to install a VS view, it only installs that view if a transitional 
signal has not yet been delivered in its current EVS view. If a signal was delivered, then 
the process “waits” for the following EVS view to be installed and then tries to install 
that view. Property 2.16 (Transitional Signals) guarantees that virtually synchronous 
processes will deliver a transitional signal at that same point in the stream of agreed 
messages in the view. Therefore, if one process decides not to install a view because of a 
transitional signal, then all of the processes that remain virtually synchronous to that 
process will also decide not to install that view. 
 
The heavy additional cost of using Agreed messages instead of inexpensive FIFO 
messages almost surely outweighs the potential benefit of not installing obsolete views. 
As described in section 3, the probability that the presented algorithm actually installs 
obsolete views is very small. 

7.2 Single Round VS Algorithm Using Safe Messages 
If flush messages are Safe messages, then the presented algorithm provides a stronger set 
of semantics than those presented in the VS model. This variant uses the same heuristic 
for avoiding obsolete views as the variant that uses Agreed messages. Therefore, if a 
process installs a VS view, then it received a Safe flush message from each of the 
potential members of that VS view before any transitional signal in its current EVS view. 
From the properties of Safe messages, this implies that all of the other processes in the 
EVS view will deliver the same flush messages in the same EVS view, unless they crash. 
Therefore, the other processes will also receive all of the messages delivered in that EVS 
view before the flush messages, unless they crash first. This implies that when a process 
installs a VS view, all of the members of its transitional set will deliver at least the same 
set of messages that this process delivered in its previous VS view, unless they crash. 
These semantics are a stronger form of Property 2.10 (Virtual Synchrony). 

7.3 Two Round VS Algorithm Using FIFO Messages 
This algorithm is very similar to the single round algorithm presented in this thesis, 
except that this algorithm uses two rounds of flush messages instead of just one. In this 
variant, the first round of collecting flush messages is conducted exactly as it is in the 
single round FIFO variant. Once a process collects a flush message from each of the 



 

52 

potential members of a VS view, it sends another message indicating that it has received 
all of the flush messages for that VS view. It then tries to collect one of these messages 
from each of the potential members of the VS view. If it succeeds, then the process 
installs the new VS view. If, instead, an EVS view is installed before it can collect the 
necessary messages, then the algorithm starts over and tries to install that new EVS view.  
 
This variant provides an even stronger form of Property 2.10 (Virtual Synchrony) than 
the single round Safe variant provides. This is because the algorithm delivers messages as 
it receives them. Therefore, when a process sends the second flush message for a VS 
view, it has already delivered all of the messages it will deliver in its previous view. This 
implies that if a process installs a VS view, then all of the processes in its transitional set 
for that view already delivered the same set of messages that it did in its previous view. 
Of course, this property is not that much more powerful than the form of virtual 
synchrony offered by the one round safe variant, because it does not imply that the 
process to which the messages were delivered processed those messages before crashing. 
However, the virtual synchrony that this algorithm provides can be strengthened even 
further with a little added interaction with the client process. 
 
In this modified variant, once the algorithm collects all the necessary flush messages in 
the first round, rather than immediately responding with its second flush message, it 
delivers another signal to the client. The algorithm only sends the second flush message 
when the client responds to this signal. As described above, after a process collects all of 
the flush messages for installing a new VS view, it has already delivered all of the 
messages that it will in its previous view. Therefore, if the client process 
“handles/processes” all of the messages delivered in its previous view before authorizing 
the second flush message, a very powerful form of virtual synchrony is achieved. When a 
process installs a view, the members in its transitional set delivered and handled all of the 
messages that this process did in its previous view. In effect, this algorithm implements a 
client-level implicit end-to-end acknowledgment of the messages that were delivered in 
its previous view. 
 
The additional overhead of these variants is an additional round of n-to-n communication. 
However, the additional synchrony gained may or may not warrant paying that additional 
cost in the common case depending upon the application at hand. The performance 
differences between these variants and the Single Round Safe variant would be minimal, 
as this algorithm is effectively using “manual” safe messages. 

7.4 Single Round VS Algorithm Using FIFO Messages for Spread 
This work’s original purpose was to implement VS semantics on top of the Spread Wide 
Area Group Communication Toolkit [Spread]. Spread’s EVS semantics differ slightly 
from the model presented in this paper. In particular, Spread’s non-Causal messages do 
not maintain Same View Delivery with respect to lightweight client views. In addition, in 
rare cases Spread does not maintain client-level Same View Delivery for Causal 
messages during heavyweight daemon partitions.  
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Spread does not force FIFO and Reliable messages to be ordered with respect to 
lightweight membership changes because this would increase the cost of those messages 
and force them to be delivered almost with the same latency as Agreed messages. This is 
because a FIFO or Reliable message could not be delivered if there were any holes in the 
global total order of messages in the daemon’s heavyweight view, because that missing 
message might be a lightweight membership message. Forcing this type of delivery upon 
FIFO and Reliable messages would drastically increase the latency of these normally 
loosely constrained messages. Therefore, in order to maintain the expected low latency 
characteristics of these messages, Spread allows them to be delivered by different 
daemons in different lightweight views. Spread’s non-Causal messages also do not 
maintain Property 2.9 (Sane View Delivery 3). 
 
Spread also violates Same View Delivery for Causal messages when daemons partition 
away from one another. In this case, virtually synchronous processes will deliver Causal 
messages in the same view, but in another network component those same messages may 
be delivered in different lightweight client views. This stems directly from the fact that 
lightweight client joins and leaves are implemented as Agreed messages. After a 
transitional signal in a view, different network components may deliver different sets of 
Safe messages. Therefore, different components may disagree upon the lightweight views 
in which Causal messages are delivered. 
 
The algorithm presented in this thesis depended strongly on the fact that its flush 
messages be delivered in the same EVS view by virtually synchronous processes. 
Therefore, in this modified model, the algorithms presented, thus far, must use Causal 
instead of FIFO flush messages. However, this work also developed a single round FIFO 
algorithm in this relaxed environment where FIFO flush messages will not necessarily be 
delivered in the same view at all virtually synchronous processes. 
 
The main difference between this algorithm and the earlier algorithms is that a process 
cannot always immediately abandon installing a VS view when a new EVS view is 
installed. This is because the flush messages can be delivered in different views at 
different processes that are virtually synchronous with one another. This could cause 
virtually synchronous clients to come to different decisions on whether or not to install a 
particular VS view. Allowing virtually synchronous processes to disagree upon which VS 
views to install and still attempting to meet the various GCS properties would horribly 
complicate any VS algorithm. 
 
To avoid these complications, instead of abandoning VS views in response to every EVS 
view, this algorithm only abandons VS views when it knows that any virtually 
synchronous process would also abandon the VS view. The heuristic used to accomplish 
this is to only abandon installing a VS view if a later EVS view indicates that one of the 
potential members of the VS view has “gone away” before this process received its flush 
message for that VS view. In this case, none of the processes that are virtually 
synchronous to this process will deliver its flush message before seeing the same EVS 
view. This is because the leaving process either crashed or there was a daemon partition. 
In the first case, the process’ flush message cannot be delivered after the membership 
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removing it from the group. In the second case, the heavyweight daemon membership 
ensures that no virtually synchronous process will deliver the flush message before the 
view in which the process was partitioned away.  
 
These heuristics for abandoning views, however, causes other complications. Now a 
process can have multiple pending VS views that it needs to try and serially install – one 
for each EVS view it has not yet abandoned. Furthermore, when it is forced to abandon a 
view because of a process leaves before its flush messages is received, that leave may 
force it to abandon several of its queued EVS views. In this case, several EVS view 
events may need to be collapsed into one aggregate VS view event. 
 
This algorithm obviously has the drawback of installing obsolete views, because it 
continues to try and install views that it knows do not reflect the current underlying 
connectivity. This algorithm also has the problem of theoretically requiring infinite 
memory. If a process receives a flush message marked with an identifier that it has not 
seen yet, then it cannot drop that flush message. This is because that flush message could 
be for an EVS view that the EVS system has not yet installed at this process. On the other 
hand, the message could be for an EVS view that was installed in a different network 
component that then merged with this process’ network component. There is no way for a 
process to implicitly differentiate between these two cases in Spread and, therefore, it 
must buffer the message. If that EVS view is subsequently installed at the process it can 
only abandon that view by the heuristic described above and it needs all of the flush 
messages it receives to act correctly. In Spread’s EVS model, a FIFO flush message for 
an EVS view can, theoretically, be delivered at a process before an arbitrary number of 
intervening lightweight EVS views. Therefore, a process, theoretically, cannot drop any 
of these questionable flush messages and would require infinite memory. In a practical 
system, a FIFO flush message cannot be delivered before an arbitrary number of 
lightweight view changes. Spread uses a threshold that puts a constant limit on how “far 
apart” in the global ordering the same message may be delivered at different daemons. 
Using this threshold, this algorithm for Spread can distinguish flush messages that were 
meant for memberships that have already occurred and drop them. 
 
As far as performance, the tradeoffs between this algorithm and the Single Round Causal 
algorithm probably cancel each other out or weigh towards the Causal Algorithm. The 
FIFO algorithm will have lower latency per view that it installs, but in an active group 
where members are commonly joining and leaving the Causal Algorithm would probably 
outperform it due to the smaller number of views it would install and because client 
applications need to authorize each and every view and client processes tend to be less 
responsive than if the process was under the control of the VS algorithm. 

7.5 Eliminating Unnecessary Data Overhead 
One drawback that all of the presented algorithms have is that they mark every message 
with the identifier of the VS view in which it was sent. This is a small data overhead on 
every message. In fact, the algorithms can be modified to eliminate the need to mark 
every message. As was shown in the proofs of the VS algorithm’s correctness, a Causal 
message sent in a VS view will not be received by members of that view until after they 
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install that view. Therefore, causal messages received from a member of a process’ 
Vs_Survivors set were sent in its current VS view. Causal messages therefore never need 
to be marked and the presented algorithm marks them only for the ease of some of the 
proofs. Non-Causal messages do, however, need to be marked at certain times. When a 
non-Causal message could be received by a member of the VS view in which it was sent, 
before that member installs that VS view, it must be marked with proper identification so 
that the recipient knows whether or not it should buffer that message. Once every 
potential member has installed the VS view then it is safe to stop marking non-Causal 
messages sent in that VS view. In order to have this knowledge an n-to-n round of 
communication must occur in which each process announces that it has installed the 
view. This round of communication can proceed in parallel with sending messages in the 
VS view and can even be done by piggybacking on regular communication. 
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8 Performance 
 
The original purpose of this work was to develop a simple algorithm that could 
implement partitionable Virtual Synchrony on top of Spread, which provides Extended 
Virtual Synchrony, with minimal impact on performance. For concrete implementation, I 
chose the most complex variant discussed in the previous section: one round of n-to-n 
FIFO10 messages to install a membership, followed by another round of n-to-n FIFO 
messages to allow non-Causal messages not to be tagged with view identifiers. This 
implementation is known as Flush Spread. 
 
All of the algorithms developed by this work would only incur significant overhead on 
top of Spread in response to group view changes. Therefore, to discover how much 
overhead this algorithm incurred on top of Spread the most important aspect of the GCSs 
to evaluate is their client-level latency in installing lightweight view changes. 
 
The systems’ lightweight view installation latencies were measured using two different 
membership change profiles. In both profiles the Spread daemons were placed under 
moderate load by external means. In the first profile lightweight view changes occurred 
intermittently (tens of milliseconds apart), whereas in the second profile they occurred 
serially in rapid fire, one immediately after the other. In both scenarios a base group of 
processes was constructed and then one process (the delta process) would join and leave 
the group several hundred times, timing how long each membership took.  
 
These timings were performed on a cluster of 12 dual 666MHz Pentium-IIIs with 256MB 
main memory interconnected over switched fast Ethernet (100Mbps). Each machine ran a 
single Spread daemon process and the different client processes were spread across the 
cluster as evenly as possible. For example, for the trials with a group size of 25 processes, 
there were 2 processes on 11 machines and 3 processes on 1 machine. 
 
In Spread, the latency for join and leave lightweight view changes should be completely 
symmetric at all clients, as both view change types consist of sending and delivering a 
single Agreed message. In Flush Spread, due to an engineering decision, leaving 
processes do not take part in the VS algorithm. Therefore, measuring leave times at the 
leaving process would give false results. As it is difficult to measure the full leave latency 
at a process other than the leaving process, I have excluded leave membership timings 
from this comparison. The timings should be extremely similar to the Flush join latencies 
as the non-leaving members execute the exact same algorithm as they do for join view 
changes. 
 
The graphs below show the median latencies it took for the views to be installed in 
response to a user request. The error bars on the medians represent the first and third 
quartile values of the latency timings. 
 

                                                 
10 Recall that Spread does not provide Same View Delivery semantics for these FIFO messages. 
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These join latency timings were taken under the first membership profile of intermittent 
lightweight view changes. 
 

Spread and Flush Intermittent Join Latency
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These join latency timings were taken under the second membership profile of rapid 
serial lightweight view changes. 
 

Spread and Flush Continuous Join Latency
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As expected, Spread’s view installation latencies were almost completely unaffected as 
the number of client processes increased. This is due to Spread’s client-daemon 
architecture, where the latency to deliver a message is proportional to the number of 
participating daemons. Once a message is deliverable a Spread daemon must simply 
multiplex that message to however many interested clients are connected to it. That 
multiplexing happens roughly in parallel and with very little additional computational 
load, thus making Spread relatively insensitive to the size of a process group for 
delivering messages. Since lightweight view changes in Spread are caused by a single 
Agreed message, Spread’s latency to install lightweight view changes scales very well 
with the size of a process group. 
 
As expected, Flush Spread’s view installation latencies scaled roughly linearly as the 
number of client processes increased. This is due to the fact that each client must process 
a message from each of the n members of a potential view before installing that view. In 
fact, as the number of processes increased Flush Spread’s latency began to become super-
linear. This is due to the fact that as linearly more processes are connected to a particular 
Spread daemon it must deliver quadratically more total messages to those processes. 
 
The main differences from the intermittent to the continuous scenarios are a modest 
increase in the median latencies and a dramatic decrease in the variability of the timings.  
 
Spread’s increase in median latency and the decrease in timing variability stem directly 
from Spread’s local-area token Ring protocol [AMMS+95, AS98] and the fact that each 
membership change request follows immediately after the previous view is installed. In 
the continuous scenario, every time the token makes one trip around each of the daemons 
the previous membership change request is installed. This makes the installation latency 
equal to the period of one token circulation and on a switched local network this period 
will not vary much. In the intermittent scenario the token is on average half a circulation 
away but could be about to arrive or have just left.  
 
Flush Spread’s large increase in latency in the continuous scenario is due to the 
asymmetry of join and leave events at the leaver mentioned earlier. What is happening is 
that when the delta process requests to leave, his request is granted at the speed of a 
Spread leave request and he then immediately requests to re-join the group. Since the 
non-leaving members are still handling his leave view change, these “join” latency 
timings actually time both the join latency and a good portion of the “real” leave latency. 
To support this theory, I timed the combined join and leave latency of Spread and Flush 
under the continuous scenario: 
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Spread and Flush Continuous Join/Leave Latency
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As expected, the Spread median latency for a join followed by a leave approximately 
doubled, but the latency for Flush Spread barely increased. This demonstrates that the 
“join” latencies of Flush Spread above were measuring a good portion of the combined 
join and leave latency. This must be the case, because this algorithm cannot install a join 
view change until the previous leave view change is installed by executing the full 
algorithm for the leave change. So the non-leaving members would slow down the delta 
member and he would perceive the additional time as join latency when in fact it is an 
artifact of his asymmetrically fast leave. 
 
I believe that the intermittent lightweight view change profile is the more common 
membership change profile in practice. The continuous join/leave is more of a worst-case 
scenario test for the different algorithms. From the intermittent join latency graph, Flush 
Spread has a latency of less than 10ms for an n-to-n round to complete between fifty 
participants on a fast local network. If membership changes are not too common, then 
Flush Spread could comfortably support groups of hundreds of processes in that 
environment. This is almost an order of magnitude slower than Spread and scales much 
worse as the group size increases. However, one of the main claims of this paper was that 
Spread’s architecture was of such high performance that a more powerful and expensive 
set of GCS semantics could be implemented on top of it without excessive overhead. 
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9 Conclusions 
 
This thesis presented several distributed algorithms for implementing the Virtual 
Synchrony (VS) model of group communication on top of the Extended Virtual 
Synchrony (EVS) model of group communication. It formally proved that a more 
powerful set of GCS semantics could be built on top of a weaker set of semantics with 
very simple algorithms. Furthermore, this thesis argued that, in the common case, these 
algorithms have competitive performance compared with other “native” implementations 
of the VS model. 
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