

Partitionable Virtual Synchrony

Using

Extended Virtual Synchrony

John Lane Schultz

A thesis submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Master of Science, Engineering.

Baltimore, Maryland

January 2001

© John Lane Schultz 2001

All rights reserved

ii

Abstract

View-oriented group communication systems (GCSs) are powerful tools for building
distributed applications. Over the past fifteen years, group communication researchers
developed a multitude of group communication semantics and implementations. Today,
researchers commonly design their group communication algorithms on top of simple
existing services such as a network membership service or a reliable FIFO multicast
framework. A natural extension of this idea is to implement one set of group
communication semantics using another. This approach is not usually utilized due to the
expensive overhead of running one set of group communication algorithms on top of
another.

This thesis argues that the Extended Virtual Synchrony (EVS) model of group
communication, implemented using a client-daemon architecture, is of such high
performance that the overhead of constructing another group communication model on
top of it is acceptable. It demonstrates that the strong safety properties provided by the
EVS model can be leveraged to create very simple algorithms that implement more
powerful group communication models.

This thesis presents several EVS algorithms for implementing a partitionable Virtual
Synchrony (VS) model of group communication. It first explicitly defines the VS and
EVS models through the presentation of their safety and liveness properties. Then, one
simple algorithm is formally proved to implement the VS model by utilizing the safety
and liveness properties of the underlying EVS system. Finally, the paper discusses
several other simple variants and algorithms that were developed during the course of this
work.

iii

Acknowledgments

First and foremost, I thank my mother, Gloria Lane Single, for nurturing and supporting
me for the last twenty-three years of my life. My mother truly is the bedrock on which
my life has been founded, and all of my achievements stem from her. My stepfather,
George Thomas Single, has been in my life since before I can remember. Throughout my
life “Mr. Tom” has shown me, by example, how one should live up to their
responsibilities; I hope that I can become half the man that he is.

I am deeply and permanently indebted to my advisor, Dr. Yair Amir, for everything he
has done for me during my time at Hopkins. Without his persuasion and support I would
not have pursued a Master’s degree when I did. I believe I learned more in the pursuit of
this research than I did in my entire course work at Hopkins. I also thank Yair for his help
in creating my first commercial venture, D-Fusion, Inc.; without his assistance, D-Fusion
would never have gotten off the ground. Finally, I thank Yair for reminding me about
what is really important in life and making sure I keep my eyes on the bigger picture.

I am grateful to my father, Carl Matthew Schultz, Jr., and stepmother, Claudette Schultz,
for all of their emotional and financial support. Without them, I would never have been
able to attend Hopkins. I believe that my study at Hopkins will drastically affect the rest
of my life for the better and I am deeply indebted to them for that.

I thank Jonathan Stanton for his gracious ability to get involved with almost any problem
that was bothering me, regardless of topic. Jonathan makes up a big portion of the lab and
will be sorely missed when he moves on. I thank Cristina Nita-Rotaru for putting up with
me while we worked together and for writing such masterful publications. I thank each
and every other person in The Center for Networking and Distributed Systems for the
discussions, debates and brainstorming sessions that we had with one another. I can
honestly say that they are the best group of people with which I have ever worked.

I thank Katy Hsieh for giving me a taste of true love and becoming one of my closest
friends. I thank my friends Bobby Day, Phil Vasic and especially Eric Hall for remaining
true friends and tolerating my inexcusably long absences while I was at Hopkins.

Finally, I thank Jacob Green for being a close and true friend ever since I first met him. I
thank him for occasionally dragging me out of the house to have some fun. I thank him
for his tireless perseverance and cajoling in the pursuit of our first joint venture,
D-Fusion. I look forward to a lifetime of friendship and business partnership with Jacob.

John Lane Schultz
January 2001

My work in The Center for Networking and Distributed Systems was supported by the
National Security Agency under the LUCITE program and also by The Department of
Computer Science, The Johns Hopkins University.

iv

Table of Contents

1 INTRODUCTION... 1

1.1 OUTLINE .. 2
2 RELATED WORK ... 3
3 THE VS AND EVS GROUP COMMUNICATION MODELS .. 4

3.1 PRESENTATION FORMALISM .. 4
3.2 SHARED GCS MODEL .. 5
3.3 EXTENDED VIRTUAL SYNCHRONY MODEL EXTENSIONS 14
3.4 VIRTUAL SYNCHRONY MODEL EXTENSIONS ... 15

4 VS ALGORITHM DESIGN .. 17
4.1 DIFFERENCES BETWEEN EVS AND VS ... 17
4.2 PROBLEM DESCRIPTION: MAINTAINING SAFETY AND LIVENESS PROPERTIES.... 18
4.3 SINGLE ROUND VS ALGORITHM USING FIFO MESSAGES 19
4.4 ALGORITHM EVALUATION ... 24

5 SINGLE ROUND VS ALGORITHM PSEUDO-CODE ... 28
6 PROOF OF CORRECTNESS ... 30
7 VS ALGORITHM VARIANTS... 51

7.1 SINGLE ROUND VS ALGORITHM USING AGREED MESSAGES............................. 51
7.2 SINGLE ROUND VS ALGORITHM USING SAFE MESSAGES.................................. 51
7.3 TWO ROUND VS ALGORITHM USING FIFO MESSAGES 51
7.4 SINGLE ROUND VS ALGORITHM USING FIFO MESSAGES FOR SPREAD............. 52
7.5 ELIMINATING UNNECESSARY DATA OVERHEAD.. 54

8 PERFORMANCE... 56
9 CONCLUSIONS ... 60
10 REFERENCES.. 61

1

1 Introduction

View-oriented group communication systems (GCSs) are powerful tools that can greatly
simplify the development of distributed systems and services. GCSs provide two
interrelated services to their clients: a membership service and a multicast service. The
multicast service allows client processes to intercommunicate by multicasting datagram
messages, while the membership service tracks and reports the set of currently connected
clients with which a client can communicate. The exact semantic guarantees of the
membership and multicast services are specified by the particular GCS’s safety and
liveness properties.

Group communication is an active area of research that has been under development for
more than fifteen years [Bir86]. During that time, researchers proposed many different
systems that offered tradeoffs between performance, fault-tolerance and semantic
guarantees (see [VKCD99] for comprehensive references). With the multitude of
available semantics and implementations, it becomes interesting to look at how these
different systems are realized. Almost all of these systems can be built “from scratch”
using only an unreliable packet service such as UDP or even IP [MPS91, ADKM92,
BvR94, HvR96, AS98]. However, it usually does not make sense for a GCS researcher to
“reinvent the wheel” in this manner every time. Instead, GCS researchers will often
design their algorithms on top of simple services such as an existing membership service
or a reliable FIFO multicast framework (e.g. [KK00]).

A natural extension of this idea is to implement one set of GCS semantics using another.
This would allow a designer to leverage all of the strong services provided by the
underlying GCS’s semantics in order to develop simpler algorithms. Researchers,
however, do not normally take this approach due to the excessive overhead of
implementing one GCS algorithm on top of another. In most cases, this supposition is
correct. The Extended Virtual Synchrony (EVS) model [MAMSA94, Ami95], when
implemented using a client-daemon model [AS98], however, provides uniquely high
performance services to its clients. This high-performance GCS allows a stronger set of
GCS semantics to be built on top of it without excessive overhead.

The main objective of this thesis is to explore the simple and effective implementation of
a stronger set of GCS semantics built on top of EVS semantics. This exploration is done
using the Virtual Synchrony (VS) model [GS95], one of the best-understood and most-
used group communication models. This thesis demonstrates that a partitionable Virtual
Synchrony model can be implemented effectively on top of the Extended Virtual
Synchrony model with relatively simple and efficient algorithms.

The major contributions of this work are: it presents (1) precise specifications of the VS
and EVS models using I/O automata and mathematical notation, (2) an EVS algorithm
that implements the VS model of group communication, (3) rigorous proofs of that
algorithm’s correctness and (4) it allows EVS systems to support the VS model with a
simple client module.

2

1.1 Outline
This thesis is divided into three main parts: the first part presents the VS and EVS
models, the second presents an algorithm that implements VS on top of EVS and proves
the algorithm’s correctness and the last part discusses several algorithm optimizations
and model variants along with their respective tradeoffs.

Section 2 gives a brief overview of related work.

Section 3 states and discusses the safety properties that specify the VS and EVS models
for the purposes of this thesis. [MAMSA94] specified the canonical definition of EVS.
The VS model, on the other hand, has no canonical definition and the usage of this name
is somewhat confusing throughout the literature. By defining the exact VS model used in
this thesis there should be no further confusion generated by this work.

Section 4 lays out the problem of implementing VS on top of EVS and briefly discusses
some membership liveness properties that most GCSs maintain. This section explains the
general approach and algorithm this work used for implementing VS on top of EVS.

Section 5 presents an algorithm in pseudo-code that implements the presented VS model
on top of the presented EVS model.

Section 6 formally proves that the presented algorithm correctly implements the VS
model by leveraging the safety and liveness properties of the underlying EVS model.

Section 7 discusses several algorithmic and model variants and discusses their respective
tradeoffs.

Section 8 presents some real-world performance statistics from one of the algorithm
variants that were developed by this work.

Finally, section 9 concludes this thesis and summarizes the contributions of this work.

3

2 Related Work

Reliable group communication is an active research area, rich with specifications,
implementations and applications. In the past, most works concentrated on the
performance and capabilities of systems, often with a particular application in mind.
Several different group communication systems were built, such as ISIS [BvR94], Horus
[RKM96], Transis [ADKM92], Totem [AMMS+95], RMP [WMK94] and Spread
[AS98]. All of these systems are based on the ideas of virtual synchrony [Bir86] and
generally provide different “flavors” of the two most popular semantic models: Virtual
Synchrony [BvR94] and Extended Virtual Synchrony [MAMSA94].

Recently, precise specifications of system properties with accompanying proofs of
correctness have become more important. Researchers aided this movement by
developing several formal specification systems well suited to modeling distributed
systems, such as the I/O automaton paradigm [LT89, Lyn96, GL98] and Vitenberg’s
multi-sorted algebra [Vit98]. These systems allow for precise and easy to understand
property specifications of distributed systems and have been used recently for specifying
and reasoning about GCSs [DPFLS98, KK00]. These specification systems allow
reasoning about composition and arbitrary combinations of properties in an unambiguous
manner. In addition, these systems can lead to modular specifications, which can easily
translate to modular or layered system designs. Automatic theorem proving tools have
also been developed to work with these types of specification systems, such as the Larch
Prover [GG91, GHG+93] and have been used to prove the correctness of several
algorithms [SAGG+93, PPG+96, LSGL95].

In [VKCD99], the I/O automaton model was used to specify a host of logic formulae
specifying most common group communication safety and liveness properties. That
seminal work laid the groundwork for formal specifications of group communication
systems for the future. This paper strongly adopts and endorses the use of their
specification style. It allows for unambiguous and clear statements of system properties
that lend themselves both to manual and automatic proofs.

Other related work is sited throughout this thesis in the particular sections where that
related work is most pertinent.

4

3 The VS and EVS Group Communication Models

This section specifies the Virtual Synchrony (VS) and Extended Virtual Synchrony
(EVS) models in four subsections. The first subsection discusses the formalism used for
specifying the models and the following three subsections actually present the two sets of
safety properties. The second subsection presents the commonalities that the two models
share, the third subsection presents the additional properties that EVS provides and the
last subsection presents the additional properties that VS provides.

3.1 Presentation Formalism
This thesis presents a GCS model as a set of safety and liveness properties that defines
the system’s membership and multicast services. This thesis adopts and relies heavily on
the specification style of [VKCD99], where properties are formalized as trace properties
of an I/O automaton [LT89] in logical axioms using set-theoretic notation. This thesis
precisely specifies the safety properties of each model while it informally discusses the
liveness properties of group communication systems. This thesis concentrates on
formally proving that the discussed algorithms maintain the models’ safety properties
while maintaining their liveness properties without formal proofs. For explicit
specifications and more in-depth discussions of GCS liveness properties, please consult
[VKCD99].

In this thesis, GCS processes are modeled as untimed I/O automata [LT89, Lyn96]. The
safety and liveness properties presented herein are with respect to the external behavior
of the GCS processes, as reflected in their external signature and in their fair traces. The
external signature of an automaton consists of the possible atomic input and output
actions with which it can interact with its environment. A trace of an I/O automaton is the
sequence of external actions that occur at that automaton in an execution. An automaton
is said to implement a GCS model if it has the same external signature as that model and
for all of that automaton’s fair traces the safety and liveness properties of that model
hold. For formal definitions and a more in-depth discussion of I/O automatons, please
consult [Lyn96], Chapter 8.

The GCSs that this work considers function on top of a communication network that
provides asynchronous, unreliable message delivery. The group communication models
allow for the following external events: messages may be lost, processes may crash and
recover, the network can partition into disjoint network components and previously
disjoint network components may merge. The models considered herein are partitionable,
meaning that a client process can make progress in any network component. This thesis
assumes that no Byzantine failures occur, meaning that no client or component of the
GCS processes acts in a non-specified manner.

For simplicity’s sake, this thesis makes the following assumptions in its presentations: (1)
it is assumed there exists one GCS process for each client process and they are, in fact,
one in the same, therefore, if any part of the GCS process or client fails, this results in a
GCS process crash; (2) all properties and algorithms presented in this thesis are with

5

respect to a single client group, whereas most GCS systems provide multiple groups to
and from which clients can send and receive messages; (3) that group is a closed group,
meaning that only members of that group can send and receive messages to and from it;
(4) the mechanisms of joining and leaving that group are considered external operations –
upon recovery, a process immediately tries to join the group and only leaves that group as
a result of crashing. None of these assumptions have important side effects and they can
be removed. These assumptions are only used to simplify the presentation of the models,
algorithms and proofs.

3.2 Shared GCS Model
This section presents the portions of the VS and EVS models that they share in common.

3.2.1 Automaton External Signature
The specifications of the GCS models use the following basic sets:

B – the Boolean set
N – the set of natural numbers
P – the set of processes
M – the set of sent client messages
VID – the set of delivered view ids with a strict partial order by the < operator
MT := { R, F, C, A, S } the set of messages types
∅ – the null or empty set

Throughout the rest of this thesis, variables named a, b, c, d, i, j, k and l are members of
N, variables named p and q are members of P, variables named D, S and T are members
of 2P, variables named m are members of M and variables named id are members of VID.
Any variable name that has a prime(s) or star(s) appended to it is from the same set as the
base variable.

The basic functionality or signature of a view-oriented GCS is that it allows a client to
send messages to other clients, receive messages from other clients, and get information
about the other clients with which it is communicating.

6

Figure 1: External signature of the Shared GCS Model.

Each action in the GCS external signature is parameterized by a unique process p ∈ P at
which that action occurs. Each GCS process interacts with its client and environment as
depicted in Figure 1. The external signature of the GCS consists of the following actions:

Interaction with the Client

• input send(p, m), p ∈ P, m ∈ M
Note that each sent message is associated with one sender and one message type – this
information is assumed to be encoded with the message. I refer to the message sender
as m.sender (∈ P) and the message type as m.type (∈ MT).

• output deliver(p, m), p ∈ P, m ∈ M

• output view(p, id, D, T), p ∈ P, id ∈ VID, D ∈ 2P, T ∈ 2P
D represents the membership set of the view and T represents the transitional set of the
view for this process.

• output trans_sig(p), p ∈ P

Interaction with the Environment

• input crash(p), p ∈ P

• input recover(p), p ∈ P

3.1 Definition (Event) An event is an occurrence of an action from an automaton’s
external signature.

3.2 Definition (Trace) A trace is a sequence of events.

7

3.2.2 Mathematical Model
This section presents the mathematical model for stating trace properties of a GCS
automaton with the external signature above described. The properties are stated in
logical axioms using set-theoretic notation and use the following sets:

B, N, P, M, VID, MT, ∅ – the basic sets above described

Actions The set of actions is:

{ send(p, m) | p ∈ P, m ∈ M } ∪ { deliver(p, m) | p ∈ P, m ∈ M } ∪
{ view(p, id, D, T) | p ∈ P, id ∈ VID, D ∈ 2P, T ∈ 2P } ∪
{ trans_sig(p) | p ∈ P } ∪ { crash(p) | p ∈ P } ∪ { recover(p) | p ∈ P }

Traces – sequences of actions

Events – actions that are members of traces

Since all of the following axioms classify automaton traces, they all take a trace as a
parameter. For clarity of presentation, the trace parameter is considered implicit and is
omitted – all axioms are with respect to a fixed trace (Trace = t1, t2, …). In the following
axioms, universal quantifiers are omitted – when a variable is unbound it is universally
quantified for the scope of the entire formula.

3.2.3 Definitions
Since each event occurs atomically at a single process, the function pid : Events → P,
which returns the process at which each event occurs, is defined.

3.3 Definition (pid) The pid of an event ta is the process at which that event occurred.

Formally:
pid(ta) := p if ta = trans_sig(p) ∨ ta = crash(p) ∨ ta = recover(p) ∨

 (∃m : ta = deliver(p, m) ∨ ta = send(p, m)) ∨ (∃id∃D∃T : ta = view(p, id, D, T))

In a view-oriented GCS, events occur at processes within the context of views. The
function vid : Events × P → VID ∪ {⊥} returns the view in the context of which an event
occurred at a specific process. Note that for a view event, it is not the new view
introduced, but rather the process’ previous view. Up until the first view event at a
process and immediately after a crash event, a process is not considered to be in any
view (modeled by ⊥).

3.4 Definition (vid) The vid of an event tc at a process p is the view identifier delivered

in a view event ta at p which precedes tc such that there are no view or recover
events between ta and tc at p. If there is no such view event then the vid is the null
view identifier, ⊥. Formally:
vid(tc, p) := id if ∃a b∃D∃T : a < b < c ∧ ta = view(p, id, D, T) ∧

(tb = recover(p) ∨ ∃id’∃D’∃T’ : tb = view(p, id’, D’, T’))
⊥ otherwise

8

Event tb is the first event at a process p:

first_event(tb, p) ≡ a : a < b ∧ pid(ta) = pid(tb) = p
Event ta is the previous event before tc at process p:

prev_event(ta, tc, p) ≡ a < c ∧ pid(ta) = pid(tc) = p ∧ b : pid(tb) = p ∧ a < b < c
Event tc is the next event after ta at process p:

next_event(tc, ta, p) ≡ a < c ∧ pid(ta) = pid(tc) = p ∧ b : pid(tb) = p ∧ a < b < c

Table 1: Shorthand predicates.

The Causal order [Lam78] defines a strict partial order on events in a trace.

3.5 Definition (→) The → relation defines the causally precedes strict partial order on

events. Formally:

ta → ti ≡ (pid(ta) = pid(ti) ∧ a < i) ∨ (ta = send(p, m) ∧ ti = deliver(q, m)) ∨
(∃b : ta → tb ∧ tb → ti)

The ord : M → N function is used by the GCS to determine the delivery order of Agreed
messages1. This function is not necessarily available to client processes.

3.6 Definition (ord) The ord function is a one-to-one mapping from M to the set of

natural numbers that is consistent with the causally precedes strict partial order of
send events. Formally:
ord : M → N ∧ (ord(m) = ord(m’) ⇔ m = m’) ∧

 (ta = send(p, m) ∧ ti = send(q, m’) ∧ ta → ti ⇒ ord(m) < ord(m’))

Several shorthand predicates are also defined in Table 1.

3.2.4 Assumptions about the Environment
In the following models, no events occur at a process between crash and recovery.

3.1 Assumption (Execution Integrity) The first event that occurs at a process is a

recover event. If a recover event occurs at a process, then it is either the first event
at that process or the previous event was a crash event. The next event that occurs
at a process after a crash event is a recover event. Formally:
(first_event(tb, p) ⇒ tb = recover(p)) ∧
(tb = recover(p) ⇒ (prev_event(ta, tb, p) ∧ ta = crash(p)) ∨ first_event(tb, p)) ∧
(ta = crash(p) ∧ next_event(tb, ta, p) ⇒ tb = recover(p))

1 Agreed messages are delivered in a strong total order [WS95, VKCD99].

9

In order to distinguish between messages sent in different send events, each message sent
by a client is tagged with a unique message identifier. This assumption is not essential
and is, again, used to simplify the presentation of the models.

3.2 Assumption (Message Uniqueness) There are no two different send events with

the same content. Formally:
ta = send(p, m) ∧ ti = send(q, m) ⇒ a = i

3.2.5 Shared GCS Membership Service Safety Properties
This section presents the safety properties of the membership service that both the VS
and EVS models maintain.

3.1 Property (Initial View Event) Every send, deliver, and trans_sig event at a

process occurs within some view. Formally:
ta = send(p, m) ∨ ta = deliver(p, m) ∨ ta = trans_sig(p) ⇒ vid(ta, p) ≠ ⊥

3.2 Property (Self Inclusion) If a process p installs a view, then p is a member of the

membership set. Formally:
ta = view(p, id, D, T) ⇒ p ∈ D

3.3 Property (Membership Agreement) If a process p installs a view with identifier id

and a process q installs a view with the same identifier, then the membership sets of
the views are identical. Formally:
ta = view(p, id, D, T) ∧ ti = view(q, id, D’, T’) ⇒ D = D’

3.4 Property (Local Monotonicity) If a process p installs a view with identifier id’

after installing a view with identifier id, then id’ is greater than id. Formally:
ta = view(p, id, D, T) ∧ tb = view(p, id’, D’, T’) ∧ i < j ⇒ id < id’

3.2.6 Shared GCS Multicast Service Safety Properties
This section presents the safety properties of the multicast service that both the VS and
EVS models maintain.

3.5 Property (No Duplication) A process never delivers a message more than once.

Formally:
ta = deliver(p, m) ∧ tb = deliver(p, m) ⇒ a = b

3.6 Property (Delivery Integrity) A deliver event in a view is the result of a preceding

send event by a member of that view2. Formally:
ta = view(p, id, D, T) ∧ tb = deliver(p, m) ∧ vid(tb, p) = id ⇒ ∃i∃q : i < a ∧ ti = send(q, m) ∧ q ∈ D

2 Note that the requirement that a sender be a member of the view in which its message is delivered is not
required for open group GCSs.

10

Property (Self-Delivery) is actually a liveness property of the multicast service. It is
formally presented here because it is utilized in the section of proofs.

3.7 Property (Self-Delivery) If a process p sends a message m, then p delivers m

unless it crashes. Formally:

ta = send(p, m) ∧ b : a < b ∧ tb = crash(p) ⇒ ∃c : tc = deliver(p, m)

3.8 Property (Same View Delivery) If processes p and q both deliver a message m,

then they both deliver m in the same view. Formally:
ta = deliver(p, m) ∧ vid(ta, p) = id ∧ ti = deliver(q, m) ∧ vid(ti, q) = id’ ⇒ id = id’

The following properties are not usually explicitly stated in specifications of the EVS and
VS models. They are specified here because, unlike most specifications, this EVS model
does not assume any form of Sending View Delivery (defined below) and, therefore,
requires more explicit properties to maintain the usual message reliability (no-holes)
safety properties. These properties are sanity constraints on the views in which a process’
messages can be delivered. All of the GCSs studied by this work maintain these
properties.

3.9 Property (Sane View Delivery)

1. A message is not delivered in a view earlier than the one in which it was sent.
Formally:
ta = send(p, m) ∧ vid(ta, p) = id ∧ ti = deliver(q, m) ∧ vid(ti, q) = id’ ⇒ id ≤ id’

2. If a process p sends a message m, crashes and later recovers in a view id and a
process q delivers m, then m is delivered in a view before id. Formally:
ta = send(p, m) ∧ tc = view(p, id, D, T) ∧ vid(tc, p) = ⊥ ∧ a < c ∧ ti = deliver(q, m) ⇒
vid(ti, q) < id

3. If two messages m and m’ are sent, respectively, by processes p and p’ such that
the send of m’ is causally preceded by the send of m and a process q’ delivers
both messages, then q’ does not deliver m in a later view than m’. Formally:
ta = send(p, m) ∧ td = send(p’, m’) ∧ ta → td ∧ tj = deliver(q’, m) ∧ tk = deliver(q’, m’) ⇒
vid(tj, q’) ≤ vid(tk, q’)

3.10 Property (Virtual Synchrony) If processes p and q are virtually synchronous in a
view (defined below), then any message delivered by p in that view is also delivered
by q. Formally:
vsynchronous_in(p, q, id) ∧ ta = deliver(p, m) ∧ vid(ta, p) = id ⇒ ∃i : ti = deliver(q, m)

This thesis presents the usual message ordering and reliability safety properties
differently than most GCS papers. In this thesis, the different message ordering and
reliability safety properties are explicitly presented as a hierarchy of different message
types. In this hierarchy, each higher level of service maintains all of the safety properties
of the lower levels. For example, a FIFO message maintains the FIFO and Reliable

11

message properties, while a Causal message maintains the Causal, FIFO and Reliable
message properties. This hierarchy implicitly makes the presented GCSs use weak
incorporated [WS95] delivery semantics when delivering two different types of
messages. (Recall that a sent message m is of one specific message type, indicated by
m.type ∈ MT)

3.11 Property (Reliable Messages) All messages are reliable. The Self-Delivery, Same

View Delivery and Virtual Synchrony properties implicitly define the safety
properties of Reliable messages. Formally:

reliable(m) ≡ m.type ∈ { R, F, C, A, S }

3.12 Property (FIFO Messages)

1. FIFO messages are reliable messages. Formally:

fifo(m) ≡ m.type ∈ { F, C, A, S }

2. If a process sends a FIFO message after sending a previous message, then these
messages are delivered in the order in which they were sent at every process that
delivers both. Formally:
ta = send(p, m) ∧ tb = send(p, m’) ∧ a < b ∧ fifo(m’) ∧
ti = deliver(q, m) ∧ tj = deliver(q, m’) ⇒ i < j

3. If a process p sends a FIFO message m’ after sending a previous message m and

a process q’ delivers m’, then if any process delivers m, then q’ either delivers m
or installs a view without p in its transitional set between the delivery views of m
and m’, or if no process delivers m, then p crashed between sending m and m’ and
q’ installs a view without p in its transitional set between the recovery view of p
and the delivery view of m’.
ta = send(p, m) ∧ tc = send(p, m’) ∧ a < c ∧ fifo(m’) ∧ tl = deliver(q’, m’) ⇒
(∃i∃q : ti = deliver(q, m) ⇒ (∃j : tj = deliver(q’, m)) ∨
 (∃k∃id’∃D’∃T’ : tk = view(q’, id’, D’, T’) ∧ p ∉ T’ ∧ vid(ti, q) < id ≤ vid(tl, q’))) ∧
(i∃q : ti = deliver(q, m) ⇒ ∃b∃id∃D∃T : a < b < c ∧ tb = view(p, id, D, T) ∧ vid(tb, p) = ⊥ ∧
 ∃k∃id’∃D’∃T’ : tk = view(q’, id’, D’, T’) ∧ p ∉ T’ ∧ id ≤ id’ ≤ vid(tl, q’))

3.13 Property (Causal Messages)

1. Causal messages are FIFO messages. Formally:

causal(m) ≡ m.type ∈ { C, A, S }

2. If a process sends a causal message m’ such that the send of another message m,
causally precedes the send of m’, then any process that delivers both messages,
delivers m before m’. Formally:

ta = send(p, m) ∧ td = send(p’, m’) ∧ ta → td ∧ causal(m’) ∧
ti = deliver(q, m) ∧ tj = deliver(q, m’) ⇒ i < j

12

3. If a process p’ sends a causal message m’ such that the send of another message
m causally precedes m’, then if any process delivers m, then q’ either delivers m
or installs a view without p’ in its transitional set between the delivery views of m
and m’, or if no process delivers m, then p crashed between sending m and m’ and
q’ installs a view without p in its transitional set between the recovery view of p
and the delivery view of m’.
ta = send(p, m) ∧ tc = send(p’, m’) ∧ ta → tc ∧ causal(m’) ∧ tl = deliver(q’, m’) ⇒
(∃i∃q : ti = deliver(q, m) ⇒ (∃j : tj = deliver(q’, m)) ∨
 (∃k∃id’∃D’∃T’ : tk = view(q’, id’, D’, T’) ∧ p’ ∉ T’ ∧ vid(ti, q) < id ≤ vid(tl, q’))) ∧
(i∃q : ti = deliver(q, m) ⇒ ∃b∃id∃D∃T : a < b < c ∧ tb = view(p, id, D, T) ∧ vid(tb, p) = ⊥ ∧
 ∃k∃id’∃D’∃T’ : tk = view(q’, id’, D’, T’) ∧ p’ ∉ T’ ∧ id ≤ id’ ≤ vid(tl, q’))

3.14 Property (Agreed Messages)

1. Agreed messages are causal messages. Formally:

agreed(m) ≡ m.type ∈ { A, S }

2. If a process p delivers an agreed message m’, then after that event it will never
deliver a message that has a lower ord value. Formally:
ta = deliver(p, m) ∧ tb = deliver(p, m’) ∧ agreed(m’) ∧ ord(m) < ord(m’) ⇒ a < b

3. If a process p delivers an agreed message m’ before a trans_sig event in its
current view, then p delivers every message with a lower ord value than m’
delivered in that view by any process. Formally:
tc = deliver(p, m’) ∧ agreed(m’) ∧ (b : b < c ∧ tb = trans_sig(p) ∧ vid(tb, p) = vid(tc, p)) ⇒
∀i∀q∀m : ti = deliver(q, m) ∧ vid(ti, q) = vid(tc, p) ∧ ord(m) < ord(m’); ∃a : ta = deliver(p, m)

4. If a process p delivers an agreed message m’ after a trans_sig event in its current

view, then p delivers every message with a lower ord value than m’ sent by any
processes in p’s next transitional set that were delivered in the same view as m’.
Formally:
ta = trans_sig(p) ∧ tc = deliver(p, m’) ∧ td = view(p, id’, D’, T’) ∧ a < c < d ∧ agreed(m’) ∧
vid(ta, p) = vid(tc, p) = vid(td, p) = id ⇒
∀i∀q∈T’∀m∀l∀p’ : ti = send(q, m) ∧ tl = deliver(p’, m) ∧ vid(tl, p’) = id ∧ ord(m) < ord(m’);
∃b : tb = deliver(p, m)

13

3.15 Property (Safe Messages)

1. Safe messages are agreed messages. Formally:

safe(m) ≡ m.type ∈ { S }

2. If a process p delivers a safe message m before a trans_sig event in its current
view id, then every member of that view delivers m, unless it crashes in id.
Formally:
ta = view(p, id, D, T) ∧ tc = deliver(p, m) ∧ safe(m) ∧ vid(tc, p) = id ∧

b : a < b < c ∧ tb = trans_sig(p) ⇒
∀q∈D; ∃i∃D’∃T’∃j : ti = view(q, id, D’, T’) ∧ (tj = deliver(q, m) ∨ (tj = crash(q) ∧ vid(tj, q) = id))

3. If a process p delivers a safe message m after a trans_sig event in its current view

id, then every member of p’s transitional set from p’s next view delivers m, unless
it crashes in id. Formally:
ta = view(p, id, D, T) ∧ tb = trans_sig(p) ∧ tc = deliver(p, m) ∧ td = view(p, id’’, D’’, T’’) ∧
safe(m) ∧ b < c ∧ vid(tb, p) = vid(tc, p) = vid(td, p) = id ⇒
∀q∈T’’; ∃i∃D’∃T’∃j : ti = view(q, id, D’, T’) ∧
(tj = deliver(q, m) ∨ (tj = crash(q) ∧ vid(tj, q) = id))

3.16 Property (Transitional Signals)

1. At most one trans_sig event occurs at a process per view. Formally:
ta = trans_sig(p) ∧ vid(ta, p) = id ⇒

b : b ≠ a ∧ tb = trans_sig(p) ∧ vid(tb, p) = id

2. If two processes p and q are virtually synchronous (defined below) in a view id
and p has a trans_sig event occur in that view, then q also has a trans_sig event
occur in that view and they both deliver the same sets of agreed messages before
and after their trans_sig events in that view. Formally:
vsynchronous_in(p, q, id) ∧ tb = trans_sig(p) ∧ vid(tb, p) = id ⇒
∃j : tj = trans_sig(q) ∧ vid(tj, q) = id ∧
(∃a∃m : a < b ∧ ti = deliver(p, m) ∧ vid(ta, p) = id ∧ agreed(m) ⇔
 ∃i∃m : i < j ∧ ti = deliver(q, m) ∧ vid(ti, q) = id ∧ agreed(m)) ∧
(∃c∃m’ : b < c ∧ tc = deliver(p, m’) ∧ vid(tc, p) = id ∧ agreed(m’) ⇔
 ∃k∃m’ : j < k ∧ tk = deliver(q, m’) ∧ vid(tk, q) = id ∧ agreed(m’))

14

3.3 Extended Virtual Synchrony Model Extensions
This section presents the safety properties that the EVS model provides above and
beyond the safety properties that the VS and EVS models share in common.

3.7 Definition (EVS vsynchonous_in) If processes p and q both install the same view

in the same previous view, then they were virtually synchronous in that previous
view. Formally:

vsynchronous_in(p, q, id) ≡ ∃a∃id’∃D∃T∃i∃D’∃T’ :
ta = view(p, id’, D, T) ∧ ti = view(q, id’, D’, T’) ∧
vid(ta, p) = vid(ti, q) = id

3.17 Property (EVS Transitional Set)

1. The transitional set for the first view installed at a process following a recover
event is the empty set. Formally:
ta = view(p, id, D, T) ∧ vid(ta, p) = ⊥ ⇒ T = ∅

2. If a process p installs a view in a previous view, then the transitional set for the
new view at p is a subset of the intersection between the two views’ membership
sets. Formally:
ta = view(p, id, D, T) ∧ tb = view(p, id’, D’, T’) ∧ vid(tb, p) = id ⇒ T’ ⊆ D ∩ D’

3. If processes p and q install the same view, then q is included in p’s transitional set

for that view if and only if p’s previous view was identical to q’s previous view.
Formally:
ta = view(p, id’’, D, T) ∧ vid(ta, p) = id ∧ ti = view(q, id’’, D’, T’) ∧ vid(ti, q) = id’ ⇒
(q ∈ T ⇔ id = id’)

4. If processes p and q install the same view in the same previous view, then they

have the same transitional sets in their new views. Formally:
ta = view(p, id, D, T) ∧ ti = view(q, id, D’, T’) ∧ vid(ta, p) = vid(ti, q) ⇒ T = T’

15

3.4 Virtual Synchrony Model Extensions
This section presents the extensions to the external signature and additional safety
properties that the VS model provides beyond those that the VS and EVS models share in
common.

Figure 2: External signature of the VS Model.

Additional Interaction with the Client:

• input flush(p), p ∈ P

• output flush_req(p), p ∈ P

Actions := Actions ∪ { flush(p) | p ∈ P } ∪ { flush_req(p) | p ∈ P }

3.8 Re-Definition (VS pid) The pid of an event ta is the process at which that event

occurred. Formally:
pid(ta) := p if ta = trans_sig(p) ∨ ta = crash(p) ∨ ta = recover(p) ∨

ta = flush(p) ∨ ta = flush_req(p) ∨ (∃m : ta = deliver(p, m) ∨ ta = send(p, m)) ∨
(∃id∃D∃T : ta = view(p, id, D, T))

3.9 Definition (VS vsynchonous_in) If processes p and q both install a view in the

same previous view, id, and q is in p’s transitional set, then they are virtually
synchronous in id3. Formally:

vsynchronous_in(p, q, id) ≡ ∃a∃id’∃D∃T∃i∃D’∃T’ :
ta = view(p, id’, D, T) ∧ ti = view(q, id’, D’, T’) ∧
vid(ta, p) = vid(ti, q) = id ∧ q ∈ T

3 The following definition of the VS transitional set makes VS vsynchronous_in a reflexive, symmetric and
transitive relation on processes in a view.

16

3.18 Property (VS Initial View Event) Every flush, flush_req, send, deliver, and
trans_sig event occurs within some view. Formally:
ta = flush(p) ∨ ta = flush_req(p) ∨ ta = send(p, m) ∨ ta = deliver(p, m) ∨ ta = trans_sig(p) ⇒
vid(ta, p) ≠ ⊥

3.19 Property (Sending View Delivery) Messages are delivered in the view in which

they are sent. Formally:
ta = deliver(p, m) ∧ vid(ta, p) = id ⇒ ∃i∃q : ti = send(q, m) ∧ vid(ti, q) = id

3.20 Property (Flush Requests and Flushes)

1. At most one flush_req event occurs in a view at a process. Formally:
ta = flush_req(p) ⇒ b : b ≠ a ∧ tb = flush_req(p) ∧ vid(ta, p) = vid(tb, p)

2. At most one flush event occurs in a view at a process. A flush event is preceded

by a flush_req event in that view at that process. No send events follow a flush
event in a view at a process. Formally:
tb = flush(p) ⇒ d : d ≠ b ∧ td = flush(p) ∧ vid(tb, p) = vid(td, p) ∧
∃a c∃m : a < b < c ∧ ta = flush_req(p) ∧ tc = send(p, m) ∧ vid(ta, p) = vid(tb, p) = vid(tc, p)

3. Every view event, except for the first following a recover event, at a process is

preceded by a flush event. Formally:
tb = view(p, id, D, T) ⇒ ∃a : a < b ∧ (ta = flush(p) ∨ ta = recover(p)) ∧ vid(ta, p) = vid(tb, p)

3.21 Property (VS Transitional Set)

1. The transitional set for the first view installed at a process following a recover
event is the empty set. Formally:
ta = view(p, id, D, T) ∧ vid(ta, p) = ⊥ ⇒ T = ∅

2. If a process p installs a view in a previous view, then the transitional set for the

new view at p is the union of p with a subset of the intersection between the two
views’ membership sets. Formally:
ta = view(p, id, D, T) ∧ tb = view(p, id’, D’, T’) ∧ vid(tb, p) = id ⇒ p ∈ T’ ∧ T’ ⊆ D ∩ D’

3. If processes p and q install the same view and q is included in p’s transitional set

for that view, then p’s previous view was identical to q’s previous view.
Formally:
ta = view(p, id’, D, T) ∧ vid(ta, p) = id ∧ ti = view(q, id’, D’, T’) ∧ q ∈ T ⇒ vid(ti, q) = id

4. If processes p and q install the same view and q is included in p’s transitional set

for that view, then p and q have the same transitional sets for that view.
Formally:
ta = view(p, id’, D, T) ∧ ti = view(q, id’, D’, T’) ∧ q ∈ T⇒ T = T’

17

4 VS Algorithm Design

This section describes some of the problems involved with implementing VS on top of
EVS. It also describes, in general terms, the algorithms that this work developed to solve
those problems.

4.1 Differences between EVS and VS
The main difference between the EVS and VS models is that the VS model offers
Sending View Delivery semantics while EVS only offers Same View Delivery semantics.

This difference in message delivery semantics is responsible for the differences in the
models external signatures. Friedman and van Renesse have shown [FvR95] that in order
to maintain Sending View Delivery without violating other useful safety properties, such
as Self-Delivery and Virtual Synchrony, clients must not be allowed to send messages for
a certain period of time before each VS view is installed. Therefore, a VS implementation
must signal its clients that an underlying membership change has occurred and request
that the client stop sending messages in its current view, so that this new view
information can be delivered. The client, when it is ready, responds to this request with a
flush message that closes its current view. After closing its previous view a client is not
allowed to send more messages until a new view is installed. Thus, to enable Sending
View Delivery for a client, the VS model has the additional flush and flush request events
that the EVS model does not.

EVS systems never request authorization from clients in order to install new views; they
simply determine and install new views as they deliver messages while maintaining the
appropriate properties. This makes the EVS model uniquely suited for a client-daemon
implementation. Most GCSs are implemented such that each client process acts a GCS
process, meaning that the client process itself, or a subcomponent of the client process
ensures that the safety and liveness properties of the system are maintained. In a client-
daemon system, a set of dedicated, long-lived daemon processes is responsible for
maintaining the safety and liveness properties of the system. Client processes connect to
one of the daemons and send and receive messages through that daemon. That daemon
acts as a representative for that client in the group communication system, ensuring all of
the safety and liveness properties of the model.

This client-daemon architecture has many performance advantages over client-based
architectures. First, almost every variable algorithmic cost in a GCS is tied to how many
processes are involved in a procedure. In practice, the number of daemons is small
relative to the number of client processes. This means that almost every algorithmic cost
is drastically reduced in this architecture. Second, in this kind of system, client process
membership changes can be implemented with a single Agreed message4 [Spread]. This
kind of membership change is far less expensive than membership changes in client
based systems, which often consist of multiple n-to-n communication rounds during

4 In this architecture, Same View Delivery is not maintained in certain rare scenarios.

18

which messages cannot be sent. The client-daemon architecture also has these more
expensive membership changes, however, these heavyweight membership changes only
occur due to daemon membership changes. Daemon membership changes only occur
when particular network components partition or merge and daemons crash or recover. In
most environments, these are relatively rare events compared to client processes joining
or leaving the group communication system. The high performance of this client-daemon
EVS architecture, along with its inexpensive and non-blocking client level memberships
are what make it a prime candidate on top of which to implement a client level VS
system.

4.2 Problem Description: Maintaining Safety and Liveness Properties
As mentioned in the previous major section, a GCS consists of a set of safety and
liveness properties. In the previous section, the safety properties of the EVS and VS
systems were laid out in detail. This section informally discusses the liveness properties
that must also be maintained to correctly implement a GCS model. This section also
points out some of the constraints that maintaining these different properties enforces on
any VS algorithm and comments on how they apply, in particular, to implementing VS
on top of EVS.

4.2.1 Membership Liveness Properties
The main purpose of a GCS is to allow its clients to communicate with other clients
connected to the system. To be truly useful, most GCSs maintain a membership liveness
property that requires a certain level of precision from their membership service. The
main point of this liveness property is to require a GCS’s membership service to
eventually reflect the underlying communication connectivity of its clients. This GCS
liveness property is difficult to formulate [ACBMT95] and has been proven impossible to
maintain in every situation [CHTCB96]. Roughly speaking, this liveness property
requires that if an underlying connectivity change occurs and the new connectivity exists
forever, then the new connectivity must eventually be uniformly and accurately presented
to the connected clients.

In order to accomplish this feat, any VS algorithm must use some form of distributed
agreement to get all of the members of the underlying stable membership to agree upon
and install the same VS view. For the purposes of this work, maintaining this property
requires that if an EVS view persists forever, that eventually the VS algorithm will install
the same VS view to all of the members of the underlying view and that it will not install
any further views.

If an algorithm installs a view that does not match the underlying system’s view (as the
algorithm knows it) at the time of installation, then the installed view is said to be
obsolete. If an algorithm installs an obsolete view it will eventually have to re-execute to
install a more accurate view. An algorithm that installs obsolete views will usually
generate more views than one that does not, which often causes client processes to do
unnecessary state synchronization work. Therefore, algorithms that generate obsolete
views are generally considered less desirable than those that do not.

19

4.2.2 Membership Safety Properties
The safety properties that the membership service must maintain are relatively few. In
particular, it must maintain the Self-Inclusion, Membership Agreement and Local
Monotonicity properties.

A VS algorithm can take two approaches to maintaining these properties. These
properties can either be provided by a separate membership service, or the algorithm
itself can use a form of distributed agreement to agree upon view identifiers and
membership sets.

4.2.3 Multicast Liveness Properties
The other common liveness properties of GCSs concern the eventual delivery of
messages in stable views. If the connectivity of the underlying communication system
eventually stabilizes forever, then, as described above, an algorithm built on top of such a
system must eventually reflect that connectivity to its clients in a stable view.
Furthermore, messages that are sent in such a stable view must eventually be delivered to
all the members of that view.

For the purposes of this work, this means that a VS algorithm cannot drop messages in a
stable view. Of course, there is no practical way for an algorithm to determine if a stable
view has been reached. Therefore, if the algorithm installs a view and no further
underlying changes have occurred yet, then messages received from the underlying
system must eventually be delivered to all of the members of that view.

4.2.4 Multicast Safety Properties
There are a host of safety properties on the multicast service. Most of these properties
concern the ordering and reliability of different message types. Many algorithms have
been developed that maintain the safety properties of the respective message types.

A VS algorithm must either implement some of these algorithms itself, or it can have
many of those services done for it by a separate multicast service. In this latter case, the
algorithm simply must ensure that the underlying service, along with injected alterations
such as inserting, dropping or reordering messages maintains the correct safety
properties.

4.3 Single Round VS Algorithm Using FIFO Messages
This section discusses the particular algorithm that this work developed to implement VS
on top of EVS.

4.3.1 VS Algorithm Design Philosophy
The main thrust of this work was to develop an algorithm that maintained the safety and
liveness properties provided by the EVS system below it and with minimal additional
work added the additional safety properties of the VS model. In effect, the algorithm
should “interfere” with the operation of the EVS system just enough to implement the
extra safety semantics of the VS model. If done correctly, the liveness properties of the

20

underlying EVS layer will be implicitly maintained and many of the EVS system’s safety
properties will “bleed through” as well. This leveraging of GCS properties is the reason
why the algorithms implemented in this manner can be so much simpler than “native”
algorithms.

First and foremost, the VS algorithm will exploit the EVS membership service as much
as possible. It does this by using the views provided by the EVS system as potential VS
views to be installed. This heuristic will almost implicitly maintain the safety properties
of the underlying membership service. Furthermore, if new VS views are only installed in
response to EVS views being installed, and the algorithm eventually installs the most
recent EVS view, then the liveness properties of the EVS membership service will
implicitly be maintained as well.

Second, the VS algorithm will implicitly maintain many of the safety properties of the
underlying multicast service by only performing minimal reordering of messages before
they are either dropped or delivered. Obviously, the basic multicast safety properties such
as Property (No Duplication) and Property (Delivery Integrity) are easily maintained.

4.3.2 Algorithm Description
The VS algorithm’s presentation is broken into two sections. The first discusses the
membership portion of the algorithm that installs VS views. The second discusses the
message delivery portion of the algorithm.

4.3.2.1 VS View Installation
The core concept of the VS membership algorithm this work developed is quite simple.
When a client process attempts to install a VS view, it attempts to install a view that
matches its most recent EVS view. It does this by first multicasting a FIFO “flush
message” marked with the view identifier of that EVS view. The client then tries to
collect a flush message marked with that view identifier from each of the members of that
EVS view. If it achieves this, then it installs that VS view. If before the client can collect
all of the necessary messages another EVS view is installed at the client, then it abandons
the previous view and tries to install a new VS view that matches its new most recent
EVS view.

A client tries to install a new VS view only in two cases: (1) upon startup/recovery and
(2) when an EVS view is received while the process is in an established VS view. In this
second case, the algorithm notifies the client that the underlying connectivity has changed
by generating a flush request event. When the client is ready, it responds with a flush
event that authorizes the client’s algorithm to try and actively install the next VS view.
The algorithm then generates its first flush message and proceeds as above described.
While actively trying to install the next VS view a client is blocked from sending
messages.

It is easy to see how this heuristic for installing VS views maintains both the safety and
liveness properties of the EVS membership service. The safety properties are almost
trivially maintained, because the VS algorithm uses EVS views as VS views in the order

21

that they are installed at clients. The membership liveness property is maintained,
because if an EVS view is installed that is the stable EVS view, then once all of the
member processes flush5 their previous VS views those flush messages will be delivered
to all of the other members. Therefore, all of the members of the stable EVS view will
install the VS view that matches the stable EVS view. Also, because the stable EVS view
is the last view ever installed by the EVS system, this algorithm will not attempt to install
any further VS views.

4.3.2.2 VS Message Delivery
The core concept of the VS multicast algorithm this work developed is also fairly simple.
All VS messages are marked with the VS view in which they are sent. A process also
maintains a set of processes, called Vs_Survivors, from its most recent VS view, if any,
that have been in the transitional set of every EVS view installed since the process’ most
recent VS view. The name of this set is apt because it is the set of processes that the EVS
system hypothesizes have been virtually synchronous with this process since it installed
its last VS view.

If a process receives a message from the EVS system that is marked with the view
identifier of its most recent EVS view and that identifier is different than its most recent
VS view’s identifier, then it buffers the message. If another EVS view is installed at the
process before it receives all the necessary flush messages to install its most recent EVS
view, then any buffered messages are dropped. When a process installs a VS view it then
delivers any messages that it currently has buffered. If a process receives a message
marked with its current VS view identifier, then if the sender is in the process’
Vs_Survivors set, it immediately delivers the message. In all other cases, all messages are
dropped.

It is more difficult to understand the reasoning behind these message delivery heuristics
than the membership installation heuristics. The buffering of messages is fairly easy to
understand. If a process’ most recent EVS view is different than its most recent VS view,
then that process’ next VS view could be its current EVS view. Therefore, if it receives
messages that were sent in that VS view it should buffer them, in case this process
installs that VS view. If it does not install that VS view, then by EVS Property (Local
Monotonicity), the algorithm will never install that view and can safely drop those
messages.

The buffering the algorithm performs does not reorder messages from the point of view
of the VS system. The only way the algorithm could violate the ordering properties
provided by the EVS system is if it buffered a message m and then later received and
delivered a message m’ that was ordered after m, before it delivered m. A process never
delivers any message that does not match its VS or EVS view identifier upon receipt and
it buffers every message marked with its EVS view identifier when that identifier is
different than its VS identifier. If after buffering some messages a process receives a

5 Note, that if a member never authorizes closing its previous VS view, then it is completely legal (i.e. – not
a violation of the liveness property) to never install the stable VS view. Not installing the stable VS view is
due to a client willfully blocking the system and is not due to any deficiency of the algorithm.

22

message m for its current VS view, then it is legal to deliver m immediately. This is
because, as is shown below in the proof of Lemma 5.7 (VS Message Ordering), a process
only buffers non-Causal messages. Therefore, if the process immediately delivers m in its
current VS view, then the only ordering violation that could be violated is the FIFO
message ordering constraint. But this violation cannot occur because in order for the
sender to have installed a new VS view (it did because the message in the queue was
marked with the process’ current EVS view identifier) it must have sent a FIFO flush
message for the view it installed after sending m. Therefore, because the process just
received m, due to the FIFO ordering requirement, no FIFO message sent after m could
have been received by this process yet. Any messages from the sender that this process
already buffered must be Reliable messages it sent in a following VS view. Therefore,
delivering m immediately while messages have been buffered cannot violate the FIFO
ordering property. Therefore, the algorithm maintains all of the ordering properties given
by the underlying EVS system.

The only other way the algorithm delivers messages is if a message is marked with the
process’ most recent VS view identifier and the message’s sender is in its Vs_Survivors
set. The reasoning behind this heuristic is that the EVS message reliability (no-holes)
safety properties span multiple EVS views for messages it delivers from processes that
have been in the transitional sets of each of those EVS views. For senders not in all of
those transitional sets, the reliability guarantees may or may not hold across all of those
EVS views. Therefore, it is only correct to deliver messages in a VS view if the sender
has been in the transitional sets of all the EVS views that followed the EVS view
corresponding to their current VS view. If this policy was not followed then this
algorithm could introduce a causal hole in the stream of messages in the VS view at this
process.

In all other cases, messages are dropped as they are received from the EVS system. These
cases are the result of: (1) messages sent in VS views that the process will never install
and (2) messages sent in VS views that the process previously installed, but has since
installed another VS view. By Property (Sane View Delivery) the identifier of the EVS
delivery view of a message is greater than or equal to the identifier of the EVS view in
which the message was sent. Therefore, because the identifier on the message does not
match the process’ current EVS view identifier it must be less than the process’ current
EVS view identifier.

If the message was sent in a VS view that the process had not previously installed, then
the process will never install that VS view. This is because the algorithm always tries to
install a VS view matching its most recent EVS view and the message’s VS view
identifier is less than the process’ most recent EVS view identifier.

If the message was sent in a VS view that the process had previously installed, then the
receiver must have partitioned away from the sender at some point and installed a VS
view without the sender in the membership set. This is because, if the receiver had not
partitioned away at some point, the sender would have been in the membership set of
every following EVS view installed at the receiver up until it received the message in

23

question. Therefore, in order to install another VS view, the recipient would be required
to receive a flush message from the sender. Recall, that once a process generates a flush
message in a VS view it can no longer send any messages. Therefore, because flush
messages are FIFO messages and the recipient installed a following VS view, the sender
must not have been in a membership set of at least one of the VS views installed at the
recipient.

These heuristics for message delivery also maintain the necessary message delivery
liveness properties. Recall, that if a stable underlying view is reached, then all the
members of that view must install the same VS view and all the members of that view
must deliver any messages sent in that view. It was shown above that once a stable EVS
view is reached and all the members of that view close their previous VS view, that all
the members of that EVS view would install the corresponding VS view. When they
install that view, each member’s Vs_Survivors set contains all of the members of that
view. Therefore, since there are no more following EVS views, Vs_Survivors will always
contain the sender of any message delivered in that EVS view, by EVS Delivery
Integrity. Therefore, the algorithm will always deliver messages sent in the stable VS
view and the multicast liveness property is implicitly maintained. If any messages are
sent in the stable VS view that are received in the corresponding EVS view before a
process installs the stable VS view, then the receiving process will buffer those messages
and deliver them upon installing the stable VS view.

4.3.2.3 VS Transitional Sets and Signals
The only other non-trivial properties that the algorithm must maintain are the safety
properties of the transitional sets and signals.

When the EVS system generates a transitional signal in an EVS view, the algorithm
generates a transitional signal if it subsequently delivers an agreed message or an EVS
view event occurs in its VS view. The algorithm also generates a transitional signal in a
VS view if an EVS view event removes a member from its Vs_Survivors set. The
algorithm generates at most one transitional signal per VS view. By delivering the
transitional signal immediately before an Agreed message is delivered or when an EVS
view event occurs, processes that are virtually synchronous through VS views will
deliver the transitional signal at the same point in the stream of agreed messages in that
VS view.

The transitional set of a VS view is simply the process’ Vs_Survivors set when it installs
a VS view. This is because the members of a process’ Vs_Survivors set were virtually
synchronous to it through all the EVS views since the last one corresponding to their
previous VS view up to the EVS view corresponding to the process’ following VS view.
If a process receives a flush message from a process q that is one of the members of its
Vs_Survivors set, then it received and delivered all the messages that q sent in their
previous view. As is proved later, such members will have the same Vs_Survivors sets
and if they both install the same following VS view they both delivered the same set of
messages in their previous VS view.

24

4.4 Algorithm Evaluation
The previous subsection laid out the VS algorithm this work developed and informally
showed how it maintains the important safety and liveness properties of the VS model.
This section attempts to evaluate the good and bad attributes of this algorithm, in terms of
its algorithmic overhead and the quality of the semantics that it offers.

4.4.1 VS View Installation Heuristics
This algorithm is very responsive to its underlying layer’s membership service. Once the
lower layer installs a view, the VS algorithm immediately abandons the VS view it was
trying to install and attempts to install a VS view matching the current client
connectivity. In fact, the only time the algorithm installs an obsolete view is when it
installs a VS view after it receives an EVS transitional signal in its current EVS view. In
this case, the transitional signal indicates that a new view is about to be installed, so the
algorithm has knowledge of an impending view change. However, the algorithm is
designed to work with FIFO flush messages and transitional signals have no guaranteed
ordering with respect to these messages. Therefore, the algorithm cannot use transitional
signals to decide on whether or not to install VS views. If this algorithm did, then several
processes might install a VS view while others might not, which is a very undesirable
situation. Regardless, this situation occurs very rarely in practice.

This membership algorithm’s performance is competitive with other client-based VS
algorithm implementations. Any VS algorithm effectively has to conduct an n-to-n round
of communication among the potential members to agree on views to install and to close
previous views. This n-to-n round of communication can be done hierarchically to reduce
the number of messages generated [ACDV97], but each process must authorize installing
the view and each process must receive some form of agreement from each of the other
potential members of the view. The algorithm described here uses inexpensive FIFO
messages for its one round of agreement. In order to “flush out” messages sent in the
previous view and to close those views, any VS algorithm will effectively use at least
FIFO messages for its round(s) of communication.

The additional overhead that this algorithm pays beyond what most other algorithms
would pay is the time it takes for the EVS system to install its views. As was discussed
previously, lightweight client membership changes can be implemented in a non-
blocking manner using a single Agreed message sent amongst the daemons. Therefore,
this algorithm pays the additional cost of first waiting for a sent message to become
stable amongst the daemon processes, while other implementations could begin working
on installing a new view immediately. This additional cost effectively translates to
receiving an acknowledgement of receipt of the message from each of the daemons in a
configuration. This additional latency depends on the number of daemons and the
configuration of the network between the daemons.

In the case of a heavyweight daemon membership changes, this algorithm performs
poorly compared to other implementations of VS algorithms. In this case, this algorithm
must wait for the heavyweight daemon membership to be established before it tries to
install a corresponding VS view. A heavyweight membership algorithm usually consists

25

of at least one, if not multiple, n-to-n round(s) of communication between the daemons.
The additional overhead that the algorithm pays in this case is the time for those rounds
of communication to complete. This additional latency depends on the number of
daemons, the configuration and stability of the network and the complexity of the
synchronization algorithm that the daemons use to establish and close their heavyweight
views.

4.4.2 VS Message Delivery Heuristics
The algorithm effectively delivers messages as it receives them from the EVS system.
Therefore, it directly inherits the high-performance characteristics of the client-daemon
EVS model for message delivery. In fact, the only additional latency that the algorithm
adds to message delivery is for when it buffers non-Causal messages that were received
too early to deliver. Of course, any VS algorithm would have to do this kind of buffering
– almost any algorithm would have to buffer or drop a message it received for a potential
VS view it had not yet installed. The only costs that this algorithm pays that others would
not pay is that the EVS system maintains its ordering and reliability guarantees for
messages that may not be pertinent to the VS ordering and reliability guarantees. For
example, when two network components merge together, processes in multiple VS views
are all potentially sending messages. These messages sent in different views are not really
dependent upon one another from the VS system’s point of view, but the EVS system
will still maintain its safety properties and will introduce causal dependencies based on
send and deliver events in the new EVS view. Therefore, the EVS layer may generate
some unneeded overhead as it seeks to maintain safety properties that are unnecessary
from the VS system’s point of view.

This algorithm performs no message recovery and drops messages from live and
connected components. Normally, these attributes would be considered fatal flaws in a
group communication algorithm. However, the underlying EVS system already performs
powerful message recovery for the VS algorithm. The expense of adding additional
message recovery on top of the EVS’s might, in fact, not be worth the potential benefit.
Additionally, any VS algorithm will occasionally need to drop messages from connected
clients, even when those messages are sent in VS views that this process previously
installed. This observation is best-illustrated by example:

Client processes p and q have both installed the same VS view id, of which they are the
only members. An underlying view change partitions p and q away from each other into
lower level singleton views. The client’s VS algorithms dutifully deliver notification that
the underlying client connectivity has changed to p and q. Process p flushes its view and
installs a new singleton VS view id’, while process q ignores its signal and continues
sending messages in id. Another underlying view change then merges p and q back
together, while q continues sending messages in id. The VS algorithm cannot deliver any
of q’s new messages to p because they were sent in id and p has already installed a later
view id’.

Client processes p and q have both installed the same VS view id, of which they are the
only members. An underlying view change partitions p and q away from each other into
singleton views. The client’s VS algorithms dutifully deliver notification that the

26

underlying client connectivity has changed to p and q. Neither process flushes its current
VS view and continues to send messages. Another underlying view change merges p and
q back together. If the VS algorithm buffered the messages that p and q sent while they
were partitioned, then a complex algorithm could recover and deliver some of the Causal
and weaker service messages that they sent.

This second example is a little overly optimistic about message recovery. A process can
remain in a VS view for an arbitrarily long period of time, although this does not usually
happen. Therefore, a process cannot buffer all the messages sent by the process in a view
unless, theoretically, it has infinite memory. Furthermore, if any Agreed messages were
sent and delivered by the processes while they were partitioned, the other process will be
unable to deliver these messages due to the Agreed ordering requirement. After the first
such message the other process will not be able to recover even subsequently sent FIFO
messages. This example demonstrates that message recovery and re-synchronization is
only really useful to capture and correct short-term network instabilities. In that case, the
message recovery that the EVS system performs should be just as effective as a VS
algorithm’s even though it will only attempt to recover messages over a potentially
shorter “message horizon.”

By making this VS algorithm attempt to perform message recovery the clean separation
that previously existed between the VS algorithm and the EVS system would be ruined.
The VS algorithm would either have to run its own message ordering and recovery
algorithms on top of the underlying system’s, or understand and manipulate the
underlying layer’s message delivery subsystem. Either of these options would completely
destroy the simplicity of the algorithm to achieve very questionable benefit.

One last interesting point about this algorithm’s behavior – because of the heuristics it
uses, the usual test of whether or not two processes were virtually synchronous in a view
cannot be used. In almost every GCS specification, two processes were virtually
synchronous in a view id if they both installed the same new view in id. To maintain this
property, an algorithm has to perform message recovery and/or potentially install
obsolete views. This point is demonstrated by the second example above. In that
example, after the two processes remerged if they attempted to install a new VS view and
there were messages delivered in their previous view that the other could not deliver, then
the processes would have to install an obsolete view. This is because, otherwise, they
would install the same new view in the same previous view. If they did that, Property
(Virtual Synchrony) would require them to deliver the same set of messages in the former
view. But as was just shown, this is not possible if they deliver certain types of messages
while partitioned from one another. Of course, using this same example, if the processes
did not deliver Agreed messages while partitioned, then they could recover the messages
that they delivered while partitioned. In this case, the processes could either potentially
continue in their previous view as if nothing had happened, or they could install a new
view. However, as pointed out above, this solution theoretically requires a process to
potentially buffer all of the messages that it sends in a view.

Instead of dealing with these problems, this work changed the test for virtual synchrony
to not only require the processes to install the same view in their same previous view, but

27

to also require those processes to be in each others transitional sets. If they are not in each
other’s transitional sets, then the fact that they installed the same view in their same
previous view does not imply that they were virtually synchronous in their previous view.
This model is actually no weaker than the original specification of virtual synchrony. It
does allow the GCS to use more trivial solutions, but a good implementation can
maintain the same strength of semantics as the original virtual synchrony property. The
only other difference this change makes is that applications that depend on using view
identifiers to determine if two processes were virtually synchronous or not in a view must
now also remember their transitional sets for those views. Changing the model this way
allows processes not to install obsolete views while also not requiring them to do
message recovery.

28

5 Single Round VS Algorithm Pseudo-code

This section presents an event driven pseudo-code algorithm for implementing a VS
system on top of an EVS system from the viewpoint of a single client or GCS process.
The EVS system generates events that the algorithm intercepts and handles. This
algorithm then operates and generates client visible VS events. In effect, the trace of
events at a GCS automaton has both EVS and VS events intermingled, but a client of the
system will only see the VS events.

In this presentation, events generated by the EVS system have evs_ as a prefix and VS
events generated by the algorithm have vs_ as a prefix. The two events, request_flush and
request_send are generated by the client process and do not directly generate VS events
as the corresponding events can only be generated legally under certain preconditions.

Process_Variables :=

{ Vs_id | Vs_id ∈ (VID ∪ {⊥}) } ∪
{ Vs_Survivors | Vs_Survivors ∈ 2p } ∪
{ Vs_Flushers | Vs_Flushers ∈ 2P } ∪
{ Vs_delivd_trans_sig | Vs_delivd_trans_sig ∈ B } ∪
{ Vs_delivd_flush_req | Vs_delivd_flush_req ∈ B } ∪
{ Vs_sent_flush | Vs_sent_flush ∈ B } ∪
{ Evs_id | Evs_id ∈ (VID ∪ {⊥}) } ∪
{ Evs_Members | Evs_Members ∈ 2P } ∪
{ Evs_delivd_trans_sig | Evs_delivd_trans_sig ∈ B } ∪
{ Delay_Queue }

case Event is

recover:

Vs_id := ⊥ // identifier of most recent VS view
Vs_Survivors := ∅ // tracking set for VS transitional set and msg delivery
Vs_Flushers := ∅ // members that have flushed EVS view Evs_id
Vs_delivd_trans_sig := true // has a transitional signal been delivered in the current VS view?
Vs_delivd_flush_req := true // has a flush request been delivered in the current VS view?
Vs_sent_flush := true // has a flush message been sent in the current VS view?
Evs_id := ⊥ // identifier of most recent EVS view
Evs_Members := ∅ // membership set of most recent EVS view
Evs_delivd_trans_sig := false // has a transitional signal been delivered in the current EVS view?
Delay_Queue := new Queue() // a FIFO message queue

evs_trans_sig:

Evs_delivd_trans_sig := true

request_flush:
if (Vs_delivd_flush_req ∧ ¬Vs_sent_flush)
 // distinguishes flush msgs from all other msgs and marks with the current EVS view id

vs_flush := evs_send(new flush_msg(Evs_id))
Vs_sent_flush := true

else
illegal, generate user error

29

request_send(m):
if (¬Vs_sent_flush)

// marks every sent message with the id of the VS sending view
vs_send(m) := evs_send(new msg(m, Vs_id))

else
illegal, generate client error

evs_view(id, D, T):
if (¬Vs_delivd_flush_req)

vs_flush_req
Vs_delivd_flush_req := true

else if (Vs_sent_flush)
// distinguishes flush msgs from all other msgs and marks it with the current EVS view id
evs_send(new flush_msg(id))

if (¬Vs_delivd_trans_sig ∧ (Evs_delivd_trans_sig ∨ (Vs_Survivors ∩ T ⊂ Vs_Survivors)))

vs_trans_sig
Vs_delivd_trans_sig := true

Vs_Survivors := Vs_Survivors ∩ T
Vs_Flushers := ∅
Evs_id := id
Evs_Members := D
Evs_delivd_trans_sig := false
Delay_Queue.clear() // drops any messages that were pushed onto Delay_Queue

evs_deliver(m):
if (is_flush_msg(m))

if (flush_memb_id(m) = Evs_id)
Vs_Flushers := Vs_Flushers ∪ m.sender
if (Vs_Flushers = Evs_Members)

vs_view(Evs_id, Evs_Members, Vs_Survivors)
Vs_id := Evs_id
Vs_Survivors := Evs_Members
Vs_Flushers := ∅
Vs_delivd_trans_sig := false
Vs_delivd_flush_req := false
Vs_sent_flush := false
while (¬Delay_Queue.empty())

vs_deliver(Delay_Queue.pop_head())

else if (msg_vs_id(m) = Vs_id) // gets the id of the VS view in which m was sent
if (m.sender ∈ Vs_Survivors)

if (agreed(m) ∧ ¬Vs_delivd_trans_sig ∧ Evs_delivd_trans_sig)
vs_trans_sig
Vs_delivd_trans_sig := true

vs_deliver(reg_mess(m)) // reg_mess removes the marked sending VS view id

else if (group_id(m) = Evs_id)
Delay_Queue.push_tail(reg_mess(m)) // reg_mess removes the marked sending VS view id

// if m is not vs_delivered or pushed onto Delay_Queue then it is dropped

30

6 Proof of Correctness

This section formally proves that the previously presented algorithm maintains all of the
safety properties of the VS model. Section 3 informally discussed how the algorithm
maintains the liveness properties of the VS model.

6.1 Definition (Variable Function) A variable function is a function with the name of

a process variable that takes a process and an event as parameters and returns the
value of the process variable exactly when that event occurred at that process. If
the variable is undefined at that point in the trace for that process, then the
variable function is undefined as well. Formally:
var(ti, p) := (value of var at p at ti) if pid(ti) = p ∧ ti ≠ crash(p) ∧ tj ≠ recover(p)

undefined otherwise

6.1 Lemma (Evs_id) Evs_id at a process is equal to the view identifier of the most

recent evs_view event at that process, or ⊥ if no evs_view event has occurred at
that process since its most recent recover event. Formally:
pid(tl) = p ∧ tl ≠ crash(p) ∧ tl ≠ recover(p) ∧
(∃a b∃id∃D∃T : a < b < l ∧ ta = recover(p) ∧ tb = evs_view(p, id, D, T) ⇔ Evs_id(tl, p) = ⊥) ∧
(∃i j∃id’∃D’∃T’ : i < j < l ∧ ti = evs_view(p, id’, D’, T’) ∧
 (tj = recover(p) ∨ ∃id’’∃D’’∃T’’ : tj = evs_view(p, id’’, D’’, T’’)) ⇔ Evs_id(tl, p) = id’ ∧ id’ ≠ ⊥)

(Evs_id(tl, p) = ⊥ ⇔ Evs_Members(tl, p) = ∅) ∧
(Evs_id(tl, p) = id ∧ id ≠ ⊥ ∧ Evs_Members(tl, p) = D ⇒ ∃a∃T : a < l ∧ ta = evs_view(p, id, D, T))

Proof: From the algorithm, after a recover event occurs Evs_id and Evs_Members are
immediately set, respectively, to ⊥ and ∅. After an evs_view event occurs, Evs_id and
Evs_Members are immediately set, respectively, to the identifier and membership set of
that EVS view. There are no other cases under which either Evs_id or Evs_Members is
modified. By the definition of the evs_view action, the identifier of an EVS view is never
⊥ and the membership set of an evs_view event is never ∅, due to EVS Property 2.2
(Self-Inclusion).

6.2 Lemma (VS Views) If a process installs a VS view, then the identifier and

membership set of that view are, respectively, the view identifier and membership
set of the most recent evs_view event at that process. Formally:
tc = vs_view(p, id, D, T) ⇒ ∃a b∃T’ : a < b < c ∧ ta = evs_view(p, id, D, T’) ∧
(∃id’∃D’∃T’’ : tb = evs_view(p, id’, D’, T’’))

Proof: By the algorithm, vs_view events only occur immediately in response to an
evs_deliver event. Furthermore, the view identifier and membership set of a VS view are,
respectively, Evs_id and Evs_Members at the time of the instigating evs_deliver event.
By EVS Property 2.1 (Initial View Event) every evs_deliver event at a process occurs
within some EVS view at that process. Therefore, by Lemma 5.1 (Evs_id) when a

31

vs_view event occurs at a process Evs_id and Evs_Members are, respectively, equal to
the most recent evs_view’s identifier and membership set at that process.

6.3 Lemma (Vs_id) Vs_id is equal to the view identifier of the most recent vs_view

event at the process or ⊥ if no vs_view event has occurred at the process since the
most recent recover event. Formally:
pid(tl) = p ∧ tl ≠ crash(p) ∧ tl ≠ recover(p) ∧
(∃a b∃id∃D∃T : a < b < l ∧ ta = recover(p) ∧ tb = vs_view(p, id, D, T) ⇔ Vs_id(tl, p) = ⊥) ∧
(∃i j∃id’∃D’∃T’ : i < j < l ∧ ti = vs_view(p, id’, D’, T’) ∧
 (tj = recover(p) ∨ ∃id’’∃D’’∃T’’ : tj = vs_view(p, id’’, D’’, T’’)) ⇔ Vs_id(tl, p) = id ∧ id ≠ ⊥)

Proof: From the algorithm, after a recover event occurs, Vs_id is immediately set to ⊥.
After a vs_view event occurs, Vs_id is immediately set to the identifier of that VS view.
There are no other cases under which Vs_id is modified. Vs_view events only occur in
response to evs_deliver events. Therefore, by EVS Property 2.1 (Initial View Event) and
Lemma 5.2 (VS Views) the identifier for a VS view is the most recently installed EVS
view identifier, which by the definition of the evs_view event is never ⊥.

6.4 Lemma (id-vid) Evs_id and Vs_id, where defined, are respectively equivalent to

evs_vid and vs_vid. Formally:
pid(tl) = p ∧ tl ≠ crash(p) ∧ tl ≠ recover(p) ⇒ evs_vid(tl, p) = Evs_id(tl, p) ∧
vs_vid(tl, p) = Vs_id(tl, p)

Proof: Lemma 5.1 (Evs_id) proved that Evs_id is ⊥ after a recover event and before the
first following evs_view event. That lemma also proved that Evs_id equals the identifier
of the most recent evs_view event at the process. Therefore, by the definition of evs_vid,
Evs_id, where it is defined, is equivalent to evs_vid. A similar argument is made for
Vs_id’s equivalence to vs_vid.

6.5 Lemma (Vs_Survivors)

1. A process’ Vs_Survivors set at a particular event is ∅, if and only if a vs_view
event has not occurred at the process since the most recent recover event at that
process. Formally:
Vs_Survivors(tc, p) = ∅ ⇔ pid(tc) = p ∧ tc ≠ crash(p) ∧ tc ≠ recover(p) ∧
∃a b∃id∃D∃T : a < b < c ∧ ta = recover(p) ∧ tb = vs_view(p, id, D, T)

2. A process’ Vs_Survivors set at a particular event is the intersection of the most
recent vs_view event’s membership set with the transitional sets of the evs_view
events that occurred at this process since that most recent vs_view event up to the
event in question. Formally:

Vs_Survivors(td, p) = S ∧ p ∈ S ⇔ pid(td) = p ∧ td ≠ crash(p) ∧ td ≠ recover(p) ∧
∃a b∃id∃D∃T : a < b < d ∧ ta = vs_view(p, id, D, T) ∧
(tb = recover(p) ∨ ∃id’∃D’∃T’ : tb = vs_view(p, id’, D’, T’) ∧
S = D ∩ ∀T’’ : ∀c∀id’’∀D’’ : a < c < d ∧ tc = evs_view(p, id’’, D’’, T’’)

32

Proof: Immediately after a recover event at a process’, its Vs_Survivors set is set to the
empty set. Thereafter, Vs_Survivors is only modified immediately after vs_view and
evs_view events. In the case of a vs_view event, Vs_Survivors is set to the membership
set of that VS view. In the case of an evs_view event, Vs_Survivors is set to the
intersection of itself with the transitional set of the EVS view. This proves that before the
first vs_view event following a recover event at a process, Vs_Survivors is ∅ at that
process.

By EVS Property 2.2 (Self-Inclusion) a process is always a member of any EVS view
event that it installs. By EVS Property 2.17 (Transitional Set 1,3) a process is always in
the transitional set of any EVS view that it installs, except for the first following a
recover event. Lemma 5.2 (VS Views), EVS Property 2.17 (Transitional Set) and the
calculation of the Vs_Survivors set proves that after the first vs_view event following the
most recent recover event at a process, that a process is always in its own Vs_Survivors
set. Therefore, after installing the first such VS view, Vs_Survivors is not the empty set,
which completes the proof of the first property. By the direct construction of the
algorithm, the Vs_Survivors set is equal to the most recent VS view’s membership
intersected with each subsequent evs_view event’s transitional set occurring at that
process until the next vs_view event at the process.

6.6 Lemma (Flush Messages) A process generates at most one flush message marked

with a particular view identifier. Formally:
tb = evs_send(p, m) ∧ is_flush_msg(m) ∧ flush_msg_id(m) = id ⇒
∃a∃D∃T c∃m’ : a < b ∧ ta = evs_view(p, id, D, T) ∧
c ≠ b ∧ tc = evs_send(p, m’) ∧ is_flush_msg(m’) ∧ flush_msg_id(m’) = id

Proof: Flush messages are only sent in two cases: (1) in response to a request_flush event
when Vs_delivd_flush_req is true and Vs_sent_flush is false and (2) in response to an
evs_view event when Vs_delivd_flush_req is true and Vs_sent_flush is true.
Vs_delivd_flush_req and Vs_sent_flush are only set to false after a vs_view event occurs
at the process.

Immediately after a recover event both Vs_delivd_flush_req and Vs_sent_flush are set to
true. Therefore, until the next vs_view at this process, flush messages are generated only
by case (2) and each flush message is marked with the view identifier of the instigating
evs_view event. Immediately after a vs_view event neither case can be triggered.
Vs_delivd_flush_req is only6 set to true in response to the first evs_view event following
a vs_view event at the process. Vs_sent_flush is only7 set to true in response to a
request_flush event when Vs_delivd_flush_req is true and Vs_sent_flush is false,
therefore, in this state, only case (1) can generate a flush message. If case (1) is triggered,
the flush message is marked with Evs_id, which by Lemma 5.1 (Evs_id) is the view
identifier of the most recent EVS view, a vs_flush event is generated and Vs_sent_flush
is immediately set to true. After that, again, only case (2) can generate flush messages in
response to subsequent evs_view events until after the next vs_view event.

6 Ignoring Vs_delivd_flush_req’s initialization to true upon recovery.
7 Ignoring Vs_sent_flush’s initialization to true upon recovery.

33

Case (1) only generates one flush message (and a corresponding vs_flush event) in a VS
view that is marked with the view identifier of the most recent EVS view. Case (2) only
generates one flush message per triggering evs_view event, marked with the view
identifier of that EVS view, in a VS view after case (1) has already been triggered.
Therefore, by EVS Property 2.4 (Local Monotonicity) these two cases together produce
at most one flush message marked with a particular view identifier.

6.1 Theorem (VS Initial View Event) Every vs_flush, vs_flush_req, vs_send,

vs_deliver, and vs_trans_sig event occurs within some VS view. Formally:
ta = vs_flush(p) ∨ ta = vs_flush_req(p) ∨ ta = vs_send(p, m) ∨
ta = vs_deliver(p, m) ∨ ta = vs_trans_sig(p) ⇒ vs_vid(ta, p) ≠ ⊥

Proof: After a recover event Vs_sent_flush, Vs_delivd_flush_req and
Vs_delivd_trans_sig are immediately set to true. Vs_sent_flush, Vs_delivd_flush_req,
and Vs_delivd_trans_sig are set to false only immediately after a vs_view event.

By the algorithm, Vs_sent_flush is false whenever a vs_flush event occurs,
Vs_delivd_flush_req is false whenever a vs_flush_req event occurs, Vs_sent_flush is
false whenever a vs_send event occurs, and Vs_delivd_trans_sig is false whenever a
vs_trans_sig event occurs. Therefore, no vs_flush, vs_flush_req, vs_send and
vs_trans_sig events can occur after a recover event until after a following vs_view event
occurs, and therefore due to Lemma 5.2 (VS Views) and Lemma 5.4 (id-vid) the vs_vid
of those events is not ⊥.

By the algorithm, messages are vs_delivered in only two cases: the message is not a flush
message and (1) the message is marked with the same identifier as the receiver’s Vs_id
and the sender is in the receiver’s Vs_Survivors set and (2) the message is not marked
with the same identifier as the receiver’s Vs_id, but it is marked with the receiver’s
Evs_id and the receiver installs the corresponding VS view.

Due to Lemma 5.2 (VS Views) and Lemma 5.4 (id-vid) the vs_vid of delivery events due
to (2) is not ⊥. Above, it was proved that no vs_send events occur at a process before the
first vs_view event following a recover event. By Lemma 5.2 (VS Views) this means
that no regular message is ever marked with VS view identifier ⊥. Therefore, by Lemma
5.3 (Vs_id) no regular messages can be delivered by a process before it installs its first
VS view following a recover event because its Vs_id is ⊥ during that time.

6.2 Theorem (VS Self-Inclusion) If a process p installs a view, then p is a member of

the membership set. Formally:
ta = vs_view(p, id, D, T) ⇒ p ∈ D

Proof: EVS Property 2.2 (Self-Inclusion) and Lemma 5.2 (VS Views) prove this theorem.

34

6.3 Theorem (VS Membership Agreement) If a process p installs a view with
identifier id and a process q installs a view with the same identifier, then the
membership sets of the views are identical. Formally:
ta = vs_view(p, id, D, T) ∧ ti = vs_view(q, id, D’, T’) ⇒ D = D’

Proof: EVS Property 2.3 (Membership Agreement) and Lemma 5.2 (VS Views) prove
this theorem.

6.4 Theorem (VS Local Monotonicity) If a process p installs a view with identifier id’

after installing a VS view with identifier id, then id’ is greater than id. Formally:
ta = vs_view(p, id, D, T) ∧ tb = vs_view(p, id’, D’, T’) ∧ a < b ⇒ id < id’

Proof: EVS Property 2.4 (Local Monotonicity) and Lemma 5.2 (VS Views) together
imply: ta = vs_view(p, id, D, T) ∧ tb = vs_view(p, id’, D’, T’) ∧ a < b ⇒ id ≤ id’

The algorithm never installs two VS views with the same view identifier. Vs_Flushers is
the set of members from which this process has received flush messages marked with the
same view identifier as Evs_id. If Vs_Flushers becomes equal to Vs_Members
immediately after an evs_deliver event, only then is a vs_view event is generated. If this
process already installed a vs_view event with an identifier id, then this process must
have received a flush message marked with id from each of the members of id. Lemma
5.6 (Flush Messages) proved that a process sends at most one flush message marked with
a particular EVS view identifier. That lemma, together with EVS Property 2.5 (No
Duplication) and the fact that Vs_Flushers is cleared after every vs_view event proves
that a process could not possibly collect the necessary flush messages in order to install a
VS view that it had already previously installed.

6.5 Theorem (VS No Duplication) A process never delivers a message more than

once. Formally:
ta = vs_deliver(p, m) ∧ tb = vs_deliver(p, m) ⇒ a = b

Proof: As described above, messages are only vs_delivered in response to evs_deliver
events. They are either immediately delivered, dropped or they are later popped off of the
Delay_Queue and delivered immediately after a vs_view event occurs. Messages are only
pushed at most once onto the Delay_Queue upon receipt and are at most delivered once –
when messages are delivered off of the Delay_Queue they are popped off until the queue
is empty. This argument and EVS Property 2.5 (No Duplication) prove the theorem.

6.6 Theorem (VS Delivery Integrity) A vs_deliver event in a view is the result of a

preceding vs_send event by a member of that view. Formally:
ta = vs_view(p, id, D, T) ∧ tb = vs_deliver(p, m) ∧ vs_vid(tb, p) = id ⇒
∃i∃q : i < a ∧ ti = vs_send(q, m) ∧ q ∈ D

Proof: EVS Property 2.6 (Delivery Integrity) ensures that for every evs_deliver event
there is a preceding evs_send event of the same message. The algorithm only sends

35

messages through evs_send events without generating an accompanying vs_send event
when the message being sent is a flush message. However, flush messages are never
delivered and the algorithm does not generate any vs_deliver events that are not
originally caused by evs_deliver events, as previously described. This proves that every
vs_deliver event of a message is preceded by a vs_send event of that message. Theorem
5.9 (Sending View Delivery) proves that messages are only vs_delivered when a
message is marked with the same view identifier as the receiver’s current VS view.
Therefore, if a message is marked in that manner, the sender installed that VS view as
well and by Theorem 5.2 (VS Self-Inclusion) must be a member of that VS view.

6.7 Theorem (Flush Requests and Flushes)

1. At most one vs_flush_req event occurs in a view at a process. Formally:
ta = vs_flush_req(p) ⇒ b : b ≠ a ∧ tb = vs_flush_req(p) ∧ vs_vid(ta, p) = vs_vid(tb, p)

2. At most one vs_flush event occurs in a view at a process. A vs_flush event is

preceded by a vs_flush_req event in that view at a process. No vs_send events
follow a vs_flush event in a view at a process. Formally:
tb = vs_flush(p) ⇒ d : d ≠ b ∧ td = vs_flush(p) ∧ vs_vid(tb, p) = vs_vid(td, p) ∧
∃a c∃m : a < b < c ∧ ta = vs_flush_req(p) ∧ tc = vs_send(p, m) ∧
vs_vid(ta, p) = vs_vid(tb, p) = vs_vid(tc, p)

3. Every vs_view event, except for the first following a recover event, at a process is

preceded by a vs_flush event. Formally:
tb = vs_view(p, id, D, T) ⇒
∃a : a < b ∧ (ta = vs_flush(p) ∨ ta = recover(p)) ∧ vs_vid(ta, p) = vs_vid(tb, p)

Proof: A vs_flush_req event only occurs in response to an evs_view event when
Vs_delivd_flush_req is false. A vs_flush event only occurs in response to a request_flush
event when Vs_delivd_flush_req is true and Vs_sent_flush is false.

Vs_delivd_flush_req is only set to false immediately after a vs_view event and is only8
set to true immediately after the first evs_view event following a vs_view event at a
process. This proves that only one vs_flush_req event occurs per VS view per process.
Immediately after a vs_view event a vs_flush event cannot occur because
Vs_delivd_flush_req is set to false. Vs_delivd_flush_req is only set to true when a
subsequent evs_view event occurs and Vs_delivd_flush_req is false. In this case,
immediately before Vs_delivd_flush_req is set to true a vs_flush_req event occurs. This
proves that any vs_flush event at a process is preceded by a vs_flush_req event at that
process in that VS view.

As stated above, Vs_sent_flush must be false for a vs_flush event to occur.
Vs_sent_flush is only set to false immediately after a vs_view event and is only9 set to
true immediately after a vs_flush event occurs. This proves that only one vs_flush event

8 Ignoring Vs_delivd_flush_req’s initialization to true upon recovery.
9 Ignoring Vs_sent_flush’s initialization to true upon recovery.

36

occurs per VS view at a process. When Vs_sent_flush is true, request_send events, which
are the only events that can generate vs_send events, are illegal and generate an error.
This proves that no vs_send events can occur after a vs_flush event before a following
vs_view event occurs at that process.

In order to install a VS view a process must collect a flush message marked with the
identifier of that view from each of the potential members of that view. Due to Lemma
5.2 (VS Views) and EVS Property 2.2 (Self-Inclusion), this implies that a process itself
must send (and receive back) a flush message marked appropriately in order to install a
VS view. The proof of Lemma 5.6 (Flush Messages) demonstrated that in order to
generate a flush message in a VS view a request_flush event must first occur, which in
turn generates a vs_flush event. This proof, along with Theorem 5.1 (VS Initial View
Event) proves that any vs_view event is preceded either by a recover or a vs_flush event
in the same view as the view in which that vs_view event is delivered.

6.8 Theorem (VS Self-Delivery) If a process p sends a message m, then p delivers m

unless it crashes. Formally:

ta = vs_send(p, m) ∧ b : a < b ∧ tb = crash(p) ⇒ ∃c : tc = vs_deliver(p, m)

Proof: A process will immediately vs_deliver its own non-flush message received in an
evs_deliver event of that message. Messages are only immediately delivered if the
message is marked with the identifier of the receiver’s current VS view and the sender is
in the receiver’s Vs_Survivors set.

Theorem 5.1 (VS Initial View Event) proved that no vs_send events can occur at a
process until after the first vs_view event following a recover event at that process. In the
proof of Theorem 5.7 (Flush Requests and Flushes) it was shown that a vs_flush event
must occur at this process before it can install any following vs_view events.
Furthermore, it was also shown that no vs_send events occur in a VS view after a
vs_flush event and before the following vs_view event. The flush messages generated by
the vs_flush event and possibly subsequent evs_deliver events are FIFO messages.
Therefore, by EVS Property 2.7 (Self-Delivery), EVS Property 2.12 (FIFO Messages)
and EVS Property 2.9 (Sane View Delivery) before a flush message generated in this VS
view by this process could be delivered back to this process, all previous messages sent in
that VS view by this process must be received by it. Therefore, because any message sent
by the process since its last vs_view event is marked with that view’s identifier and
because the process can not install another VS view until it receives back its own flush
message, all messages sent by that process in that VS view will be evs_delivered in the
process’ current VS view (i.e.- will match its Vs_id). Lemma 5.5 (Vs_Survivors) proved
that a process is always in its own Vs_Survivors set after installing the first VS view
following a recover event. Therefore, a process will always immediately deliver its own
non-flush messages upon receipt. This argument and EVS Property 2.7 (Self-Delivery)
prove this theorem.

37

6.9 Theorem (Sending View Delivery) Messages are delivered in the view in which
they are sent. Formally:
ta = vs_deliver(p, m) ∧ vs_vid(ta, p) = id ⇒ ∃i∃q : ti = vs_send(q, m) ∧ vs_vid(ti, q) = id

Proof: By the algorithm, messages are vs_delivered in only two cases: the message is not
a flush message and (1) the message is marked with the same identifier as the receiver’s
Vs_id and the sender is in the receiver’s Vs_Survivors set and (2) the message is not
marked with the same identifier as the receiver’s Vs_id, but it is marked with the
receiver’s Evs_id and the receiver installs the corresponding VS view. Messages that
meet criteria (2) are placed in Delay_Queue and are only delivered after installing the
corresponding VS view.

From the algorithm, if a message is vs_delivered by matching criteria (1) then it was sent
in the same VS view because messages are marked with the identifier of the VS view in
which they are sent. If a message is vs_delivered due to criteria (2) then it was sent in the
VS view that this process installs immediately before delivering it. This is because the
message was marked with the same identifier as the receiver’s Evs_id. If the receiver
installs a VS view without any intervening evs_view events occurring then its new VS
view identifier is Evs_id by Lemma 5.2 (VS Views). The messages in the Delay_Queue
are then delivered in the VS view in which they were sent. If an intervening evs_view
event had occurred, then the algorithm would drop all of the messages in Delay_Queue.
By Theorem 5.2 (VS Self-Inclusion), this proves that when any message is vs_delivered,
the recipient’s Vs_id matches the identifier on the message and that the sender is in the
recipient’s Vs_Survivors set.

6.10 Theorem (VS Transitional Set)

1. The transitional set for the first view installed at a process following a recover
event is the empty set. Formally:
ta = vs_view(p, id, D, T) ∧ vs_vid(ta, p) = ⊥ ⇒ T = ∅

Proof: The transitional set of a vs_view event at a process is the Vs_Survivors set at that
process when the last necessary flush message to install that VS view is received. Lemma
5.5. (Vs_Survivors) proved that Vs_Survivors is the empty set only before the first
vs_view event at a process following the most recent recover event at that process.

2. If a process p installs a view in a previous view, then the transitional set for the
new view at p is the union of p with a subset of the intersection between the two
views’ membership sets. Formally:
ta = vs_view(p, id, D, T) ∧ tb = vs_view(p, id’, D’, T’) ∧ vs_vid(tb, p) = id ⇒
p ∈ T’ ∧ T’ ⊆ D ∩ D’

Proof: From the algorithm, the transitional set of a vs_view at a process is the
Vs_Survivors set at that process when the last necessary flush message is evs_delivered.
Lemma 5.5 (Vs_Survivors) proved that a process is always a member of its own
Vs_Survivors set after installing the first VS view following the most recent recover

38

event. That lemma also proved that at any point, Vs_Survivors is the intersection of the
most recent VS view’s membership with the transitional sets of the subsequent EVS
views up until that point (assuming no intervening crashes). Therefore, by Lemma 5.2
(VS Views) and EVS Property 2.17 (Transitional Set), the transitional set of EVS view
id’ is a subset of the membership of VS view id’. Furthermore, Vs_Survivors is set to the
membership set of the most recent previous VS view immediately after that view is
installed. Therefore by Lemma 5.5 (Vs_Survivors) and EVS Property 2.17 (Transitional
Set), the transitional set of a VS view at a process is a subset of the intersection between
that VS view’s membership set and the previous VS view’s membership sets and always
contains this process.

3. If processes p and q install the same view and q is included in p’s transitional set
for that view, then p’s previous view was identical to q’s previous view.
Formally:
ta = vs_view(p, id’, D, T) ∧ vs_vid(ta, p) = id ∧ ti = vs_view(q, id’, D’, T’) ∧ q ∈ T ⇒
vs_vid(ti, q) = id

Proof: If q is in p’s transitional set for a VS view, then by Lemma 5.2 (VS Views),
Lemma 5.5 (Vs_Survivors) this implies that q was in the transitional set of every EVS
view at p that followed id up to and including EVS view id’. From the assumption, q
installed VS view id’, which by Lemma 5.2 (VS Views) implies it also installed EVS
view id’. From EVS Property 2.17 (Transitional Set), because p and q install the same
EVS view id’ and q is in p’s transitional set, then q installed the same previous EVS view
and p was in q’s transitional set for id’. Now a reverse iterative argument can be made for
the chain of EVS views that occurred between the two VS views at p – because both
processes eventually install the same EVS view and one of the processes has the other in
its EVS transitional set for that view, then they both installed the same previous EVS
view. This argument can be repeated back along the chain of EVS views starting with
EVS view id’ all the way back to EVS view id.

I have shown that both processes installed EVS view id and all subsequent EVS views up
to and including id’, and from EVS Property 2.17 (Transitional Set 3) that they were in
each other’s EVS transitional sets throughout that chain of views. From the definition of
EVS vsynchronous_in, both p and q were vsynchronous_in in EVS view id, which by
EVS Property 2.10 (Virtual Synchrony) implies that they delivered the same set of
messages in that view. Delivering a vs_view event is only dependent on receiving a flush
message from each of the potential members of the next VS view in the corresponding
EVS view. Therefore, due to the algorithm, EVS Property 2.4 (Local Monotonicity), EVS
Property 2.9 (Same View Delivery) and EVS Property 2.10 (Virtual Synchrony) process
q also received all of the flush messages in EVS view id and therefore installed VS view
id. Also, because q was virtually synchronous to p throughout the chain of EVS views
that they moved through together, q could not install any VS views that p did not.
Therefore, q installed VS view id’ in VS view id.

39

4. If processes p and q install the same view and q is included in p’s transitional set
for that view, then p and q have the same transitional sets for that view.
Formally:
ta = vs_view(p, id’, D, T) ∧ vs_vid(ti, p) = id ∧ ti = vs_view(q, id’, D, T’) ∧ q ∈ T⇒ T = T’

Proof: Theorem 5.10 (VS Transitional Set) proved that if two processes install the same
VS view and one of the processes is in the others transitional set for that view, then they
both installed the same previous VS view. Furthermore, the theorem proved that they
were EVS virtually synchronous throughout the chain of EVS views that they moved
through together before installing their next VS view. EVS Property 2.17 (Transitional
Set 4) states that if two processes install the same next EVS view in the previous view,
then they have the same transitional sets for the new view. The transitional set of a VS
view is Vs_Survivors at the point of installation. Vs_Survivors is immediately set to the
membership set of a VS view upon installation and is then intersected with any
subsequent EVS views’ transitional sets until the next VS view at the process. Because
both processes install the same previous VS view id and move together through the same
chain of EVS views before they both install their next VS view id’, they see the same
transitional set for each EVS view, by EVS Property 2.17 (Transitional Set 4). Therefore,
due to EVS (Membership Agreement), EVS Property 2.17 (Transitional Set) and Lemma
5.5 (Vs_Survivors), throughout the chain of intermediate EVS views and at the point of
installing VS view id’, their Vs_Survivors sets are virtually synchronously identical and,
therefore, their transitional sets for the VS view id’ are identical.

6.11 Theorem (VS Sane View Delivery)

1. A message is not delivered in a view earlier than the one in which it was sent.
Formally:
ta= vs_send(p, m) ∧ vs_vid(ta p) = id ∧ ti = vs_deliver(q, m) ∧ vs_vid(ti, q) = id’ ⇒ id ≤ id’

Proof: Theorem 5.9 (VS Sending View Delivery) proves this theorem.

2. If a process p sends a message m, crashes and later recovers in a view id and a
process q delivers m, then m is delivered in a view before id. Formally:
ta = vs_send(p, m) ∧ tb = crash(p) ∧ tc = vs_view(p, id, D, T) ∧ a < b < c ∧
vs_vid(tc, p) = ⊥ ∧ ti = vs_deliver(q, m) ⇒ vs_vid(ti, q) < id

Proof: Theorem 5.9 (VS Sending View Delivery) proved that messages are only
delivered in the view in which they are sent. Message m is sent by p in a VS view
installed at p earlier than id, therefore, Theorem 5.4 (VS Local Monotonicity) proves this
theorem.

40

3. If two messages m and m’ are sent, respectively, by processes p and p’ such that
the send of m’ is causally preceded by the send of m and a process q’ delivers
both messages, then q’ does not deliver m in a later view than m’. Formally:
ta = vs_send(p, m) ∧ td = vs_send(p’, m’) ∧ ta → td ∧
tj = vs_deliver(q’, m) ∧ tk = vs_deliver(q’, m’) ⇒ vs_vid(tj, q’) ≤ vs_vid(tk, q’)

Proof: In order for m to be sent causally before m’, it must be sent in a VS view with
identifier less than or equal to the sending view of m’ by Theorem 5.4 (VS Local
Monotonicity). Theorem 5.9 (Sending View Delivery), therefore, proves this theorem.

6.7 Lemma (VS Message Ordering) All messages delivered by the VS algorithm

maintain their respective ordering properties.

Proof: If it can be shown that the reordering of messages that the algorithm performs does
not violate any of the ordering guarantees of the EVS properties, then because vs_send
events are, effectively, evs_send events and vs_deliver events of message only occur as a
result of earlier evs_deliver events of those messages, then the algorithm implicitly
maintains the EVS ordering guarantees on the messages it delivers. The only reordering
of messages delivered by evs_deliver events occurs when messages are pushed onto the
Delay_Queue to potentially be vs_delivered in a later VS view. For all other messages,
the algorithm either delivers them immediately when they are evs_delivered or
immediately drops and never delivers them.

The messages that are pushed onto Delay_Queue can only be non-causal messages. From
the algorithm, messages are marked with the VS view identifier in which they were sent.
For a message to be pushed onto Delay_Queue, the received message must be marked
with the receiver’s current Evs_id, which is different than its current Vs_id. By the
algorithm, this implies that the sender already installed a VS view with the same
identifier as the receiver’s Evs_id and then sent a message.

From the algorithm, in order to install that VS view the sender must have received an
appropriately marked flush message from each of the potential members of the VS view.
Because the message’s view identifier matches the receiver’s Evs_id, by Lemma 5.2
(Evs_id) and EVS Property 2.2 (Self-Inclusion) the receiver of the causal message is one
of the view’s potential members. If the sender sent a message in the new VS view, then it
must have sent the message after receiving all of the flush messages, including the one
from the receiver. By EVS Property 2.13 (Causal Messages) only two cases are possible
for a causal message sent after receiving all of those flush messages: (1) before the
recipient could receive the causal message it would receive all of the flush messages and,
by the algorithm, install the same VS view or (2) the receiver received one or more
evs_view events before receiving all of the flush messages for the VS view in question.
Case (1), conflicts with the Delay_Queue push assumption because the Causal message’s
view identifier would either match the receiver’s Vs_id or, by EVS Property 2.4 (Local
Monotonicity) and Lemma 5.2 (Evs_id), it would not match the receiver’s Evs_id. In case
(2), by the algorithm, the receiver does not install that VS view. Furthermore, by EVS
Property 2.4 (Local Monotonicity) and Lemma 5.2 (VS Views) its Evs_id is now higher

41

than the sender’s installed view and its Vs_id will never match the sender’s. Therefore,
the receiver drops the causal message. In neither of the two possible cases will a causal
message ever be placed in Delay_Queue. Therefore, only non-causal messages can be
placed in Delay_Queue.

The only way the EVS ordering properties could be violated is if by postponing the
vs_delivery of messages in Delay_Queue the algorithm violated the FIFO, Causal or
Agreed ordering properties. The above argument showed that the postponing of these
non-causal messages can not violate the Causal or Agreed VS ordering properties. This is
because any messages that are causally dependent on messages in Delay_Queue would
also be causally dependent on the flush messages for that VS view. Therefore, these
causal messages would only be received after this process either installs that VS view and
vs_delivers all of the messages in Delay_Queue or it drops the messages in
Delay_Queue. The only way the postponing could violate the FIFO ordering property is
if a FIFO message was delivered from a sender, when one of the messages in
Delay_Queue was sent by that sending process before the FIFO message.

Assume that this ordering violation occurs. This implies that the later FIFO message was
marked with the receiver’s current Vs_id (which is different than its Evs_id), that the
sender was in the recipient’s Vs_Survivors set and that the previously sent message was
marked with the recipient’s Evs_id. But, by Lemma 5.2 (Vs Views) and EVS Property
2.4 (Local Monotonicity) the recipient’s Evs_id is greater than the recipient’s Vs_id.
Messages are marked with the identifier of the VS view in which they are sent.
Therefore, by Theorem 5.4 (VS Local Monotonicity) and EVS Property 2.12 (FIFO
Messages) this violation could not happen.

Messages in Delay_Queue are delivered upon installing a VS view and the queue is
cleared after every evs_view event. Messages are pushed onto the end of the queue as
they are received and popped off of the front as they are vs_delivered, therefore, any
FIFO ordering of the messages in the queue is maintained. Since the only reordering of
messages delivered by evs_deliver events is compatible with all of the message types’
ordering guarantees and all other messages are delivered in the order in which they are
received or dropped, the ordering guarantees provided by the respective EVS Properties
are maintained.

6.12 Theorem (VS Virtual Synchrony) If processes p and q are virtually synchronous

in a view, then any message delivered by p in that view is also delivered by q.
Formally:
vs_vsynchronous_in(p, q, id) ∧ ta = vs_deliver(p, m) ∧ vs_vid(ta, p) = id ⇒
∃i : ti = vs_deliver(q, m)

Proof: Theorem 5.10 (VS Transitional Set) proved that if two processes install the same
VS view and one of the processes is in the other’s transitional set for that view, then they
both installed the same previous VS view. Furthermore, the theorem proved that they
were virtually synchronous throughout the chain of EVS views that they moved through
together before installing their next VS view. From EVS Property 2.10 (Virtual

42

Synchrony), these two processes received the same set of messages in each EVS view
starting with the EVS view corresponding to the first VS view installed (id) up to the last
EVS view corresponding to the second VS view they installed (id’).

Any messages sent in VS view id that were received in EVS view id would be delivered
by both p and q. By EVS Property 2.9 (Sane View Delivery) and Lemma 5.2 (VS Views),
the EVS views in which messages sent in VS view id are delivered are greater than or
equal to id. Any messages received in EVS view id would be received by p or q either
before it installed VS view id or after it installed VS view id. If such a message was
received in EVS view id before the process installed VS view id, then by the assumption
and Lemma 5.2 (VS Views) the identifier marked on the message would match the
process’ Evs_id and be different than its Vs_id. In this case, the algorithm buffers the
message in Delay_Queue and delivers it after it installs VS view id, which by the
assumption it does. If any message was received in EVS view id after the process
installed VS view id, then the message would be marked with the receiver’s Vs_id and
the sender would be in the receiver’s Vs_Survivors set, by Lemma 5.5 (Vs_Survivors),
Theorem 5.2 (VS Self-Inclusion) Theorem 5.3 (VS Membership Agreement) and,
therefore, the message would be delivered.

Theorem 5.10 (VS Transitional Set) proved that the two processes had virtually
synchronously identical Vs_Survivors sets and Vs_ids in VS view id throughout the
chain of EVS views [id, id’] after they installed VS view id. Therefore, because any
messages sent in VS view id that are received in EVS view id are delivered and in later
EVS views p and q have virtually synchronously the same Vs_ids and Vs_Survivors sets,
any messages that p or q delivered in EVS views in the view range [id, id’), they both
delivered.

From the assumption, both p and q installed VS view id’. In order for this to happen, both
processes must have collected appropriate flush messages from each of the members of
id’ in EVS view id’. Since flush messages are at least FIFO messages, then by EVS
Property 2.12 (FIFO Messages) any messages sent by these processes prior to their flush
messages that were delivered in EVS view id’ must have already been delivered to both p
and q before they installed VS view id’. Therefore, due to the fact that regular messages
for a VS view cannot be sent by a process after it sends a flush message in that view and
any messages not destined for VS view id would be either dropped or buffered, both p
and q receive the same set of messages sent in VS view id in EVS view id’ before
installing VS view id’. Since p and q still have the same Vs_id and Vs_Survivors sets
while receiving those messages, as shown above, they both deliver the same set of those
messages in the previous VS view.

6.13 Theorem (VS Transitional Signals)

1. At most one vs_trans_sig event occurs at a process per view. Formally:
ta = vs_trans_sig(p) ∧ vs_vid(ta, p) = id ⇒

b : b ≠ a ∧ tb = vs_trans_sig(p) ∧ vs_vid(tb, p) = id

43

Proof: Vs_trans_sig events are only generated when Vs_delivd_trans_sig is false. This
variable is only set to false after every vs_view event and is immediately set to true
whenever a vs_trans_sig event occurs. Therefore, at most one vs_trans_sig event can be
generated per VS view.

2. If two processes p and q are virtually synchronous in a VS view, id, and p has a
vs_trans_sig event occur in that view, then q also has a vs_trans_sig event occur
in that view and they both deliver the same sets of agreed messages before and
after their vs_trans_sig events. Formally:
vs_vsynchronous_in(p, q, id) ∧ tb = vs_trans_sig(p) ∧ vs_vid(tb, p) = id ⇒
∃j : tj = vs_trans_sig(q) ∧ vs_vid(tj, q) = id ∧
(∃a∃m : a < b ∧ ta = vs_deliver(p, m) ∧ vs_vid(ta, p) = id ∧ agreed(m)
 ∃i∃m : i < j ∧ ti = vs_deliver(q, m) ∧ vs_vid(ti, q) = id ∧ agreed(m))
(∃c∃m’ : b < c ∧ tc = vs_deliver(p, m’) ∧ vs_vid(tc, p) = id ∧ agreed(m’)
 ∃k∃m’ : j < k ∧ tk = vs_deliver(q, m’) ∧ vs_vid(tk, q) = id ∧ agreed(m’))

Proof: If two processes are virtually synchronous in a VS view, then by Theorem 5.12
(VS Virtual Synchrony) they both deliver the same set of messages in that view and are
virtually synchronous through the same chain, if any, of intermediate EVS views, before
installing the following VS view. From the algorithm, vs_trans_sig events are only
generated in three cases: (1) an evs_view event removes a member from the process’
Vs_Survivors set, or an evs_trans_sig occurred in the current EVS view and no
vs_trans_sig event has yet occurred in the current VS view when (2) an agreed message
is subsequently vs_delivered or (3) a subsequent evs_view event occurs.

It has been shown that two processes that are virtually synchronous in a VS view have
virtually synchronously identical Vs_Survivors sets throughout that VS view. Therefore,
if an evs_view event caused one process to deliver a vs_trans_sig, the other process also
delivers a vs_trans_sig event. Furthermore, because they have delivered the same set of
Agreed messages in that VS view up to that point, by EVS Property 2.10 (Virtual
Synchrony) and EVS Property 2.9 (Same View Delivery), they deliver the same set of
Agreed messages before and after the vs_trans_sig event.

From EVS Property 2.16 (Transitional Signals), since the two processes were virtually
synchronous through the chain of EVS views, they both receive the same transitional
signals in those EVS views (if any) with the same set of agreed messages in each view
before and after each signal. Therefore, if a transitional signal was generated in one of
those EVS views, both processes would receive it. If they vs_delivered any subsequent
agreed messages in that VS view, then by Theorem 5.12 (VS Virtual Synchrony) and the
algorithm they would both deliver a VS transitional signal immediately before the same
message in that VS view. If there was an evs_view event before they installed their
following VS view, then by EVS Property 2.10 (Virtual Synchrony) they would both
generate a VS transitional signal at the same point in the their stream of VS agreed
messages. If neither of these cases occurred then by the algorithm neither process would
generate a transitional signal in the VS view in which they were virtually synchronous.

44

6.14 Theorem (VS Reliable Messages) All messages are reliable. The Self-Delivery,
Same View Delivery and Virtual Synchrony properties implicitly define the safety
properties of reliable messages. Formally:

reliable(m) ≡ m.type ∈ { R, F, C, A, S }

Proof: The algorithm does not affect messages’ types. Theorem 5.8 (VS Self-Delivery),
Theorem 5.9 (VS Sending View Delivery) and Theorem 5.12 (VS Virtual Synchrony)
satisfy the definition of VS Reliable Messages.

6.15 Theorem (VS FIFO Messages)

1. FIFO messages are reliable messages. Formally:

fifo(m) ≡ m.type ∈ { F, C, A, S }

Proof: The algorithm does not affect messages’ types.

2. If a process sends a FIFO message after a previous message, then these messages
are delivered in the order in which they were sent at every process that delivers
both. Formally:
ta = vs_send(p, m) ∧ tb = vs_send(p, m’) ∧ a < b ∧ fifo(m’) ∧
ti = vs_deliver(q, m) ∧ tj = vs_deliver(q, m’) ⇒ i < j

Proof: Lemma 5.7 (VS Message Ordering) proves this theorem.

3. If a process p sends a FIFO message m’ after a previous message m and a

process q’ delivers m’, then if any process delivers m, then q’ either delivers m or
installs a view without p in its transitional set between the delivery views of m and
m’, or if no process delivers m, then p crashed between sending m and m’ and q’
installs a view without p in its transitional set between the recovery view of p and
the delivery view of m’. Formally:

ta = vs_send(p, m) ∧ tc = vs_send(p, m’) ∧ a < c ∧ fifo(m’) ∧ tl = vs_deliver(q’, m’) ⇒
(∃i∃q : ti = vs_deliver(q, m) ⇒ (∃j : tj = vs_deliver(q’, m)) ∨
 (∃k∃id’∃D’∃T’ : tk = vs_view(q’, id’, D’, T’) ∧ p ∉ T’ ∧ vs_vid(ti, q) < id’ ≤ vs_vid(tl, q’))) ∧
(i∃q : ti = vs_deliver(q, m) ⇒ ∃b∃id∃D∃T : a < b < c ∧ tb = vs_view(p, id, D, T) ∧ vs_vid(tb, p) = ⊥ ∧
 ∃k∃id’∃D’∃T’ : tk = vs_view(q’, id’, D’, T’) ∧ p ∉ T’ ∧ id ≤ id’ ≤ vs_vid(tl, q’))

Proof: Assume m and m’ were sent in the same VS view id. In this case q’ delivers m.
Assume that this is a false statement. Lemma 5.7 (VS Message Ordering) proved that any
messages sent in VS view id that are delivered in EVS view id are delivered by any
member process that receives them. Therefore, by the assumption m is not delivered by
the EVS system in EVS view id, which implies that q’ already installed VS view id if it
received m. The fact that q’ delivers m’ implies that p was a member of its Vs_Survivors
set when it received m’. Lemma 5.5 (Vs_Survivors), therefore, implies that there was not
an EVS view installed at q’ in the range (id, EVS delivery view of m’] that did not have p
in its transitional set. Therefore, EVS Property 5.12 (FIFO Messages 3) implies that q’
received m. Furthermore, EVS Property 5.12 (FIFO Messages 2) implies m was received

45

by q’ before m’. Therefore, by Lemma 5.5 (Vs_Survivors) p was in q’’s Vs_Survivors set
when it received and consequently delivered m, which contradicts the assumption.

Assume that m and m’ were sent in different VS views id and id’. Assume that some
process delivers m, but q’ does not. The only way the axiom can hold then is if q’ installs
a VS view without p in its transitional set between id and id’. Assume that this event does
not occur. Then for every VS view that q’ installs in the open range of VS views (id, id’]
p’ must be is in its transitional set. From Theorem 5.9 (Sending View Delivery), both p
and q’ install VS view id’. Therefore, p and q’ install the same chain of VS views in the
range [id, id’] and by Theorem 5.12 (VS Virtual Synchrony) they deliver the same set of
messages delivered in those views in the open range [id, id’). Theorem 5.8 (VS Self-
Delivery) proved that a process must deliver the messages it sends in a VS view before
installing any subsequent VS views. Therefore, both p and q’ deliver m in id, which
contradicts the assumption.

Assume that m and m’ were sent in different VS views id and id’. Assume that no process
delivers m. In this case the only way the axiom can hold is if q’ installs a VS view
without q’ in its transitional set between the recovery view id* of p and the delivery view
of m’. Assume that this event does not occur. This implies that all of the VS views
installed at q’ with identifiers in the range [id*, id’] had p in the transitional set. Since
both processes install VS view id’, p’ and q’ install the same set of VS views in the range
[id*, id’]. However, p’ cannot be in q’’s transitional set for VS view id*. This is because
p’ is recovering from a crash and therefore has an empty transitional set. Therefore,
Theorem 5.10 (VS Transitional Set 1,3) forces q’ not to have p’ in its transitional set,
which contradicts the assumption.

6.16 Theorem (VS Causal Messages)

1. Causal messages are FIFO messages. Formally:

causal(m) ≡ m.type ∈ { C, A, S }

Proof: The algorithm does not affect messages’ types.

2. If a process sends a causal message m’ such that the send of another message m
causally precedes the send of m’, then any process that delivers both messages
delivers m before m’. Formally:
ta = vs_send(p, m) ∧ td = vs_send(p’, m’) ∧ ta → td ∧ causal(m’) ∧
ti = vs_deliver(q, m) ∧ tj = vs_deliver(q, m’) ⇒ i < j

Proof: Lemma 5.7 (VS Message Ordering) proves this theorem.

3. If a process p’ sends a Causal message m’ such that the send of another message
m causally precedes the send of m’, then if any process delivers m, then q’ either
delivers m or installs a view without p’ in its transitional set between the delivery
views of m and m’, or if no process delivers m, then p crashed between sending m

46

and m’ and q’ installs a view without p in its transitional set between the recovery
view of p and the delivery view of m’. Formally:

ta = vs_send(p, m) ∧ td = vs_send(p’, m’) ∧ ta → td ∧ causal(m’) ∧ tl = vs_deliver(q’, m’) ⇒
(∃i∃q : ti = vs_deliver(q, m) ⇒ (∃j : tj = vs_deliver(q’, m)) ∨
 (∃k∃id’∃D’∃T’ : tk = vs_view(q’, id’, D’, T’) ∧ p’ ∉ T’ ∧ vs_vid(ti, q) < id’ ≤ vs_vid(tl, q’))) ∧
(i∃q : ti = vs_deliver(q, m) ⇒ ∃b∃id∃D∃T : a < b < c ∧ tb = vs_view(p, id, D, T) ∧ vs_vid(tb, p) = ⊥ ∧
 ∃k∃id’∃D’∃T’ : tk = vs_view(q’, id’, D’, T’) ∧ p’ ∉ T’ ∧ id ≤ id’ ≤ vs_vid(tl, q’))

Proof: Assume m and m’ were sent in the same VS view id. In this scenario, q’ delivers
m. The fact that q’ delivers m’ implies that p’ was in its Vs_Survivors set when it
received m’. Lemma 5.5 (Vs_Survivors), therefore, implies that there was not an EVS
view installed at q’ in the range (id, EVS delivery view of m’] that did not have p in its
transitional set. By EVS Property 2.13 (Causal Messages) this implies q’ received all of
the messages sent in VS view id whose sends causally preceded m’, including m. Assume
q’ does not deliver m. Lemma 5.7 (VS Message Ordering) proved that any messages sent
in VS view id that are delivered in EVS view id are delivered by any member process
that receives them. Therefore, by the assumption m is not delivered by the EVS system in
EVS view id, which implies that q’ already installed VS view id before it received m.

The fact that p’ was in q’’s Vs_Survivors set when it received m’, implies, by EVS
Property 2.9 (Sane View Delivery) and Lemma 5.5 (Vs_Survivors) that p’ was in its
Vs_Survivors set when it received m. Therefore if p’ sent m, q’ would deliver m upon
receipt, which violates the assumption. If p’ VS delivered m then p’ and q’ would receive
m in the same EVS view, by EVS Property 2.8 (Same View Delivery) and because p’ is
in q’’s Vs_Survivors set when it receives m, they were virtually synchronous in the EVS
views [id, delivery view of m). Therefore, by Lemma 5.5 (Vs_Survivors) and EVS
Property 2.17 (Transitional Set) they would have the same Vs_Survivors sets when they
receive m. Therefore, because p’ VS delivers m, so would q’, which violates the
assumption. The only other way m’ could be causally preceded by m is if p’ VS delivered
a message m*, sent by process p*, whose send causally preceded the send of m’ and was
causally preceded by the send of m.

The fact that p’ delivered m* implies that p* was a member of its Vs_Survivors set when
it received m*. Processes p’ and q’ received m* in the same view, by EVS Property 2.8
(Same View Delivery). Q’ received m’ in a view no earlier than the delivery view of m*,
by EVS Property 2.9 (Sane View Delivery 3), therefore, p’ was in q’’s Vs_Survivors set
when it received m*. Because both p’ and q’ installed the EVS delivery view of m* and
because p’ was in q’’s Vs_Survivors set when it received m*, p’ and q’ were virtually
synchronous in the sequence of EVS views [id, delivery view of m*). Therefore, by
Lemma 5.2 (Vs_Survivors) and EVS Property 2.17 (Transitional Set), p’ and q’ had the
same Vs_Survivors sets when they received m* and, therefore, q’ also VS delivered m*,
which implies p* is in q’’s Vs_Survivors set when it receives m*.

This implies, by EVS Property 2.9 (Sane View Delivery), that if p* sent m, then q’ would
deliver m upon receipt, which violates the no delivery assumption. If p* VS delivered m,
then p* and q’ would receive m in the same EVS view, by EVS Property 2.8 (Same View
Delivery). Furthermore, because p* is in q’’s Vs_Survivors set when it receives m, again

47

by EVS Property 2.9 (Sane View Delivery), they were virtually synchronous in the EVS
views [id, delivery view of m). Therefore, by Lemma 5.5 (Vs_Survivors) and EVS
Property 2.17 (Transitional Set) they would have the same Vs_Survivors sets when they
receive m. Therefore because p* VS delivers m, so would q’, which contradicts the
assumption. The only other way m’ could be causally preceded by m is if p’ VS delivered
a message m**, sent by process p**, whose send causally preceded the send of m* and was
causally preceded by the send of m.

This argument can be iteratively applied back along the chain of causally preceding
messages between m and m’. At every step, the assumption forces the sender of a
message in this causal chain to have not sent and not VS delivered m. Therefore, because
there are a finite number of messages in the causal chain of precedence, a contradiction is
eventually reached where the send of m cannot causally precede the send of m’.
Therefore, if m and m’ are sent in the same view such that the send of m causally
precedes the send of m’ and a process delivers m’, it delivers all messages sent in that
view that causally precede m’.

Assume that m and m’ were sent in different VS views id and id’. Assume that a process
delivers m and that q’ does not deliver m. In this case the only way the axiom can hold is
if q’ installs a VS view without p’ in its transitional set between the delivery views of m
and m’. Assume that this event does not occur. This implies that all of the VS views
installed at q’ with identifiers in the open range (id, id’] had p’ in the transitional set.
Both processes p’ and q’ install id’, which implies that the two processes go through the
same set of VS views in the range [id, id’] and that they are virtually synchronous in the
VS views that they installed in the open range [id, id’). Therefore, q’ delivers m if and
only if p’ delivers m. By Lemma 5.5 (Vs_Survivors), because p’ and q’ are in each others
transitional sets for each of the VS views they installed in the range (id, id’] they were in
each others transitional sets for of the EVS views they installed in the range (id, id’].
Furthermore, the fact that p’ was in q’’s Vs_Survivors set when it received m’ in EVS
view id’’, implies that there was not an EVS view installed at q’ in the range (id, id’’] that
did not have p’ in the transitional set. By EVS Property 2.13 (Causal Messages) this
implies that q’ received all of the messages whose sends Causally preceded the send of
m’ that were EVS delivered in the EVS views that they installed in the range (id, id’’],
including m. Now the exact same iterative argument used above to prove that if m and m’
were sent in the same VS view then q’ delivered m, can be applied to this situation, with
the additional complexity of multiple Vs_Survivors sets for different VS views.

Assume that m and m’ were sent in different VS views id and id’. Assume that no process
delivers m. In this case the only way the axiom can hold is if q’ installs a VS view
without q’ in its transitional set between the recovery view of p’ and the delivery view of
m’. Assume that this event does not occur. This implies that all of the VS views installed
at q’ with identifiers in the range [id, id’] had p’ in the transitional set. Since both
processes install VS view id’ and p’ is in q’’s transitional set for that view, they installed
the same set of VS views in the range [id, id’]. However, p’ cannot be in q’’s transitional
set for VS view id. This is because p’ is recovering from a crash and therefore has an

48

empty transitional set. Therefore, Theorem 5.10 (VS Transitional Set 1,3) forces q’ not to
have p’ in its transitional set, which contradicts the assumption.

6.17 Theorem (VS Agreed Messages)

1. Agreed messages are causal messages. Formally:

agreed(m) ≡ m.type ∈ { A, S }

Proof: The algorithm does not affect messages’ types.

2. If a process p delivers an agreed message m’, then after that event it will never
deliver a message that has a lower ord value. Formally:
ta = vs_deliver(p, m) ∧ tb = vs_deliver(p, m’) ∧ agreed(m) ∧ ord(m) < ord(m’) ⇒ a < b

Proof: Lemma 5.7 (VS Message Ordering) proves this theorem.

3. If a process p delivers an agreed message m’ before a vs_trans_sig event in its
current view, then p delivers every message with a lower ord value than m’
delivered in that view by any process. Formally:
tc = vs_deliver(p, m’) ∧ agreed(m’) ∧
(b : b < c ∧ tb = vs_trans_sig(p) ∧ vs_vid(tb, p) = vs_vid(tc, p)) ⇒
∀i∀q∀m : ti = vs_deliver(q, m) ∧ vs_vid(ti, q) = vs_vid(tc, p) ∧ ord(m) < ord(m’); ∃a :
ta = vs_deliver(p, m)

Proof: The algorithm generates one vs_trans_sig event per view in only three cases: (1)
an evs_view event occurs which removes one or more members from the process’
Vs_Survivors set, or after an evs_trans_sig event the algorithm (2) subsequently
vs_delivers an agreed message or (3) an evs_view event occurs. The guarantees provided
by EVS Property 2.14 (Agreed Messages) directly apply up to either the first
evs_trans_sig event in a VS view or first evs_view event that removes members from a
process’ Vs_Survivors set. Delaying the vs_trans_sig event caused by an evs_trans_sig
event until either VS delivering an Agreed message or a subsequent evs_view event does
not affect the guarantees provided by that property. This is because no Agreed messages
are being delivered before the VS transitional signal that were after the EVS transitional
signal.

4. If a process p delivers an agreed message m’ after a vs_trans_sig event in its
current view, then p delivers every message with a lower ord value than m’ sent
by all processes in p’s next transitional set that were delivered in that view.
Formally:
ta= vs_trans_sig(p) ∧ tc= vs_deliver(p, m’) ∧ td = vs_view(p, id’, D’, T’) ∧ a < c < d ∧
agreed(m’) ∧ vs_vid(ta, p) = vs_vid(tc, p) = vs_vid(td, p) ⇒
∀i∀q∈T’∀m∀l∀p’ : ti = vs_send(q, m) ∧ tl = vs_deliver(q’, m) ∧
vs_vid(tl, q’) = vs_vid(tc, p) ∧ ord(m) < ord(m’); ∃b : tb = vs_deliver(p, m)

49

Proof: A process’ transitional set for a VS view id’ is its Vs_Survivors set upon installing
that view. The fact that p installs id’ implies that it received a flush message marked
appropriately from each of the members of its Vs_Survivors set. This implies that all of
those members installed the EVS view id’. Therefore, because they all installed EVS
view id’ all of those members were virtually synchronous with one another in the EVS
views that they installed since their previous VS view id. Furthermore, during that time
their Vs_Survivors sets were virtually synchronous, therefore, they all delivered the same
set of messages that they received in the EVS views they installed in the open range [id,
id’). This process received FIFO flush messages from each of the members of its
Vs_Survivors. Therefore, because a process cannot send messages in a VS view after
flushing it and the flush message is a FIFO message, this process received and delivered
all of the messages that the members of its Vs_Survivors set sent in the previous VS
view.

6.18 Theorem (VS Safe Messages)

1. Safe messages are agreed messages. Formally:

safe(m) ≡ m.type ∈ { S }

Proof: The algorithm does not affect messages’ types.

2. If a process p delivers a safe message m before a vs_trans_sig event in its current
view, then every member of that view delivers m, unless it crashes. Formally:
ta = vs_view(p, id, D, T) ∧ tc = vs_deliver(p, m) ∧ safe(m) ∧ vs_vid(tc, p) = id ∧

b : a < b < c ∧ tb = vs_trans_sig(p) ⇒
∀q∈D; ∃i∃D’∃T’∃j : ti = vs_view(q, id, D’, T’) ∧

(tj = vs_deliver(q, m) ∨ (tj = crash(q) ∧ vs_vid(tj, q) = id))

Proof: If a process delivers a Safe message in a VS view id before a vs_trans_sig event
this implies that no evs_trans_sig events had occurred in the EVS views at this process
since installing EVS view id. It also implies that no evs_view events removed members
from the process’ Vs_Survivors set. Therefore, because no evs_trans_sig events have
occurred yet, every member of the EVS delivery view of m will receive m or crash.
Furthermore, those members that do not crash will receive m in the same EVS view id* as
p. Those processes, therefore, will have the same Vs_Survivors set as p, due to being
virtually synchronous in the EVS views they installed in the range [id, id*). Since at that
point, Vs_Survivors contains the entire membership of the VS view, all of the members
of that VS view that receive m will deliver m. This argument and EVS Property 2.15
(Safe Messages) prove this theorem.

3. If a process p delivers a safe message m after a vs_trans_sig event in its current
view, then every member of p’s transitional set from p’s next view delivers m,
unless it crashes. Formally:
ta = vs_view(p, id, D, T) ∧ tb = vs_trans_sig(p) ∧ tc = vs_deliver(p, m) ∧ b < c ∧ safe(m) ∧
td = vs_view(p, id’’, D’’, T’’) ∧ vs_vid(tb, p) = vs_vid(tc, p) = vs_vid(td, p) = id ⇒
∃i∃D’∃T’∃j : ∀q∈T’’ : ti = vs_view(q, id, D’, T’) ∧
(tj = vs_deliver(q, m) ∨ (tj = crash(q) ∧ vs_vid(tj, q) = id))

50

Proof: EVS Property 2.15 (Safe Messages) guarantees that a Safe message received after
a transitional signal in an EVS view will be received by all of the members of the
process’ transitional set of the following EVS view, unless they crash. The transitional set
of a VS view is simply the intersection of all the transitional sets of EVS views that have
occurred at this process since the most recent VS view was installed. Therefore, any
members of a VS transitional set will receive a Safe message m that p delivers after a
vs_trans_sig event in a VS view, unless they crash. Furthermore, those members in
Vs_Survivors that do not crash receive m in the same EVS view id* as p. Therefore,
because p and its Vs_Survivors that do not crash all install that EVS view and they were
in each others transitional sets, they were virtually synchronous in the EVS views that
they installed in the range [id, id*). Therefore, at the point of receiving m they have the
same Vs_Survivors sets and will all deliver m because p does. This argument and EVS
Property 2.15 (Safe Messages) prove this theorem.

51

7 VS Algorithm Variants

The algorithm presented in this work used one round of n-to-n communication using
FIFO messages to install views. This work also explored very similar algorithms that use
more rounds and more powerful message types in order to achieve even more powerful
semantics than the described VS model.

7.1 Single Round VS Algorithm Using Agreed Messages
This algorithm is almost an exact duplicate of the algorithm presented in this paper. The
only difference, in fact, is that this algorithm uses Agreed messages for its flush messages
and it does not install obsolete views at all. When a process receives the last necessary
flush message in order to install a VS view, it only installs that view if a transitional
signal has not yet been delivered in its current EVS view. If a signal was delivered, then
the process “waits” for the following EVS view to be installed and then tries to install
that view. Property 2.16 (Transitional Signals) guarantees that virtually synchronous
processes will deliver a transitional signal at that same point in the stream of agreed
messages in the view. Therefore, if one process decides not to install a view because of a
transitional signal, then all of the processes that remain virtually synchronous to that
process will also decide not to install that view.

The heavy additional cost of using Agreed messages instead of inexpensive FIFO
messages almost surely outweighs the potential benefit of not installing obsolete views.
As described in section 3, the probability that the presented algorithm actually installs
obsolete views is very small.

7.2 Single Round VS Algorithm Using Safe Messages
If flush messages are Safe messages, then the presented algorithm provides a stronger set
of semantics than those presented in the VS model. This variant uses the same heuristic
for avoiding obsolete views as the variant that uses Agreed messages. Therefore, if a
process installs a VS view, then it received a Safe flush message from each of the
potential members of that VS view before any transitional signal in its current EVS view.
From the properties of Safe messages, this implies that all of the other processes in the
EVS view will deliver the same flush messages in the same EVS view, unless they crash.
Therefore, the other processes will also receive all of the messages delivered in that EVS
view before the flush messages, unless they crash first. This implies that when a process
installs a VS view, all of the members of its transitional set will deliver at least the same
set of messages that this process delivered in its previous VS view, unless they crash.
These semantics are a stronger form of Property 2.10 (Virtual Synchrony).

7.3 Two Round VS Algorithm Using FIFO Messages
This algorithm is very similar to the single round algorithm presented in this thesis,
except that this algorithm uses two rounds of flush messages instead of just one. In this
variant, the first round of collecting flush messages is conducted exactly as it is in the
single round FIFO variant. Once a process collects a flush message from each of the

52

potential members of a VS view, it sends another message indicating that it has received
all of the flush messages for that VS view. It then tries to collect one of these messages
from each of the potential members of the VS view. If it succeeds, then the process
installs the new VS view. If, instead, an EVS view is installed before it can collect the
necessary messages, then the algorithm starts over and tries to install that new EVS view.

This variant provides an even stronger form of Property 2.10 (Virtual Synchrony) than
the single round Safe variant provides. This is because the algorithm delivers messages as
it receives them. Therefore, when a process sends the second flush message for a VS
view, it has already delivered all of the messages it will deliver in its previous view. This
implies that if a process installs a VS view, then all of the processes in its transitional set
for that view already delivered the same set of messages that it did in its previous view.
Of course, this property is not that much more powerful than the form of virtual
synchrony offered by the one round safe variant, because it does not imply that the
process to which the messages were delivered processed those messages before crashing.
However, the virtual synchrony that this algorithm provides can be strengthened even
further with a little added interaction with the client process.

In this modified variant, once the algorithm collects all the necessary flush messages in
the first round, rather than immediately responding with its second flush message, it
delivers another signal to the client. The algorithm only sends the second flush message
when the client responds to this signal. As described above, after a process collects all of
the flush messages for installing a new VS view, it has already delivered all of the
messages that it will in its previous view. Therefore, if the client process
“handles/processes” all of the messages delivered in its previous view before authorizing
the second flush message, a very powerful form of virtual synchrony is achieved. When a
process installs a view, the members in its transitional set delivered and handled all of the
messages that this process did in its previous view. In effect, this algorithm implements a
client-level implicit end-to-end acknowledgment of the messages that were delivered in
its previous view.

The additional overhead of these variants is an additional round of n-to-n communication.
However, the additional synchrony gained may or may not warrant paying that additional
cost in the common case depending upon the application at hand. The performance
differences between these variants and the Single Round Safe variant would be minimal,
as this algorithm is effectively using “manual” safe messages.

7.4 Single Round VS Algorithm Using FIFO Messages for Spread
This work’s original purpose was to implement VS semantics on top of the Spread Wide
Area Group Communication Toolkit [Spread]. Spread’s EVS semantics differ slightly
from the model presented in this paper. In particular, Spread’s non-Causal messages do
not maintain Same View Delivery with respect to lightweight client views. In addition, in
rare cases Spread does not maintain client-level Same View Delivery for Causal
messages during heavyweight daemon partitions.

53

Spread does not force FIFO and Reliable messages to be ordered with respect to
lightweight membership changes because this would increase the cost of those messages
and force them to be delivered almost with the same latency as Agreed messages. This is
because a FIFO or Reliable message could not be delivered if there were any holes in the
global total order of messages in the daemon’s heavyweight view, because that missing
message might be a lightweight membership message. Forcing this type of delivery upon
FIFO and Reliable messages would drastically increase the latency of these normally
loosely constrained messages. Therefore, in order to maintain the expected low latency
characteristics of these messages, Spread allows them to be delivered by different
daemons in different lightweight views. Spread’s non-Causal messages also do not
maintain Property 2.9 (Sane View Delivery 3).

Spread also violates Same View Delivery for Causal messages when daemons partition
away from one another. In this case, virtually synchronous processes will deliver Causal
messages in the same view, but in another network component those same messages may
be delivered in different lightweight client views. This stems directly from the fact that
lightweight client joins and leaves are implemented as Agreed messages. After a
transitional signal in a view, different network components may deliver different sets of
Safe messages. Therefore, different components may disagree upon the lightweight views
in which Causal messages are delivered.

The algorithm presented in this thesis depended strongly on the fact that its flush
messages be delivered in the same EVS view by virtually synchronous processes.
Therefore, in this modified model, the algorithms presented, thus far, must use Causal
instead of FIFO flush messages. However, this work also developed a single round FIFO
algorithm in this relaxed environment where FIFO flush messages will not necessarily be
delivered in the same view at all virtually synchronous processes.

The main difference between this algorithm and the earlier algorithms is that a process
cannot always immediately abandon installing a VS view when a new EVS view is
installed. This is because the flush messages can be delivered in different views at
different processes that are virtually synchronous with one another. This could cause
virtually synchronous clients to come to different decisions on whether or not to install a
particular VS view. Allowing virtually synchronous processes to disagree upon which VS
views to install and still attempting to meet the various GCS properties would horribly
complicate any VS algorithm.

To avoid these complications, instead of abandoning VS views in response to every EVS
view, this algorithm only abandons VS views when it knows that any virtually
synchronous process would also abandon the VS view. The heuristic used to accomplish
this is to only abandon installing a VS view if a later EVS view indicates that one of the
potential members of the VS view has “gone away” before this process received its flush
message for that VS view. In this case, none of the processes that are virtually
synchronous to this process will deliver its flush message before seeing the same EVS
view. This is because the leaving process either crashed or there was a daemon partition.
In the first case, the process’ flush message cannot be delivered after the membership

54

removing it from the group. In the second case, the heavyweight daemon membership
ensures that no virtually synchronous process will deliver the flush message before the
view in which the process was partitioned away.

These heuristics for abandoning views, however, causes other complications. Now a
process can have multiple pending VS views that it needs to try and serially install – one
for each EVS view it has not yet abandoned. Furthermore, when it is forced to abandon a
view because of a process leaves before its flush messages is received, that leave may
force it to abandon several of its queued EVS views. In this case, several EVS view
events may need to be collapsed into one aggregate VS view event.

This algorithm obviously has the drawback of installing obsolete views, because it
continues to try and install views that it knows do not reflect the current underlying
connectivity. This algorithm also has the problem of theoretically requiring infinite
memory. If a process receives a flush message marked with an identifier that it has not
seen yet, then it cannot drop that flush message. This is because that flush message could
be for an EVS view that the EVS system has not yet installed at this process. On the other
hand, the message could be for an EVS view that was installed in a different network
component that then merged with this process’ network component. There is no way for a
process to implicitly differentiate between these two cases in Spread and, therefore, it
must buffer the message. If that EVS view is subsequently installed at the process it can
only abandon that view by the heuristic described above and it needs all of the flush
messages it receives to act correctly. In Spread’s EVS model, a FIFO flush message for
an EVS view can, theoretically, be delivered at a process before an arbitrary number of
intervening lightweight EVS views. Therefore, a process, theoretically, cannot drop any
of these questionable flush messages and would require infinite memory. In a practical
system, a FIFO flush message cannot be delivered before an arbitrary number of
lightweight view changes. Spread uses a threshold that puts a constant limit on how “far
apart” in the global ordering the same message may be delivered at different daemons.
Using this threshold, this algorithm for Spread can distinguish flush messages that were
meant for memberships that have already occurred and drop them.

As far as performance, the tradeoffs between this algorithm and the Single Round Causal
algorithm probably cancel each other out or weigh towards the Causal Algorithm. The
FIFO algorithm will have lower latency per view that it installs, but in an active group
where members are commonly joining and leaving the Causal Algorithm would probably
outperform it due to the smaller number of views it would install and because client
applications need to authorize each and every view and client processes tend to be less
responsive than if the process was under the control of the VS algorithm.

7.5 Eliminating Unnecessary Data Overhead
One drawback that all of the presented algorithms have is that they mark every message
with the identifier of the VS view in which it was sent. This is a small data overhead on
every message. In fact, the algorithms can be modified to eliminate the need to mark
every message. As was shown in the proofs of the VS algorithm’s correctness, a Causal
message sent in a VS view will not be received by members of that view until after they

55

install that view. Therefore, causal messages received from a member of a process’
Vs_Survivors set were sent in its current VS view. Causal messages therefore never need
to be marked and the presented algorithm marks them only for the ease of some of the
proofs. Non-Causal messages do, however, need to be marked at certain times. When a
non-Causal message could be received by a member of the VS view in which it was sent,
before that member installs that VS view, it must be marked with proper identification so
that the recipient knows whether or not it should buffer that message. Once every
potential member has installed the VS view then it is safe to stop marking non-Causal
messages sent in that VS view. In order to have this knowledge an n-to-n round of
communication must occur in which each process announces that it has installed the
view. This round of communication can proceed in parallel with sending messages in the
VS view and can even be done by piggybacking on regular communication.

56

8 Performance

The original purpose of this work was to develop a simple algorithm that could
implement partitionable Virtual Synchrony on top of Spread, which provides Extended
Virtual Synchrony, with minimal impact on performance. For concrete implementation, I
chose the most complex variant discussed in the previous section: one round of n-to-n
FIFO10 messages to install a membership, followed by another round of n-to-n FIFO
messages to allow non-Causal messages not to be tagged with view identifiers. This
implementation is known as Flush Spread.

All of the algorithms developed by this work would only incur significant overhead on
top of Spread in response to group view changes. Therefore, to discover how much
overhead this algorithm incurred on top of Spread the most important aspect of the GCSs
to evaluate is their client-level latency in installing lightweight view changes.

The systems’ lightweight view installation latencies were measured using two different
membership change profiles. In both profiles the Spread daemons were placed under
moderate load by external means. In the first profile lightweight view changes occurred
intermittently (tens of milliseconds apart), whereas in the second profile they occurred
serially in rapid fire, one immediately after the other. In both scenarios a base group of
processes was constructed and then one process (the delta process) would join and leave
the group several hundred times, timing how long each membership took.

These timings were performed on a cluster of 12 dual 666MHz Pentium-IIIs with 256MB
main memory interconnected over switched fast Ethernet (100Mbps). Each machine ran a
single Spread daemon process and the different client processes were spread across the
cluster as evenly as possible. For example, for the trials with a group size of 25 processes,
there were 2 processes on 11 machines and 3 processes on 1 machine.

In Spread, the latency for join and leave lightweight view changes should be completely
symmetric at all clients, as both view change types consist of sending and delivering a
single Agreed message. In Flush Spread, due to an engineering decision, leaving
processes do not take part in the VS algorithm. Therefore, measuring leave times at the
leaving process would give false results. As it is difficult to measure the full leave latency
at a process other than the leaving process, I have excluded leave membership timings
from this comparison. The timings should be extremely similar to the Flush join latencies
as the non-leaving members execute the exact same algorithm as they do for join view
changes.

The graphs below show the median latencies it took for the views to be installed in
response to a user request. The error bars on the medians represent the first and third
quartile values of the latency timings.

10 Recall that Spread does not provide Same View Delivery semantics for these FIFO messages.

57

These join latency timings were taken under the first membership profile of intermittent
lightweight view changes.

Spread and Flush Intermittent Join Latency

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45 50

Group Size

Ti
m

e
(m

s)

Spread Flush

These join latency timings were taken under the second membership profile of rapid
serial lightweight view changes.

Spread and Flush Continuous Join Latency

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

Group Size

Ti
m

e
(m

s)

Spread Flush

58

As expected, Spread’s view installation latencies were almost completely unaffected as
the number of client processes increased. This is due to Spread’s client-daemon
architecture, where the latency to deliver a message is proportional to the number of
participating daemons. Once a message is deliverable a Spread daemon must simply
multiplex that message to however many interested clients are connected to it. That
multiplexing happens roughly in parallel and with very little additional computational
load, thus making Spread relatively insensitive to the size of a process group for
delivering messages. Since lightweight view changes in Spread are caused by a single
Agreed message, Spread’s latency to install lightweight view changes scales very well
with the size of a process group.

As expected, Flush Spread’s view installation latencies scaled roughly linearly as the
number of client processes increased. This is due to the fact that each client must process
a message from each of the n members of a potential view before installing that view. In
fact, as the number of processes increased Flush Spread’s latency began to become super-
linear. This is due to the fact that as linearly more processes are connected to a particular
Spread daemon it must deliver quadratically more total messages to those processes.

The main differences from the intermittent to the continuous scenarios are a modest
increase in the median latencies and a dramatic decrease in the variability of the timings.

Spread’s increase in median latency and the decrease in timing variability stem directly
from Spread’s local-area token Ring protocol [AMMS+95, AS98] and the fact that each
membership change request follows immediately after the previous view is installed. In
the continuous scenario, every time the token makes one trip around each of the daemons
the previous membership change request is installed. This makes the installation latency
equal to the period of one token circulation and on a switched local network this period
will not vary much. In the intermittent scenario the token is on average half a circulation
away but could be about to arrive or have just left.

Flush Spread’s large increase in latency in the continuous scenario is due to the
asymmetry of join and leave events at the leaver mentioned earlier. What is happening is
that when the delta process requests to leave, his request is granted at the speed of a
Spread leave request and he then immediately requests to re-join the group. Since the
non-leaving members are still handling his leave view change, these “join” latency
timings actually time both the join latency and a good portion of the “real” leave latency.
To support this theory, I timed the combined join and leave latency of Spread and Flush
under the continuous scenario:

59

Spread and Flush Continuous Join/Leave Latency

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

Group Size

Ti
m

e
(m

s)

Spread Flush

As expected, the Spread median latency for a join followed by a leave approximately
doubled, but the latency for Flush Spread barely increased. This demonstrates that the
“join” latencies of Flush Spread above were measuring a good portion of the combined
join and leave latency. This must be the case, because this algorithm cannot install a join
view change until the previous leave view change is installed by executing the full
algorithm for the leave change. So the non-leaving members would slow down the delta
member and he would perceive the additional time as join latency when in fact it is an
artifact of his asymmetrically fast leave.

I believe that the intermittent lightweight view change profile is the more common
membership change profile in practice. The continuous join/leave is more of a worst-case
scenario test for the different algorithms. From the intermittent join latency graph, Flush
Spread has a latency of less than 10ms for an n-to-n round to complete between fifty
participants on a fast local network. If membership changes are not too common, then
Flush Spread could comfortably support groups of hundreds of processes in that
environment. This is almost an order of magnitude slower than Spread and scales much
worse as the group size increases. However, one of the main claims of this paper was that
Spread’s architecture was of such high performance that a more powerful and expensive
set of GCS semantics could be implemented on top of it without excessive overhead.

60

9 Conclusions

This thesis presented several distributed algorithms for implementing the Virtual
Synchrony (VS) model of group communication on top of the Extended Virtual
Synchrony (EVS) model of group communication. It formally proved that a more
powerful set of GCS semantics could be built on top of a weaker set of semantics with
very simple algorithms. Furthermore, this thesis argued that, in the common case, these
algorithms have competitive performance compared with other “native” implementations
of the VS model.

61

10 References

[ACBMT95] E. Anceaume, B. Charron-Bost, P. Minet and S. Toueg. On the formal

specification of group membership services. TR 95-1534, Dept. of
Computer Science, Cornell University, August 1995.

[ACDV97] Y. Amir, G. V.Chokler, D. Dolev and R. Vitenberg. Efficient state transfer

in partitionable environments. In 2nd European Research Seminar on
Advances in Distributed Systems (ERSADS’97), pages 183-192.
BROADCAST (ESPRIT WG 22455), Operating Systems Laboratory,
Swiss Federal Institute of Technology, Lausanne, March 1997. Full
version available as Technical Report CS98-12, Institute of Computer
Science, The Hebrew University, Jerusalem, Israel.

[ADKM92] Y. Amir, D. Dolev, S. Kramer and D. Malki. Transis: A communication

sub-system for high availability. In 22nd IEEE Fault-Tolerant Computing
Symposium (FTCS), July 1992.

[Ami95] Y. Amir: Replication Using Group Communication Over a Partitioned

Network. Ph.D. Thesis, Institute of Computer Science, The Hebrew
University, Jerusalem, Israel, 1995.

[AMMS+95] Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal and P. Ciarfella.

The totem single-ring ordering and membership protocol. ACM
Trasactions on Computer Systems, 13(4):311-342, November 1995.

[AS98] Y. Amir and J. Stanton. The Spread Wide Area Group Communication

System. TR CNDS-98-4, The Center for Networking and Distributed
Systems, The Johns Hopkins University, 1998.

[Bir86] K. Birman. ISIS: A System for Fault-Tolerant Distributed Computing.

Technical Report TR86-744, Cornell University, Department of Computer
Science, April 1986.

[BvR94] K. Birman and R. van Renesse. Reliable Distributed Computing with the

Isis Toolkit. IEEE Computer Society Press, 1994.

[CHTCB96] T. Chandra, V. Hadzilacos, S. Toueg and B. Charron-Bost. On the

impossibility of group membership. In 15th ACM Symposium on Principles
of Distributed Computing (PODC), pages 322-330, May 1996.

[DPFLS98] R. Prisco, A. Fekete, N. Lynch and A. Shvartsman. A dynamic view-

oriented group communication service. In 17th ACM Symposium on
Principles of Distributed Computing (PODC), pages 227-236, June 1998.

62

 [FvR95] R. Friedman and R. van Renesse. Strong and Weak Virtual Synchrony in
Horus. TR 95-1537, Dept. of Computer Science, Cornell University,
August 1995.

[GG91] S. Garland and J. Guttag. A guide to LP, the Larch Prover. Research

Report 82, Digital Systems Research Center, 130 Lytton Avenue, Palo
Alto, CA 94301, December 1991.

[GHG+93] J. Guttag, J. Horning, S. Garland, K. Jones, A. Modet and J. Wing, editors.

Larch: Languages and Tools for Formal Specification. Spring-Verlag
Texts and Monographs in Computer Science, 1993.

[GL98] S. Garland and N. Lynch. The IOA language and toolset: Support for

designing, analyzing and building distributed systems. Technical Report
MIT/LCS/TR-762, Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, August 1998. URL
http://theory.lcs.mit.edu/tds/papers/Lynch/IOA-TR-762.ps

[GS95] R. Guerraoui and A. Schiper. Transaction model vs virtual synchrony

model: bridging the gap. In Theory and Practice in Distributed Systems,
LNCS 938, pages 121-132. Springer-Verlag, September 1995.

[HvR96] J. Hickey, N. Lynch and R. van Renesse. Specifications and proofs for

ensemble layers. In Fifth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, (TACAS ’99,
Amsterdam, Netherlands, March 1999), Lecture Notes in Computer
Science. Springer-Verlag, 1999.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558-565, July 1978.

[LSGL95] V. Luchangco, E. Soylemez, S. Garland and N. Lynch. Verifying timing

properties of concurrent algorithms. In Dieter Hogrefe and Sefan Leue,
editors, Formal Description Techniques VII: Proceedings of the 7th IFIP
WG6.1 International Conference on Formal Description Techniques
(FORTE’94, Berne, Switzerland, October 1994), pages 259-273. Chapman
and Hall, 1995.

[LT89] N. Lynch and M. Tuttle. An introduction to Input/Output Automata. CWI

Quarterly, 2(3):219-246, 1989.

[Lyn96] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[KK00] I. Keidar and R. Khazan. A client-server approach to virtually

synchronous group multicast: specifications and algorithms. In 20th IEEE

63

International Conference on Distributed Computing Systems (ICDCS),
pages 344-365, April 2000.

[MAMSA94] L. Moser, Y. Amir, P. Melliar-Smith and D. Agarwal. Extended virtual

synchrony. In 14th International Conference on Distributed Computing
Systems (ICDCS), pages 56-65, June 1994. Full version: technical report
ECE93022, Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA.

[MPS91] S. Mishra, L. Peterson and R. Schlicting. Consul: A Communication

Substrate for Fault-Tolerant Distributed Programs. TR 91-32, Dept. of
Computer Science, University of Arizona, 1991.

[PPG+96] T. Petrov, A. Pogosyants, S. Garland, V. Luchangco and N. Lynch.

Computer-assisted verification of an algorithm for concurrent timestamps.
In Reinhard Gotzhein and Jan Bredereke, editors, Formal Description
Techniques IX: Theory, Applications and Tools(FORTE/PSTV’96: Joint
International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols, and Protocol
Specification, Testing and Verification, Kaiserslautern, Germany, October
1996), pages 29-44. Chapman & Hall, 1996.

[RKM96] R. V. Renesse, K. Birman and S. Maffei. Horus: A flexible group

communication system. Communications of the ACM, 39:76-83, April
1996.

[SAGG+93] J. Sogaard-Andersen, S. Garland, J. Guttag, N. Lynch and A. Pogosyants.

Computer-assisted simulation proofs. In Costas Courcoubetis, editor,
Computer-Aided Verification (5th International Conference, CAV’93,
Elounda, Greece, June/July 1993), volume 697 of Lecture Notes in
Computer Science, pages 305-319. Springer-Verlag, 1993.

[Spread] The Spread Wide Area Group Communication Toolkit.

http://www.spread.org

[Vit98] R. Vitenberg. Properties of distributed group communication and their

utilization. Master’s thesis, Institute of Computer Science, The Hebrew
University of Jerusalem, Jerusalem, Israel, January 1998.

[VKCD99] R. Vitenberg, I. Keidar, G. Chokler and D. Dolev. Group Communication

Specifications: A Comprehensive Study. Technical report CS99-31,
Computer Science Institute, The Hebrew University, Jerusalem, Israel.
MIT Technical Report MIT-LCS-TR-790, September 1999.

[WMK94] B. Whetten, T. Montgomery and S. Kaplan. A high performance totally

ordered multicast protocol. In Theory and Practice in Distributed Systems,

64

International Workshop, Lecture Notes in Computer Science, page 938,
September 1994.

[WS95] U. Wilhelm and A. Schiper. A hierarchy of totally ordered multicasts. In

14th IEEE International Symposium on Reliable Distributed Systems
(SRDS), September 1995.

