
SCALING BYZANTINE REPLICATION TOWIDE-AREA NETWORKS

by

John W. Lane

A dissertation submitted to The Johns Hopkins University in conformity with the requirements for

the degree of Doctor of Philosophy.

Baltimore, Maryland

October, 2008

c© John W. Lane 2008

All rights reserved

Abstract

As network environments become increasingly hostile, even well secured distributed

systems are likely to suffer at least one compromised subcomponent. During the past

several years, Byzantine fault-tolerant replication has emerged as a promising technique

for constructing intrusion-tolerant systems that function correctly even when an attacker

controls part of the system. Prior to our work, Byzantine replication systems were based

on flat (nonhierarchical) protocols and offered high performance only when deployed on

local-area networks.

This dissertation presents the first two hierarchical Byzantine fault-tolerant replication

architectures that scale to systems that span multiple wide-area sites. Our first architec-

ture, Steward, confines the effects of a malicious replica to its local site, reduces message

complexity of wide-area communication, and allows read-only queries to be performed lo-

cally within a site for the price of additional commodity hardware. Our second architecture

improves upon Steward by providing customizability of the fault tolerance approach used

within each site and on the wide area and by including new optimizations. Prototype im-

plementations are evaluated in several network topologies and compared with the previous

state of the art. The experimental results show an order of magnitude improvement over

flat Byzantine replication protocols in typical wide-area deployments.

Adviser: Yair Amir
Readers: Scott Smith

Cristina Nita-Rotaru

ii

Acknowledgements

I especially want to thank my adviser and collaborator, Yair Amir, for his help and,

even more importantly, encouragement and advice. Of all of the people whom I encoun-

tered while working and studying, Yair showed the most interest in my future. In fact, he

convinced me to attend the Ph.D. program.

I also want to thank the other people with whom I have collaborated on this work. In

particular, I want to thank Jonathan Kirsch. We worked together on all of the parts of this

dissertation, and he is an exceptional researcher and a great collaborator and friend. Other

collaborators include Brian Coan (who also provided a great opportunity for me when I

interned at Telcordia), Claudiu Danilov, Danny Dolev (who kindly visited us to help design

Steward), Josh Olsen, Cristina Nita-Rotaru (who I also want to thank for being a member

of my dissertation committee), and David Zage.

I thank my friends and family for providing the emotional support that all graduate

students need – especially those who are as test-phobic as I am. Thanks to: Dan Young,

my best friend, for countless long telephone conversations about everything. Nilo Rivera

for listening to me go on and on about Byzantine fault-tolerant state machine replication

over about a thousand lunches. Raluca Musaloiu-Elefteri for always being a friendly face

(and keeping our computers working). Claudiu Danilov for easing my transition into the

lab and gluing everything together during my first years there.

Many other people at Johns Hopkins played an important role in my Ph.D. I thank

Jonathan Shapiro for his part in my acceptance to the program, Scott Smith for being a

dissertation reader (and for the PL class), Andreas Terzis for working with me on one of my

qualifying projects, and the many people who work in the Computer Science Department

iii

supporting the students.

I owe a great deal to Paul Fitzgerald, the best of my many friends from my past life in

neuroscience. He kept me grounded during the last five years. I also thank Kathy Downey

for being there when I needed someone the most.

I want to thank the members of my family, and especially my grandmother Marjory

Ward and my great aunt Grace Ward, for providing a haven in Cape Cod far removed from

the stresses of school.

Lastly, and most importantly, I want to thank my parents, John and Carol Lane, for

providing me with a great home and encouraging (and putting up with) all of my childhood

“interests.” This dissertation is a testament to their understanding and hard work.

During the time that I was a graduate student, I received support from the Defense Ad-

vanced Research Projects Agency (grant FA8750-04-2-0232) and from the National Sci-

ence Foundation (grant 0716620).

iv

Dedication

This dissertation is dedicated to my grandfather, William F. Ward, an actuary who took

great pleasure in using early computers.

v

Contents

Abstract ii

Acknowledgements iii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Survivable Wide-Area Byzantine Fault Tolerant Replication: Steward and the Com-

posable Architecture . 3

1.1.1 Model and Service Properties Overview 7

1.2 Dissertation Organization . 8

2 Related Work and Background 10

2.1 Related Work . 10

2.2 Background: Paxos, BFT, and RSA Threshold Signatures 16

2.2.1 Paxos Overview . 16

2.2.2 BFT Overview . 17

2.2.3 Threshold Digital Signatures . 17

3 Steward: Survivable Technology for Wide-Area Replication 19

3.1 Steward Overview . 19

3.2 System Model . 21

3.3 Service Properties . 22

vi

3.4 Protocol Description . 24

3.4.1 Data Structures and Message Types . 25

3.4.2 The Common Case . 34

3.4.3 View Changes . 38

3.4.4 Timeouts . 46

3.4.5 Reconciliation . 49

3.5 Performance Evaluation . 51

3.6 Proof of Correctness . 57

3.6.1 Proof of Safety . 57

3.6.2 Proof of Liveness . 74

3.7 Steward Summary . 122

4 Customizable Fault Tolerance for Wide-Area Replication 123

4.1 Composable Architecture Overview . 123

4.2 System Model and Service Guarantees . 126

4.3 Customizable Replication System Architecture 129

4.4 The BLink Protocol . 132

4.4.1 (Byzantine, Byzantine) Sub-protocol . 133

4.4.2 Other BLink Sub-protocols . 138

4.4.3 BLink Protocol Proofs . 139

4.4.4 Proof of Selection Order Properties . 140

4.4.5 Bounding V Lmax in the (Byzantine, Byzantine) Sub-protocol 141

4.4.6 Ratio of Correct Links in Other Sub-protocols 144

4.4.7 Bounding V Lmax in the Other Sub-protocols 145

4.5 Client Updates . 148

4.6 Performance Optimizations . 151

4.7 Performance Evaluation . 152

4.8 Safety and Liveness Proof Sketch . 158

vii

4.8.1 Safety . 158

4.8.2 Liveness . 159

4.9 Discussion . 163

4.10 Customizable Replication for Wide-Area Networks Summary 164

5 Building a Survivable Service 165

5.1 Automated Arbitrage: Case Study . 166

5.2 Identifying and Responding to Faulty Servers . 172

5.3 Summary . 173

6 Conclusions 174

Bibliography 175

Vita 184

viii

List of Tables

4.1 The ratio of correct virtual links and the maximum number of consecutive faulty
virtual links for each BLink sub-protocol. 139

4.2 Normal-case protocol rounds. 152
4.3 Number of expensive cryptographic operations that each server at the leader site

does per update during normal-case operation. 152

ix

List of Figures

2.1 Common case operation of the Paxos algorithm when f = 1. Server 0 is the current
leader. 16

2.2 Common case operation of the BFT algorithm when f = 1. Server 0 is the current
leader. 16

3.1 A Steward system having five sites with seven servers in each site. Each smaller,
local wheel rotates when its representative is suspected of being faulty. The larger,
global wheel rotates when the leader site is suspected to have partitioned away. . . 25

3.2 Message types used in the global and local protocols. 26
3.3 Global and Local data structures maintained by each server. 27
3.4 Validity checks run on each incoming message. Invalid messages are discarded. . . 27
3.5 Conflict checks run on incoming messages used in the global context. Messages

that conflict with a server’s current global state are discarded. 28
3.6 Conflict checks run on incoming messages used in the local context. Messages that

conflict with a server’s current local state are discarded. 29
3.7 Rules for applying a message to the Local History data structure. The rules assume

that there is no conflict, i.e., Conflict(message) == FALSE 31
3.8 Rules for applying a message to the Global History data structure. The rules assume

that Conflict(message) == FALSE . 32
3.9 Predicate functions used by the global and local protocols to determine if and how

a message should be applied to a server’s data structures. 33
3.10 THRESHOLD-SIGN Protocol, used to generate a threshold signature on a message.

The message can then be used in a global protocol. 35
3.11 ASSIGN-SEQUENCE Protocol, used to bind an update to a sequence number and

produce a threshold-signed Proposal message. 35
3.12 ASSIGN-GLOBAL-ORDER Protocol. The protocol runs among all sites and is

similar to Paxos. It invokes the ASSIGN-SEQUENCE and THRESHOLD-SIGN
intra-site protocols to allow a site to emulate the behavior of a Paxos participant. . . 36

3.13 Get-Next-To-Propose Procedure. For a given sequence number, the procedure re-
turns (1) the update currently bound to that sequence number, (2) some update not
currently bound to any sequence number, or (3) NULL if the server does not have
any unbound updates. 36

3.14 LOCAL-VIEW-CHANGE Protocol, used to elect a new site representative when the
current one is suspected to have failed. The protocol also ensures that the servers
in the leader site have enough knowledge of pending decisions to preserve safety in
the new local view. 38

x

3.15 GLOBAL-LEADER-ELECTION Protocol. When the Global T timers of at least
2f +1 servers in a majority of sites expire, the sites run a distributed, global protocol
to elect a new leader site by exchanging threshold-signed Global VC messages. . . 38

3.16 RESET-GLOBAL-TIMER and RESET-LOCAL-TIMER procedures. These proce-
dures establish the relationships between Steward’s timeout values at both the local
and global levels of the hierarchy. Note that the local timeout at the leader site is
longer than at the non-leader sites to ensure a correct representative of the leader
site has enough time to communicate with correct representatives at the non-leader
sites. The values increase as a function of the global view. 39

3.17 GLOBAL-VIEW-CHANGE Protocol, used to globally constrain the servers in a
new leader site. These servers obtain information from a majority of sites, ensuring
that they will respect the bindings established by any updates that were globally
ordered in a previous view. 39

3.18 CONSTRUCT-LOCAL-CONSTRAINT Protocol. The protocol is invoked by a
newly-elected leader site representative and involves the participation of all servers
in the leader site. Upon completing the protocol, a server becomes locally con-
strained and will act in a way that enforces decisions made in previous local views. 40

3.19 CONSTRUCT-ARU Protocol, used by the leader site to generate an Aru Message
during a global view change. The Aru Message contains a sequence number
through which at least f + 1 correct servers in the leader site have globally ordered
all updates. 41

3.20 CONSTRUCT-GLOBAL-CONSTRAINT Protocol, used by the non-leader sites
during a global view change to generate a Global Constraint message. The
Global Constraint contains Proposals and Globally Ordered Updates for all se-
quence numbers greater than the sequence number contained in the Aru Message,
allowing the servers in the leader site to enforce decisions made in previous global
views. 42

3.21 Construct Server State Procedures. During local and global view changes,
individual servers use these procedures to generate Local Server State and
Global Server State messages. These messages contain entries for each sequence
number, above some invocation sequence number, to which a server currently has
an update bound. 42

3.22 Compute-Union Procedures. The procedures are used during local and global view
changes. For each entry in the input set, the procedures remove duplicates (based on
sequence number) and, for each sequence number, take the appropriate entry from
the latest view. 43

3.23 RELIABLE-SEND-TO-ALL-SITES Protocol. Each of 2f + 1 servers within a site
sends a given message to a peer server in each other site. When sufficient connec-
tivity exists, the protocol reliably sends a message from one site to all other servers
in all other sites sites despite the behavior of faulty servers. 44

3.24 LOCAL-RECONCILIATION Protocol.
Recovers missing Globally Ordered Updates within a site. Servers limit the rate
at which they respond to requests and the rate at which they send requested messages. 49

xi

3.25 GLOBAL-RECONCIILIATION Protocol, used by a site to recover missing Glob-
ally Ordered Updates from other wide area sites. Each server generates threshold-
signed reconciliation requests and communicates with a single server at each other
site. 50

3.26 Write Update Throughput . 53
3.27 Write Update Latency . 53
3.28 Update Mix Throughput - 10 Clients . 53
3.29 Update Mix Latency - 10 Clients . 53
3.30 WAN Emulation - Write Update Throughput . 55
3.31 WAN Emulation - Write Update Latency . 55
3.32 CAIRN Emulation - Write Update Throughput 56
3.33 CAIRN Emulation - Write Update Latency . 56

4.1 An example composition of four logical machines, each comprising several phys-
ical machines. The LMs receive wide-area protocol messages via BLink, which
passes these messages to the local-area ordering protocol (an independent instance
of either Paxos or BFT). The local-area protocol passes locally ordered messages
up to the wide-area protocol (a single global instance of BFT), which executes them
immediately. If a state transition causes the wide-area protocol to send a message,
the LM generates a threshold signed message and passes it to Blink, which reliably
transmits it to the destination logical machine. 131

4.2 A logical link in the (Byzantine, Byzantine) case is constructed from (3FA + 1) ·

(3FB + 1) virtual links. Each virtual link consists of a forwarder and a peer. At any
time, one virtual link is used to send messages on the logical link. A virtual link
that is diagnosed as potentially faulty is replaced. 133

4.3 An example BLink logical link and selection order, with FA = FB = 1. Numbers
refer to server identifiers. Boxed servers are faulty, and their associated virtual
links can be blocked by the adversary. The selection order defines four series, each
containing four virtual links. The order repeats after cycling through all four series. 133

4.4 Throughput of Unoptimized Protocols, 50 ms Diameter 154
4.5 Latency of Unoptimized Protocols, 50 ms Diameter 154
4.6 Throughput of Unoptimized Protocols, 100 ms Diameter 155
4.7 Latency of Unoptimized Protocols, 100 ms Diameter 155
4.8 Throughput of Optimized Protocols, 50 ms Diameter 155
4.9 Latency of Optimized Protocols, 50 ms Diameter 155
4.10 Throughput of Optimized Protocols, 100 ms Diameter 156
4.11 Latency of Optimized Protocols, 100 ms Diameter 156

5.1 A centralized automated arbitrage system. The dotted lines represent messages sent
over a wide-area network. The central server receives price data from four markets.
Based on this information, it decides to execute buy and sell orders on these markets. 167

xii

5.2 A replicated automated arbitrage system. The dotted lines represent messages sent
over a wide-area network. The composable architecture receives price messages
from the four market computers, establishes an order on these messages, and de-
livers them to the replicated arbitrage models. Each arbitrage model decides when
to issue buy and sell orders and constructs the appropriate message. The compos-
able architecture is responsible for signing these messages and sending them to the
appropriate market computer. 168

xiii

Chapter 1

Introduction

Computer compromises have become a widespread and often highly publicized occurrence

[1, 2]. Researchers estimate that attackers gain control of hundreds of thousands of computers each

day [3]. Some of these machines either contain sensitive information or are part of a system that

provides a critical government or financial service. For example, recent incidents involving gov-

ernment computers have deservedly generated significant concern [1, 4]. Although administrators

spend a great deal of effort to secure such machines, we have seen firsthand that they can still be

compromised. Even if an attacker cannot penetrate a computer remotely, he may be able to com-

promise the machine via physical access. The evidence suggests that for the foreseeable future, in

spite of the effort that has been devoted to computer security, computer compromises will remain

widespread.

Given the prevalence of security exploits, it is not surprising that there has been growing interest

in intrusion-tolerant systems. These systems mitigate the damage that an attacker causes after a se-

curity breach occurs. Such systems, including the work presented in this dissertation, are designed

under the assumption that attacks on subcomponents of the system will sometimes succeed [5].

An intrusion-tolerant system must continue to provide usable functionality even when an attacker

controls part of it. We refer to these systems as survivable. Survivable systems include those for

network routing [6, 7], group communication [8, 9], and state machine replication [10–12]. Such

systems typically comprise several computers that work together to provide a service. Survivable

systems are designed so that even if some of the computers constituting the system behave mali-

ciously, they cannot cause the entire system to fail.

1

This dissertation presents the first intrusion-tolerant state machine replication architectures that

scale to wide-area networks. Our architectures can be used to construct a wide variety of survivable,

distributed services, including systems for banking and trading, military command and control, and

emergency communications. In general, the architectures are applicable to any service that can be

implemented as a deterministic state machine. The service is duplicated on many servers, called

replicas, that are distributed across the Internet. Since the system stores redundant copies of the

service’s state, it can continue to function even when some replicas fail (as long as a threshold

fraction of servers remain operational). A client submits queries to a server or set of servers located

close to it geographically. Servers answer read-only queries, which do not modify the replicated

state, as soon as the query is received. Write queries, or updates, which change the replicated state,

must be handled with care to ensure that the replicas remain consistent and that users do not retrieve

conflicting data from different servers.

State machine replication [13] preserves data consistency by totally ordering all updates. Many

protocols, including ours, use a leader to propose a possible ordering. The replicas, which are mod-

eled as deterministic state machines, apply updates in the same agreed upon order. Since replicas

execute the same stream of ordered updates, they move through the same sequence of states, and

remain consistent. State machine replication systems for use on the Internet should continue to

function even during network partitions and merges and replica crashes and recoveries. We refer

to this class of problems as benign faults. Replicas are guaranteed to remain consistent and to exe-

cute queries as long as some minimal number of replicas remains functional and able to exchange

messages.

Large-scale state machine replication systems deployed on the Internet may run on tens or even

hundreds of physical computers. These machines are located in different areas, and each is vulner-

able to attack. As replication systems grow in size, the probability that an attacker will compromise

one of the replicas through a software vulnerability or physical access grows. Systems that tolerate

only benign faults, where servers can become disconnected or fail, do not guarantee correctness if

a sophisticated attacker controls a replica. In this case, the replica essentially becomes an inside

attacker with the cryptographic identity of a protocol participant and plays the global ordering pro-

2

tocol in a malicious manner in an attempt to cause data inconsistency or halt progress. These attacks

are referred to as Byzantine [14, 15], and a compromised replica is referred to as a Byzantine fault.

Next generation wide-area replication systems should be designed to tolerate a limited number

of compromised replicas. Our replication architectures provide a means to construct high perfor-

mance replicated systems that survive even when an attacker controls some of the computers in

the system. Thus, the work presented in this dissertation is a significant step towards developing

survivable systems in an imperfectly secure world.

1.1 Survivable Wide-Area Byzantine Fault Tolerant Replication:
Steward and the Composable Architecture

During the past few years, we developed Steward [16, 17] (Survivable Technology for Wide-

Area Replication), the first Byzantine fault-tolerant replication architecture that scales to wide-area

networks. The system is presented in Chapter 3. Steward provides a state machine replication

service. Our tests demonstrated an order of magnitude performance improvement compared to

the previous state-of-the-art, BFT [10], in typical wide-area environments. Chapter 3 includes a

rigorous correctness proof of the Steward system. Steward is also the first Byzantine fault-tolerant

replication system to use hierarchy to scale to wide-area networks.

Steward is designed for use in environments where many local-area sites are distributed across

a wide-area network, such as the Internet. Each site contains several physical machines that are

connected by a high-bandwidth, low-latency, local-area network. Therefore inter-machine commu-

nication is fast with respect to both the time that it takes for messages to move between machines

and the amount of data that can be sent. The sites are connected by wide-area links, which have

much lower bandwidth and higher latency. This environment and the associated topological struc-

ture are typical of real-world deployments. Steward exploits the difference in the cost of intra and

inter-site communication.

Steward is based on constructing logical machines from the groups of physical machines within

each site. The logical machines execute a global ordering protocol among themselves, and local-area

protocols ensure that the individual machines act as a single entity by masking up to f malicious

3

servers out of a total of 3f + 1 servers within the site. The use of logical machines reduces the

number of messages sent across wide-area links, which improves performance. In fact, a reduction

in wide-area message complexity is the primary reason that Steward scales so well. Since each site

functions as a single logical entity and flat replication protocols use all-to-all message exchange,

message complexity is reduced from O(N2) to O(S2) (where N is the number of servers in a flat

architecture, and S is the number of sites in Steward). The reduction in message complexity trans-

lates directly to a reduction in wide-area bandwidth requirements. This is important because, as we

show in Section 3.5, the throughput of Byzantine wide-area replication systems is often bandwidth

limited.

Steward uses several Byzantine fault-tolerant local protocols and a benign fault-tolerant wide-

area protocol. The protocol used to locally agree on a proposed ordering of updates is similar to

BFT [10], the first practical Byzantine fault-tolerant state machine replication protocol for local-

area networks. The wide-area protocol is similar to Paxos [18], a benign fault-tolerant state ma-

chine replication protocol. Paxos and BFT both use a leader server that coordinates the protocol

and supporting servers that monitor the leader. The leader proposes an ordering on updates, and

the supporting servers vote to accept consistent proposals. If the leader fails, the remaining con-

nected servers attempt to install a new leader, a procedure called a view change. View changes are

carefully designed so that the new leader does not violate orderings established by the old leader.

The manner in which view changes provide consistency is one of the most fascinating parts of these

protocols. (BFT and Paxos are described briefly in Chapter 2.) Since Steward’s local-area protocols

are Byzantine fault-tolerant, they effectively transform each site into a single trusted participant in

the wide-area protocol. As long as no more than f servers within a site are Byzantine, the sites may

crash or partition, but they will follow the wide-area protocol.

Each time a Steward logical machine sends an outgoing wide-area message, the servers within

the corresponding site must agree on the contents of this message. Steward uses distinct protocols

to generate each type of wide-area message. Correct servers within a site do not necessarily attempt

to act in the same manner with respect to the global protocol. For example, one correct server may

decide that the current global leader site is faulty and attempt to elect a new global leader, while

4

the other correct servers in the same site continue to support the current global leader. Ensuring

the correctness of the global protocol in the presence of such divergences is complicated and diffi-

cult. A server that attempts to initiate a wide-area message must obtain validating messages from

other correct servers. This prevents a malicious server from misrepresenting the logical machine by

unilaterally generating a wide-area protocol message.

Since Steward uses a benign fault-tolerant protocol on the wide area, it may fail to preserve

consistency if an adversary gains control of a single site by compromising more than f servers

within a site. A site compromise is likely to occur if an attacker exploits correlated vulnerabilities

among the servers within a site (e.g., by gaining physical access to the site). Perhaps the most

natural solution to this problem is to replace the benign fault-tolerant replication protocol that runs

among the logical machines with a Byzantine replication protocol. This can be accomplished using

a similar approach to the one used in Steward. However, a series of new local protocols would

need to be developed in order to generate the new messages associated with the Byzantine protocol.

Therefore, Steward is inherently difficult to customize.

In an effort to address Steward’s limitations, we developed the composable architecture [19],

which allows customizability of the fault tolerance approach used within and among the sites. The

composable architecture is designed for use in the same wide-area environment for which Stew-

ard is designed. The composable architecture improves upon Steward in a variety of practical ways.

First, it enables the system administrator to run a Byzantine fault-tolerant wide-area protocol, which

allows the system to survive a complete site compromise. Second, it includes a Byzantine fault-

tolerant link protocol that provides efficient communication between logical machines. Third, the

composable architecture includes new performance optimizations that mitigate the cost of customiz-

ability.

The optimized composable architecture achieved 340 updates per second in an 80 server, Byzan-

tine fault-tolerant deployment, with 100 ms latency between sites. This is an improvement of four

times over a comparable native Steward deployment without the new optimizations developed for

the composable architecture. When the optimizations are applied to Steward, Steward slightly out-

performs the composable architecture. The performance of both optimized hierarchical architec-

5

tures exceeds that of many common benign fault-tolerant protocols. To put this into perspective,

state machine replication, the service that our systems provide, is often considered to be too costly

to use in systems that have more than ten or twenty servers, even in a local-area network. Our

research shows that, in fact, it is possible to build large-scale Byzantine fault-tolerant systems for

the Internet that provide performance that surpasses what many believe is possible for much smaller

scale systems offering only benign fault tolerance.

Although the composable architecture shares many high-level similarities with Steward, its un-

derlying structure is fundamentally different. The logical machines in the two architectures are

constructed in completely different ways. Steward uses a more efficient method to build logical

machines, which reduces the number of expensive operations that need to be executed each time

an update is globally ordered. The composable architecture trades performance for customizability

and simplicity.

In the composable architecture, servers within a site agree on the order in which they will process

wide-area protocol messages. Since all correct servers that constitute a logical machine are actually

replicas of each other (with respect to the wide-area protocol), and proceed through the same states,

they are guaranteed to attempt to send exactly the same wide-area protocol messages. As a result,

servers do not need to use a separate protocol to agree on the contents of each outgoing wide-area

message as they do in Steward. In fact, the composable architecture uses a standard local state

machine replication protocol to implement its logical machines.

Each approach has trade-offs and benefits. To summarize, servers in a Steward logical ma-

chine implement an agreement protocol on outgoing messages leaving the site and servers in the

composable architecture agree on the order in which to process incoming wide-area messages. In

general, the approach used in Steward has the potential to offer better performance, which is why

we selected it initially. The servers in Steward logical machines apply wide-area messages as soon

as the message is received, in any order, and only need to agree on the content of certain types of

outgoing messages. In contrast, in the composable architecture, logical machines must agree on an

ordering for all incoming messages. The performance difference stems from the fact that there are

many more incoming messages than outgoing messages that must be agreed upon. We note that, in

6

practice, when optimizations are used, Steward has only a small performance advantage. Moreover,

the composable architecture surpasses Steward in both customizability and simplicity.

This dissertation demonstrates the advantages that hierarchical, logical-machine based Byzan-

tine fault-tolerant replication architectures offer in comparison to flat (non-hierarchical) Byzantine

fault-tolerant protocols. Our hierarchical systems, regardless of the way in which the logical ma-

chines are constructed, offer superior scalability and are especially well suited to common Internet

environments. Most importantly, our state machine replication architectures offer practical levels of

performance, and thereby, for the first time, show that wide-area Byzantine fault-tolerant replication

systems are feasible.

1.1.1 Model and Service Properties Overview

Steward and the composable architecture have similar models and service properties. Both ar-

chitectures are designed for use on networks that may partition into multiple disconnected com-

ponents and subsequently remerge. Both use digital signatures and threshold cryptography for

authentication, and assume that the adversary cannot subvert these mechanisms. While the two

architectures differ in the fault tolerance that they can provide, both can be configured to tolerate

Byzantine faults, where faulty servers send arbitrary messages.

Both architectures guarantee two correctness criteria: safety and liveness. Safety means that two

correct servers remain consistent replicas of each other. Liveness means that updates will eventually

be executed. Steward and the composable architecture guarantee safety and liveness only if certain

assumptions hold. We discuss this in more detail in the following two paragraphs.

Both architectures provide the following safety condition: if two correct servers execute an

update with the same sequence number, then these updates are identical. Safety does not depend on

synchrony assumptions. However, it is guaranteed only if fewer than a threshold number of servers

become compromised. Since the two architectures provide different levels of fault tolerance, the

number of server compromises that each can survive differs. For example, when appropriately

configured, the composable architecture can tolerate a larger fraction of compromised servers than

Steward. This leads to differences in the assumptions required for each architecture to guarantee

7

safety. A detailed description of the fault-tolerance provided by each architecture is included in the

chapter in which it is presented.

Liveness is guaranteed only if the system meets a certain level of stability. The system is stable

if a sufficient set of correct servers can exchange messages within a bounded amount of time. Thus,

liveness depends on synchrony (i.e., timing) assumptions with respect to message delay. Steward

and the composable architecture provide somewhat different liveness guarantees. This stems from

differences in how wide-area messages are sent between sites and differences in how a server de-

cides to install a new local or global leader. Steward servers decide to change leaders based solely

on global progress, while servers in the composable architecture base their decisions on both global

progress and local progress. As a consequence, Steward guarantees that an update will be executed

eventually, while the composable architecture guarantees that a particular update received by a cor-

rect server will be executed eventually. We present the precise liveness guarantee that each system

provides in their respective chapters.

Although both architectures provide similar correctness guarantees, they are not identical.

Therefore, we chose to present a detailed model and service guarantees for each architecture in

the chapter that describes that architecture.

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows:

• Chapter 2 presents an overview of related work. It includes a summary of three important

background topics that play a central role in our architectures: Paxos, BFT, and threshold

cryptography.

• Chapter 3 presents a description of Steward including sections on the system model, service

properties, protocol, performance, and correctness proof.

• Chapter 4 presents the composable architecture including sections describing the system

model and service properties, system architecture, Byzantine link protocol, and correctness

proof.

8

• Chapter 5 explains how our architectures can be used to construct a survivable system. It also

sheds light on practical issues associated with Byzantine fault-tolerance.

• Chapter 6 summarizes the dissertation.

Chapters 3 and 4 have parallel structures. They are both largely self-contained and each can

be read and on its own after completing this chapter (i.e., Chapter 1) and the background material

in Section 2.2. The proofs and proof sketches presented in Chapters 3 and 4 refer only to service

properties and terminology presented in the same chapter.

The material in Chapter 5 applies to both architectures, with a focus on using the composable

architecture to develop a survivable replicated system. In addition to describing how a survivable

system can be constructed using our architectures, Chapter 5 illustrates common difficulties that are

likely to arise when using replication for survivability. Therefore, readers may find it beneficial to

skim this chapter as they peruse the detailed description of Steward and the composable architecture.

9

Chapter 2

Related Work and Background

The concepts, algorithms, and techniques that form the foundation of the replication architec-

tures presented in this dissertation have a long and rich history. Work that is related to our systems

ranges from theory that elucidates fundamental principles to systems research that has yielded high

performance, practical implementations. In Section 2.1 of this chapter, we present an overview of

related work. Then, in Section 2.2, we present a more detailed description of the protocols and

algorithms that our systems use.

2.1 Related Work

Agreement and Consensus: At the core of many replication protocols is a more general problem,

known as the agreement or consensus problem. A good overview of significant results is presented

in [20]. The strongest fault model that researchers consider is the Byzantine model [14, 15], where

some participants behave in an arbitrary manner. If communication is not authenticated and nodes

are directly connected, 3f +1 participants and f +1 communication rounds are required to tolerate

f Byzantine faults. If authentication is available, the number of participants can be reduced to

f + 2 [21].

Byzantine Group Communication: Related with our work are group communication systems re-

silient to Byzantine failures. Two such systems are Rampart [8] and SecureRing [9]. Both systems

rely on failure detectors to determine which replicas are faulty. An attacker can slow correct repli-

cas or the communication between them until a view is installed with less than two-thirds correct

members, at which point safety may be violated.

10

The ITUA system [22–25], developed by BBN and UIUC, employs Byzantine fault-tolerant

protocols to provide intrusion-tolerant group services. The approach taken considers all participants

as equal and is able to tolerate up to less than a third of malicious participants. The reliability and

ordering protocol is based on the following idea: the initiator of a message computes its hash, signs

it, and sends it to other members. The initiator needs to gather enough signatures from other the

members before sending the actual message in order to guarantee the uniqueness of the content for

that message across the network even in the presence of malicious participants.

Drabkin, et al. [26] describe a Byzantine version of the JazzEnsemble system, providing a for-

mal definition of Byzantine virtual synchrony. The system uses the idea of fuzzy membership: each

node is given an indication of how fuzzy the other group members are, with low fuzziness indicating

a well-responding server and high fuzziness indicating a server that is not very responsive. Detec-

tion of Byzantine behavior in this context is encapsulated by fuzzy mute and fuzzy verbose failure

detectors.

Replication with Benign Faults: The two-phase commit (2PC) protocol [27] provides serializ-

ability in a distributed database system when transactions may span several sites. It is commonly

used to synchronize transactions in a replicated database. Three-phase commit [28] overcomes

some of the availability problems of 2PC, paying the price of an additional communication round.

Paxos [18, 29] is a very robust algorithm for benign fault-tolerant replication and is described in

Section 2.2.

Replication with Byzantine Faults: The replication architectures that we describe next provide

the same service that our architectures provide: a state machine replication service that survives

Byzantine faults. Unlike the systems presented in this dissertation, previous systems were not hier-

archical and they performed best in small-scale local-area networks. The first practical Byzantine

fault-tolerant replication protocol was Castro and Liskov’s BFT [10], which is described in Section

2.2.

Doudou, et al. [30] decompose the problem of Byzantine fault-tolerant state machine replication

via a series of abstractions. The replication problem is reduced to an atomic multicast protocol,

which itself is composed of a reliable multicast component and a solution to the weak interactive

11

consistency problem. The latter uses a Byzantine failure detector for detecting mute processes (i.e.,

processes from which, from some time on, a correct process stops receiving messages).

Yin et al. [11] propose separating the agreement component that orders requests from the execu-

tion component that processes requests, which allows utilization of the same agreement component

for many different replication tasks and reduces the number of execution replicas to 2f+1. This sys-

tem also provides a privacy firewall, which prevents a compromised server from divulging sensitive

information.

Correia, et al. [31] reduce the number of replicas needed for state machine replication from

3f +1 to 2f +1 by augmenting the Byzantine, asynchronous model with a distributed trusted com-

ponent, the Trusted Timely Computing Base (TTCB). The local TTCBs of the replication servers

are assumed not to be malicious, and they communicate over a synchronous control network pro-

viding real-time delay guarantees. The TTCBs run a fault-tolerant protocol to assign an ordering to

protocol messages, and these protocol messages are then exchanged over the asynchronous payload

network.

Martin and Alvisi [12] proposed a two-round Byzantine consensus algorithm, which uses 5f +1

servers in order to overcome f faults. This approach trades lower availability (4f + 1 out of 5f + 1

connected servers are required, instead of 2f+1 out of 3f+1 as in BFT), for increased performance.

The solution is appealing for local area networks with high connectivity.

The ShowByz system of Rodrigues et al. [32] seeks to support a large-scale deployment con-

sisting of multiple replicated objects. ShowByz modifies BFT quorums to tolerate a larger fraction

of faulty replicas, reducing the likelihood of any group being compromised at the expense of proto-

col liveness. Each object is implemented by two BFT replica groups, which run a primary-backup

protocol to allow progress to continue even if one of the groups halts.

Zyzzyva [33] uses speculative execution to reduce the cost of Byzantine fault tolerant state

machine replication when there are no faulty replicas. Since Zyzzyva employs fewer wide area

protocol rounds and has lower message complexity than BFT, we expect it to perform better than

BFT when deployed on a wide area network. However, since Zyzzyva is a flat protocol, the leader

sends more messages than the leader site in our architectures.

12

Quorum Systems with Byzantine Fault-Tolerance: Quorum systems obtain Byzantine fault

tolerance by applying quorum replication methods. Examples of such systems include Phalanx

[34, 35] and Fleet [36, 37]. Fleet provides a distributed repository for Java objects. It relies on an

object replication mechanism that tolerates Byzantine failures of servers, while supporting benign

clients. Although the approach is relatively scalable with the number of servers, it suffers from the

drawbacks of flat Byzantine replication solutions.

The Q/U protocol of Abd-El-Malek et al. [38] uses quorum replication techniques to achieve

state machine replication, requiring 5f + 1 servers to tolerate f faults. It can perform well when

write contention is low, but suffers decreased throughput when concurrent updates are attempted on

the same object. The HQ protocol [39] combines the use of quorum replication with Byzantine fault-

tolerant agreement, using a more lightweight quorum-based protocol during normal-case operation

and BFT to resolve contention when it arises.

Alternate Architectures: An alternate hierarchical approach to scale Byzantine replication to

wide area networks can be based on having a few trusted nodes that are assumed to be working under

a weaker adversary model. For example, these trusted nodes may exhibit crashes and recoveries but

not penetrations. A Byzantine replication algorithm in such an environment can use this knowledge

in order to optimize performance. Verissimo et al. propose such a hybrid approach [40, 41], where

synchronous, trusted nodes provide strong global timing guarantees. This inspired the Survivable

Spread [42] work, where a few trusted nodes (at least one per site) are assumed impenetrable, but

are not synchronous, may crash and recover, and may experience network partitions and merges.

These trusted nodes were implemented by Boeing Secure Network Server (SNS) boxes, limited

computers designed to be impenetrable. Both the hybrid approach and the architectures presented

in this dissertation can scale Byzantine replication to wide area networks. The hybrid approach

makes stronger assumptions, while our approach pays more hardware and computational costs.

State Machine Replication and Logical Machines: Lamport [13] and Schneider [43] intro-

duced and popularized state machine replication, where deterministic replicas execute a totally or-

dered stream of events that cause state transitions. Therefore, all replicas proceed through exactly

the same states. This technique can be used to implement replicated information access systems,

13

databases, and other services. The state machine approach has been used in many systems, includ-

ing our composable architecture, to construct fault-tolerant logical machines out of collections of

physical machines. We mention several of these systems here.

Schlichting and Schneider [44] present the implementation and use of k-fail-stop processors,

which consist of several potentially Byzantine processors. A k-fail-stop processor behaves like

a fail-stop processor as long as no more than k processors are Byzantine. Benign fault-tolerant

protocols can thus safely run on top of these logical processors. Unlike in our architectures, in

which a site is live unless f+1 of its computers fail, the k-fail-stop processor described in [44] halts

when even one of its constituent processors fails.

The Delta-4 system [45] uses an intrusion-tolerant architecture and provides services for data

authentication, storage, and authorization. Like our composable architecture, the system constructs

logical entities out of multiple physical machines via the state machine approach; it also employs

protocols to make communication between the logical entities efficient. However, these protocols

assume that the communicating parties are fail-silent, whereas the composable architecture con-

structs Byzantine fault-tolerant links between logical entities.

The Voltan system of Brasileiro, et al. [46] uses the state machine approach to construct two-

processor fail-silent nodes that either work correctly or become silent if an internal failure of one of

the processes is detected. Each message send from one logical node to another requires sending four

physical messages over the network, reducing the system’s applicability to bandwidth-constrained

wide-area environments.

The Starfish system of Kihlstrom and Narasimhan [47] builds an intrusion-tolerant middleware

service by using a hierarchical membership structure and end-to-end intrusion detection. The system

uses a central, hardened core that offers strong security guarantees. The core is augmented by

“arms,” with weaker security guarantees, that can be removed in the case of a security breach.

The Thema system of Merideth, et al. [48] uses state machine replication to build Byzantine

fault-tolerant Web Services. Standard Web Service clients access the Byzantine fault-tolerant ser-

vice using a client library. Thema allows Byzantine fault-tolerant services to safely access non-

replicated Web Services.

14

The MAFTIA system of Verissimo, et al. [49] uses architectural hybridization to build mecha-

nisms for intrusion tolerance by transforming untrusted components into trusted components. The

hybrid architecture is built in the wormhole model [41], where different parts of the system operate

under different fault assumptions and are thus resilient to different types of attack. For example,

if trusted components (e.g., a reliable channel, a processor whose results can be trusted) are avail-

able, the system can be configured to run protocols that take advantage of them to achieve increased

performance (e.g., [40]). In contrast, our systems assume all components are untrusted.

Fault-tolerant CORBA: State machine replication has also been used to increase the fault-

tolerance and availability of CORBA services.

The Object Group Service (OGS) of Felber, et al. [50] provides a composable, modular archi-

tecture for replicating CORBA objects. The OGS implements several component CORBA services,

such as group multicast, group membership, and distributed consensus, which are then composed

to implement group communication services; this group communication service is then used for

replication.

The FTS system of Friedman and Hadad [51] uses active replication to construct a lightweight

fault tolerance service for CORBA. The system survives network partitions, allowing updates in a

single partition but allowing other partitions to remain alive until they reconnect.

The Immune system of Narasimhan, et al. [52] provides support for survivable CORBA appli-

cations by replicating both client and server objects. When a replicated client objects invokes an

operation on a replicated server object, each client object sends a message to each server object via

the SecureRing multicast protocol [9], and the servers employ majority voting to mask faulty behav-

ior; the responses are sent from server to client in similar fashion. While the logical machines in our

composable architecture could use SecureRing to communicate with one another (with one group

for each pair of neighboring logical machines), doing so would result in many redundant messages

being sent over the wide-area network during normal-case operation, greatly limiting performance.

15

Figure 2.1: Common case operation of the
Paxos algorithm when f = 1. Server 0 is the
current leader.

Figure 2.2: Common case operation of the BFT
algorithm when f = 1. Server 0 is the current
leader.

2.2 Background: Paxos, BFT, and RSA Threshold Signatures

Our work builds directly on two state machine replication protocols: Paxos and BFT. Both

protocols establish an agreed order on a sequence of updates that cause state transitions in the

replicas. Paxos tolerates benign faults, while BFT tolerates Byzantine faults. Our work directly

uses threshold cryptography, which enables a site to produce a single RSA signature for each of its

wide-area protocol messages. This section presents a brief overview of these three technologies.

2.2.1 Paxos Overview

Paxos [18,29] is a well-known fault-tolerant protocol that allows a set of distributed servers, ex-

changing messages via asynchronous communication, to totally order client requests in the benign-

fault, crash-recovery model. Paxos uses an elected leader to coordinate the agreement protocol. If

the leader crashes or becomes unreachable, the other servers elect a new leader; a view change oc-

curs, allowing progress to (safely) resume in the new view under the reign of the new leader. Paxos

requires at least 2f + 1 servers to tolerate f faulty servers. Since servers are not Byzantine, a single

reply needs to be delivered to the client.

In the common case (Figure 2.1), in which a single leader exists and can communicate with a

majority of servers, Paxos uses two asynchronous communication rounds to globally order client

updates. In the first round, the leader assigns a sequence number to a client update and sends a

Proposal message containing this assignment to the rest of the servers. In the second round, any

server receiving the Proposal sends an Accept message, acknowledging the Proposal, to the rest of

the servers. When a server receives a majority of matching Accept messages – indicating that a

16

majority of servers have accepted the Proposal – it orders the corresponding update.

2.2.2 BFT Overview

The BFT [53] protocol addresses the problem of replication in the Byzantine model where a

number of servers can exhibit arbitrary behavior. Similar to Paxos, BFT uses an elected leader

to coordinate the protocol and proceeds through a series of views. BFT extends Paxos into the

Byzantine environment by using an additional communication round in the common case to ensure

consistency both in and across views and by constructing strong majorities in each round of the

protocol. Specifically, BFT uses a flat architecture and requires acknowledgments from 2f + 1 out

of 3f +1 servers to mask the behavior of f Byzantine servers. A client must wait for f +1 identical

responses to be guaranteed that at least one correct server assented to the returned value.

In the common case (Figure 2.2), BFT uses three communication rounds. In the first round, the

leader assigns a sequence number to a client update and proposes this assignment to the rest of the

servers by broadcasting a Pre-prepare message. In the second round, a server accepts the proposed

assignment by broadcasting an acknowledgment, Prepare. When a server collects a Prepare Cer-

tificate (i.e., it receives the Pre-Prepare and 2f Prepare messages with the same view number and

sequence number as the Pre-prepare), it begins the third round by broadcasting a Commit message.

A server commits the corresponding update when it receives 2f + 1 matching commit messages.

2.2.3 Threshold Digital Signatures

Threshold cryptography [54] distributes trust among a group of participants to protect informa-

tion (e.g., threshold secret sharing [55]) or computation (e.g., threshold digital signatures [56]).

A (k, n) threshold digital signature scheme allows a set of servers to generate a digital signature

as a single logical entity despite k − 1 Byzantine faults. It divides a private key into n shares, each

owned by a server, such that any set of k servers can pool their shares to generate a valid threshold

signature on a message, m, while any set of fewer than k servers is unable to do so. Each server uses

its key share to generate a partial signature on m and sends the partial signature to a combiner server,

which combines the partial signatures into a threshold signature on m. The threshold signature is

verified using the public key corresponding to the divided private key. One important property

17

provided by some threshold signature schemes is verifiable secret sharing [57], which guarantees

the robustness [58] of the threshold signature generation by allowing participants to verify that the

partial signatures contributed by other participants are valid (i.e., they were generated with a share

from the initial key split).

A representative example of practical threshold digital signature schemes is the RSA Shoup

[56] scheme, which allows participants to generate threshold signatures based on the standard RSA

[59] digital signature. It provides verifiable secret sharing, which is critical in achieving signature

robustness in the Byzantine environment we consider.

18

Chapter 3

Steward: Survivable Technology for
Wide-Area Replication

This chapter presents Steward [16, 17, 60], the first hierarchical Byzantine fault-tolerant repli-

cation architecture that scales to systems that span multiple wide-area sites. It is joint work with

Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, Cristina Nita-Rotaru, Josh Olsen, and

David Zage.

3.1 Steward Overview

Steward uses Byzantine fault-tolerant protocols within each site and a lightweight, benign fault-

tolerant protocol among wide-area sites. Each site, comprising several potentially malicious repli-

cas, is converted into a single logical trusted participant in the wide-area fault-tolerant protocol.

Servers within a site run Byzantine agreement protocols to agree upon the content of all global

protocol messages leaving the site.

Steward uses threshold signatures to prevent malicious replicas from misrepresenting decisions

that took place in their site. Messages sent between servers in different sites carry a threshold

signature attesting that enough servers at the originating site agreed with the content of the message.

This allows Steward to save the wide-area bandwidth associated with sending multiple individual

signatures.

Steward’s hierarchical architecture reduces the wide-area message complexity from O(N2) (N

being the total number of replicas in the system) to O(S2) (S being the number of wide-area sites),

considerably increasing the system’s ability to scale. It confines the effects of any malicious replica

19

to its local site, enabling the use of a benign fault-tolerant algorithm over the wide-area network.

This improves the availability of the system over wide-area networks that are prone to partitions.

Only a majority of connected sites is needed to make progress, compared with at least 2f +1 servers

(out of 3f + 1) in flat Byzantine architectures (f is the upper bound on the number of malicious

servers).

Steward allows read-only queries to be performed locally within a site, enabling the system

to continue serving read-only requests even in sites that are partitioned away. These local queries

provide one-copy serializability [61], the common semantics provided by database products. Serial-

izability is a weaker guarantee than the linearizability semantics [62] provided by some existing flat

protocols (e.g., [10]). We believe serializability is the desired semantics in partitionable environ-

ments, because systems that provide linearizability can only answer queries in sites connected to a

quorum. In addition, Steward can guarantee linearizability by querying a majority of the wide-area

sites, at the cost of higher latency and lower availability.

Steward provides these benefits by using an increased number of servers. More specifically, if

the requirement is to protect against any f Byzantine servers in the system, Steward requires 3f +1

servers in each site. However, in return, it is able to overcome up to f malicious servers in each site.

We believe that given the cost associated with computers today, this requirement is reasonable.

We demonstrate that the performance of Steward with 3f + 1 servers in each site is much better

even compared with a flat Byzantine architecture with a smaller system of 3f+1 total servers spread

over the same wide-area topology. We also show that Steward exhibits performance comparable to

common benign fault-tolerant protocols on wide-area networks.

We implemented the Steward system and a DARPA red-team experiment has confirmed its prac-

tical survivability in the face of white-box attacks (where the red-team has complete knowledge of

system design, access to its source code, and control of f replicas in each site). According to the

rules of engagement, where a red-team attack succeeded only if it stopped progress or caused in-

consistency, no attacks succeeded. We include a description of the red-team experiment in Section

3.5.

While solutions previously existed for Byzantine and benign fault-tolerant replication and for

20

providing practical threshold signatures, these concepts have never been used in a provably correct,

hierarchical architecture that scales Byzantine fault-tolerant replication to large, wide-area systems.

This chapter presents the design, implementation, and proofs of correctness for such an architecture.

The main contributions of our work on Steward are:

1. It presents the first hierarchical architecture and algorithm that scales Byzantine fault-tolerant

replication to wide-area networks.

2. It provides a complete proof of correctness for this algorithm, demonstrating its safety and

liveness propertes.

3. It presents a software artifact that implements the algorithm completely.

4. It shows the performance evaluation of the implementation software and compares it with the

current state of the art. The experiments demonstrate that the hierarchical approach greatly

outperforms existing solutions when deployed on large, wide-area networks.

3.2 System Model

Servers are implemented as deterministic state machines [13, 43]. All correct servers begin in

the same initial state and transition between states by applying updates as they are ordered. The

next state is completely determined by the current state and the next update to be applied.

We assume a Byzantine fault model. Servers are either correct or faulty. Correct servers do not

crash. Faulty servers may behave arbitrarily. Communication is asynchronous. Messages can be

delayed, lost, or duplicated. Messages that do arrive are not corrupted.

Servers are organized into wide-area sites, each having a unique identifier. Each server belongs

to one site and has a unique identifier within that site. The network may partition into multiple

disjoint components, each containing one or more sites. During a partition, servers from sites in

different components are unable to communicate with each other. Components may subsequently

re-merge. Each site Si has at least 3 ∗ (fi) + 1 servers, where fi is the maximum number of servers

that may be faulty within Si. For simplicity, we assume in what follows that all sites may have at

most f faulty servers.

21

Clients are distinguished by unique identifiers. Clients send updates to servers within their local

site and receive responses from these servers. Each update is uniquely identified by a pair consisting

of the identifier of the client that generated the update and a unique, monotonically increasing logical

timestamp. Clients propose updates sequentially: a client may propose an update with timestamp

i + 1 only after it receives a reply for an update with timestamp i.

We employ digital signatures, and we make use of a cryptographic hash function to compute

message digests. Client updates are properly authenticated and protected against modifications. We

assume that all adversaries, including faulty servers, are computationally bounded such that they

cannot subvert these cryptographic mechanisms. We also use a (2f + 1, 3f + 1) threshold digital

signature scheme. Each site has a public key, and each server receives a share with the corresponding

proof that can be used to demonstrate the validity of the server’s partial signatures. We assume that

threshold signatures are unforgeable without knowing 2f + 1 or more secret shares.

3.3 Service Properties

Our protocol assigns global, monotonically increasing sequence numbers to updates, to establish

a global, total order. Below we define the safety and liveness properties of the Steward protocol.

We say that:

• a client proposes an update when the client sends the update to a correct server in the local

site, and the correct server receives it.

• a server executes an update with sequence number i when it applies the update to its state

machine. A server executes update i only after having executed all updates with a lower

sequence number in the global total order.

• two servers are connected or a client and server are connected if any message that is sent

between them will arrive in a bounded time. The protocol participants need not know this

bound beforehand.

• two sites are connected if every correct server of one site is connected to every correct server

of the other site.

22

• a client is connected to a site if it can communicate with all servers in that site.

We define the following two safety conditions:

DEFINITION 3.3.1 S1 - SAFETY: If two correct servers execute the ith update, then these updates

are identical.

DEFINITION 3.3.2 S2 - VALIDITY: Only an update that was proposed by a client may be exe-

cuted.

Read-only queries can be handled within a client’s local site and provide one-copy serializability

semantics [61]. Alternatively, a client can specify that its query should be linearizable [62], in which

case replies are collected from a majority of wide-area sites.

Since no asynchronous Byzantine replication protocol can always be both safe and live [63], we

provide liveness under certain synchrony conditions. We introduce the following terminology to

encapsulate these synchrony conditions and our progress metric:

1. A site is stable with respect to time T if there exists a set, S, of 2f + 1 servers within the site,

where, for all times T ′ > T , the members of S are (1) correct and (2) connected. We call the

members of S stable servers.

2. The system is stable with respect to time T if there exists a set, S, of a majority of sites,

where, for all times T ′ > T , the sites in S are (1) stable with respect to T and (2) connected.

We call the sites in S the stable sites.

3. Global progress occurs when some stable server executes an update.

We now define our liveness property:

DEFINITION 3.3.3 L1 - GLOBAL LIVENESS: If the system is stable with respect to time T , then

if, after time T , a stable server receives an update which it has not executed, then global progress

eventually occurs.

23

3.4 Protocol Description

Steward leverages a hierarchical architecture to scale Byzantine replication to the high-latency,

low-bandwidth links characteristic of wide-area networks. Instead of running a single, relatively

costly Byzantine fault-tolerant protocol (e.g., BFT) among all servers in the system, Steward runs

a Paxos-like benign fault-tolerant protocol among all sites in the system, which reduces the number

of messages and communication rounds on the wide-area network compared to a flat Byzantine

solution.

Steward’s hierarchical architecture results in two levels of protocols: global and local. The

global, Paxos-like protocol is run among wide-area sites. Since each site consists of a set of poten-

tially malicious servers (instead of a single trusted participant, as Paxos assumes), Steward employs

several local (i.e., intra-site) Byzantine fault-tolerant protocols to mask the effects of malicious be-

havior at the local level. Servers within a site agree upon the contents of messages to be used by the

global protocol and generate a threshold signature for each message, preventing a malicious server

from misrepresenting the site’s decision and confining malicious behavior to the local site. In this

way, the local protocols allow each site to emulate the behavior of a correct Paxos participant in the

global protocol.

Similar to the rotating coordinator scheme used in BFT, the local, intra-site protocols in Steward

are run in the context of a local view, with one server, the site representative, serving as the coor-

dinator of a given view. Besides coordinating the local agreement and threshold-signing protocols,

the representative is responsible for (1) disseminating messages in the global protocol originating

from the local site to the other site representatives and (2) receiving global messages and distributing

them to the local servers. If the site representative is suspected to be Byzantine, the other servers in

the site run a local view change protocol to replace the representative and install a new view.

While Paxos uses a rotating leader server to coordinate the protocol, Steward uses a rotating

leader site to coordinate the global protocol; the global protocol thus runs in the context of a global

view, with one leader site in charge of each view. If the leader site is partitioned away, the non-leader

sites run a global view change protocol to elect a new one and install a new global view. As will

24

Leader-site replica

Non-leader-site replica

Local representative

Figure 3.1: A Steward system having five sites with seven servers in each site. Each smaller, local
wheel rotates when its representative is suspected of being faulty. The larger, global wheel rotates
when the leader site is suspected to have partitioned away.

be described below, the representative of the leader site drives the global protocol by invoking the

local protocols needed to construct the messages sent over the wide-area network.

Figure 3.1 depicts a Steward system with five sites. As described above, the coordinators of the

local and global protocols (i.e., site representatives and the leader site, respectively) are replaced

when failures occur. Intuitively, the system proceeds through different configurations of represen-

tatives and leader sites via two levels of rotating “configuration wheels,” one for each level of the

hierarchy. At the local level, an intra-site wheel rotates when the representative of a site is suspected

of being faulty. At the global level, an inter-site wheel rotates when enough sites decide that the

current leader site has partitioned away. Servers within a site use the absence of global progress (as

detected by timeout mechanisms) to trigger the appropriate view changes.

In the remainder of this section, we present the local and global protocols that Steward uses to

totally order client updates. We first present the data structures and messages used by our protocols.

We then present the common case operation of Steward, followed by the view change protocols,

which are run when failures occur. We then present the timeout mechanisms that Steward uses to

ensure liveness.

3.4.1 Data Structures and Message Types

To facilitate the presentation of Steward’s local and global protocols, we first present the mes-

sage types used by the protocols (Figure 3.2) and the data structures maintained by each server

25

Standard Abbreviations: lv = local view; gv = global view; u = update; seq = sequence
number;
ctx = context; sig = signature; partial sig = partial signature; t sig = threshold
signature

// Message from client
Update = (client id, timestamp, client update, sig)

// Messages used by THRESHOLD-SIGN
Partial Sig = (server id, data, partial sig, verification proof, sig)
Corrupted Server = (server id, data, Partial sig, sig)

// Messages used by ASSIGN-SEQUENCE
Pre-Prepare = (server id, gv, lv, seq, Update, sig)
Prepare = (server id, gv, lv, seq, Digest(Update), sig)
Prepare Certificate(gv, lv, seq, u) = a set containing a Pre-Prepare(server id, gv, lv,
seq, u, sig) message and a list of 2f distinct Prepare(*, gv, lv, seq, Digest(u), sig)
messages

// Messages used by ASSIGN-GLOBAL-ORDER
Proposal = (site id, gv, lv, seq, Update, t sig)
Accept = (site id, gv, lv, seq, Digest(Update), t sig)
Globally Ordered Update(gv, seq, u) = a set containing a Proposal(site id, gv, lv, seq,
u, t sig) message and a list of distinct Accept(*, seq, gv, *, Digest(u), t sig) messages
from a majority-1 of sites

// Messages used by LOCAL-VIEW-CHANGE
New Rep = (server id, suggested lv, sig)
Local Preinstall Proof = a set of 2f+1 distinct New Rep messages

// Messages used by GLOBAL-VIEW-CHANGE
Global VC = (site id, gv, t sig)
Global Preinstall Proof = a set of distinct Global VC messages from a majority of sites

// Messages used by CONSTRUCT-ARU, CONSTRUCT-LOCAL-CONSTRAINT, and
CONSTRUCT-GLOBAL-CONSTRAINT
Request Local State = (server id, gv, lv, seq)
Request Global State = (server id, gv, lv, seq)
Local Server State = (server id, gv, lv, invocation aru, a set of Prepare Certificates, a
set of Proposals, sig)
Global Server State = (server id, gv, lv, invocation aru, a set of Prepare Certificates, a
set of Proposals, a set Globally Ordered Updates, sig)
Local Collected Server State = (server id, gv, lv, a set of 2f+1 Local Server State
messages, sig)
Global Collected Server State = (server id, gv, lv, a set of 2f+1 Global Server State
messages, sig)

//Messages used by GLOBAL-VIEW-CHANGE
Aru Message = (site id, gv, site aru)
Global Constraint = (site id, gv, invocation aru, a set of Proposals and/or
Globally Ordered Updates with seq ≥ invocation aru)
Collected Global Constraints(server id, gv, lv, a set of majority Global Constraint
messages, sig)

//Messages used by GLOBAL-RECONCILIATION and LOCAL-RECONCILIATION
Global Recon Request = (server id, global session seq, requested aru,
globally ordered update)
Local Recon Request = (server id, local session seq, requested aru)
Global Recon = (site id, server id, global session seq, requested aru)

Figure 3.2: Message types used in the global and local protocols.

(Figure 3.3).

As listed in Figure 3.3, each server maintains variables for the global, Paxos-like protocol and

the local, intra-site, Byzantine fault-tolerant protocols; we say that a server’s state is divided into the

global context and the local context, respectively, reflecting our hierarchical architecture. Within the

global context, a server maintains (1) the state of its current global view and (2) a Global History,

26

int Server id: unique id of this server within the site
int Site id: unique id of this server’s site

A. Global Context (Global Protocol) Data Structure
int Global seq: next global sequence number to assign.
int Global view: current global view of this server, initialized to 0.
int Global preinstalled view: last global view this server preinstalled, initialized to
0.
bool Installed global view: If it is 0, then Global view is the new view to be installed.
Global VC Latest Global VC[]: latest Global VC message received from each site.
struct globally proposed item {

Proposal struct Proposal
Accept struct List Accept List
Global Ordered Update struct Globally Ordered Update

} Global History[] // indexed by Global seq
int Global aru: global seq up to which this server has globally ordered all updates.
bool globally constrained: set to true when constrained in global context.
int Last Global Session Seq[]: latest session seq from each server (local) or site
(global)
int Last Global Requested Aru[]: latest requested aru from each server (local) or site
(global)
int Last Global Request Time[]: time of last global reconciliation request from each
local server
int Max Global Requested Aru[]: maximum requested aru seen from each site

B. Local Context (Intra-site Protocols) Data Structure
int Local view: local view number this server is in
int Local preinstalled vew: last local view this server preinstalled, initialized to 0.
bool Installed local view: If it is 0, then Global view is the new one to be installed.
New Rep Latest New Rep[]: latest New Rep message received from each site.
struct pending proposal item {

Pre-Prepare struct Pre-Prepare
Prepare struct List Prepare List
Prepare Cert struct Prepare Certificate
Proposal struct Proposal

} Local History[] //indexed by Global seq
int Pending proposal aru: global seq up to which this server has constructed proposals
bool locally constrained: set to true when constrained in the local context.
Partial Sigs: associative container keyed by data. Each slot in the container
holds an array, indexed by server id. To access data d from server s id, we write
Partial Sigs{d}[s id].
Update Pool: pool of client updates, both unconstrained and constrained
int Last Local Session Seq[]: latest session seq from each local server
int Last Local Requested Aru[]: latest requested aru from each local server
int Last Local Request Time[]: time of last local reconciliation request from each local
server

Figure 3.3: Global and Local data structures maintained by each server.

boolean Valid(message):
A1. if message has threshold RSA signature S
A2. if NOT VERIFY(S)
A3. return FALSE
A4. if message has RSA-signature S
A5. if NOT VERIFY(S)
A6. return FALSE
A7. if message contains update with client signature C
A8. if NOT VERIFY(C)
A9. return FALSE
A10. if message.sender is in Corrupted Server List
A11. return FALSE
A12. return TRUE

Figure 3.4: Validity checks run on each incoming message. Invalid messages are discarded.

reflecting the status of those updates it has globally ordered or is attempting to globally order. Within

the local context, a server maintains the state of its current local view. In addition, each server at

the leader site maintains a Local History, reflecting the status of those updates for which it has

27

boolean Conflict(message):
case message

A1. Proposal((site id, gv, lv, seq, u):
A2. if gv #= Global view
A3. return TRUE
A4. if server in leader site
A5. return TRUE
A6. if Global History[seq].Global Ordered Update(gv’, seq, u’) exists
A7. if (u’ #= u) or (gv’ > gv)
A8. return TRUE
A9. if not Is-Contiguous(seq)
A10. return TRUE
A11. if not In-Window(seq)
A12. return TRUE
A13. return FALSE

B1. Accept(site id, gv, lv, seq, digest):
B2. if gv #= Global view
B3. return TRUE
B4. if (Global History[seq].Proposal(*, *, *, seq, u’) exists) and (Digest(u’) #=
digest)
B5. return TRUE
B6. if Global History[seq].Global Ordered Update(gv’, seq, u’) exists
B7. if (Digest(u’) #= digest) or (gv’ > gv)
B8. return TRUE
B9. return FALSE

C1. Aru Message(site id, gv, site aru):
C2. if gv #= Global view
C3. return TRUE
C4. if server in leader site
C5. return TRUE
C6. return FALSE

D1. Request Global State(server id, gv, lv, aru):
D2. if (gv #= Global view) or (lv #= Local view)
D3. return TRUE
D4. if server id #= lv mod num servers in site
D5. return TRUE
D6. return FALSE

E1. Global Server State(server id, gv, lv, seq, state set):
E2. if (gv #= Global view) or (lv #= Local view)
E3. return TRUE
E4. if not representative
E5. return TRUE
E6. if entries in state set are not contiguous above seq
E7. return TRUE
E8. return FALSE

F1. Global Collected Servers State(server id, gv, lv, gss set):
F2. if (gv #= Global view) or (lv #= Local view)
F3. return TRUE
F4. if each message in gss set is not contiguous above invocation seq
F5. return TRUE

G1. Global Constraint(site id, gv, seq, state set):
G2. if gv #= Global view
G3. return TRUE
G4. if server not in leader site
G5. return TRUE
G6. return FALSE

H1. Collected Global Constraints(server id, gv, lv, gc set):
H2. if gv #= Global view
H3. return TRUE
H4. aru ← Extract-Aru(gc set)
H5. if Global aru < aru
H6. return TRUE
H7. return FALSE

Figure 3.5: Conflict checks run on incoming messages used in the global context. Messages that
conflict with a server’s current global state are discarded.

28

boolean Conflict(message):
case message

A1. Pre-Prepare(server id, gv, lv, seq, u):
A2. if not (globally constrained && locally constrained)
A3. return TRUE
A4. if server id #= lv mod num servers in site
A5. return TRUE
A6. if (gv #= Global view) or (lv #= Local view)
A7. return TRUE
A8. if Local History[seq].Pre-Prepare(server id, gv, lv, seq, u’) exists and u’ #= u
A9. return TRUE
A10 if Local History[seq].Prepare Certificate.Pre-Prepare(gv, lv’, seq, u’) exists
and u’ #= u
A11. return TRUE
A12. if Local History[seq].Proposal(site id, gv, lv’, u’) exists
A13. if (u’ #= u) or (lv’ > lv)
A14. return TRUE
A15. if Global History[seq].Proposal(site id, gv’, lv’, seq, u’) exists
A16. if (u’ #= u) or (gv’ > gv)
A17. return TRUE
A18. if Global History[seq].Globally Ordered Update(*, seq, u’) exists
A19. if (u’ #= u)
A20. return TRUE
A21. if not Is-Contiguous(seq)
A22. return TRUE
A23. if not In-Window(seq)
A24. return TRUE
A25. if u is bound to seq’ in Local History or Global History
A26. return TRUE
A27. return FALSE

B1. Prepare(server id, gv, lv, seq, digest):
B2. if not (globally constrained && locally constrained)
B3. return TRUE
B4. if (gv #= Global view) or (lv #= Local view)
B5. return TRUE
B6. if Local History[seq].Pre-Prepare(server id’, gv, lv, seq, u) exists
B7. if digest #= Digest(u)
B8. return TRUE
B9. if Local History[seq].Prepare Certificate.Pre-Prepare(gv, lv’, seq, u) exists
B10. if (digest #= Digest(u)) or (lv’ > lv)
B11. return TRUE
B12. if Local History[seq].Proposal(gv, lv’, seq, u) exists
B13. if (digest #= Digest(u)) or (lv’ > lv)
B14. return TRUE
B15. return FALSE

C1. Request Local State(server id, gv, lv, aru):
C2. if (gv #= Global view) or (lv #= Local view)
C3. return TRUE
C4. if server id #= lv mod num servers in site
C5. return TRUE
C6. return FALSE

D1. Local Server State(server id, gv, lv, seq, state set):
D2. if (gv #= Global view) or (lv #= Local view)
D3. return TRUE
D4. if not representative
D5. return TRUE
D6. if entries in state set are not contiguous above seq
D7. return TRUE
D8. return FALSE

E1. Local Collected Servers State(server id, gv, lv, lss set):
E2. if (gv #= Global view) or (lv #= Local view)
E3. return TRUE
E4. if each message in lss set is not contiguous above invocation seq
E5. return TRUE
E6. return FALSE

Figure 3.6: Conflict checks run on incoming messages used in the local context. Messages that
conflict with a server’s current local state are discarded.

29

constructed, or is attempting to construct, a Proposal.

Upon receiving a message, a server first runs a validity check on the message to ensure that

it contains a valid RSA signature and does not originate from a server known to be faulty (Figure

3.4). The server then verifies that the message does not conflict with anything already in its data

structures; these conflicts (Figures 3.5 and 3.6) are defined by our protocol and ensure that the

servers preserve the critical safety property. If a message passes both the validity and conflict

checks, the server applies the message to its local or global data structure according to a set of rules

(Figures 3.7 and 3.8, respectively). These rules invoke several predicate functions (Figure 3.9) to

determine if and how a message should be applied.

30

/* Notation: <== means append */
UPDATE-LOCAL-DATA-STRUCTURES:

case message:
A1. Pre-Prepare(server id, *, lv, seq, u):
A2. if Local History[seq].Pre-Prepare is empty
A3. Local History[seq].Pre-Prepare ← Pre-Prepare
A4. else
A5. ignore Pre-Prepare

B1. Prepare(server id, *, lv, seq, digest):
B2. if Local History[seq].Pre-Prepare is empty
B3. ignore Prepare
B4. if Local History[seq].Prepare List contains a Prepare with server id
B5. ignore Prepare
B6. Local History[seq].Prepare List <== Prepare
B7. if Prepare-Certificate-Ready(seq)
B8. pre-prepare ← Local History[seq].Pre-Prepare
B9. PC ← Construct Prepare Certificate(pre-prepare, Local History[seq].Prepare List)
B10. Local History[seq].Prepare Certificate ← PC

C1. Partial Sig(server id, data, partial sig, verification proof, sig):
C2. if Local History.Partial Sigs{ data }[Server id] is empty
C3. ignore Partial Sig
C4. Local History.Partial Sigs{ data }[server id] ← Partial Sig

D1. Local Collected Server State(gv, lv, Local Server State[]):
D2. union ← Compute-Local-Union(Local Collected Server State)
D3. invocation aru ← Extract-Invocation-Aru(Local Server State[])
D4. max local entry ← Extract-Max-Local-Entry(Local History[])
D5. for each seq from (invocation aru+1) to max local entry
D6. if Local History[seq].Prepare Certificate(*, lv’, seq, *) exists and lv’ < lv
D7. clear Local History[seq].Prepare Certificate
D8. if Local History[seq].Proposal(*, lv’, seq, *) exists and lv’ < lv
D9. clear Local History[seq].Proposal
D10. if Local History[seq].Pre-Prepare(*, lv’, seq, *) exists and lv’ < lv
D11. clear Local History[seq].Pre-Prepare
D12. for each Prepare Certificate(*, *, seq, *), PC, in union
D13. if Local History[seq].Prepare Certificate is empty
D14. Local History[seq].Prepare Certificate ← PC
D15. for each Proposal(*, *, seq, *), P, in union
D16. if Local History[seq].Proposal is empty
D17. Local History[seq].Proposal ← P

E1. New Rep(site id,lv):
E2. if (lv > Latest New Rep[site id])
E3. Latest New Rep[site id] ← New Rep
E4. Local preinstalled view ← Latest New Rep[Site id]

F1. Update(u):
F2. SEND to all servers in site: Update(u)
F3. if representative of non-leader site
F4. SEND to representative of leader site: Update(u)
F5. Add Update(u) to Update Pool

Figure 3.7: Rules for applying a message to the Local History data structure. The rules assume that
there is no conflict, i.e., Conflict(message) == FALSE

31

/* Notation: <== means append */
UPDATE-GLOBAL-DATA-STRUCTURES:

case message:
A1. Proposal P(site id, gv, *, seq, u):
A2. if Global History[seq].Proposal is empty
A3. Global History[seq].Proposal ← P
A4. if server in leader site
A5. Recompute Pending proposal aru
A6. if Global History[seq].Prepare Certificate is not empty
A7. remove Prepare Certificate from Global History[seq].Prepare Certificate
A8. if Global History[seq].Proposal contains Proposal(site id’, gv’, *, seq, u’)
A9. if gv > gv’
A10. Global History[seq].Proposal ← P
A11. if server in leader site
A12. Recompute Pending proposal aru
A13. if Global History[seq].Prepare Certificate is not empty
A14. remove Prepare Certificate from Global History[seq].Prepare Certificate

B1. Accept A(site id, gv, *, seq, digest):
B2. if Global History[seq].Proposal is empty
B3. ignore A
B4. if Global History[seq].Accept List is empty
B5. Global History[seq].Accept List <== A
B6. if Global History[seq].Accept List has any Accept(site id, gv’, *, seq, digest’)
B7. if gv > gv’
B8. discard all Accepts in Global History[seq]
B9. Global History[seq].Accept List <== A
B10. if gv == gv’ and Global History[seq] does not have Accept from site id
B11. Global History[seq].Accept List <== A
B12. if gv < gv’
B13. ignore A
B14. if Globally-Ordered-Ready(seq)
B15. Construct globally ordered update from Proposal and list of Accepts
B16. Apply globally ordered update to Global History

C1. Globally Ordered Update G(gv, seq, u):
C2. if not Globally-Ordered(seq) and Is-Contiguous(seq)
C3. Global History[seq].Globally Ordered Update ← G
C4. Recompute Global aru
C5. exec set ← all unexecuted globally ordered updates with seq ≤ Global aru
C6. execute the updates in exec set
C7. if there exists at least one Globally Ordered Update(*, *, *) in exec set
C8. RESET-GLOBAL-TIMER()
C9. RESET-LOCAL-TIMER()
C10. if server in leader site
C11. Recompute Pending proposal aru

D1. Collected Global Constraints(gv, Global Constraint[]):
D2. union ← Compute-Constraint-Union(Collected Global Constraints)
D3. invocation aru ← Extract-Invocation-Aru(Global Constraint[])
D4. max global entry ← Extract-Max-Global-Entry(Global History[])
D5. for each seq from (invocation aru+1) to max global entry
D6. if Global History[seq].Prepare Certificate(gv’, *, seq, *) exists and gv’ < gv
D7. clear Global History[seq].Prepare Certificate
D8. if Global History[seq].Proposal(gv’, *, seq, *) exists and gv’ < gv
D9. clear Global History[seq].Proposal
D10. for each Globally Ordered Update(*, *, seq, *), G, in union
D11. Global History[seq].Globally Ordered Update ← G
D12. for each Proposal(*, *, seq, *), P, in union
D13. if Global History[seq].Proposal is empty
D14. Global History[seq].Proposal ← P

E1. Global VC(site id, gv):
E2. if (gv > Latest Global VC[site id].gv)
E3. Latest Global VC[site id] ← Global VC
E4. sorted vc messages ← sort Latest Global VC by gv
E5. Global preinstalled view ← sorted vc messages[&N/2' + 1].gv
E6. if (Global preinstalled view > Global view)
E7. Global view ← Global preinstalled view
E8. globally constrained ← False

F1. Global Preinstall Proof(global vc messages[]):
F2. for each Global VC(gv) in global vc messsages[]
F3. Apply Global VC

Figure 3.8: Rules for applying a message to the Global History data structure. The rules assume
that Conflict(message) == FALSE

32

A1. boolean Globally-Ordered(seq):
A2. if Global History[seq].Globally Ordered Update is not empty
A3. return TRUE
A4. return FALSE

B1. boolean Globally-Ordered-Ready(seq):
B2. if Global History.Proposal[seq] contains a Proposal(site id, gv, lv, seq, u)
B3. if Global History[seq].Accept List contains (majority-1) of distinct

Accept(site id(i), gv, lv, seq, Digest(u)) with site id(i) #= site id
B4. return TRUE
B5. if Global History[seq].Accept List contains a majority of distinct
B6. Accept(site id(i), gv’, lv, seq, Digest(u)) with gv >= gv’
B7. return TRUE
B8. return FALSE

C1. boolean Prepare-Certificate-Ready(seq):
C2. if Local History.Proposal[seq] contains a Pre-Prepare(server id, gv, lv, seq, u)
C3. if Local History[seq].Prepare List contains 2f distinct

Prepare(server id(i), gv, lv, seq, d) with server id #= server id(i) and d ==
Digest(u)
C4. return TRUE
C5. return FALSE

D1. boolean In-Window(seq):
D2. if Global aru < seq ≤ Global aru + W
D3. return TRUE
D4. else
D5. return FALSE

E1. boolean Is-Contiguous(seq):
E2. for i from Global aru+1 to seq-1
E3. if Global History[seq].Prepare-Certificate == NULL and
E4. Global History[seq].Proposal == NULL and
E5. Global History[seq].Globally Ordered Update == NULL and
E6. Local History[seq].Prepare-Certificate == NULL and
E7. Local History[seq].Proposal == NULL
E8. return FALSE
E9. return TRUE

Figure 3.9: Predicate functions used by the global and local protocols to determine if and how a
message should be applied to a server’s data structures.

33

3.4.2 The Common Case

In this section, we trace the flow of an update through the system as it is globally ordered

during common case operation (i.e., when no leader site or site representative election occurs). The

common case makes use of two local, intra-site protocols: THRESHOLD-SIGN (Figure 3.10) and

ASSIGN-SEQUENCE (Figure 3.11), which we describe below. Pseudocode for the global ordering

protocol (ASSIGN-GLOBAL-ORDER) is listed in Figure 3.12. The common case works as follows:

1. A client sends an update to a server in its local site. The update is uniquely identified by a

pair consisting of the client’s identifier and a client-generated logical timestamp. A correct

client proposes an update with timestamp i+1 only after it receives a reply for an update with

timestamp i. The client’s local server forwards the update to the local representative, which

forwards the update to the representative of the leader site. If the client does not receive a

reply within its timeout period, it broadcasts the update to all servers in its site.

2. When the representative of the leader site receives an update, it invokes the ASSIGN-

SEQUENCE protocol to assign a global sequence number to the update; this assignment is

encapsulated in a Proposal message. The site then generates a threshold signature on the con-

structed Proposal using THRESHOLD-SIGN, and the representative sends the signed Proposal

to the representatives of all other sites for global ordering.

3. When a representative receives a signed Proposal, it forwards this Proposal to the servers in

its site. Upon receiving a Proposal, a server constructs a site acknowledgment (i.e., an Ac-

cept message) and invokes THRESHOLD-SIGN on this message. The representative combines

the partial signatures and then sends the resulting threshold-signed Accept message to the

representatives of the other sites.

4. The representative of a site forwards the incoming Accept messages to the local servers. A

server globally orders the update when it receives $N/2% Accept messages from distinct sites

(where N is the number of sites) and the corresponding Proposal. The server at the client’s

local site that originally received the update sends a reply back to the client.

34

THRESHOLD-SIGN(Data s data, int server id):
A1. Partial Sig ← GENERATE-PARTIAL-SIG(data, server id)
A2. SEND to all local servers: Partial Sig

B1. Upon receiving a set, PSig Set, of 2f+1 Partial Sigs from distinct servers:
B2. signature ← COMBINE(PSig Set)
B3. if VERIFY(signature)
B4. return signature
B5. else
B6. for each S in PSig Set
B7. if NOT VERIFY(S)
B8. REMOVE(S, PSig Set)
B9. ADD(S.server id, Corrupted Servers List)
B9. Corrupted Server ← CORRUPTED(S)
B10. SEND to all local servers: Corrupted Server
B11. continue to wait for more Partial Sig messages

Figure 3.10: THRESHOLD-SIGN Protocol, used to generate a threshold signature on a message.
The message can then be used in a global protocol.

ASSIGN-SEQUENCE(Update u):
A1. Upon invoking:
A2. SEND to all local servers: Pre-Prepare(gv, lv, Global seq, u)
A3. Global seq++

B1. Upon receiving Pre-Prepare(gv, lv, seq, u):
B2. Apply Pre-Prepare to Local History
B3. SEND to all local servers: Prepare(gv, lv, seq, Digest(u))

C1. Upon receiving Prepare(gv, lv, seq, digest):
C2. Apply Prepare to Local History
C3. if Prepare-Certificate-Ready(seq)
C4. prepare certificate ← Local History[seq].Prepare Certificate
C5. pre-prepare ← prepare certificate.Pre-Prepare
C6. unsigned proposal ← ConstructProposal(pre-prepare)
C7. invoke THRESHOLD SIGN(unsigned proposal) //returns signed proposal

D1. Upon THRESHOLD SIGN returning signed proposal:
D2. Apply signed proposal to Global History
D3. Apply signed proposal to Local History
D4. return signed proposal

Figure 3.11: ASSIGN-SEQUENCE Protocol, used to bind an update to a sequence number and
produce a threshold-signed Proposal message.

35

ASSIGN-GLOBAL-ORDER():
A1. Upon receiving or executing an update, or becoming globally or locally constrained:
A2. if representative of leader site
A3. if (globally constrained and locally constrained and In-Window(Global seq))
A4. u ← Get-Next-To-Propose()
A5. if (u #= NULL)
A6. invoke ASSIGN-SEQUENCE(u) //returns Proposal

B1. Upon ASSIGN-SEQUENCE returning Proposal:
B2. SEND to all sites: Proposal

C1. Upon receiving Proposal(site id, gv, lv, seq, u):
C2. Apply Proposal to Global History
C3. if representative
C4. SEND to all local servers: Proposal
C5. unsigned accept ← Construct-Accept(Proposal)
C6. invoke THRESHOLD-SIGN(unsigned accept, Server id)

D1. Upon THRESHOLD-SIGN returning signed accept:
D2. Apply signed accept to Global History
D3. if representative
D4. SEND to all sites: Accept

E1. Upon receiving Accept(site id, gv, lv, seq, Digest(u)):
E2. Apply Accept to Global History
E3. if representative
E4. SEND to all local servers: Accept
E5. if Globally-Ordered-Ready(seq)
E6. globally ordered update ← ConstructOrderedUpdate(seq)
E7. Apply globally ordered update to Global History

Figure 3.12: ASSIGN-GLOBAL-ORDER Protocol. The protocol runs among all sites and is similar
to Paxos. It invokes the ASSIGN-SEQUENCE and THRESHOLD-SIGN intra-site protocols to
allow a site to emulate the behavior of a Paxos participant.

Get-Next-To-Propose():
A1. u ← NULL
A2. if(Global History[Global seq].Proposal is not empty)
A3. u ← Global History[Global seq].Proposal.Update
A4. else if(Local History[Global seq].Prepare Certificate is not empty)
A5. u ← Local History[Global seq].Prepare Certificate.Update
A6. else if(Unconstrained Updates is not empty)
A7. u ← Unconstrained Updates.Pop-Front()
A8. return u

Figure 3.13: Get-Next-To-Propose Procedure. For a given sequence number, the procedure returns
(1) the update currently bound to that sequence number, (2) some update not currently bound to any
sequence number, or (3) NULL if the server does not have any unbound updates.

We now highlight the details of the THRESHOLD-SIGN and ASSIGN-SEQUENCE protocols.

Threshold-Sign: The THRESHOLD-SIGN intra-site protocol (Figure 3.10) generates a (2f + 1,

3f + 1) threshold signature on a given message.1 Upon invoking the protocol, a server generates

a Partial Signature message, containing a partial signature on the message to be signed and a ver-

ification proof that other servers can use to confirm that the partial signature was created using a

valid share. The Partial Signature message is broadcast within the site. Upon receiving 2f+1 par-

tial signatures on a message, a server combines the partial signatures into a threshold signature on
1We could use an (f + 1, 3f + 1) threshold signature at the cost of an additional intra-site protocol round.

36

that message, which is then verified using the site’s public key. If the signature verification fails,

one or more partial signatures used in the combination were invalid, in which case the verification

proofs provided with the partial signatures are used to identify incorrect shares, and the servers that

sent these incorrect shares are classified as malicious. Further messages from the corrupted servers

are ignored, and the proof of corruption (the invalid Partial Sig message) is broadcast to the other

servers in the site.

Assign-Sequence: The ASSIGN-SEQUENCE local protocol (Figure 3.11) is used in the leader

site to construct a Proposal message. The protocol takes as input an update that was returned by the

Get Next To Propose procedure (Figure 3.13), which is invoked by the representative of the leader

site during ASSIGN-GLOBAL-ORDER (Figure 3.12, line A4). Get Next To Propose considers the

next sequence number for which an update should be ordered and returns either (1) an update that

has already been bound to that sequence number, or (2) an update that is not bound to any sequence

number. This ensures that the constructed Proposal cannot be used to violate safety and, if globally

ordered, will result in global progress.

ASSIGN-SEQUENCE consists of three rounds. The first two are similar to the corresponding

rounds of BFT, and the third round consists of an invocation of THRESHOLD-SIGN. During the first

round, the representative binds an update, u, to a sequence number, seq, by creating and sending

a Pre-Prepare(gv, lv, seq, u) message, where gv and lv are the current global and local views,

respectively. From Figure 3.6, a Pre-Prepare(seq, u) causes a conflict if either a binding (seq, u′) or

(seq′, u) exists in a server’s data structures. When a non-representative receives a Pre-Prepare that

does not cause a conflict, it broadcasts a matching Prepare(gv, lv, seq, Digest(u)) message. At the

end of the second round, when a server receives a Pre-Prepare and 2f matching Prepare messages

for the same views, sequence number, and update (i.e., when it collects a Prepare Certificate),

it invokes THRESHOLD-SIGN on a Proposal(siteid,gv, lv, seq, u). If there are 2f + 1 correct,

connected servers in the site, THRESHOLD-SIGN returns a threshold-signed Proposal(seq, u) to all

servers.

37

Initial State:
Local view = 0
my preinstall proof = a priori proof that view 0 was preinstalled
RESET-LOCAL-TIMER()

LOCAL-VIEW-CHANGE()
A1. Upon Local T expiration:
A2. Local view++
A3. locally constrained ← False
A4. unsigned new rep ← Construct-New-Rep(Local view)
A5. invoke THRESHOLD-SIGN(unsigned new rep) //returns New Rep

B1. Upon THRESHOLD-SIGN returning New Rep(lv):
B2. Apply New Rep()
B3. SEND to all servers in site: New Rep

C1. Upon receiving New Rep(lv):
C2. Apply New Rep()

D1. Upon increasing Local preinstalled view:
D2. RELIABLE-SEND-TO-ALL-SITES(New Rep)
D3. SEND to all servers in site: New Rep
D4. RESET-LOCAL-TIMER(); Start Local T
D5. if representative of leader site
D6. invoke CONSTRUCT-LOCAL-CONSTRAINT(Pending proposal aru)
D7. if NOT globally constrained
D8. invoke GLOBAL-VIEW-CHANGE
D9. else
D10. my global constraints ← Construct-Collected-Global-Constraints()
D11. SEND to all servers in site: My global constraints

Figure 3.14: LOCAL-VIEW-CHANGE Protocol, used to elect a new site representative when the
current one is suspected to have failed. The protocol also ensures that the servers in the leader site
have enough knowledge of pending decisions to preserve safety in the new local view.

GLOBAL-LEADER-ELECTION:
A1. Upon Global T expiration:
A2. Global view++
A3. globally constrained ← False
A4. unsigned global vc ← Construct-Global-VC()
A5. invoke THRESHOLD-SIGN(unsigned global vc)

B1. Upon THRESHOLD-SIGN returning Global VC(gv):
B2. Apply Global VC to data structures
B3. ReliableSendToAllSites(Global VC)

C1. Upon receiving Global VC(gv):
C2. Apply Global VC to data structures

D1. Upon receiving Global Preinstall Proof(gv):
D2. Apply Global Preinstall Proof()

E1. Upon increasing Global preinstalled view:
E2. sorted vc messages ← sort Latest Global VC by gv
E3. proof ← last &N/2' + 1 Global VC messages in sorted vc messages
E4. ReliableSendToAllSites(proof)
E5. SEND to all local servers: proof
E6. RESET-GLOBAL-TIMER(); Start Global T
E7. if representative of leader site
E8. invoke GLOBAL-VIEW-CHANGE

Figure 3.15: GLOBAL-LEADER-ELECTION Protocol. When the Global T timers of at least 2f +

1 servers in a majority of sites expire, the sites run a distributed, global protocol to elect a new leader
site by exchanging threshold-signed Global VC messages.

3.4.3 View Changes

Several types of failure may occur during system execution, such as the corruption of a site rep-

resentative or the partitioning of the leader site. Such failures require delicate handling to preserve

38

RESET-GLOBAL-PROGRESS-TIMER():
A1. Global T ← GLOBAL-TIMEOUT()

RESET-LOCAL-TIMER():
B1. if in leader site
B2. Local T ← GLOBAL-TIMEOUT()/(f + 3)
B3. else
B4. Local T ← GLOBAL-TIMEOUT()/((f + 3)(f + 2))

GLOBAL-TIMEOUT():
C1. return K ∗ 2!Global view/N"

Figure 3.16: RESET-GLOBAL-TIMER and RESET-LOCAL-TIMER procedures. These proce-
dures establish the relationships between Steward’s timeout values at both the local and global levels
of the hierarchy. Note that the local timeout at the leader site is longer than at the non-leader sites
to ensure a correct representative of the leader site has enough time to communicate with correct
representatives at the non-leader sites. The values increase as a function of the global view.

GLOBAL-VIEW-CHANGE:
A1. Upon invoking:
A2. Invoke CONSTRUCT-ARU(Global aru)// returns (Global Constraint, Aru Message)

B1. Upon CONSTRUCT-ARU returning (Global Constraint, Aru Message):
B2. Store Global Constraint
B3. if representative of leader site
B4. SEND to all sites: Aru Message

C1. Upon receiving Aru Message(site id, gv, site aru):
C2. if representative site
C3. SEND to all servers in site: Aru Message
C4. invoke CONSTRUCT-GLOBAL-CONSTRAINT(Aru Message) //returns Global Constraint

D1. Upon CONSTRUCT-GLOBAL-CONSTRAINT returning Global Constraint:
D2. if representative of non-leader site
D3. SEND to representative of leader site: Global Constraint

E1. Upon collecting GC SET with majority distinct Global Constraint messages:
E2. if representative
E3. Collected Global Constraints ← Construct-Bundle(GC SET)
E4. SEND to all in site: Collected Global Constraints
E5. Apply Collected Global Constraints to Global History
E6. globally constrained ← True

F1. Upon receiving Collected Global Constraints:
F2. Apply Collected Global Constraints to Global History
F3. globally constrained ← True
F4. Pending proposal aru ← Global aru

Figure 3.17: GLOBAL-VIEW-CHANGE Protocol, used to globally constrain the servers in a new
leader site. These servers obtain information from a majority of sites, ensuring that they will respect
the bindings established by any updates that were globally ordered in a previous view.

safety and liveness.

To ensure that the system can continue to make progress despite server or network failures, Stew-

ard uses timeout-triggered leader election protocols at both the local and global levels of the hierar-

chy to select new protocol coordinators. Each server maintains two timers, Local T and Global T,

which expire if the server does not execute a new update (i.e., make global progress) within the

local or global timeout period. When the Local T timers of 2f + 1 servers within a site expire, the

39

CONSTRUCT-LOCAL-CONSTRAINT(int seq):
A1. if representative
A2. Request Local State ← ConstructRequestState(Global view, Local view, seq)
A3. SEND to all local servers: Request Local State

B1. Upon receiving Request Local State(gv, lv, s):
B2. invocation aru ← s
B3. if (Pending Proposal Aru < s)
B4. Request missing Proposals or Globally Ordered Update messages from representative
B5. if (Pending Proposal Aru ≥ s)
B6. Local Server State ← Construct-Local-Server-State(s)
B7. SEND to the representative: Local Server State

C1. Upon collecting LSS Set with 2f+1 distinct Local Server State(invocation aru)
messages:
C2. Local Collected Servers State ← Construct-Bundle(LSS Set)
C3. SEND to all local servers: Local Collected Servers State

D1. Upon receiving Local Collected Servers State:
D2. if (all Local Server State messages in bundle contain invocation aru)
D3. if (Pending Proposal Aru ≥ invocation aru)
D4. Apply Local Collected Servers State to Local History
D5. locally constrained ← True
D6. return Local Collected Servers State

Figure 3.18: CONSTRUCT-LOCAL-CONSTRAINT Protocol. The protocol is invoked by a newly-
elected leader site representative and involves the participation of all servers in the leader site. Upon
completing the protocol, a server becomes locally constrained and will act in a way that enforces
decisions made in previous local views.

servers replace the current representative. Similarly, when the Global T timers of 2f + 1 servers

in a majority of sites expire, the sites replace the current leader site. Our timeout mechanism is

described in more detail in Section 3.4.4.

While the leader election protocols guarantee progress if sufficient synchrony and connectivity

exist, Steward uses view change protocols at both levels of the hierarchy to ensure safe progress.

The presence of benign or malicious failures introduces a window of uncertainty with respect to

pending decisions that may (or may not) have been made in previous views. For example, the new

coordinator may not be able to definitively determine if some server globally ordered an update for

a given sequence number. However, our view change protocols guarantee that if any server globally

ordered an update for that sequence number in a previous view, the new coordinator will collect

sufficient information to ensure that it acts conservatively and respects the established binding in

the new view. This guarantee also applies to those Proposals that may have been constructed in a

previous local view within the current global view.

Steward uses a constraining mechanism to enforce this conservative behavior. Before partici-

pating in the global ordering protocol, a correct server must become both locally constrained and

40

CONSTRUCT-ARU(int seq):
A1. if representative
A2. Request Global State ← ConstructRequestState(Global view, Local view, seq)
A3. SEND to all local servers: Request Global State

B1. Upon receiving Request Global State(gv, lv, s):
B2. invocation aru ← s
B3. if (Global aru < s)
B4. Request missing Globally Ordered Updates from representative
B5. if (Global aru ≥ s)
B6. Global Server State ← Construct Global Server State(s)
B7. SEND to the representative: Global Server State

C1. Upon collecting GSS Set with 2f+1 distinct Global Server State(invocation aru)
messages:
C2. Global Collected Servers State ← Construct-Bundle(GSS Set)
C3. SEND to all local servers: Global Collected Servers State

D1. Upon receiving Global Collected Servers State:
D2. if (all Global Server State message in bundle contain invocation aru)
D3. if(Global aru ≥ invocation aru)
D4. union ← Compute-Global-Union(Global Collected Servers State)
D5. for each Prepare Certificate, PC(gv, lv, seq, u), in union
D6. Invoke THRESHOLD-SIGN(PC) //Returns Proposal

E1. Upon THRESHOLD-SIGN returning Proposal P(gv, lv, seq, u):
E2. Global History[seq].Proposal ← P

F1. Upon completing THRESHOLD-SIGN on all Prepare Certificates in union:
F2. Invoke THRESHOLD-SIGN(union) //Returns Global Constraint

G1. Upon THRESHOLD-SIGN returning Global Constraint:
G2. Apply each Globally Ordered Update in ConstraintMessage to Global History
G3. union aru ← Extract-Aru(union)
G4. Invoke THRESHOLD-SIGN(union aru) //Returns Aru Message

H1. Upon THRESHOLD-SIGN returning Aru Message:
H2. return (Global Constraint, Aru Message)

Figure 3.19: CONSTRUCT-ARU Protocol, used by the leader site to generate an Aru Message
during a global view change. The Aru Message contains a sequence number through which at least
f + 1 correct servers in the leader site have globally ordered all updates.

globally constrained by completing the LOCAL-VIEW-CHANGE and GLOBAL-VIEW-CHANGE pro-

tocols (Figures 3.14 and 3.17, respectively). The local constraint mechanism ensures continuity

across local views (when the site representative changes), and the global constraint mechanism en-

sures continuity across global views (when the leader site changes). Since the site representative

coordinating the global ordering protocol may ignore the constraints imposed by previous views

if it is faulty, all servers in the leader site become constrained, allowing them to monitor the rep-

resentative’s behavior and preventing a faulty server from causing them to act in an inconsistent

way.

We now provide relevant details of our leader election and view change protocols.

Leader Election: Steward uses two Byzantine fault-tolerant leader election protocols. Each site

runs the LOCAL-VIEW-CHANGE protocol (Figure 3.14) to elect its representative, and the system

41

CONSTRUCT-GLOBAL-CONSTRAINT(Aru Message A):
A1. invocation aru ← A.seq
A2. Global Server State ← Construct-Global-Server-State(global context, A.seq)
A3. SEND to the representative: Global Server State

B1. Upon collecting GSS Set with 2f+1 distinct Global Server State(invocation aru)
messages:
B2. Global Collected Servers State ← Construct-Bundle(GSS Set)
B3. SEND to all local servers: Global Collected Servers State

C1. Upon receiving Global Collected Servers State:
C2. if (all Global Server State messages in bundle contain invocation aru)
C3. union ← Compute-Global-Union(Global Collected Servers State)
C4. for each Prepare Certificate, PC(gv, lv, seq, u), in union
C5. Invoke THRESHOLD-SIGN(PC) //Returns Proposal

D1. Upon THRESHOLD-SIGN returning Proposal P(gv, lv, seq, u):
D2. Global History[seq].Proposal ← P

E1. Upon completing THRESHOLD-SIGN on all Prepare Certificates in union:
E2. Invoke THRESHOLD-SIGN(union) //Returns Global Constraint

F1. Upon THRESHOLD-SIGN returning Global Constraint:
F2. return Global Constraint

Figure 3.20: CONSTRUCT-GLOBAL-CONSTRAINT Protocol, used by the non-leader sites dur-
ing a global view change to generate a Global Constraint message. The Global Constraint contains
Proposals and Globally Ordered Updates for all sequence numbers greater than the sequence num-
ber contained in the Aru Message, allowing the servers in the leader site to enforce decisions made
in previous global views.

Construct-Local-Server-State(seq):
A1. state set ← ∅
A2. For each sequence number i from (seq + 1) to (Global Aru + W):
A3. if Local History[i].Proposal, P, exists
A4. state set ← state set ∪ P
A5. else if Local History[i].Prepare Certificate, PC, exists:
A6. state set ← state set ∪ PC
A7. return Local Server State(Server id, gv, lv, seq, state set)

Construct-Global-Server-State(seq):
B1. state set ← ∅
B2. For each sequence number i from (seq + 1) to (Global aru + W):
B3. if Global History[i].Globally Ordered Update, G, exists
B4. state set ← state set ∪ G
B5. else if Global History[i].Proposal, P, exists:
B6. state set ← state set ∪ P
B7. else if Global History[i].Prepare Certificate, PC, exists:
B8. state set ← state set ∪ PC
B9. return Global Server State(Server id, gv, lv, seq, state set)

Figure 3.21: Construct Server State Procedures. During local and global view changes, individ-
ual servers use these procedures to generate Local Server State and Global Server State messages.
These messages contain entries for each sequence number, above some invocation sequence num-
ber, to which a server currently has an update bound.

runs the GLOBAL-LEADER-ELECTION protocol (Figure 3.15) to elect the leader site. Both leader

election protocols provide two important properties necessary for liveness. Specifically, if the sys-

tem is stable and does not make global progress, (1) views are incremented consecutively, and (2)

stable servers remain in each view for approximately one timeout period. We make use of these

42

// Assumption: all entries in css are from Global view
Compute-Local-Union(Local Collected Servers State css):
A1. union ← ∅
A2. css unique ← Remove duplicate entries from css
A3. seq list ← Sort entries in css unique by increasing (seq, lv)

B1. For each item in seq list
B2. if any Proposal P
B3. P ∗ ← Proposal from latest local view
B4. union ← union ∪ P ∗

B5. else if any Prepare Certificate PC
B6. PC∗ ← PC from latest local view
B7. union ← union ∪ PC∗

B8. return union

Compute-Global-Union(Global Collected Servers State css):
C1. union ← ∅
C2. css unique ← Remove duplicate entries from css
C3. seq list ← Sort entries in css unique by increasing (seq, gv, lv)

D1. For each item in seq list
D2. if any Globally Ordered Update
D3. G∗ ← Globally Ordered Update with Proposal from latest view (gv, lv)
D4. union ← union ∪ G∗

D5. else
D6. MAX GV ← global view of entry with latest global view
D7. if any Proposal from MAX GV
D8. P ∗ ← Proposal from MAX GV and latest local view
D9. union ← union ∪ P ∗

D10. else if any Prepare Certificate PC from MAX GV
D11. PC∗ ← PC from MAX GV and latest local view
D12. union ← union ∪ PC∗

D13. return union

Compute-Constraint-Union(Collected Global Constraints cgc):
E1. union ← ∅
E2. css unique ← Remove duplicate entries from cgc
E3. seq list ← Sort entries in css unique by increasing (seq, gv)

F1. For each item in seq list
F2. if any Globally Ordered Update
F3. G∗ ← Globally Ordered Update with Proposal from latest view (gv, lv)
F4. union ← union ∪ G∗

F5. else
F6. MAX GV ← global view of entry with latest global view
F7. if any Proposal from MAX GV
F8. P ∗ ← Proposal from MAX GV and latest local view
F9. union ← union ∪ P ∗

F10. return union

Figure 3.22: Compute-Union Procedures. The procedures are used during local and global view
changes. For each entry in the input set, the procedures remove duplicates (based on sequence
number) and, for each sequence number, take the appropriate entry from the latest view.

properties in Section 3.6. We now describe the protocols in detail.

LOCAL-VIEW-CHANGE: When a server’s local timer, Local T, expires, it increments its local

view to lv and suggests this view to the servers in its site by invoking THRESHOLD-SIGN on a

New Rep(lv) message. When 2f + 1 stable servers move to local view lv, THRESHOLD-SIGN

returns a signed New Rep(lv) message to all stable servers in the site. Since a signed New Rep(lv)

message cannot be generated unless 2f+1 servers suggest local view lv, such a message is proof that

f +1 correct servers within a site are in at least local view lv. We say a server has preinstalled local

43

RELIABLE-SEND-TO-ALL-SITES(message m):
A1. Upon invoking:
A2. rel message ← ConstructReliableMessage(m)
A3. SEND to all servers in site: rel message
A4. SendToPeers(m)

B1. Upon receiving message Reliable Message(m):
B2. SendToPeers(m)

C1. Upon receiving message m from a server with my id:
C2. SEND to all servers in site: m

SendToPeers(m):
D1. if m is a threshold signed message from my site and my Server id ≤ 2f + 1:
D2. my server id ← Server id
D3. for each site S:
D4. SEND to server in site S with Server id = my server id: m

Figure 3.23: RELIABLE-SEND-TO-ALL-SITES Protocol. Each of 2f + 1 servers within a site
sends a given message to a peer server in each other site. When sufficient connectivity exists, the
protocol reliably sends a message from one site to all other servers in all other sites sites despite the
behavior of faulty servers.

view lv if it has a signed New Rep(lv) message. Servers send their latest signed New Rep message

to all other servers in the site, and, therefore, all stable servers immediately move to the highest

preinstalled view. Each server uses the following function to determine the id of its representative:

Local view mod 3f + 1. A server starts its Local T timer only when its preinstalled view equals

its local view (i.e., it has a New Rep(lv) message where its Local view = lv). Since at least f + 1

correct servers must timeout (i.e., Local T must expire) before a New Rep message can be created

for the next local view, the servers in the site increment their views consecutively and remain in

each local view for at least a local timeout period. Moreover, if global progress does not occur, then

stable servers will remain in a local view for one local timeout period.

GLOBAL-LEADER-ELECTION: When a server’s global timer, Global T, expires, it increments

its global view to gv and suggests this global view to other servers in its site, S, by invoking

THRESHOLD-SIGN on a Global VC(S,gv) message. A theshold signed Global VC(S,gv) message

proves that at least f + 1 servers in site S must be in global view gv or above. Site S attempts

to preinstall global view gv by sending this message to all other sites. A set of a majority of of

Global VC(gv) messages (i.e., global preinstall proof) proves that at least f + 1 correct servers in a

majority of sites have moved to at least global view gv. If a server collects a global preinstall proof

for gv, we say it has preinstalled global view gv. When a server preinstalls a new global view, it

sends the corresponding global preinstall proof to all connected servers using RELIABLE-SEND-TO-

44

ALL-SITES (Figure 3.23). Therefore, as soon as any stable server preinstalls a new global view, all

stable servers will preinstall this view. Each server uses the following function to determine the id

of the leader site: Global view mod N , where N is the number of sites in the system. As in the local

representative election protocol, a server starts its Global T timer only when its preinstalled view

equals its global view (i.e., it has a set of Global VC(gv) messages from a majority of sites where its

Global view = gv). Since at least f + 1 correct servers must timeout in a site (i.e., Global T must

expire) before the site can construct a Global VC message for the next global view, stable servers

increment their global views consecutively and remain in each global view for at least one global

timeout period.

Construct-Local-Constraint: The CONSTRUCT-LOCAL-CONSTRAINT protocol (Figure 3.18)

is invoked by a newly elected leader site representative (Figure 3.14, line D6). The protocol guaran-

tees sufficient intra-site reconciliation to safely make progress after changing the site representative.

As a result of the protocol, servers become locally constrained, meaning their Local History data

structures have enough information about pending Proposals to preserve safety in the new local

view. Specifically, it prevents two conflicting Proposals, P1(gv, lv, seq, u) and P2(gv, lv, seq,u′),

with u &= u′, from being constructed in the same global view.

A site representative invokes the protocol by sending a sequence number, seq, to all servers

within the site. A server invokes the Construct Local Server State procedure (Figure 3.21, block

A) and responds with a message containing all Prepare Certificates and Proposals with a higher

sequence number than seq. The representative computes the union of 2f + 1 responses, elimi-

nating duplicates and using the entry from the latest view if multiple updates have the same se-

quence number (Figure 3.22, block A); it then broadcasts the union within the site in the form of

a Local Collected Servers State message. When a server receives this message, it applies it to its

Local History, adopting the bindings contained within the union.

Construct-ARU: The CONSTRUCT-ARU protocol (Figure 3.19) is used by the leader site during

a global view change. It is similar to CONSTRUCT-LOCAL-CONSTRAINT in that it provides intra-

site reconciliation, but it functions in the global context. The protocol generates an Aru Message

reflecting the sequence number up to which at least f + 1 correct servers in the leader site have

45

globally ordered all previous updates.

Construct-Global-Constraint: The CONSTRUCT-GLOBAL-CONSTRAINT protocol (Figure

3.20) is used by the non-leader sites during a global view change. It generates a message reflecting

the state of the site’s knowledge above the sequence number contained in the result of CONSTRUCT-

ARU. The leader site collects these Global Constraint messages from a majority of sites.

Global View Change: The GLOBAL-VIEW-CHANGE protocol (Figure 3.17) is triggered af-

ter a leader site election. The representative of the new leader site invokes CONSTRUCT-ARU

with its Global aru (i.e., the sequence number up to which it has globally ordered all updates).

The resulting threshold-signed Aru Message contains the sequence number up to which at least

f + 1 correct servers within the leader site have globally ordered all updates. The represen-

tative sends the Aru Message to all other site representatives. Upon receiving this message, a

non-leader site representative invokes CONSTRUCT-GLOBAL-CONSTRAINT and sends the resultant

Global Constraint message to the representative of the new leader site. Servers in the leader site

use the Global Constraint messages from a majority of sites to become globally constrained, which

restricts the Proposals they will generate in the new view to preserve safety.

3.4.4 Timeouts

Steward uses timeouts to detect failures. If a server does not execute updates, a local and, even-

tually, a global timeout will occur. These timeouts cause the server to ”assume” that the current local

and/or global coordinator has failed. Accordingly, the server attempts to elect a new local/global

coordinator by suggesting new views. In this section, we describe the timeouts that we use and how

their relative values ensure liveness. The timeouts in the servers have been carefully engineered to

allow a correct representative of the leader site to eventually order an update.

Steward uses timeout-triggered protocols to elect new coordinators. Intuitively, coordinators are

elected for a reign, during which each server expects to make progress. If a server does not make

progress, its Local T timer expires, and it attempts to elect a new representative. Similarly, if a

server’s Global T timer expires, it attempts to elect a new leader site. In order to provide liveness,

Steward changes coordinators using three timeout values. These values cause the coordinators of

46

the global and local protocols to be elected at different rates, guaranteeing that, during each global

view, correct representatives at the leader site can communicate with correct representatives at all

stable non-leader sites. We now describe the three timeouts.

Non-Leader Site Local Timeout (T1): Local T is set to this timeout at servers in non-leader sites.

When Local T expires at all stable servers in a site, they preinstall a new local view. T1 must be long

enough for servers in the non-leader site to construct Global Constraint messages, which requires

at least enough time to complete THRESHOLD-SIGN.

Leader Site Local Timeout (T2): Local T is set to this timeout at servers in the leader site. T2

must be long enough to allow the representative to communicate with all stable sites. Observe that

all non-leader sites do not need to have correct representatives at the same time; Steward makes

progress as long as each leader site representative can communicate with at least one correct server

at each stable non-leader site. We accomplish this by choosing T1 and T2 so that, during the reign

of a representative at the leader site, f + 1 servers reign for complete terms at each non-leader site.

The reader can think of the relationship between the timeouts as follows: The time during which a

server is representative at the leader site overlaps with the time that f +1 servers are representatives

at the non-leader sites. Therefore, we require that T2 ≥ (f + 2) ∗ T1. The factor f + 2 accounts

for the possibility that Local T is already running at some of the non-leader-site servers when the

leader site elects a new representative.

Global Timeout (T3): Global T is set to this timeout at all servers, regardless of whether the

server is in the leader site. At least two correct representatives in the leader site must serve complete

terms during each global view. From the relationship between T1 and T2, each of these represen-

tatives will be able to communicate with a correct representative at each stable site. If the timeouts

are sufficiently long and the system is stable, then the first correct server to serve a full reign as

representative at the leader site will complete GLOBAL-VIEW-CHANGE. The second correct server

will be able to globally order and execute a new update, thereby making global progress.

Our protocols do not assume synchronized clocks; however, we do assume that the drift of the

clocks at different servers is bounded. This assumption is valid considering today’s technology.

In order to tolerate different clock rates at different correct servers, each of the relationships given

47

above can be multiplied by the ratio of the fastest clock to the slowest. Such a modification ensures

that each server in the leader site will remain in power for long enough to contact at least one

correct server in each site, even if the clocks in the servers in the leader site run at faster rates than

the clocks in the servers in the other sites. We assume that the adversary is unable to control the

clock drift. Our liveness proof (see Section 3.6) does not consider clock drift. However, the proof

can be modified to include a factor that accounts for clock drift among the correct servers.

Timeout management: We compute our timeout values based on the global view as shown in

Figure 3.16. If the system is stable, all stable servers will move to the same Global view (Figure

3.15). Timeouts T1, T2, and T3 are deterministic functions of the global view guaranteeing that

the timeout relationships described above are met at every stable server. Timeouts double every N

global views, where N is the number of sites. Thus, if there is a time after which message delays do

not increase, then our timeouts eventually grow long enough so that global progress can be made.

We note that, when failures occur, Steward may require more time than flat Byzantine fault-

tolerant replication protocols to reach a configuration where progress will occur. The global timeout

must be large enough so that a correct leader site representative will complete GLOBAL-VIEW-

CHANGE, which may require waiting for several local view changes to complete. In contrast, flat

protocols do not incur this delay. However, Steward’s hierarchical architecture yields an O(S)

wide-area message complexity for view change messages, compared to O(N) for flat architectures.

Like many other protocols that rely on relatively weak synchrony assumptions for liveness,

Steward does not provide a means to reduce timeout values. Timeout values can grow to arbitrarily

large values during periods of network instability. As a consequence, at the time when the system

becomes stable, timeouts may be much longer than necessary, and, thus, faults may take longer to

identify than necessary. In practice, timeouts could be capped at some maximum expected value,

but a system modified in this way requires stronger synchrony assumptions to provide liveness.

Adaptively selecting timeouts in a Byzantine environment is an open research problem. Our

recent protocol, Prime [64], includes a SuspectLeader protocol that uses round trip times between

all pairs of servers to adaptively decide on a level of performance that a correct leader should meet.

However, Prime requires stronger synchrony assumptions for liveness than Steward.

48

LOCAL-RECONCILIATION:
A1. Upon expiration of LOCAL RECON TIMER:
A2. local session seq++
A3. requested aru ← Global aru
A4. Local Recon Request ← ConstructRequest(server id, local session seq, requested aru)
A5. SEND to all local servers: Local Recon Request
A6. Set LOCAL RECON TIMER

B1. Upon receiving Local Recon Request(server id, local session seq, requested aru):
B2. if local session seq ≤ last session seq[server id]
B3. ignore Local Recon Request
B4. if (current time - last local request time[server id]) < LOCAL RECON THROTTLE PERIOD
B5. ignore Local Recon Request
B6. if requested aru < last local requested aru[server id]
B7. ignore Local Recon Request
B8. last local session seq[server id] ← local session seq
B9. last local request time[server id] ← current time
B10. last local requested aru[server id] ← requested aru
B11. if Global aru > requested aru
B12. THROTTLE-SEND(requested aru, Global aru, LOCAL RATE, W) to server id

Figure 3.24: LOCAL-RECONCILIATION Protocol. Recovers missing Globally Ordered Updates
within a site. Servers limit the rate at which they respond to requests and the rate at which they send
requested messages.

3.4.5 Reconciliation

Steward uses two reconciliation protocols to recover missing globally ordered updates. These

protocols are used to overcome message loss, which can result from network failures and/or a faulty

server’s refusal to send or receive a message. Since wide-area bandwidth is limited, Steward at-

tempts to reconcile missing updates locally (i.e., within a site) when possible to avoid triggering

global reconciliation. We highlight the important details of these protocols below.

Local-Reconcilation The LOCAL-RECONCILIATION protocol (Figure 3.24) uses a re-

quest/response mechanism to provide intra-site reconciliation. Each server periodically broadcasts

a Local Recon Request message, containing that server’s Global aru value. Upon receiving a rec-

onciliation request, a server responds to the request if it has a Global aru higher than the requested

aru, and (1) the request is fresh, (2), the request arrived sufficiently long after the last request was

received, and (3) the request contains a sequence number at least as high as the previous request.

When correct servers within a site are sufficiently connected, they will eventually reconcile all

Globally Ordered Updates through the maximum Global aru of any correct server.

Global-Reconciliation The GLOBAL-RECONCILIATION protocol (Figure 3.25) consists of two

stages. In the first stage, each server periodically attempts to construct a threshold-signed global

reconciliation request. The requesting server broadcasts a Global Recon Request message to the

49

GLOBAL-RECONCILIATION:
A1. Upon expiration of GLOBAL RECON TIMER:
A2. global session seq++
A3. requested aru ← Global aru
A4. g ← Global History[requested aru].Globally Ordered Update
A5. Global Recon Request ← ConstructRequest(server id,global session seq,requested aru,g)
A6. SEND to all local servers: Global Recon Request
A7. Set GLOBAL RECON TIMER

B1. Upon receiving Global Recon Request(server id, global session seq, requested aru, g):
B2. if global session seq ≤ last global session seq[server id]
B3. ignore Global Recon Request
B4. if (current time - last global request time[server id]) < GLOBAL RECON THROTTLE PERIOD
B5. ignore Global Recon Request
B6. if requested aru < last global requested aru[server id]
B7. ignore Global Recon Request
B8. if g is not a valid Globally Ordered Update for requested aru
B9. ignore Global Recon Request
B10. last global session seq[server id] ← global session seq
B11. last global request time[server id] ← current time
B12. last global requested aru[server id] ← requested aru
B13. if Global aru ≥ requested aru
B14. sig share ← GENERATE-SIGNATURE-SHARE()
B15. SEND to server id: sig share
B16. if Global aru < requested aru
B17. when Global aru ≥ requested aru:
B18. sig share ← GENERATE-SIGNATURE-SHARE()
B19. SEND sig share to server id

C1. Upon collecting 2f + 1 Partial sig messages for global session seq:
C2. GLOBAL RECON ← COMBINE(partial sigs)
C3. SEND to peer server in each site: GLOBAL RECON

D1. Upon receiving GLOBAL RECON(site id, server id, global session seq, requested aru):
D2. if max global requested aru[site id] ≤ requested aru
D3. max global requested aru[site id] ← requested aru
D4. else
D5. ignore GLOBAL RECON
D6. if (site id == Site id) or (server id #= Server id)
D7. ignore GLOBAL RECON
D8. if global session seq ≤ last global session seq[site id]
D9. ignore GLOBAL RECON
D10. if (current time - last global request time[site id]) < GLOBAL RECON THROTTLE PERIOD
D11. ignore GLOBAL RECON
D12. SEND to all local servers: GLOBAL RECON
D13. last global session seq[site id] ← global session seq
D14. last global request time[site id] ← current time
D15. if Global aru > requested aru
D16. THROTTLE-SEND(requested aru, Global aru, GLOBAL RATE, W) to server id

Figure 3.25: GLOBAL-RECONCIILIATION Protocol, used by a site to recover missing Glob-
ally Ordered Updates from other wide area sites. Each server generates threshold-signed reconcili-
ation requests and communicates with a single server at each other site.

servers in its local site and obtains partial signatures from those servers with a Global aru at least as

high as the sequence number contained in the request. The requesting server then combines the par-

tial signatures to form a GLOBAL-RECON message. In the second stage, the requesting server sends

the GLOBAL-RECON message to its peer servers in the other sites (i.e., the servers with the same

Server id), which then respond to the request by sending the missing Globally Ordered Updates to

the requesting server.

The protocol uses two techniques to prevent a faulty server from consuming the resources of the

50

correct servers (both processing time and wide-area bandwidth). First, the protocol uses a throttling

mechanism to limit the number of partial signatures a correct server in a requester’s local site will

generate; a correct server only responds to fresh reconciliation request messages at a particular rate.

Second, upon receiving a GLOBAL-RECON message from another site, a peer server broadcasts the

request to the other servers in its site. For each site, the servers in the peer site store the highest

sequence number contained in a request received from that site. Since GLOBAL-RECON requests

are threshold-signed, at least f + 1 correct servers in the requester’s local site have a Global aru

at least as high as the sequence number in the request. Thus, if a subsequent GLOBAL-RECON

message arrives containing a sequence number less than or equal to the highest requested sequence

number, it can be ignored, since the requester can recover the message locally from a correct server

via LOCAL-RECONCILATION.

3.5 Performance Evaluation

To evaluate the performance of our hierarchical architecture, we implemented a complete pro-

totype of our protocol including all necessary communication and cryptographic functionality. We

focus only on the networking and cryptographic aspects of our protocols and do not consider disk

writes.

Test Bed and Network Setup: We selected a network topology consisting of 5 wide-area sites

and assumed at most 5 Byzantine faults in each site, in order to quantify the performance of our

system in a realistic scenario. This requires 16 replicated servers in each site.

Our experimental test bed consists of a cluster with twenty 3.2 GHz, 64 bit Intel Xeon com-

puters. Each computer can compute a 1024 bit RSA signature in 1.3 ms and verify it in 0.07 ms.

For n=16, k=11, 1024 bit threshold cryptography which we use for these experiments, a computer

can compute a partial signature and verification proof in 3.9 ms and combine the partial signatures

in 5.6 ms. The leader site was deployed on 16 machines, and the other 4 sites were emulated by

one computer each. An emulating computer performed the role of a representative of a complete

16 server site. Thus, our test bed was equivalent to an 80 node system distributed across 5 sites.

Upon receiving a message, the emulating computers busy-waited for the time it took a 16 server

51

site to handle that packet and reply to it, including intra-site communication and computation. We

determined busy-wait times for each type of packet by benchmarking individual protocols on a

fully deployed, 16 server site. We used the Spines [65] messaging system to emulate latency and

throughput constraints on the wide-area links.

We compared the performance results of the above system with those of BFT [53] on the same

network setup with five sites, run on the same cluster. Instead of using 16 servers in each site, for

BFT we used a total of 16 servers across the entire network. This allows for up to 5 Byzantine

failures in the entire network for BFT, instead of up to 5 Byzantine failures in each site for Steward.

Since BFT is a flat solution where there is no correlation between faults and the sites in which they

can occur, we believe this comparison is fair. We distributed the BFT servers such that four sites

contain 3 servers each, and one site contains 4 servers. All the write updates and read-only queries

in our experiments carried a payload of 200 bytes, representing a common SQL statement.

Our protocols use RSA signatures for authentication. Although our ASSIGN-SEQUENCE proto-

col can use vectors of MACs for authentication (as BFT can), the benefit of using MACs compared

to signatures is limited because the latency for global ordering is dominated by the wide-area net-

work latency. In addition, digital signatures provide non-repudiation, which can be used to detect

malicious servers.

In order to support our claim that our results reflect fundamental differences between the Steward

and BFT protocols, and not differences in their implementations, we confirmed that BFT’s perfor-

mance matched our similar intra-site agreement protocol, ASSIGN-SEQUENCE. Since the imple-

mentations performed almost identically, we attribute Steward’s performance advantage over BFT

to its hierarchical architecture and resultant wide-area message savings. Note that in our five-site

test configuration, BFT sends over twenty times more wide-area messages per update than Steward.

This message savings is consistent with the difference in performance between Steward and BFT

shown in the experiments that follow.

Bandwidth Limitation: We first investigate the benefits of the hierarchical architecture in a

symmetric configuration with 5 sites, where all sites are connected to each other with 50 millisec-

onds latency links (emulating crossing the continental US).

52

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 0 5 10 15 20 25 30

U
pd

at
e

Th
ro

ug
hp

ut
 (u

pd
at

es
/se

c)

Clients

Steward 10 Mbps
Steward 5 Mbps
Steward 2.5 Mbps

BFT 10 Mbps
BFT 5 Mbps

BFT 2.5 Mbps

Figure 3.26: Write Update Throughput

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward 10 Mbps
Steward 5 Mbps
Steward 2.5 Mbps

BFT 10 Mbps
BFT 5 Mbps

BFT 2.5 Mbps

Figure 3.27: Write Update Latency

 0

 100

 200

 300

 400

 500

 100 90 80 70 60 50 40 30 20 10 0

Th
ro

ug
hp

ut
 (a

ct
io

ns
/se

c)

Write Updates (%)

Steward
BFT

Figure 3.28: Update Mix Throughput - 10
Clients

 0

 50

 100

 150

 200

 250

 300

 350

 100 90 80 70 60 50 40 30 20 10 0

La
te

nc
y

(m
s)

Write Updates (%)

Steward
BFT

Figure 3.29: Update Mix Latency - 10 Clients

In the first experiment, clients inject write updates. Figure 3.26 shows how limiting the capacity

of wide-area links affects update throughput. As we increase the number of clients, BFT’s through-

put increases at a lower slope than Steward’s, mainly due to the additional wide-area crossing for

each update. Steward can process up to 84 updates/sec in all bandwidth cases, at which point it

is limited by CPU used to compute threshold signatures. At 10, 5, and 2.5 Mbps, BFT achieves

about 58, 26, and 6 updates/sec, respectively. In each of these cases, BFT’s throughput is bandwidth

limited. We also notice a reduction in the throughput of BFT as the number of clients increases. We

attribute this to a cascading increase in message loss, caused by the lack of flow control in BFT. For

the same reason, we were not able to run BFT with more than 24 clients at 5 Mbps, and 15 clients

at 2.5 Mbps. We believe that adding a client queuing mechanism would stabilize the performance

53

of BFT to its maximum achieved throughput.

Figure 3.27 shows that Steward’s average update latency slightly increases with the addition of

clients, reaching 190 ms at 15 clients in all bandwidth cases. As client updates start to be queued,

latency increases linearly. BFT exhibits a similar trend at 10 Mbps, where the average update latency

is 336 ms at 15 clients. As the bandwidth decreases, the update latency increases heavily, reaching

600 ms at 5 Mbps and 5 seconds at 2.5 Mbps, at 15 clients.

Increasing the update size would increase the percentage of wide-area bandwidth used to carry

data in both Steward and BFT. Since BFT has higher protocol overhead per update, this would

benefit BFT to a larger extent. However, Steward’s hierarchical architecture would still result in a

higher data throughput, because the update must only be sent on the wide-area O(S) times, whereas

BFT would need to send it O(N) times. A similar benefit can be achieved by using batching

techniques, which reduces the protocol overhead per update. We demonstrate the impact of batching

in our more recent work [19].

Adding Read-only Queries: Our hierarchical architecture enables read-only queries to be

answered locally. To demonstrate this benefit, we conducted an experiment where 10 clients send

random mixes of read-only queries and write updates. We compared the performance of Steward

(which provides one-copy serializability) and BFT (which provides linearizability) with 50 ms,

10 Mbps links, where neither was bandwidth limited. Figures 3.28 and 3.29 show the average

throughput and latency, respectively, of different mixes of queries and updates. When clients send

only queries, Steward achieves about 2.9 ms per query, with a throughput of over 3,400 queries/sec.

Since queries are answered locally, their latency is dominated by two RSA signatures, one at the

originating client and one at the servers answering the query. Depending on the mix ratio, Steward

performs 2 to 30 times better than BFT.

BFT’s read-only query latency is about 105 ms, and its throughput is 95 queries/sec. This is

expected, as read-only queries in BFT need to be answered by at least f + 1 servers, some of which

are located across wide-area links. BFT requires at least 2f + 1 servers in each site to guarantee

that it can answer queries locally. Such a deployment, for 5 faults and 5 sites, would require at

least 55 servers, which would dramatically increase communication for updates and reduce BFT’s

54

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 0 5 10 15 20 25 30

U
pd

at
e

Th
ro

ug
hp

ut
 (u

pd
at

es
/se

c)

Clients

Steward
BFT

Figure 3.30: WAN Emulation - Write Update
Throughput

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward
BFT

Figure 3.31: WAN Emulation - Write Update
Latency

performance.

Wide Area Scalability: To demonstrate Steward’s scalability on real networks, we conducted

an experiment that emulated a wide-area network spanning several continents. We selected five sites

on the Planetlab network [66], measured the latency and available bandwidth between all sites, and

emulated the network topology on our cluster. We ran the experiment on our cluster because Plan-

etlab machines lack sufficient computational power. The five sites are located in the US (University

of Washington), Brazil (Rio Grande do Sul), Sweden (Swedish Institute of Computer Science), Ko-

rea (KAIST) and Australia (Monash University). The network latency varied between 59 ms (US -

Korea) and 289 ms (Brazil - Korea). Available bandwidth varied between 405 Kbps(Brazil - Korea)

and 1.3 Mbps (US - Australia).

Figure 3.30 shows the average write update throughput as we increased the number of clients

in the system, while Figure 3.31 shows the average update latency. Steward is able to achieve its

maximum throughput of 84 updates/sec with 27 clients. The latency increases from about 200 ms

for 1 client to about 360 ms for 30 clients. BFT is bandwidth limited to about 9 updates/sec. The

update latency is 631 ms for one client and increases to several seconds with more than 6 clients.

Comparison with Non-Byzantine Protocols: Since Steward deploys a lightweight fault-

tolerant protocol between the wide-area sites, we expect it to achieve performance comparable to

existing benign fault-tolerant replication protocols. We compare the performance of our hierarchical

55

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 0 5 10 15 20 25 30

U
pd

at
e

Th
ro

ug
hp

ut
 (u

pd
at

es
/se

c)

Clients

Steward
BFT

Figure 3.32: CAIRN Emulation - Write Update
Throughput

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward
BFT

Figure 3.33: CAIRN Emulation - Write Update
Latency

Byzantine architecture with that of two-phase commit protocols. In [67] we evaluated the perfor-

mance of two-phase commit protocols [27] using a wide area network setup across the US, called

CAIRN [68]. We emulated the topology of the CAIRN network using the Spines messaging system,

and we ran Steward and BFT on top of it. The main characteristic of the CAIRN topology is that

East and West Coast sites were connected through a single link of 38 ms and 1.86 Mbps.

Figures 3.32 and 3.33 show the average throughput and latency of write updates, respectively, of

Steward and BFT on the CAIRN network topology. Steward achieved about 51 updates/sec in our

tests, limited mainly by the bandwidth of the link between the East and West Coasts in CAIRN. In

comparison, an upper bound of two-phase commit protocols presented in [67] was able to achieve

76 updates/sec. We believe that the difference in performance is caused by the presence of additional

digital signatures in the message headers of Steward, adding 128 bytes to the 200 byte payload of

each update. BFT achieved a maximum throughput of 2.7 updates/sec and an update latency of over

a second, except when there was a single client.

Red-Team Results: In December 2005, DARPA conducted a red-team experiment on our

Steward implementation to determine its practical survivability in the face of white-box attacks. We

provided the red team with system design documents and gave them access to our source code; we

also worked closely with them to explain some of the delicate issues in our protocol concerning

safety and liveness. Per the rules of engagement, the red team had complete control over f replicas

in each site and could declare success if it (1) stopped progress or (2) caused consistency errors

56

among the replicas. The red team used both benign attacks, such as packet reordering, packet

duplication, and packet delay, and Byzantine attacks, in which the red team ran its own malicious

server code. While progress was slowed down in several of the tests, such as when all messages

sent by the representative of the leader site were delayed, the red team was unable to block progress

indefinitely and never caused inconsistency. Thus, according to the rules of engagement, none of

the attacks succeeded. We plan to investigate ways to ensure high performance under attack (which

is stronger than the eventual progress afforded by system liveness) in future work.

3.6 Proof of Correctness

In this section we show that Steward provides the service properties specified in Section 3.3. We

begin with a proof of safety and then consider liveness.

3.6.1 Proof of Safety

Our goal in this section is to prove that Steward meets the following safety property:

S1 - SAFETY If two correct servers execute the ith update, then these updates are identical.

Proof Strategy: We prove Safety by showing that two servers cannot globally order conflicting

updates for the same sequence number. We show this using two main claims. In the first claim,

we show that any two servers which globally order an update in the same global view for the same

sequence number will globally order the same update. To prove this claim, we show that a leader

site cannot construct conflicting Proposal messages in the same global view. A conflicting Proposal

has the same sequence number as another Proposal, but it has a different update. Since globally

ordering two different updates for the same sequence number in the same global view would require

two different Proposals from the same global view, and since only one Proposal can be constructed

within a global view, all servers that globally order an update for a given sequence number in the

same global view must order the same update. In the second claim, we show that any two servers

which globally order an update in different global views for the same sequence number must order

57

the same update. To prove this claim, we show that a leader site from a later global view cannot

construct a Proposal conflicting with one used by a server in an earlier global view to globally

order an update for that sequence number. The value that may be contained in a Proposal for this

sequence number is thus anchored. Since no Proposals can be created that conflict with the one

that has been globally ordered, no correct server can globally order a different update with the same

sequence number. Since a server only executes an update once it has globally ordered an update for

all previous sequence numbers, two servers executing the ith update will therefore execute the same

update.

We now proceed to prove the first main claim:

Claim 3.6.1 Let u be the first update globally ordered by any server for sequence number seq, and

let gv be the global view in which u was globally ordered. Then if any other server globally orders

an update for sequence number seq in global view gv, it will globally order u.

To prove this claim, we use the following lemma, which shows that conflicting Proposal mes-

sages cannot be constructed in the same global view:

Lemma 3.6.1 Let P1(gv, lv, seq, u) be the first threshold-signed Proposal message constructed

by any server in leader site S for sequence number seq. Then no other Proposal message

P2(gv, lv′, seq, u′) for lv′ ≥ lv, with u′ &= u, can be constructed.

We prove Lemma 3.6.1 with a series of lemmas. We begin with two preliminary lemmas, prov-

ing that two servers cannot collect conflicting Prepare Certificates or construct conflicting Proposals

in the same global and local view.

Lemma 3.6.2 Let PC1(gv, lv, seq, u) be a Prepare Certificate collected by some server in leader

site S. Then no server in S can collect a different Prepare Certificate, PC2(gv, lv, seq, u′), with

(u &= u′).

Proof: We assume that both Prepare Certificates were collected and show that this leads to a

contradiction. PC1 contains a Pre-Prepare(gv, lv, seq, u) and 2f Prepare(gv, lv, seq, Digest(u))

58

messages from distinct servers. Since there are at most f faulty servers in S, at least f + 1 of the

messages in PC1 were from correct servers. PC2 contains similar messages, but with u′ instead of

u. Since any two sets of 2f + 1 messages intersect on at least one correct server, there exists a

correct server that contributed to both PC1 and PC2. Assume, without loss of generality, that this

server contributed to PC1 first (either by sending the Pre-Prepare message or by responding to it). If

this server was the representative, it would not have sent the second Pre-Prepare message, because,

from Figure 3.11 line A3, it increments Global seq and does not return to seq in this local view.

If this server was a non-representative, it would not have contributed a Prepare in response to the

second Pre-Prepare, since this would have generated a conflict (Figure 3.6, line A8). Thus, this

server did not contribute to PC2, a contradiction.

Lemma 3.6.3 Let P1(gv, lv, seq, u) be a Proposal message constructed by some server in leader

site S. Then no other Proposal message P2(gv, lv, seq, u′) with (u &= u′) can be constructed by any

server in S.

Proof: By Lemma 3.6.2, only one Prepare Certificate can be constructed in each view (gv, lv)

for a given sequence number seq. For P2 to be constructed, at least f + 1 correct servers would

have had to send partial signatures on P2, after obtaining a Prepare Certificate PC2 reflecting the

binding of seq to u′ (Figure 3.11, line C7). Since P1 was constructed, there must have been a

Prepare Certificate PC1 reflecting the binding of seq to u. Thus, the f + 1 correct servers cannot

have obtained PC2, since this would contradict Lemma 3.6.2.

We now show that two conflicting Proposal messages cannot be constructed in the same global

view, even across local view changes. In proving this, we use the following invariant:

INVARIANT 3.6.1 Let P(gv, lv, seq, u) be the first threshold-signed Proposal message constructed

by any server in leader site S for sequence number seq in global view gv. We say that Invariant

3.6.1 holds with respect to P if the following conditions hold in leader site S in global view gv:

1. There exists a set of at least f+1 correct servers with a Prepare Certificate PC(gv, lv′, seq, u)

or a Proposal(gv, lv′, seq, u), for lv′ ≥ lv, in their Local History[seq] data structure, or

59

a Globally Ordered Update(gv′ , seq, u), for gv′ ≥ gv, in their Global History[seq] data

structure.

2. There does not exist a server with any conflicting Prepare Certificate or Proposal from any

view (gv, lv′), with lv′ ≥ lv, or a conflicting Globally Ordered Update from any global view

gv′ ≥ gv.

We first show that the invariant holds in the first global and local view in which any Proposal

might have been constructed for a given sequence number. We then show that the invariant holds

throughout the remainder of the global view. Finally, we show that if the invariant holds, no Proposal

message conflicting with the first Proposal that was constructed can be created. In other words, once

a Proposal has been constructed for sequence number seq, there will always exist a set of at least

f + 1 correct servers which maintain and enforce the binding reflected in the Proposal.

Lemma 3.6.4 Let P(gv, lv, seq, u) be the first threshold-signed Proposal message constructed by

any server in leader site S for sequence number seq in global view gv. Then when P is constructed,

Invariant 3.6.1 holds with respect to P, and it holds for the remainder of (gv, lv).

Proof: Since P is constructed, there exists a set of at least f +1 correct servers which sent a partial

signature on P (Figure 3.11, line C7). These servers do so after collecting a Prepare Certificate(gv,

lv, seq, u) binding seq to u (Figure 3.11, line C3). By Lemmas 3.6.2 and 3.6.3, any server that

collects a Prepare Certificate or a Proposal in (gv, lv) collects the same one. Since this is the

first Proposal that was constructed, and a Proposal is required to globally order an update, the only

Globally Ordered Update that can exist binds seq to u. Thus, the invariant is met when the Proposal

is constructed.

According to the rules for updating the Local History data structure, a correct server with a

Prepare Certificate from (gv, lv) will not replace it and may only add a Proposal message from the

same view (Figure 3.11, line D3). By Lemma 3.6.3, this Proposal is unique, and since it contains

the same update and sequence number as the unique Prepare Certificate, it will not conflict with the

Prepare Certificate.

60

A correct server with a Proposal will not replace it with any other message while in global view

gv. A correct server with a Globally Ordered Update will never replace it. Thus, Invariant 3.6.1

holds with respect to P for the remainder of (gv, lv).

We now proceed to show that Invariant 3.6.1 holds across local view changes. Before proceed-

ing, we introduce the following terminology:

DEFINITION 3.6.1 We say that an execution of the CONSTRUCT-LOCAL-CONSTRAINT protocol

completes at a server within the site in a view (gv, lv) if that server successfully generates and

applies a Local Collected Servers State message for (gv, lv).

We first prove the following property of CONSTRUCT-LOCAL-CONSTRAINT:

Lemma 3.6.5 Let P(gv, lv, seq, u) be the first threshold-signed Proposal message constructed by

any server in leader site S for sequence number seq in global view gv. If Invariant 3.6.1 holds

with respect to P at the beginning of a run of CONSTRUCT-LOCAL-CONSTRAINT, then it is never

violated during the run.

Proof: During the run of CONSTRUCT-LOCAL-CONSTRAINT, a server only alters its Lo-

cal History[seq] data structure during the reconciliation phase (which occurs before send-

ing a Local Server State message, Figure 3.18 line B7) or when processing the resultant

Local Collected Servers State message. During the reconciliation phase, a correct server

will only replace a Prepare Certificate with a Proposal (either independently or in a Glob-

ally Ordered Update), since the server and the representative are only exchanging Proposals and

Globally Ordered Updates. Since Invariant 3.6.1 holds at the beginning of the run, any Proposal

from a later local view than the Prepare Certificate held by some correct server will not conflict

with the Prepare Certificate. A server with a Globally Ordered Update in its Global History data

structure does not remove it. Thus, the invariant is not violated by this reconciliation.

If one or more correct servers processes the resultant Local Collected Servers State message,

we must show that the invariant still holds.

61

When a correct server processes the Local Collected Servers State message (Figure 3.7, block

D), there are two cases to consider. First, if the message contains an entry for seq (i.e., it contains

either a Prepare Certificate or a Proposal binding seq to an update), then the correct server adopts

the binding. In the second case, the Local Collected Servers State message does not contain an

entry for seq, and the correct server clears out its Prepare Certificate for seq, if it has one. We need

to show that in both cases, Invariant 3.6.1 is not violated.

The Local Server State message from at least one correct server from the set of at least f + 1

correct servers maintained by the invariant appears in any Local Collected Servers State message,

since any two sets of 2f + 1 servers intersect on at least one correct server. We consider the con-

tents of this server’s Local Server State message. If this server received a Request Local State

message with an invocation sequence number lower than seq, then the server includes its entry

binding seq to u in the Local Server State message (Figure 3.21, Block A), after bringing its Pend-

ing Proposal Aru up to the invocation sequence number (if necessary). Invariant 3.6.1 guarantees

that the Prepare Certificate or Proposal from this server is the latest entry for sequence number seq.

Thus, the entry binding seq to u in any Local Collected Servers State bundle will not be removed

by the Compute Local Union function (Figure 3.22 line B3 or B6).

If this server received a Request Local State message with an invocation sequence number

greater than or equal to seq, then the server will not report a binding for seq, since it will ob-

tain either a Proposal or a Globally Ordered Update via reconciliation before sending its Lo-

cal Server State message. In turn, the server only applies the Local Collected Servers State if

the 2f + 1 Local Server State messages contained therein contain the same invocation sequence

number, which was greater than or equal to seq (Figure 3.18, line D2). Since a correct server

only sends a Local Server State message if its Pending Proposal Aru is greater than or equal to

the invocation sequence number it received (Figure 3.18, line B5), this implies that at least f + 1

correct servers have a Pending Proposal Aru greater than or equal to seq. The invariant ensures

that all such Proposals or Globally Ordered Updates bind seq to u. Since only Proposals with a

sequence number greater than the invocation sequence number may be removed by applying the

Local Collected Servers State message, and since Globally Ordered Update messages are never

62

removed, applying the message will not violate Invariant 3.6.1.

Our next goal is to show that if Invariant 3.6.1 holds at the beginning of a view after the view in

which a Proposal has been constructed, then it holds throughout the view.

Lemma 3.6.6 Let P(gv, lv, seq, u) be the first threshold-signed Proposal message constructed by

any server in leader site S for sequence number seq in global view gv. If Invariant 3.6.1 holds with

respect to P at the beginning of a view (gv, lv′), with lv′ ≥ lv, then it holds throughout the view.

Proof: To show that the invariant will not be violated during the view, we show that no

server can collect a Prepare Certificate(gv, lv′, seq, u′), Proposal(gv, lv′, seq, u′), or Glob-

ally Ordered Update(gv, seq,u′), for u &= u′, that would cause the invariant to be violated.

Since Invariant 3.6.1 holds at the beginning of the view, there exists a set of at least f + 1

correct servers with a Prepare Certificate or a Proposal in their Local History[seq] data structure

binding seq to u, or a Globally Ordered Update in their Global History[seq] data structure bind-

ing seq to u. If a conflicting Prepare Certificate is constructed, then some server collected a Pre-

Prepare(gv, lv′, seq, u′) message and 2f Prepare(gv, lv′, seq, Digest(u′)) messages. At least f + 1

of these messages were from correct servers. This implies that at least one correct server from the

set maintained by the invariant contributed to the conflicting Prepare Certificate (either by sending

a Pre-Prepare or a Prepare). This cannot occur because the server would have seen a conflict in

its Local History[seq] data structure (Figure 3.6, A8) or in its Global History[seq] data structure

(Figure 3.6, A18). Thus, the conflicting Prepare Certificate cannot be constructed.

Since no server can collect a conflicting Prepare Certificate, no server can construct a conflicting

Proposal. Thus, by the rules of updating the Local History data structure, a correct server only

replaces its Prepare Certificate (if any) with a Prepare Certificate or Proposal from (gv, lv′), which

cannot conflict. Since a Proposal is needed to construct a Globally Ordered Update, no conflicting

Globally Ordered Update can be constructed, and no Globally Ordered Update is ever removed

from the Global History data structure. Thus, Invariant 3.6.1 holds throughout (gv, lv′).

We can now prove Lemma 3.6.1:

63

Proof: By Lemma 3.6.4, Invariant 3.6.1 holds with respect to P throughout (gv, lv). By Lemma

3.6.5, the invariant holds with respect to P during and after CONSTRUCT-LOCAL-CONSTRAINT.

By Lemma 3.6.6, the invariant holds at the beginning and end of view (gv, lv + 1). Repeated

applications of Lemma 3.6.5 and Lemma 3.6.6 shows that the invariant always holds in global view

gv.

In order for P2 to be constructed, at least f + 1 correct servers must send a partial signature on

P2 after collecting a corresponding Prepare Certificate (Figure 3.11, line C3). Since the invariant

holds throughout gv, at least f + 1 correct servers do not collect such a Prepare Certificate and do

not send such a partial signature. This leaves only 2f servers remaining, which is insufficient to

construct the Proposal.

Finally, we can prove Claim 3.6.1:

Proof: To globally order an update u in global view gv for sequence number seq, a server needs

a Proposal(gv, *, seq, u) message and $S/2% corresponding Accept messages. By Lemma 3.6.1,

all Proposal messages constructed in global view gv are for the same update, which implies that all

servers which globally order an update in global view gv for sequence number seq globally order

the same update.

We now prove the second main claim:

Claim 3.6.2 Let u be the first update globally ordered by any server for sequence number seq, and

let gv be the global view in which u was globally ordered. Then if any other server globally orders

an update for sequence number seq in a global view gv′, with gv′ > gv, it will globally order u.

We prove Claim 3.6.2 using the following lemma, which shows that, once an update has been

globally ordered for a given sequence number, no conflicting Proposal messages can be generated

for that sequence number in any future global view.

Lemma 3.6.7 Let u be the first update globally ordered by any server for sequence number seq with

corresponding Proposal P1(gv, lv, seq, u). Then no other Proposal message P2(gv′, *, seq, u′) for

gv′ > gv, with u′ &= u, can be constructed.

64

We prove Lemma 3.6.7 using a series of lemmas. We use a strategy similar to the one used in

proving Lemma 3.6.1 above, and we maintain the following invariant:

INVARIANT 3.6.2 Let u be the first update globally ordered by any server for sequence number

seq, and let gv be the global view in which u was globally ordered. Let P(gv, lv, seq, u) be the first

Proposal message constructed by any server in the leader site in gv for sequence number seq. We

say that Invariant 3.6.2 holds with respect to P if the following conditions hold:

1. There exists a majority of sites, each with at least f + 1 correct servers with

a Prepare Certificate(gv, lv′, seq, u), a Proposal(gv′ , *, seq, u), or aGlob-

ally Ordered Update(gv′ , seq, u), with gv′ ≥ gv and lv′ ≥ lv, in its Global History[seq]

data structure.

2. There does not exist, at any site in the system, a server with any conflict-

ing Prepare Certificate(gv′ , lv′, seq, u′), Proposal(gv′ , *, seq, u′), or Glob-

ally Ordered Update(gv′ , seq, u′), with gv′ ≥ gv, lv′ ≥ lv, and u′ &= u.

We first show that Invariant 3.6.2 holds when the first update is globally ordered for sequence

number seq and that it holds throughout the view in which it is ordered.

Lemma 3.6.8 Let u be the first update globally ordered by any server for sequence number seq,

and let gv be the global view in which u was globally ordered. Let P(gv, lv, seq, u) be the first

Proposal message constructed by any server in the leader site in gv for sequence number seq. Then

when u is globally ordered, Invariant 3.6.2 holds with respect to P, and it holds for the remainder

of global view gv.

Proof: Since u was globally ordered in gv, some server collected a Proposal(gv, *, seq, u) mes-

sage and $S/2% Accept(gv, *, seq, Digest(u)) messages. Each of the $S/2% sites that generated a

threshold-signed Accept message has at least f + 1 correct servers that contributed to the Accept,

since 2f + 1 partial signatures are required to construct the Accept and at most f are faulty. These

servers store P in Global History[seq].Proposal when they apply it (Figure 3.8, block A). Since the

65

leader site constructed P and P is threshold-signed, at least f + 1 correct servers in the leader site

have either a Prepare Certificate corresponding to P in Global History[seq].Prepare Certificate or

the Proposal P in Global History[seq].Proposal. Thus, Condition 1 is met.

By Lemma 3.6.1, all Proposals generated by the leader site for sequence number seq in gv con-

tain the same update. Thus, no server can have a conflicting Proposal or Globally Ordered Update,

since gv is the first view in which an update has been globally ordered for sequence number seq.

Since Invariant 3.6.1 holds in gv, no server has a conflicting Prepare Certificate from (gv, lv′), with

lv′ ≥ lv. Thus, Condition 2 is met.

We now show that Condition 1 is not violated throughout the rest of global view gv. By

the rules of updating the Global History data structure in gv, a correct server with an en-

try in Global History[seq].Prepare Certificate only removes it if it generates a Proposal mes-

sage from the same global view (Figure 3.8, lines A7 and A14), which does not conflict with

the Prepare Certificate because it contains u, and thus it does not violate Condition 1. Simi-

larly, a correct server in gv only replaces an entry in Global History[seq].Proposal with a Glob-

ally Ordered Update. Since a Globally Ordered Update contains a Proposal from gv, and all Pro-

posals from gv for sequence number seq contain u, Condition 1 is still met. No correct server ever

replaces an entry in Global History[seq].Globally Ordered Update.

We now show that Invariant 3.6.2 holds across global view changes. We start by showing that the

CONSTRUCT-ARU and CONSTRUCT-GLOBAL-CONSTRAINT protocols, used during a global view

change in the leader site and non-leader sites, respectively, will not cause the invariant to be vio-

lated. We then show that if any correct server in the leader site becomes globally constrained by

completing the global view change protocol, the invariant will still hold after applying the Col-

lected Global Constraints message to its data structure.

Lemma 3.6.9 Let u be the first update globally ordered by any server for sequence number seq,

and let gv be the global view in which u was globally ordered. Let P(gv, lv, seq, u) be the first

Proposal message constructed by any server in the leader site in gv for sequence number seq.

Assume Invariant 3.6.2 holds with respect to P, and let S be one of the (majority) sites maintained

66

by the first condition of the invariant. Then if a run of CONSTRUCT-ARU begins at S, the invariant

is never violated during the run.

Proof: During a run of CONSTRUCT-ARU, a correct server only modifies its Global History[seq]

data structure in three cases. We show that, in each case, Invariant 3.6.2 will not be violated if it is

already met.

The first case occurs during the reconciliation phase of the protocol. In this phase, a cor-

rect server with either a Prepare Certificate or Proposal in Global History[seq] may replace it

with a Globally Ordered Update, since the server and the representative only exchange Glob-

ally Ordered Update messages. Since Invariant 3.6.2 holds at the beginning of the run, no server

has a Globally Ordered Update from any view gv′ ≥ gv that conflicts with the binding of seq to

u. Since u could only have been globally ordered in a global view gv′ ≥ gv, no conflicting Glob-

ally Ordered Update exists from a previous global view. Thus, Invariant 3.6.2 is not violated during

the reconciliation phase.

In the second case, a correct server with a Prepare Certificate in Global History[seq] tries to

construct corresponding Proposals (replacing the Prepare Certificate) by invoking THRESHOLD-

SIGN (Figure 3.19, line D6). Since the Proposal is for the same binding as the Prepare Certificate,

the invariant is not violated.

In the third case, a correct server applies any Globally Ordered Updates appearing in the

Global Constraint message to its Global History data structure (Figure 3.19, line G2). Since In-

variant 3.6.2 holds at the beginning of the run, no Globally Ordered Update exists from any view

gv′ ≥ gv that conflicts with the binding of seq to u. Since u could only have been globally ordered

in a global view gv′ ≥ gv, no conflicting Globally Ordered Update exists from a previous global

view.

Since these are the only cases in which Global History[seq] is modified during the protocol, the

invariant holds throughout the run.

Lemma 3.6.10 Let u be the first update globally ordered by any server for sequence number seq,

and let gv be the global view in which u was globally ordered. Let P(gv, lv, seq, u) be the first

67

Proposal message constructed by any server in the leader site in gv for sequence number seq.

Assume Invariant 3.6.2 holds with respect to P, and let S be one of the (majority) sites maintained

by the first condition of the invariant. Then if a run of CONSTRUCT-GLOBAL-CONSTRAINT begins

at S, the invariant is never violated during the run.

Proof: During a run of CONSTRUCT-GLOBAL-CONSTRAINT, a correct server only modifies its

Global History[seq] data structure when trying to construct Proposals corresponding to any Pre-

pare Certificates appearing in the union (Figure 3.20, line C5). Since the Proposal resulting from

THRESHOLD-SIGN is for the same binding as the Prepare Certificate, the invariant is not violated.

We now show that if Invariant 3.6.2 holds at the beginning of a run of the GLOBAL-VIEW-

CHANGE protocol after the global view in which an update was globally ordered, then the invariant

is never violated during the run.

Lemma 3.6.11 Let u be the first update globally ordered by any server for sequence number seq,

and let gv be the global view in which u was globally ordered. Let P(gv, lv, seq, u) be the first

Proposal message constructed by any server in the leader site in gv for sequence number seq. Then

if Invariant 3.6.2 holds with respect to P at the beginning of a run of the Global View Change

protocol, then it is never violated during the run.

Proof: During a run of GLOBAL-VIEW-CHANGE, a correct server may only modify its

Global History[seq] data structure in three cases. The first occurs in the leader site, during a run of

CONSTRUCT-ARU (Figure 3.17, line A2). By Lemma 3.6.9, Invariant 3.6.2 is not violated during

this protocol. The second case occurs at the non-leader sites, during a run of CONSTRUCT-GLOBAL-

CONSTRAINT (Figure 3.17, line C4). By Lemma 3.6.10, Invariant 3.6.2 is not violated during this

protocol.

The final case occurs at the leader site when a correct server becomes globally constrained by

applying a Collected Global Constraints message to its Global History data structure (Figure 3.17,

lines E5 and F2). We must now show that Invariant 3.6.2 is not violated in this case.

68

Any Collected Global Constraints message received by a correct server contains a

Global Constraint message from at least one site maintained by Invariant 3.6.2, since any two ma-

jorities intersect on at least one site. We consider the Global Constraint message sent by this site,

S. The same logic will apply when Global Constraint messages from more than one site in the set

maintained by the invariant appear in the Collected Global Constraints message.

We first consider the case where S is a non-leader site. There are two sub-cases to consider.

Case 1a: In the first sub-case, the Aru Message generated by the leader site in CONSTRUCT-

ARU contains a sequence number less than seq. In this case, each of the f + 1 correct

servers in S maintained by Invariant 3.6.2 reports a Proposal message binding seq to u in its

Global Server State message (Figure 3.21, Block B). At least one such message will appear in

the Global Collected Servers State bundle, since any two sets of 2f + 1 intersect on at least

one correct server. Invariant 3.6.2 maintains that the entry binding seq to u is the latest, and

thus it will not be removed by the Compute Global Union procedure (Figure 3.22, Blocks C

and D). The resultant Global Constraint message therefore binds seq to u. Invariant 3.6.2 also

guarantees that this entry or one with the same binding will be the latest among those con-

tained in the Collected Global Constraints message, and thus it will not be removed by the Com-

pute Constraint Union function run when applying the message to Global History (Figure 3.22,

Blocks E and F) By the rules of applying the Collected Global Constraints message (Figure 3.8,

Block D), the binding of seq to u will be adopted by the correct servers in the leader site that

become globally constrained, and thus Invariant 3.6.2 is not violated.

Case 1b: In the second sub-case, the Aru Message generated by the leader site in CONSTRUCT-

ARU contains a sequence number greater than or equal to seq. In this case, no entry binding seq to

u will be reported in the Global Constraint message. In this case, we show that at least f +1 correct

servers in the leader site have already globally ordered seq. The invariant guarantees that those

servers which have already globally ordered an update for seq have globally ordered u. To construct

the Aru Message, at least f + 1 correct servers contributed partial signatures to the result of calling

Extract Aru (Figure 3.19, line G3) on the union derived from the Global Collected Servers State

bundle. Thus, at least f + 1 correct servers accepted the Global Collected Servers State message

69

as valid, and, at Figure 3.19, line D3, enforced that their Global aru was at least as high as the

invocation sequence number (which was greater than or equal to seq). Thus, these servers have

Globally Ordered Update messages for seq, and the invariant holds in this case.

We must now consider the case where S is the leader site. As before, there are two sub-cases to

consider. We must show that Invariant 3.6.2 is not violated in each case. During CONSTRUCT-ARU,

the Global Server State message from at least one correct server from the set of at least f +1 correct

servers maintained by the invariant appears in any Collected Global Servers State message, since

any two sets of 2f + 1 servers intersect on at least one correct server. We consider the contents of

this server’s Global Server State message.

Case 2a: In the first sub-case, if this server received a Request Global State message with an

invocation sequence number lower than seq, then the server includes its entry binding seq to u

in the Global Server State message, after bringing its Global Aru up to the invocation sequence

number (if necessary) (Figure 3.19, lines B5 and B7). Invariant 3.6.2 guarantees that the Prepare

Certificate, Proposal, or Globally Ordered Update binding seq to u is the latest entry for sequence

number seq. Thus, the entry binding seq to u in any Global Collected Servers State bundle will not

be removed by the Compute Global Union function (Figure 3.22, Blocks C and D) and will appear

in the resultant Global Constraint message. Thus, the Collected Global Constraints message will

bind seq to u, and by the rules of applying this message to the Global History[seq] data structure,

Invariant 3.6.2 is not violated when the correct servers in the leader site become globally constrained

by applying the mesasge (Figure 3.8, block D).

Case 2b: If this server received a Request Global State message with an invocation sequence

number greater than or equal to seq, then the server will not report a binding for seq, since it

will obtain a Globally Ordered Update via reconciliation before sending its Global Server State

message (Figure 3.19, lines B4). In turn, the server only contributes a partial signature on the

Aru Message if it received a valid Global Collected Servers State message, which implies that the

2f + 1 Global Server State messages in the Global Collected Servers State bundle contained the

same invocation sequence number, which was greater than or equal to seq (Figure 3.19, line D2).

Since a correct server only sends a Global Server State message if its Global Aru is greater than or

70

equal to the invocation sequence number it received (Figure 3.19, line D3), this implies that at least

f + 1 correct servers have a Global Aru greater than or equal to seq. The invariant ensures that

all such Globally Ordered Updates bind seq to u. Thus, even if the Collected Global Constraints

message does not contain an entry binding seq to u, the leader site and $S/2% non-leader sites will

maintain Invariant 3.6.2.

Corollary 3.6.12 Let u be the first update globally ordered by any server for sequence number seq,

and let gv be the global view in which u was globally ordered. Let P(gv, lv, seq, u) be the first

Proposal message constructed by any server in the leader site in gv for sequence number seq. Then

if Invariant 3.6.2 holds with respect to P at the beginning of a run of the GLOBAL-VIEW-CHANGE

protocol, then if at least f + 1 correct servers in the leader site become globally constrained by

completing the GLOBAL-VIEW-CHANGE protocol, the leader site will be in the set maintained by

Condition 1 of Invariant 3.6.2.

Proof: We consider each of the four sub-cases described in Lemma 3.6.11. In Cases 1a and 2a,

any correct server that becomes globally constrained binds seq to u. In Cases 1b and 2b, there exists

a set of at least f + 1 correct servers that have globally ordered u for sequence number seq. Thus,

in all four cases, if at least f + 1 correct servers become globally constrained, the leader site meets

the data structure condition of of Condition 1 of Invariant 3.6.2.

Our next goal is to show that if Invariant 3.6.2 holds at the beginning of a global view after

which an update has been globally ordered, then it holds throughout the view.

Lemma 3.6.13 Let u be the first update globally ordered by any server for sequence number seq,

and let gv be the global view in which gv was globally ordered. Let P(gv, lv, seq, u) be the first

Proposal message constructed by any server in the leader site in gv for sequence number seq. Then

if Invariant 3.6.2 holds with respect to P at the beginning of a global view (gv′, *), with gv′ > gv,

then it holds throughout the view.

71

Proof: To show that the invariant will not be violated during global view gv′, we show that no

conflicting Prepare Certificate, Proposal, or Globally Ordered Update can be constructed during the

view that would cause the invariant to be violated.

We assume that a conflicting Prepare Certificate PC is collected and show that this leads to a

contradiction. This then implies that no conflicting Proposals or Globally Ordered Updates can be

constructed.

If PC is collected, then some server collected a Pre-Prepare(gv′ , lv, seq, u′) and 2f

Prepare(gv′ , lv, seq, Digest(u′)) for some local view lv and u′ &= u. At least f + 1 of these

messages were from correct, servers. Moreover, this implies that at least f + 1 correct servers were

globally constrained.

By Corollary 3.6.12, since at least f + 1 correct servers became globally constrained in gv′,

the leader site meets Condition 1 of Invariant 3.6.2, and it thus has at least f + 1 correct servers

with a Prepare Certificate, Proposal, or Globally Ordered Update binding seq to u. At least one

server from the set of at least f + 1 correct servers binding seq to u contributed to the con-

struction of PC. A correct representative would not send such a Pre-Prepare message because the

Get Next To Propose() routine would return the constrained update u (Figure 3.13, line A3 or A5).

Similarly, a correct server would see a conflict (Figure 3.6, line A10 or A13).

Since no server can collect a conflicting Prepare Certificate, no server can construct a conflicting

Proposal. Thus, no server can collect a conflicting Globally Ordered Update, since this would

require a conflicting Proposal.

Thus, Invariant 3.6.2 holds throughout global view gv′.

We can now prove Lemma 3.6.7:

Proof: By Lemma 3.6.8, Invariant 3.6.2 holds with respect to P1 throughout global view gv. By

Lemma 3.6.11, the invariant holds with respect to P1 during and after the GLOBAL-VIEW-CHANGE

protocol. By Lemma 3.6.13, the invariant holds at the beginning and end of global view gv + 1.

Repeated application of Lemma 3.6.11 and Lemma 3.6.13 shows that the invariant always holds for

all global views gv′ > gv.

72

In order for P2 to be constructed, at least f + 1 correct servers must send a partial signature on

P2 after collecting a corresponding Prepare Certificate (Figure 3.11, line C3). Since the invariant

holds, at least f + 1 correct servers do not collect such a Prepare Certificate and do not send such

a partial signature. This leaves only 2f servers remaining, which is insufficient to construct the

Proposal.

Finally, we can prove Claim 3.6.2:

Proof: We assume that two servers globally order conflicting updates with the same sequence

number in two global views gv and gv′ and show that this leads to a contradiction.

Without loss of generality, assume that a server globally orders update u in gv, with gv <

gv′. This server collected a a Proposal(gv, *, seq, u) message and $S/2% corresponding Accept

messages. By Lemma 3.6.7, any future Proposal message for sequence number seq contains update

u, including the Proposal from gv′. This implies that another server that globally orders an update

in gv′ for sequence number seq must do so using the Proposal containing u, which contradicts the

fact that it globally ordered u′ for sequence number seq.

We can now prove SAFETY - S1.

Proof: By Claims 3.6.1 and 3.6.2, if two servers globally order an update for the same sequence

number in any two global views, then they globally order the same update. Thus, if two servers

execute an update for any sequence number, they execute the same update, completing the proof.

We now prove that Steward meets the following validity property:

S2 - VALIDITY Only an update that was proposed by a client may be executed.

Proof: A server executes an update when it has been globally ordered. To globally order an update,

a server obtains a Proposal and $S/2% corresponding Accept messages. To construct a Proposal, at

least f + 1 correct servers collect a Prepare Certificate and invoke THRESHOLD-SIGN. To collect a

73

Prepare Certificate, at least f + 1 correct servers must have sent either a Pre-Prepare or a Prepare in

response to a Pre-Prepare. From the validity check run on each incoming message (Figure 3.4, lines

A7 - A9), a Pre-Prepare message is only processed if the update contained within has a valid client

signature. Since we assume that client signatures cannot be forged, only a valid update, proposed

by a client, may be globally ordered.

3.6.2 Proof of Liveness

We now prove that Steward meets the following liveness property:

L1 - GLOBAL LIVENESS If the system is stable with respect to time T , then if, after time T , a

stable server receives an update which it has not executed, then global progress eventually occurs.

Proof Strategy: We prove Global Liveness by contradiction. We assume that global progress

does not occur and show that, if the system is stable and a stable server receives an update which it

has not executed, then the system will reach a state in which some stable server will execute an up-

date, a contradiction. We prove Global Liveness using three main claims. In the first claim, we show

that if no global progress occurs, then all stable servers eventually reconcile their Global History

data structures to a common point. Specifically, the stable servers set their Global aru variables to

the maximum sequence number through which any stable server has executed all updates. By defini-

tion, if any stable server executes an update beyond this point, global progress will have been made,

and we will have reached a contradiction. In the second claim, we show that, once this reconciliation

has occurred, the system eventually reaches a state in which a stable representative of a stable leader

site remains in power for sufficiently long to be able to complete the global view change protocol,

which is a precondition for globally ordering an update that would cause progress to occur. To prove

the second claim, we first prove three subclaims. The first two subclaims show that, eventually, the

stable sites will move through global views together, and within each stable site, the stable servers

will move through local views together. The third subclaim establishes relationships between the

global and local timeouts, which we use to show that the stable servers will eventually remain in

74

their views long enough for global progress to be made. Finally, in the third claim, we show that a

stable representative of a stable leader site will eventually be able to globally order (and execute) an

update which it has not previously executed, which contradicts our assumption.

In the claims and proofs that follow, we assume that the system has already reached a stabiliza-

tion time, T , at which the system became stable. Since we assume that no global progress occurs,

we use the following definition:

DEFINITION 3.6.2 We say that a sequence number is the max stable seq if, assuming no further

global progress is made, it is the last sequence number for which any stable server has executed an

update.

We now proceed to prove the first main claim:

Claim 3.6.3 If no global progress occurs, then all stable servers in all stable sites eventually set

their Global aru variables to max stable seq.

To prove Claim 3.6.3, we first prove two lemmas relating to LOCAL-RECONCILIATION and

GLOBAL-RECONCILIATION.

Lemma 3.6.14 Let aru be the Global aru of some stable server, s, in stable Site S at time T . Then

all stable servers in S eventually have a Global aru of at least aru.

Proof: The stable servers in S run LOCAL-RECONCILIATION by sending a Local Recon Request

message every LOCAL-RECON-THROTTLE-PERIOD time units (Figure 3.24, line A1). Since S is

stable, s will receive a Local Recon Request message from each stable server within one local

message delay. If the requesting server, r, has a Global aru less than aru, s will send to r Glob-

ally Ordered Update messages for each sequence number in the difference. These messages will

arrive in bounded time. Thus, each stable server in S sets it Global aru to at least aru.

Lemma 3.6.15 Let S be a stable site in which all stable servers have a Global aru of at least aru

at time T . Then if no global progress occurs, at least one stable server in all stable sites eventually

has a Global aru of at least aru.

75

Proof: Since no global progress occurs, there exists some sequence number aru′, for each stable

site, R, that is the last sequence number for which a stable server in R globally ordered an update.

By Lemma 3.6.14, all stable servers in R eventually reach aru′ via the LOCAL-RECONCILIATION

protocol.

The stable servers in R run GLOBAL-RECONCILIATION by sending a Global Recon Request

message every GLOBAL-RECON-THROTTLE-PERIOD time units (Figure 3.25, line A1). Since R is

stable, each stable server in R receives the request of all other stable servers in R within a local mes-

sage delay. Upon receiving a request, a stable server will send a Partial Sig message to the requester,

since they have the same Global aru, aru′. Each stable server can thus construct a threshold-signed

GLOBAL-RECON message containing aru′. Since there are 2f + 1 stable servers, the pigeonhole

principle guarantees that at least one of them sends a GLOBAL-RECON message to a stable peer in

each other stable site. The message arrives in one wide area message delay.

If all stable sites send a GLOBAL-RECON message containing a requested aru value of at least

aru, then the lemma holds, since at least f + 1 correct servers contributed a Partial sig on such a

message, and at least one of them is stable. If there exists any stable site R that sends a GLOBAL-

RECON message with a requested aru value lower than aru, we must show that R will eventually

have at least one stable server with a Global aru of at least aru.

Each stable server in S has a Global aru of aru′, with aru′ ≥ aru. Upon receiving the GLOBAL-

RECON message from R, a stable server uses the THROTTLE-SEND procedure to send all Glob-

ally Ordered Update messages in the difference to the requester (Figure 3.25, line D16). Since the

system is stable, each Globally Ordered Update will arrive at the requester in bounded time, and

the requester will increase its Global aru to at least aru.

We now prove Claim 3.6.3:

Proof: Assume, without loss of generality, that stable site S has a stable server with a Global aru

of max stable seq. By Lemma 3.6.14, all stable servers in S eventually set their Global aru to

at least max stable seq. Since no stable server sets its Global aru beyond this sequence num-

ber (by the definition of max stable seq), the stable servers in S set their Global aru to exactly

76

max stable seq. By Lemma 3.6.15, at least one stable server in each stable site eventually sets its

Global aru to at least max stable seq. Using similar logic as above, these stable servers set their

Global aru variables to exactly max stable seq. By applying Lemma 3.6.14 in each stable site and

using the same logic as above, all stable servers in all stable sites eventually set their Global aru to

max stable seq.

We now proceed to prove the second main claim, which shows that, once the above reconcil-

iation has taken place, the system will reach a state in which a stable representative of a stable

leader site can complete the GLOBAL-VIEW-CHANGE protocol, which is a precondition for globally

ordering a new update. This notion is encapsulated in the following claim:

Claim 3.6.4 If no global progress occurs, and the system is stable with respect to time T , then

there exists an infinite set of global views gvi, each with stable leader site Si, in which the first

stable representative in Si serving for at least a local timeout period can complete GLOBAL-VIEW-

CHANGE.

Since completing GLOBAL-VIEW-CHANGE requires all stable servers to be in the same global

view for some amount of time, we begin by proving several claims about the GLOBAL-LEADER-

ELECTION protocol. Before proceeding, we prove the following claim relating to the THRESHOLD-

SIGN protocol, which is used by GLOBAL-LEADER-ELECTION:

Claim 3.6.5 If all stable servers in a stable site invoke THRESHOLD-SIGN on the same message,

m, then THRESHOLD-SIGN returns a correctly threshold-signed message m at all stable servers in

the site within some finite time, ∆sign.

To prove Claim 3.6.5, we use the following lemma:

Lemma 3.6.16 If all stable servers in a stable site invoke THRESHOLD-SIGN on the same message,

m, then all stable servers will receive at least 2f + 1 correct partial signature shares form within

a bounded time.

77

Proof: When a correct server invokes THRESHOLD-SIGN on a message, m, it generates a partial

signature for m and sends this to all servers in its site (Figure 3.10, Block A). A correct server

uses only its threshold key share and a deterministic algorithm to generate a partial signature on

m. The algorithm is guaranteed to complete in a bounded time. Since the site is stable, there are

at least 2f + 1 correct servers that are connected to each other in the site. Therefore, if the stable

servers invoke THRESHOLD-SIGN on m, then each stable server will receive at least 2f + 1 partial

signatures on m from correct servers.

We can now prove Claim 3.6.5.

Proof: A correct server combines 2f +1 correct partial signatures to generate a threshold signature

on m. From Lemma 3.6.16, a correct server will receive 2f + 1 correct partial signatures on m.

We now need to show that a correct server will eventually combine the correct signature shares.

Malicious servers can contribute an incorrect signature share. If the correct server combines a set of

2f +1 signature shares, and one or more of the signature shares are incorrect, the resulting threshold

signature is also incorrect.

When a correct server receives a set of 2f + 1 signature shares, it will combine this set and test

to see if the resulting signature verifies (Figure 3.10, Block B). If the signature verifies, the server

will return message m with a correct threshold signature (line B4). If the signature does not verify,

then THRESHOLD-SIGN does not return message m with a threshold signature. On lines B6-B11,

the correct server checks each partial signature that it has received from other servers. If any partial

signature does not verify, it removes the incorrect partial signature from its data structure and adds

the server that sent the partial signature to a list of corrupted servers. A correct server will drop

any message sent by a server in the corrupted server list (Figure 3.4, lines A10-A11). Since there

are at most f malicious servers in the site, these servers can prevent a correct server from correctly

combining the 2f + 1 correct partial signatures on m at most f times. Therefore, after a maximum

of f verification failures on line B3, there will be a verification success and THRESHOLD-SIGN will

return a correctly threshold signed message m at all correct servers, proving the claim.

We now can prove claims about GLOBAL-LEADER-ELECTION. We first introduce the following

78

terminology used in the proof:

DEFINITION 3.6.3 We say that a server preinstalls global view gv when it collects a set of

Global VC(gvi) messages from a majority of sites, where gvi ≥ gv.

DEFINITION 3.6.4 A global preinstall proof for global view gv is a set of Global VC(gvi) mes-

sages from a majority of sites where gvi ≥ gv. The set of messages is proof that gv preinstalled.

Our goal is to prove the following claim:

Claim 3.6.6 If global progress does not occur, and the system is stable with respect to time T , then

all stable servers will preinstall the same global view, gv, in a finite time. Subsequently, all stable

servers will: (1) preinstall all consecutive global views above gv within one wide area message

delay of each other and (2) remain in each global view for at least one global timeout period.

To prove Claim 3.6.6, we maintain the following invariant and show that it always holds:

INVARIANT 3.6.3 If a correct server, s, has Global view gv, then it is in one of the two following

states:

1. Global T is running and s has global preinstall proof for gv.

2. Global T is not running and s has global preinstall proof for gv − 1.

Lemma 3.6.17 Invariant 3.6.3 always holds.

Proof: We show that Invariant 3.6.3 holds using an argument based on a state machine, SM . SM

has the two states listed in Invariant 3.6.3.

We first show that a correct server starts in state (1). When a correct server starts, its Global view

is initialized to 0, it has an a priori global preinstall proof for 0, and its Global T timer is running.

Therefore, Invariant 3.6.3 holds immediately after the system is initialized, and the server is in state

(1).

79

We now show that a correct server can only transition between these two states. SM has the

following two types of state transitions. These transitions are the only events where (1) the state

of Global T can change (from running to stopped or from stopped to running), (2) the value of

Global T changes, or (3) the value of global preinstall proof changes. In our pseudocode, the state

transitions occur across multiple lines and functions. However, they are atomic events that always

occur together, and we treat them as such.

• Transition (1): A server can transition from state (1) to state (2) only when Global T expires

and it increments its global view by one.

• Transition (2): A server can transition from state (2) to state (1) or from state (1) to state (1)

when it increases its global preinstall proof and starts Global T.

We now show that if Invariant 3.6.3 holds before a state transition, it will hold after a state

transition.

We first consider transition (1). We assume that Invariant 3.6.3 holds immediately be-

fore the transition. Before transition (1), SM is in state (1) and Global view is equal to

Global preinstalled view, and Global T is running. After transition (1), SM is in state (2) and

Global view is equal to Global preinstalled view + 1, and Global T is stopped. Therefore, after

the state transition, Invariant 3.6.3 holds. This transition corresponds to Figure 3.15, lines A1 and

A2. On line A1, Global T expires and stops. On line A2, Global view is incremented by one. SM

cannot transition back to state (1) until a transition (2) occurs.

We next consider transition (2). We assume that Invariant 3.6.3 holds immediately before the

transition. Before transition (2) SM can be in either state (1) or state (2). We now prove that the

invariant holds immediately after transition (2) if it occurs from either state (1) or state (2).

Let gv be the value of Global view before the transition. If SM is in state (1) before transition

(2), then global preinstall proof is gv, and Global T is running. If SM is in state (2) before transition

(2), then global preinstall proof is gv − 1, and Global T is stopped. In either case, the following

is true before the transition: global preinstalled proof ≥ gv − 1. Transition (2) occurs only when

global preinstall proof increases (Figure 3.15, block E). Line E6 of Figure 3.15 is the only line in the

80

pseudocode where Global T is started after initialization, and this line is triggered upon increasing

global preinstall proof. Let global preinstall proof equal gp after transition (2) and Global view

be gv′. Since the global preinstall proof must be greater than what it was before the transition,

gp ≥ gv. On lines E5 - E7 of Figure 3.8, when global preinstall proof is increased, Global view

is increased to global preinstall proof if Global view < global preinstall proof. Thus, gv′ ≥ gp.

Finally, gv′ ≥ gv, because Global view either remained the same or increase.

We now must examine two different cases. First, when gv′ > gv, the Global view was increased

to gp, and, therefore, gv′ = gp. Second, when gv′ = gv (i.e., Global view was not increased), then,

from gp ≥ gv and gv′ ≥ gp, gv′ = gp. In either case, therefore, Invariant 3.6.3 holds after transition

(2).

We have shown that Invariant 3.6.3 holds when a server starts and that it holds after each state

transition.

We now prove a claim about RELIABLE-SEND-TO-ALL-SITES that we use to prove Claim 3.6.6:

Claim 3.6.7 If the system is stable with respect to time T , then if a stable server invokes RELIABLE-

SEND-TO-ALL-SITES on message m, then all stable servers will receive m.

Proof: When a stable server invokes RELIABLE-SEND-TO-ALL-SITES on message m, it first

creates a Reliable Message(m) message and sends it to all of the servers in its site, S, (Figure 3.23,

lines A2 and A3). Therefore, all stable servers in S will receive message m embedded within the

Reliable Message.

The server that invoked RELIABLE-SEND-TO-ALL-SITES calls SendToPeers on m (line A4). All

other servers call SendToPeers(m) when they receive Reliable Message(m) (line B2). Therefore,

all stable servers in S will call SendToPeers(m). This function first checks to see if the server that

called it has a Server id between 1 and 2f +1 (line D1). Recall that servers in each site are uniquely

numbered with integers from 1 to 3f + 1. If a server is one of the 2f + 1 servers with the lowest

values, it will send its message to all servers in all other sites that have a Server id equal to its server

id (lines D2-D4).

81

Therefore, if we consider S and any other stable site S′, then message m is sent across 2f + 1

links, where the 4f +2 servers serving as endpoints on these links are unique. A link passes m from

site S to S′ if both endpoints are stable servers. There are at most 2f servers that are not stable in

the two sites. Therefore, if each of these non-stable servers blocks one link, there is still one link

with stable servers at both endpoints. Thus, message m will pass from S to at least one stable server

in all other sites. When a server on the receiving endpoint receives m (lines C1-C2), it sends m to

all servers in its site. Therefore, we have proved that if any stable server in a stable system invokes

RELIABLE-SEND-TO-ALL-SITES on m, all stable servers in all stable sites will receive m.

We now show that if all stable servers increase their Global view to gv, then all stable servers

will preinstall global view gv.

Lemma 3.6.18 If the system is stable with respect to time T , then if, at a time after T , all stable

servers increase their Global view variables to gv, all stable servers will preinstall global view gv.

Proof: We first show that if any stable server increases its global view to gv because it receives

global preinstall proof for gv, then all stable servers will preinstall gv. When a stable server in-

creases its global preinstall proof to gv, it reliably sends this proof to all servers (Figure 3.15, lines

E4 and E5) By Claim 3.6.7, all stable servers receive this proof, apply it, and preinstall global view

gv.

We now show that if all stable servers increase their global views to gv without first receiving

global preinstall proof for gv, all stable servers will preinstall gv. A correct server can increase

its Global view to gv without having preinstall proof for gv in only one place in the pseudocode

(Figure 3.15, line A2). If a stable server executes this line, then it also constructs an unsigned

Global VC(gv) message and invokes THRESHOLD-SIGN on this message (lines A4-A5).

From Claim 3.6.5, if all stable servers in a stable site invoke THRESHOLD-SIGN on

Global VC(gv), then a correctly threshold signed Global VC(gv) message will be returned to all

stable servers in this site. When THRESHOLD-SIGN returns a Global VC message to a stable server,

this server reliably sends it to all other sites. By Claim 3.6.7, all stable servers will receive the

82

Global VC(gv) message. Since we assume all stable servers in all sites increase their global views

to gv, all stable servers will receive a Global VC(gv) message from a majority of sites.

We next prove that soon after the system becomes stable, all stable servers preinstall the same

global view gv. We also show that there can be no global preinstall proof for a global view above

gv:

Lemma 3.6.19 If global progress does not occur, and the system is stable with respect to time T ,

then all stable servers will preinstall the same global view gv before time T + ∆, where gv is equal

to the the maximum global preinstall proof in the system when the stable servers first preinstall gv.

Proof: Let smax be the stable server with the highest preinstalled global view, gpmax, at time

T , and let gpsysmax be the highest preinstalled view in the system at time T . We first show that

gpmax + 1 ≥ gpsysmax. Second, we show that all stable servers will preinstall gpmax. Then we

show that the Global T timers will expire at all stable servers, and they will increase their global

view to gpmax + 1. Next, we show that when all stable servers move to global view gpmax + 1,

each site will create a threshold signed Global VC(gpmax + 1) message, and all stables servers will

receive enough Global VC messages to preinstall gpmax + 1.

In order for gpsysmax to have been preinstalled, some server in the system must have collected

Global VC(gpsysmax) messages from a majority of sites. Therefore, at least f + 1 stable servers

must have had global views for gpsysmax, because they must have invoked THRESHOLD-SIGN on

Global VC(gpsysmax). From Invariant 3.6.3, if a correct server is in gpsysmax, it must have global

preinstall proof for at least gpsysmax − 1. Therefore, gpmax + 1 ≥ gpsysmax.

When smax preinstalls gpmax, it reliably sends global preinstall proof for gpmax to all stable

sites (via the RELIABLE-SEND-TO-ALL-SITES protocol). By Claim 3.6.7, all stable servers will re-

ceive and apply Global Preinstall Proof(gpmax) and increase their Global view variables to gpmax.

Therefore, within approximately one widea-area message delay of T , all stable servers will prein-

stall gpmax. By Invariant 3.6.3, all stable servers must have global view gpmax or gpmax + 1. Any

stable server with Global view gpmax +1 did not yet preinstall this global view. Therefore, its timer

83

is stopped as described in the proof of Lemma 3.6.17, and it will not increase its view again until it

receives proof for a view higher than gpmax.

We now need to show that all stable servers with Global view gpmax will move to Global view

gpmax + 1. All of the servers in gpmax have running timers because their global preinstall proof

= Global view. The Global T timer is reset in only two places in the pseudocode. The first is on

line E6 of Figure 3.15. This code is not called unless a server increases its global preinstall proof,

in which case it would also increase its Global view to gpmax + 1. The second case occurs when

a server executes a Globally Ordered Update (Figure 3.8, line C8), which cannot happen because

we assume that global progress does not occur. Therefore, if a stable server that has view gpmax

does not increase its view because it receives preinstall proof for gpmax + 1, its Global T timer will

expire and it will increment its global view to gpmax + 1.

We have shown that if global progress does not occur, and the system is stable with respect

to time T , then all stable servers will move to the same global view, gpmax + 1. A server either

moves to this view because it has preinstall proof for gpmax + 1 or it increments its global view

to gpmax + 1. If any server has preinstall proof for gpmax, it sends this proof to all stable servers

using RELIABLE-SEND-TO-ALL-SITES and all stable servers will preinstall gpmax + 1. By Lemma

3.6.18, if none of the stable servers have preinstall proof for gpmax + 1 and they have incremented

their global view to gpmax + 1, then all stable servers will preinstall gpmax + 1.

We conclude by showing that time ∆ is finite. As soon as the system becomes stable, the server

with the highest global preinstall proof, gpmax, sends this proof to all stable servers as described

above. It reaches them in one wide area message delay. After at most one global timeout, the

stable servers will increment their global views because their Global T timeout will expire. At this

point, the stable servers will invoke THRESHOLD-SIGN, Global VC messages will be returned at

each stable site, and the stable servers in each site will reliably send their Global VC messages to

all stable servers. These messages will arrive in approximately one wide area delay, and all servers

will install the same view, gpmax + 1.

We now prove the last lemma necessary to prove Claim 3.6.6:

84

Lemma 3.6.20 If the system is stable with respect to time T , then if all stable servers are in global

view gv, the Global T timers of at least f +1 stable servers must timeout before the global preinstall

proof for gv + 1 can be generated.

Proof: A stable system has a majority of sites each with at least 2f + 1 stable servers. If all of the

servers in all non-stable sites generate Global VC(gv + 1) messages, the set of existing messages

does not constitute global preinstall proof for gv + 1. One of the stable sites must contribute a

Global VC(gv +1) message. In order for this to occur, 2f +1 servers at one of the stable sites must

invoke THRESHOLD-SIGN on Global VC(gv + 1), which implies f + 1 stable servers had global

view gv + 1. Since global preinstall proof could not have been generated without the Global VC

message from their site, Global T at these servers must have expired.

We now use Lemmas 3.6.18, 3.6.19, and 3.6.20 to prove Claim 3.6.6:

Proof: By Lemma 3.6.19, all servers will preinstall the same view, gv, and the highest global

preinstall proof in the system is gv. If global progress does not occur, then the Global T timer at all

stable servers will eventually expire. When this occurs, all stable servers will increase their global

view to gv + 1. By Lemma 3.6.18, all stable servers will preinstall gv + 1. By Lemma 3.6.18,

Global T must have expired at at least f + 1 stable servers. We have shown that if all stable servers

are in the same global view, they will remain in this view until at least f +1 stable servers Global T

timer expires, and they will definitely preinstall the next view when all stable servers’ Global T

timer expires.

When the first stable server preinstalls global view gv + 1, it reliably sends global preinstall

proof gv + 1 to all stable servers (Figure 3.15, line E4). Therefore, all stable servers will receive

global preinstall proof for gv + 1 at approximately the same time (within approximately one wide

area message delay). The stable servers will reset their Global T timers and start them when they

preinstall. At this point, no server can preinstall the next global view until there is a global timeout

at at least f +1 stable servers. If the servers don’t preinstall the next global view before, they will do

so when there is a global timeout at all stable servers. Then the process repeats. The stable servers

preinstall all consecutive global views and remain in them for a global timeout period.

85

We now prove a similar claim about the local representative election protocol. The protocol is

embedded within the LOCAL-VIEW-CHANGE protocol, and it is responsible for the way in which

stable servers within a site synchronize their Local view variable.

Claim 3.6.8 If global progress does not occur, and the system is stable with respect to time T , then

all stable servers in a stable site will preinstall the same local view, lv, in a finite time. Subsequently,

all stable servers in the site will: (1) preinstall all consecutive local views above lv within one local

area message delay of each other and (2) remain in each local view for at least one local timeout

period.

To prove Claim 3.6.8, we use a state machine based argument to show that the following invari-

ant holds:

INVARIANT 3.6.4 If a correct server, s, has Local view lv, then it is in one of the following two

states:

1. Local T is running and s has local preinstall proof lv

2. Local T is not running and s has local preinstall proof lv − 1.

Lemma 3.6.21 Invariant 3.6.4 always holds.

Proof: When a correct server starts, Local T is started, Local view is set to 0, and the server has

an a priori proof (New Rep message) for local view 0. Therefore, it is in state (1).

A server can transition from one state to another only in the following two cases. These tran-

sitions are the only times where a server (1) increases its local preinstall proof, (2) increases its

Local view, or (3) starts or stops Local T.

• Transition (1): A server can transition from state (1) to state (2) only when Local T expires

and it increments its local view by one.

• Transition (2): A server can transition from state (2) to state (1) or from state (1) to state (1)

when it increases its local preinstall proof and starts Local T.

86

We now show that if Invariant 3.6.4 holds before a state transition, it will hold after a state

transition.

We first consider transition (1). We assume that Invariant 3.6.4 holds immediately before the

transition. Before transition (1), the server is in state (1) and Local view is equal to local preinstalled

view, and Local T is running. After transition (1), the server is in state (2) and Local view is equal

to local preinstalled view + 1, and Local T is stopped. Therefore, after the state transition, Invariant

3.6.4 holds. This transition corresponds to lines A1 and A2 in Figure 3.14. On line A1, Local T

expires and stops. On line A2, Local view is incremented by one. The server cannot transition back

to state (1) until there is a transition (2).

We next consider transition (2). We assume that Invariant 3.6.4 holds immediately before the

transition. Before transition (2) the server can be in either state (1) or state (2). We now prove that

the invariant holds immediately after transition (2) if it occurs from either state (1) or state (2).

Let lv be the value of Local view before transition. If the server is in state (1) before transition

(2), then local preinstall proof is lv, and Local T is running. If the server is in state (2) before

transition (2), then local preinstall proof is lv − 1, and Local T is stopped. In either case, the

following is true before the transition: local preinstall proof ≥ gv − 1. Transition (2) occurs only

when local preinstall proof increases (Figure 3.14, block D). Line D4 of the LOCAL-VIEW-CHANGE

protocol is the only line in the pseudocode where Local T is started after initialization, and this line

is triggered only upon increasing local preinstall proof. Let local preinstall proof equal lp after

transition (2) and Local view be lv′. Since the local preinstall proof must be greater than what it

was before the transition, lp ≥ lv. On lines E2-E4 of Figure 3.7, when local preinstall proof is

increased, Local view is increased to local preinstall proof if Local view < local preinstall proof.

Thus, lv′ ≥ lp. Finally, lv′ ≥ lv, because Local view either remained the same or increased.

We now must examine two different cases. First, when lv′ > lv, Local view was increased to

lp, and, therefore, lv′ = lp. Second, when lv′ = lv (i.e., Local view was not increased), then, from

lp ≥ lv and lv′ ≥ lp and simple substituition, lv′ = lp′. In either case, therefore, Invariant 3.6.4

holds after transition (2).

We have shown that Invariant 3.6.4 holds when a server starts and that it holds after each state

87

transition, completing the proof.

We can now prove Claim 3.6.8.

Proof: Let smax be the stable server with the highest local preinstalled view, lpmax, in stable site

S. Let lvmax be server smax’s local view. The local preinstall proof is a New Rep(lpmax) message

threshold signed by site S. Server smax sends its local preinstall proof to all other servers in site

S when it increases its local preinstall proof (Figure 3.14, line D3). Therefore, all stable servers in

site S will receive the New Rep message and preinstall lpmax.

From Invariant 3.6.4, lpmax = lvmax − 1 or lpmax = lvmax. Therefore, all stable servers are

within one local view of each other. If lpmax = lvmax, then all servers have the same local view

and their Local T timers are running. If not, then there are two cases we must consider.

1. Local T will expire at the servers with local view lpmax and they will increment their local

view to lvmax (Figure 3.14, line D3). Therefore, all stable servers will increment their local

views to lvmax, and invoke THRESHOLD-SIGN on New Rep(lvmax) (Figure 3.14, line A5).

By Claim 3.6.5, a correctly threshold signed New Rep(lvmax) message will be returned to

all stable servers. They will increase their local preinstall proof to lvmax, send the New Rep

message to all other servers, and start their Local T timers.

2. The servers with local view lpmax will receive a local preinstall proof higher than lpmax. In

this case, the servers increase their local view to the value of the preinstall proof they received,

send the preinstall proof, and start their Local T timers.

We have shown that, in all cases, all stable servers will preinstall the same local view and that

their local timers will be running. Now, we need to show that these stable servers will remain in the

same local view for one local timeout, and then all preinstall the next local view.

At least 2f+1 servers must first be in a local view before a New Rep message will be created for

that view. Therefore, the f malicious servers cannot create a preinstall proof by themselves. When

any stable server increases its local preinstall proof to the highest in the system, it will send this

proof to all other stable servers. These servers will adopt this preinstall proof and start their timers.

88

Thus, all of their Local T timers will start at approximately the same time. At least f + 1 stable

servers must timeout before a higher preinstall proof can be created. Therefore, the stable servers

will stay in the same local view for a local timeout period. Since all stable servers start Local T

at about the same time (within a local area message delay), they will all timeout at about the same

time. At that time, they all invoke THRESHOLD-SIGN and a New Rep message will be created for

the next view. At this point, the first server to increase its preinstall proof sends this proof to all

stable servers. They start their Local T timers, and the process repeats. Each consecutive local view

is guaranteed to preinstall, and the stable servers will remain in the same view for a local timeout.

We now establish relationships between our timeouts. Each server has two timers, Global T

and Local T, and a corresponding global and local timeout period for each timer. The servers in

the leader site have a longer local timeout than the servers in the non-leader site so that a correct

representative in the leader site can communicate with at least one correct representative in all stable

non-leader sites. The following claim specifies the values of the timeouts relative to each other.

Claim 3.6.9 All correct servers with the same global view, gv, have the following timeouts:

1. The local timeout at servers in the non-leader sites is local to nls

2. The local timeout at the servers in the leader site is local to ls = (f + 2)local to nls

3. The global timeout is global to = (f + 3)local to ls = K ∗ 2+Global view/N,

Proof: The timeouts are set by functions specified in Figure 3.16. The global timeout global to

is a deterministic function of the global view, global to = K ∗ 2+Global view/N,, where K is the

minimum global timeout and N is the number of sites. Therefore, all servers in the same global

view will compute the same global timeout (line C1). The RESET-GLOBAL-TIMER function sets

the value of Global T to global to. The RESET-LOCAL-TIMER function sets the value of Local T

depending on whether the server is in the leader site. If the server is in the leader site, the Local T

timer is set to local to ls = (global to/(f + 3)) (line B2). If the server is not in the leader site, the

89

Local T timer is set local to nls = local to ls/(f + 2) (line B4). Therefore, the above ratios hold

for all servers in the same global view.

We now prove that each time a site becomes the leader site in a new global view, correct repre-

sentatives in this site will be able to communicate with at least one correct representative in all other

sites. This follows from the timeout relationships in Claim 3.6.9. Moreover, we show that each time

a site becomes the leader, it will have more time to communicate with each correct representative.

Intuitively, this claim follows from the relative rates at which the coordinators rotate at the leader

and non-leader sites.

Claim 3.6.10 If LS is the leader site in global views gv and gv′ with gv > gv′, then any stable

representative elected in gv can communicate with a stable representative at all stable non-leader

sites for time ∆gv, and any stable representative elected in gv′ can communicate with a stable

representative at all stable non-leader sites for time∆gv′ and ∆gv ≥ 2 ∗ ∆gv′ .

Proof: From Claim 3.6.8, if no global progress occurs, (1) local views will be installed consecu-

tively, and (2) the servers will remain in the same local view for one local timeout. Therefore, any

correct representative at the leader site will reign for one local timeout at the leader site, local to ls.

Similarly, any correct representative at a non-leader site will reign for approximately one local time-

out at a non-leader site, local to nls.

From Claim 3.6.9, the local timeout at the leader site is f + 2 times the local timeout at

the non-leader site (local to ls = (f + 2)local to nls). If stable server r is representative for

local to ls, then, at each leader site, there will be at least f + 1 servers that are representative for

time local to nls during the time that r is representative. Since the representative has a Server id

equal to Local view mod(3f + 1), a server can never be elected representative twice during f + 1

consecutive local views. It follows that a stable representative in the leader site can communicate

with f + 1 different servers for time period local to ls. Since there are at most f servers that are

not stable, at least one of the f + 1 servers must be stable.

From Claim 3.6.9, the global timeout doubles every N consecutive global views, where N is

the number of sites. The local timeouts are a constant fraction of a global timeout, and, therefore,

90

they grow at the same rate as the global timeout. Since the leader site has Site id = Global view

modN , a leader site is elected exactly once every N consecutive global views. Therefore, each

time a site becomes the leader, the local and global timeouts double.

Claim 3.6.11 If global progress does not occur and the system is stable with respect to time T , then

in any global view gv that begins after time T , there will be at least two stable representatives in

the leader site that are each leaders for a local timeout at the leader site, local to ls.

Proof: From Claim 3.6.8, if no global progress occurs, (1) local views will be installed consec-

utively, and (2) the servers will remain in the same local view for one local timeout. From Claim

3.6.6, if no global progress occurs, the servers in the same global view will remain in this global

view for one global timeout, global to. From Claim 3.6.9, global to = (f + 3)local to ls. There-

fore, during the time when all stable servers are in global view gv, there will be f +2 representatives

in the leader site that each serve for local to ls. We say that these servers have complete reigns in

gv. Since the representative has a Server id equal to Local view mod(3f + 1), a server can never

be elected representative twice during f + 2 consecutive local views. There are at most f servers in

a stable site that are not stable, therefore at least two of the f + 2 servers that have complete reigns

in gv will be stable.

We now proceed with our main argument for proving Claim 3.6.4, which will show that a sta-

ble server will be able to complete the GLOBAL-VIEW-CHANGE protocol. To complete GLOBAL-

VIEW-CHANGE in a global view gv, a stable representative must coordinate the construction of

an Aru Message, send the Aru Message to the other sites, and collect Global Constraint messages

from a majority of sites. We leverage the properties of the global and local timeouts to show that,

as the stable sites move through global views together, a stable representative of the leader site will

eventually remain in power long enough to complete the protocol, provided each component of the

protocol completes in finite time. This intuition is encapsulated in the following lemma:

Lemma 3.6.22 If global progress does not occur and the system is stable with respect to time T ,

then there exists an infinite set of global views gvi, each with an associated local view lvi and

91

a stable leader site Si, in which, if CONSTRUCT-ARU and CONSTRUCT-GLOBAL-CONSTRAINT

complete in bounded finite times, then if the first stable representative of Si serving for at least a

local timeout period invokes GLOBAL-VIEW-CHANGE, it will complete the protocol in (gvi, lvi).

Proof: By Claim 3.6.6, if the system is stable and no global progress is made, all stable servers

move together through all (consecutive) global views gv above some initial synchronization view,

and they remain in gv for at least one global timeout period, which increases by at least a factor

of two every N global view changes. Since the stable sites preinstall consecutive global views, an

infinite number of stable leader sites will be elected. By Claim 3.6.11, each such stable leader site

elects three stable representatives before the Global T timer of any stable server expires, two of

which remain in power for at least a local timeout period before any stable server in S expires its

Local T timeout. We now show that we can continue to increase this timeout period (by increasing

the value of gv) until, if CONSTRUCT-ARU and CONSTRUCT-GLOBAL-CONSTRAINT complete in

bounded finite times ∆aru and ∆gc, respectively, the representative will complete GLOBAL-VIEW-

CHANGE.

A stable representative invokes CONSTRUCT-ARU after invoking the GLOBAL-VIEW-CHANGE

protocol (Figure 3.17, line A2), which occurs either after preinstalling the global view (Figure 3.15,

line E8) or after completing a local view change when not globally constrained (Figure 3.14, line

D8). Since the duration of the local timeout period local to ls increases by at least a factor of two

every N global view changes, there will be a global view gv in which the local timeout period

is greater than ∆aru, at which point the stable representative has enough time to construct the

Aru Message.

By Claim 3.6.10, if no global progress occurs, then a stable representative of the leader site

can communicate with a stable representative at each stable non-leader site in a global view gv for

some amount of time, ∆gv, that increases by at least a factor of two every N global view changes.

The stable representative of the leader site receives a New Rep message containing the identity of

the new site representative from each stable site roughly one wide area message delay after the

non-leader site representative is elected. Since ∆gc is finite, there is a global view sufficiently

92

large such that (1) the leader site representative can send the Aru Message it constructed to each

non-leader site representative, the identity of which it learns from the New Rep message, (2) each

non-leader site representative can complete CONSTRUCT-GLOBAL-CONSTRAINT, and (3) the leader

site representative can collect Global Constraint messages from a majority of sites. We can apply

the same logic to each subsequent global view gv′ with a stable leader site.

We call the set of views for which Lemma 3.6.22 holds the completion views. Intuitively, a

completion view is a view (gv, lv) in which the timeouts are large enough such that, if CONSTRUCT-

ARU and CONSTRUCT-GLOBAL-CONSTRAINT complete in some bounded finite amounts of time,

the stable representative of the leader site S of gv (which is the first stable representative of S

serving for at least a local timeout period) will complete the GLOBAL-VIEW-CHANGE protocol.

Given Lemma 3.6.22, it just remains to show that there exists a completion view in which

CONSTRUCT-ARU and CONSTRUCT-GLOBAL-CONSTRAINT terminate in bounded finite time. We

use Claim 3.6.3 to leverage the fact that all stable servers eventually reconcile their Global History

data structures to max stable seq to bound the amount of work required by each protocol. Since

there are an infinite number of completion views, we consider those completion views in which this

reconciliation has already completed.

We first show that there is a bound on the size of the Global Server State messages used in

CONSTRUCT-ARU and CONSTRUCT-GLOBAL-CONSTRAINT.

Lemma 3.6.23 If all stable servers have a Global aru ofmax stable seq, then no server can have

a Prepare Certificate, Proposal, or Globally Ordered Update for any sequence number greater than

(max stable seq + 2 ∗ W).

Proof: Since obtaining a Globally Ordered Update requires a Proposal, and generating a Proposal

requires collecting a Prepare Certificate, we assume that a Prepare Certificate with a sequence num-

ber greater than (max stable seq+2∗W) was generated and show that this leads to a contradiction.

If any server collects a Prepare Certificate for a sequence number seq greater than

(max stable seq + 2 ∗ W), then it collects a Pre-Prepare message and 2f Prepare messages for

93

(max stable seq +2∗W). This implies that at least f +1 correct servers sent either a Pre-Prepare

or a Prepare. A correct representative only sends a Pre-Prepare message for seq if its Global aru

is at least (seq − W) (Figure 3.12, line A3), and a correct server only sends a Prepare message if

its Global aru is at least (seq − W) (Figure 3.6, A23). Thus, at least f + 1 correct servers had a

Global aru of at least (seq − W).

For this to occur, these f + 1 correct servers obtained Globally Ordered Updates for those

sequence numbers up to and including (seq − W). To obtain a Globally Ordered Update, a server

collects a Proposal message and $S/2% corresponding Accept messages. To construct a Proposal for

(seq−W), at least f +1 correct servers in the leader site had a Global aru of at least (seq−2W) >

max stable seq. Similarly, to construct an Accept message, at least f + 1 correct servers in a

non-leader site contributed a Partial sig message. Thus, there exists a majority of sites, each with at

least f + 1 correct servers with a Global aru greater than max stable seq.

Since any two majorities intersect, one of these sites is a stable site. Thus, there exists a stable

site with some stable server with a Global aru greater than max stable seq, which contradicts the

definition of max stable seq.

Lemma 3.6.24 If all stable servers have a Global aru of max stable seq, then if a stable rep-

resentative of the leader site invokes CONSTRUCT-ARU, or if a stable server in a non-leader site

invokes CONSTRUCT-GLOBAL-CONSTRAINT with an Aru Message containing a sequence number

at least max stable seq, then any valid Global Server State message will contain at most 2 ∗ W

entries.

Proof: A stable server invokes CONSTRUCT-ARU with an invocation sequence number of

max stable seq. By Lemma 3.6.23, no server can have a Prepare Certificate, Proposal, or Glob-

ally Ordered Update for any sequence number greater than (max stable seq+2∗W). Since these

are the only entries reported in a valid Global Server State message (Figure 3.21, Block B), the

lemma holds. We use the same logic as above in the case of CONSTRUCT-GLOBAL-CONSTRAINT.

94

The next two lemmas show that CONSTRUCT-ARU and CONSTRUCT-GLOBAL-CONSTRAINT

will complete in bounded finite time.

Lemma 3.6.25 If the system is stable with respect to time T and no global progress is made, then

there exists an infinite set of views (gvi, lvi) in which a run of CONSTRUCT-ARU invoked by the

stable representative of the leader site will complete in some bounded finite time, ∆aru.

Proof: By Claim 3.6.3, if no global progress is made, then all stable servers eventually reconcile

their Global aru to max stable seq. We consider those completion views in which this reconcilia-

tion has already completed.

The representative of the completion view invokes CONSTRUCT-ARU upon completing

GLOBAL-LEADER-ELECTION (Figure 3.17, line A2). It sends a Request Global State message to

all local servers containing a sequence number reflecting its current Global aru value. Since all sta-

ble servers are reconciled up to max stable seq, this sequence number is equal to max stable seq.

Since the leader site is stable, all stable servers receive the Request Global State message within one

local message delay.

When a stable server receives the Request Global State message, it immediately sends

a Global Server State message (Figure 3.19, lines B5-B7), because it has a Global aru of

max stable seq. By Lemma 3.6.24, any valid Global Server State message can contain entries for

at most 2 ∗W sequence numbers. We show below in Claim 3.6.13 that all correct servers have con-

tiguous entries above the invocation sequence number in their Global History data structures. From

Figure 3.21 Block B, the Global Server State message from a correct server will contain contigu-

ous entries. Since the site is stable, the representative collects valid Global Server State messages

from at least 2f + 1 servers, bundles them together, and sends the Global Collected Servers State

message to all local servers (Figure 3.19, line C3).

Since the representative is stable, and all stable servers have a Global aru of max stable seq

(which is equal to the invocation sequence number), all stable servers meet the conditionals at Figure

3.19, lines D2 and D3. They do not see a conflict at Figure 3.5, line F4, because the representative

only collects Global Server State messages that are contiguous. They construct the union message

95

by completing Compute Global Union (line D4), and invoke THRESHOLD-SIGN on each Prepare

Certificate in the union. Since there are a finite number of entries in the union, there are a finite

number of Prepare Certificates. By Lemma 3.6.5, all stable servers convert the Prepare Certificates

into Proposals and invoke THRESHOLD-SIGN on the union (line F2). By Lemma 3.6.5, all stable

servers generate the Global Constraint message (line G1) and invoke THRESHOLD-SIGN on the

extracted union aru (line G4). By Lemma 3.6.5, all stable servers generate the Aru Message and

complete the protocol.

Since gvi can be arbitrarily high, with the timeout period increasing by at least a factor of two

every N global view changes, there will eventually be enough time to complete the bounded amount

of computation and communication in the protocol. We apply the same logic to all subsequent global

views with a stable leader site to obtain the infinite set.

Lemma 3.6.26 Let A be an Aru Message containing a sequence number ofmax stable seq. If the

system is stable with respect to time T and no global progress is made, then there exists an infinite

set of views (gvi, lvi) in which a run of CONSTRUCT-GLOBAL-CONSTRAINT invoked by a stable

server in local view lvi, where the representative of lvi is stable, in a non-leader site with argument

A, will complete in some bounded finite time,∆gc.

Proof: By Claim 3.6.3, if no global progress is made, then all stable servers eventually reconcile

their Global aru to max stable seq. We consider those completion views in which this reconcilia-

tion has already occurred.

The Aru Message A has a value of at max stable seq. Since the representative of lv′ is stable,

it sends A to all servers in its site. All stable servers receive A within one local message delay.

All stable servers invoke CONSTRUCT-GLOBAL-CONSTRAINT upon receiving A and send

Global Server State messages to the representative. By Lemma 3.6.24, the Global Server State

messages contain entries for at most 2 ∗ W sequence numbers. We show below in Claim 3.6.13

that all correct servers have contiguous entries above the invocation sequence number in their

Global History data structures. From Figure 3.21 Block B, the Global Server State message from

96

a correct server will contain contiguous entries. The representative will receive at least 2f + 1 valid

Global Server State messages, since all messages sent by stable servers will be valid. The represen-

tative bundles up the messages and sends a Global Collected Servers State message (Figure 3.20,

line B3).

All stable servers receive the Global Collected Servers State message within one local message

delay. The message will meet the conditional at line C2, because it was sent by a stable repre-

sentative. They do not see a conflict at Figure 3.5, line F4, because the representative only collects

Global Server State messages that are contiguous. All stable servers construct the union message by

completing Compute Global Union (line C3), and invoke THRESHOLD-SIGN on each Prepare Cer-

tificate in the union. Since all valid Global Server State messages contained at most 2 ∗ W entries,

there are at most 2 ∗W entries in the union and 2 ∗W Prepare Certificates in the union. By Lemma

3.6.5, all stable servers convert the Prepare Certificates into Proposals and invoke THRESHOLD-

SIGN on the union (line E2). By Lemma 3.6.5, all stable servers generate the Global Constraint

message (line F2).

Since gvi can be arbitrarily high, with the timeout period increasing by at least a factor of two

every N global view changes, there will eventually be enough time to complete the bounded amount

of computation and communication in the protocol. We apply the same logic to all subsequent global

views with a stable leader site to obtain the infinite set.

Finally, we can prove Claim 3.6.4:

Proof: By Lemma 3.6.22, the first stable representative of some leader site S can complete

GLOBAL-VIEW-CHANGE in a completion view (gv, lv) if CONSTRUCT-ARU and CONSTRUCT-

GLOBAL-CONSTRAINT complete in bounded finite time. By Lemmas 3.6.25, S can complete

CONSTRUCT-ARU in bounded finite time. This message is sent to a stable representative in each

non-leader site, and by Lemma 3.6.26, CONSTRUCT-GLOBAL-CONSTRAINT completes in bounded

finite time. We apply this logic to all global views with stable leader site above gv, completing the

proof.

We now show that either the first or the second stable representative of the leader site serving for

97

at least a local timeout period will make global progress, provided at least one stable server receives

an update that it has not previously executed. This then implies our liveness condition.

We begin by showing that a stable representative of the leader site that completes GLOBAL-

VIEW-CHANGE and serves for at least a local timeout period will be able to pass the

Global Constraint messages it collected to the other stable servers. This implies that subsequent

stable representatives will not need to run the GLOBAL-VIEW-CHANGE protocol (because they will

already have the necessary Global Constraint messages and can become globally constrained) and

can, after becoming locally constrained, attempt to make progress.

Lemma 3.6.27 If the system is stable with respect to time T , then there exists an infinite set of

global views gvi in which either global progress occurs during the reign of the first stable represen-

tative at a stable leader site to serve for at least a local timeout period, or any subsequent stable

representative elected at the leader site during gvi will already have a set consisting of a majority

of Global Constraint messages from gvi.

Proof: By Claim 3.6.4, there exists an infinite set of global views in which the first stable rep-

resentative serving for at least a local timeout period will complete GLOBAL-VIEW-CHANGE. To

complete GLOBAL-VIEW-CHANGE, this representative collects Global Constraint Messages from

a majority of sites. The representative sends a signed Collected Global Constraints message to

all local servers (Figure 3.14, line D11). Since the site is stable, all stable servers receive this

message within one local message delay. If we extend the reign of the stable representative that

completed GLOBAL-VIEW-CHANGE by one local message delay (by increasing the value of gv),

then in all subsequent local views in this global view, a stable representative will already have

Global Constraint Messages from a majority of servers. We apply the same logic to all subsequent

global views with a stable leader site to obtain the infinite set.

We now show that if no global progress is made during the reign of the stable representative that

completed GLOBAL-VIEW-CHANGE, then a second stable representative that is already globally

constrained will serve for at least a local timeout period.

98

Lemma 3.6.28 If the system is stable with respect to timeT , then there exists an infinite set of global

views gvi in which either global progress occurs during the reign of the first stable representative

at a stable leader site to serve for at least a local timeout period, or a second stable representative

is elected that serves for at least a local timeout period and which already has a set consisting of a

majority of Global Constraint(gvi) messages upon being elected.

Proof: By Lemma 3.6.27, there exists an infinite set of global views in which, if no global progress

occurs during the reign of the first stable representative to serve at least a local timeout period, all

subsequent stable representatives already have a set consisting of a majority of Global Constraint

messages upon being elected. We now show that a second stable representative will be elected.

By Claim 3.6.10, if no global progress is made, then the stable leader site of some such gv will

elect f + 3 representatives before any stable server expires its Global T timer, and at least f + 2

of these representatives serve for at least a local timeout period. Since there are at most f faulty

servers in the site, at least two of these representatives will be stable.

Since globally ordering an update requires the servers in the leader site to be locally constrained,

we prove the following lemma relating to the CONSTRUCT-LOCAL-CONSTRAINT protocol:

Lemma 3.6.29 If the system is stable with respect to time T and no global progress occrs, then

there exists an infinite set of views (gvi, lvi) in which a run of CONSTRUCT-LOCAL-CONSTRAINT

invoked by a stable representative of the leader site will complete at all stable servers in some

bounded finite time, ∆lc.

To prove Lemma 3.6.29, we use the following two lemmas to bound the size of the messages

sent in CONSTRUCT-LOCAL-CONSTRAINT:

Lemma 3.6.30 If the system is stable with respect to time T , no global progress is made, and all

stable servers have a Global aru of max stable seq, then no server in any stable leader site S

has a Prepare Certificate or Proposal message in its Local History data structure for any sequence

number greater than (max stable seq + W).

99

Proof: We show that no server in S can have a Prepare Certificate for any sequence number s′,

where s′ > (max stable seq + W). This implies that no server has a Proposal message for any

such sequence number s′, since a Prepare Certificate is needed to construct a Proposal message.

If any server has a Prepare Certificate for a sequence number s′ > (max stable seq + W), it

collects a Pre-Prepare and a Prepare from 2f + 1 servers. Since at most f servers in S are faulty,

some stable server sent a Pre-Prepare or a Prepare for sequence number s′. A correct representative

only sends a Pre-Prepare message for those sequence numbers in its window (Figure 3.12, line

A3). A non-representative server only sends a Prepare message for those sequence numbers in its

window, since otherwise it would have a conflict (Figure 3.6, line A23). This implies that some

stable server has a window that starts after max stable seq, which contradicts the definition of

max stable seq.

Lemma 3.6.31 If no global progress occurs, and all stable servers have a Global aru of

max stable seq when installing a global view gv, then if a stable representative of a leader

site S invokes CONSTRUCT-LOCAL-CONSTRAINT in some local view (gv, lv), any valid Lo-

cal Server State message will contain at most W entries.

Proof: When the stable representative installed global view gv, it set Pending Proposal Aru to its

Global aru (Figure 3.17, line F4), which is max stable seq. Since Pending Proposal Aru only in-

creases, the stable representative invokes CONSTRUCT-LOCAL-CONSTRAINT with a sequence num-

ber of at least max stable seq. A valid Local Server State message contains Prepare Certificates

or Proposals for those sequence numbers greater than the invocation sequence number (Figure 3.6,

line D6). By Lemma 3.6.30, no server in S has a Prepare Certificate or Proposal for a sequence

number greater than (max stable seq + W), and thus, a valid message has at most W entries.

We now prove Lemma 3.6.29:

Proof: By Claim 3.6.3, if no global progress is made, then all stable servers eventually recon-

cile their Global Aru to max stable seq. We consider the global views in which this has already

occurred.

100

When a stable server becomes globally constrained in some such view gv, it sets its

Pending Proposal Aru variable to its Global aru (Figure 3.17, line F4), which is equal to

max stable seq, since reconciliation has already occurred. A stable representative only increases

its Pending Proposal Aru when it globally orders an update or constructs a Proposal for the se-

quence number one higher than its current Pending Proposal Aru (Figure 3.8, lines A5, A12, and

C11). The stable representative does not globally order an update for (max stable seq + 1), since

when the server globally ordered an update for (max stable seq + 1), it would have increased its

Global Aru and executed the update, which violates the definition of max stable seq. By Lemma

3.6.30, no server in S has a Prepare Certificate or a Proposal message for any sequence number

s > (max stable seq + W). Thus, the stable representative’s Pending Proposal Aru can be at

most max stable seq + W when invoking CONSTRUCT-LOCAL-CONSTRAINT

Since the representative of lv is stable, it sends a Request Local State message to all lo-

cal servers, which arrives within one local message delay. All stable servers have a Pend-

ing Proposal Aru of at least max stable seq and no more than (max stable seq + W). Thus,

if a stable server’s Pending Proposal Aru is at least as high as the invocation sequence number, it

sends a Local Server State message immediately (Figure 3.18, lines B5 - B7). Otherwise, the server

requests Proposals for those messages in the difference, of which there are at most W . Since the

site is stable, these messages will arrive in some bounded time that is a function of the window size

and the local message delay.

By Lemma 3.6.31, any valid Local Server State message contains at most W entries. We show

below in Claim 3.6.13 that all correct servers have contiguous entries above the invocation sequence

number in their Local History data structures. From Figure 3.21 Block A, the Local Server State

message from a correct server will contain contiguous entries. The representative will receive at

least 2f + 1 valid Local Server State messages, since all messages sent by stable servers will be

valid. The representative bundles up the messages and sends a Local Collected Servers State mes-

sage. All stable servers receive the Local Collected Servers State message within one local mes-

sage delay. The message will meet the conditionals in Figure 3.18, lines D2 and D3, at any stable

server that sent a Local Server State message. They do not see a conflict at Figure 3.6, line E4, be-

101

cause the representative only collects Local Server State messages that are contiguous. All stable

servers apply the Local Collected Servers State message to their Local History data structures.

Since gv can be arbitrarily high, with the timeout period increasing by at least a factor of two

every N global view changes, there will eventually be enough time for all stable servers to receive

the Request Local Server state message, reconcile their Local History data structures (if necessary)

and send a Local Server State message, and process a Local Collected Servers State message from

the representative. Thus, there will eventually be enough time to complete the bounded amount of

computation and communication in the protocol, and we can apply this argument to all subsequent

global views with stable leader sites to obtain the infinite set.

The following lemma encapsulates the notion that all stable servers will become globally and

locally constrained shortly after the second stable representative to serve for at least a local timeout

period is elected:

Lemma 3.6.32 If the system is stable with respect to time T and no global progress occurs, then

there exists an infinite set of views in which all stable servers become globally and locally con-

strained within ∆lc time of the election of the second stable representative serving for at least a

local timeout period.

Proof: By Lemma 3.6.27, the second stable representative serving for at least a local timeout period

will have a set of a majority of Global Constraint messages from its current global view upon being

elected. This server bundles up the messages, signs the bundle, and send it to all local servers as

a Collected Global Constraints message (Figure 3.14, line D11). Since the site is stable, all stable

servers receive the message within one local message delay and become globally constrained. The

stable representative also invokes CONSTRUCT-LOCAL-CONSTRAINT upon being elected (line D6).

Since we consider those global views in which reconciliation has already occurred, Lemma 3.6.29

implies that all stable servers become locally constrained within some bounded finite time.

Since all stable servers are globally and locally constrained, the preconditions for attempting to

make global progress are met. We use the following term in the remainder of the proof:

102

DEFINITION 3.6.5 We say that a server is a Progress Rep if (1) it is a stable representative of a

leader site, (2) it serves for at least a local timeout period if no global progress is made, and (3) it

can cause all stable servers to be globally and locally constrained within ∆lc time of its election.

The remainder of the proof shows that, in some view, the Progress Rep can globally order and

execute an update that it has not previously executed (i.e., it can make global progress) if no global

progress has otherwise occurred.

We first show that there exists a view in which the Progress Rep has enough time to com-

plete the ASSIGN-GLOBAL-ORDER protocol (i.e., to globally order an update), assuming it invokes

ASSIGN-SEQUENCE. To complete ASSIGN-GLOBAL-ORDER, the Progress Rep must coordinate the

construction of a Proposal message, send the Proposal message to the other sites, and collect Accept

messages from $S/2% sites. As in the case of the GLOBAL-VIEW-CHANGE protocol, we leverage

the properties of the global and local timeouts to show that, as the stable sites move through global

views together, the Progress Rep will eventually remain in power long enough to complete the

protocol, provided each component of the protocol completes in some bounded, finite time. This

intuition is encapsulated in the following lemma:

Lemma 3.6.33 If the system is stable with respect to time T and no global progress occurs, then

there exists a view (gv, lv) in which, if ASSIGN-SEQUENCE and THRESHOLD-SIGN complete in

bounded finite times, and all stable servers at all non-leader sites invoke THRESHOLD-SIGN on the

same Proposal from gv, then if the Progress Rep invokes ASSIGN-SEQUENCE at least once and u is

the update on which it is first invoked, it will globally order u in (gv, lv).

Proof: By Claim 3.6.3, if no global progress occurs, then all stable servers eventually recon-

cile their Global aru to max stable seq. We consider the global views in which this has already

occurred.

Since the Progress Rep has a Global aru of max stable seq, it assigns u a sequence number

of max stable seq + 1. Since ASSIGN-SEQUENCE completes in some bounded, finite time ∆seq,

the Progress Rep constructs P(gv, lv, max stable seq + 1, u), a Proposal for sequence number

max stable seq + 1.

103

By Claim 3.6.10, if no global progress occurs, then a stable representative of the leader site can

communicate with a stable representative at each stable non-leader site in a global view gv for some

amount of time, ∆gv, that increases by at least a factor of two every N global view changes. Since

we assume that THRESHOLD-SIGN is invoked by all stable servers at the stable non-leader sites and

completes in some bounded, finite time, ∆sign, there is a global view sufficiently large that (1) the

leader site representative can send the Proposal P to each non-leader site representative, (2) each

non-leader site representative can complete THRESHOLD-SIGN to generate an Accept message, and

(3) the leader site representative can collect the Accept messages from a majority of sites.

We now show that, if no global progress occurs and some stable server received an update that it

had not previously executed, then some Progress Rep will invoke ASSIGN-SEQUENCE. We assume

that the reconciliation guaranteed by Claim 3.6.3 has already completed (i.e., all stable servers

have a Global aru equal to max stable seq). From the pseudocode (Figure 3.12, line A1), the

Progress Rep invokes ASSIGN-GLOBAL-ORDER after becoming globally and locally constrained.

The Progress Rep calls Get Next To Propose to get the next update, u, to attempt to order (line

A4). The only case in which the Progress Rep will not invoke ASSIGN-SEQUENCE is when u is

NULL. Thus, we must first show that Get Next To Propose will not return NULL.

Within Get Next To Propose, there are two possible cases:

1. Sequence number max stable seq + 1 is constrained: The Progress Rep has a Prepare-

Certificate or Proposal in Local History and/or a Proposal in Global History for sequence

number max stable seq + 1.

2. Sequence number max stable seq + 1 is unconstrained.

We show that, if max stable seq + 1 is constrained, then u is an update that has not been

executed by any stable server. If max stable seq + 1 is unconstrained, then we show that if any

stable server in site S received an update that it had not executed after the stabilization time, then u

is an update that has not been executed by any stable server.

104

To show that the update returned by Get Next To Propose is an update that has not yet been

executed by any stable server, we must first show that the same update cannot be globally ordered for

two different sequence numbers. Claim 3.6.12 states that if a Globally Ordered Update exists that

binds update u to sequence number seq, then no other Globally Ordered Update exists that binds u

to seq′, where seq &= seq′. We use this claim to argue that if a server globally orders an update with

a sequence number above its Global aru, then this update could not have been previously executed.

It follows immediately that if a server globally orders any update with a sequence number one

greater than its Global aru, then it will update execute this update and make global progress. We

now formally state and prove Claim 3.6.12.

Claim 3.6.12 If a Globally Ordered Update(seq, u) exists, then there does not exist a Glob-

ally Ordered Update(seq′, u), where seq &= seq′.

We begin by showing that, if an update is bound to a sequence number in either a Pre-Prepare,

Prepare-Certificate, Proposal, or Globally Ordered Update, then, within a local view at the leader

site, it cannot be bound to a different sequence number.

Lemma 3.6.34 If in some global and local views (gv, lv) at least one of the following constraining

entries exist in the Global History or Local History of f + 1 correct servers:

1. Pre-Prepare(gv, lv, seq, u)

2. Prepare-Certificate(*, *, seq, u)

3. Proposal(*, *, seq, u)

4. Globally Ordered Update(*, *, seq, u)

Then, neither a Prepare-Certificate(gv, lv, seq′, u) nor a Proposal(gv, lv, seq′, u) can be con-

structed, where seq &= seq′.

Proof: When a stable server receives a Pre-Prepare(gv, lv, seq, u), it checks its Global History and

Local History for any constraining entries that contains update u. Lemma 3.6.34 lists the message

105

types that are examined. If there exists a constraining entry binding update u to seq′, where seq &=

seq′, then Pre-Prepare, p, is ignored (Figure 3.6, lines 25-26).

A Prepare-Certificate consists of 2f Prepares and a Pre-Prepare message. We assume that there

are no more than f malicious servers and a constraining entry binding (seq, u), b, exists, and we

show that there is a contradiction if Prepare-Certificate(gv, lv, seq′, u), pc, exists. At least f + 1

correct servers must have contributed to pc. By assumption (as stated in Lemma 3.6.34), at least

f + 1 correct servers have constraining entry b. This leaves 2f servers (at most f that are malicious

and the remaining that are correct) that do not have b and could contribute to pc. Therefore, at least

one correct server that had constraint b must have contributed to pc. It would not do this if it were

correct; therefore, we have a contradiction.

A correct server will not invoke THRESHOLD-SIGN to create a Proposal message unless a corre-

sponding Prepare-Certificate exists. Therefore, it follows that, if Prepare-Certificate(gv, lv, seq′, u)

cannot exist, then Proposal(gv, lv, seq′, u) cannot exist.

We now use Invariant 3.6.1 from Proof of Safety:

Let P(gv, lv, seq, u) be the first threshold-signed Proposal message constructed by any server

in leader site S for sequence number seq in global view gv. We say that Invariant 3.6.1 holds with

respect to P if the following conditions hold in leader site S in global view gv:

1. There exists a set of at least f +1 correct servers with a Prepare Certificate PC(gv, lv′, seq, u)

or a Proposal(gv, lv′, seq, u), for lv′ ≥ lv, in their Local History[seq] data structure, or

a Globally Ordered Update(gv′ , seq, u), for gv′ ≥ gv, in their Global History[seq] data

structure.

2. There does not exist a server with any conflicting Prepare Certificate or Proposal from any

view (gv, lv′), with lv′ ≥ lv, or a conflicting Globally Ordered Update from any global view

gv′ ≥ gv.

We use the Invariant 3.6.1 to show that if a Proposal(gv, lv, seq, u) is constructed for the first

time in global view gv, then a constraining entry that binds u to seq will exist in all views (gv, lv′),

106

where lv′ ≥ lv.

Lemma 3.6.35 Let P(gv, lv, seq, u) be the first threshold-signed Proposal message constructed by

any server in leader site S binding update u to sequence number seq in global view gv. No other

Proposal binding u to seq′ can be constructed in global view gv, where seq &= seq′.

Proof: We show that Invariant 3.6.1 holds within the same global view in Proof of Safety. We now

show that two Proposals having different sequence numbers and the same update cannot be created

within the same global view.

From Lemma 3.6.34 , if Proposal(gv, lv, seq, u), P , is constructed, then no constraining entries

binding u to seq′ exist in (gv, lv). Therefore, from Invariant 3.6.1, no Proposal(gv, lv′′, seq′, u), P ′

could have been constructed, where lv′′ ≤ lv. This follows, because, if P ′ was constructed, then

Invariant 3.6.1 states that a constraint binding u to seq′ would exist in view (gv, lv), in which case

P could not have been constructed. In summary, we have proved that if P , binding u to seq, is

constructed for the first time in some local view in gv, then no other proposal binding u to seq′ was

constructed in global view gv or earlier.

We assume that we create P . From Invariant 3.6.1, after P was constructed, constraining mes-

sages will exist in all local views ≥ lv. These constraining messages will always bind u to seq.

Therefore, from Lemma 3.6.34 no Proposal can be constructed that binds u to a different sequence

number than in P in any local view lv′, where lv′ ≥ lv.

We now use Invariant 3.6.2 from Proof of Safety in a similar argument:

Let u be the first update globally ordered by any server for sequence number seq, and let gv be

the global view in which u was globally ordered. Let P(gv, lv, seq, u) be the first Proposal message

constructed by any server in the leader site in gv for sequence number seq. We say that Invariant

3.6.2 holds with respect to P if the following conditions hold:

1. There exists a majority of sites, each with at least f + 1 correct servers with

a Prepare Certificate(gv, lv′, seq, u), a Proposal(gv′ , *, seq, u), or a Glob-

ally Ordered Update(gv′ , seq, u), with gv′ ≥ gv and lv′ ≥ lv, in its Global History[seq]

data structure.

107

2. There does not exist a server with any conflicting Prepare Certificate(gv′ , lv′, seq, u′),

Proposal(gv′ , *, seq, u′), or Globally Ordered Update(gv′ , seq, u′), with gv′ ≥ gv, lv′ ≥ lv,

and u′ &= u.

We use the Invariant 3.6.2 to show that if Globally Ordered Update(gv, lv, seq, u) is con-

structed, then there will be a majority of sites where at least f + 1 correct servers in each site

have a constraining entry that binds u to seq in all global views greater than or equal to gv. From

this, it follows that any set of Global Constraint messages from a majority of sites will contain an

entry that binds u to seq.

Lemma 3.6.36 Let G(gv, lv, seq, u) be the first Globally Ordered Update constructed by any

server. No other Prepare-Certificate or Proposal binding u to seq′ can be constructed.

Proof: We show that Invariant 3.6.2 holds across global views in Proof of Safety. We now show

that if Globally Ordered Update(gv, lv, seq, u), G, is constructed at any server, then no Prepare-

Certificate or Proposal having different sequence numbers and the same update can exist.

If G exists, then Proposal(gv, lv, seq, u), P , must have been created. From Lemma 3.6.34, if

P was constructed, then no constraining entries binding u to seq′ exist in (gv, lv). Therefore, from

Invariant 3.6.2, no Globally Ordered Update(gv, lv′′, seq′, u), G′ could have been constructed,

where lv′′ ≤ lv. This follows, because, if G′ was constructed, then Invariant 3.6.1 implies that a

constraint binding u to seq′ would exist in views (gv, lv), in which case G could not have been

constructed. Proof of Satefy proves this in detail. To summarize, if a majority of sites each have at

least f + 1 correct servers that have a global constraining entry, b, then these sites would all gen-

erate Global Constraint messages that include b. To become globally constrained, correct servers

must apply a bundle of Global Constraint messages from a majority of sites, which includes one

Global Constraint message that contains b. A correct server will never send a Prepare or Pre-Prepare

message without first becoming globally constrained. Therefore, if G′ was constructed, then there

would have been a constraint binding u to seq′ in the site where G was constructed. We have al-

ready shown that this was not possible, because G was constructed. In summary, we have proved

108

that if G, binding u to seq, is constructed for the first time in some global view gv, then no Glob-

ally Ordered Update binding u to seq′ was constructed in global view gv or earlier.

We assume that we construct G. Invariant 3.6.2, implies that in all global views ≥ gv, constrain-

ing messages, binding u to seq, will exist in at least f + 1 servers at the leader site when a leader

site constructs a Proposal. Therefore, from Lemma 3.6.34 no Proposal can be constructed that binds

u to a different sequence number than in seq in any local view lv′, where lv′ ≥ lv.

We now return to the first case within Get Next To Propose, where (max stable seq + 1) is

constrained at the Progress Rep.

Lemma 3.6.37 If sequence number (max stable seq + 1) is constrained when a Progress Rep

calls Get Next To Propose, then the function returns an update u that has not previously been exe-

cuted by any stable server.

Proof: From Figure 3.13 lines A2 - A5, if (max stable seq+1) is constrained at the Progress Rep,

then Get Next To Propose returns the update u to which the sequence number is bound.

We assume that u has been executed by some stable server and show that this leads to a contra-

diction. Since u was executed by a stable server, it was executed with some sequence number s less

than or equal to max stable seq. By Lemma 3.6.36, if u has already been globally ordered with se-

quence number s, no Prepare Certificate, Proposal, or Globally Ordered Update can be constructed

for any other sequence number s′ (which includes (max stable seq + 1)). Thus, the constraining

update u cannot have been executed by any stable server, since all executed updates have already

been globally ordered.

We now consider the second case within Get Next To Propose, in which (max stable seq +1)

is unconstrained at the Progress Rep (Figure 3.13, lines A6 - A7). In this part of the proof, we

divide the Update Pool data structure into two logical parts:

DEFINITION 3.6.6 We say an update that was added to the Update Pool is in a logical Uncon-

strained Updates data structure if it does not appear as a Prepare Certificate, Proposal, or Glob-

ally Ordered Update in either the Local History or Global History data structure.

109

We begin by showing that, if some stable server in site R received an update u that it had

not previously executed, then either global progress occurs or the Progress Rep of R eventually

has u either in its Unconstrained Updates data structure or as a Prepare Certificate, Proposal, or

Globally Ordered Update constraining some sequence number.

Lemma 3.6.38 If the system is stable with respect to time T , and some stable server r in site R re-

ceives an update u that it has not previously executed at some time T ′ > T , then either global

progress occurs or there exists a view in which, if sequence number (max stable seq + 1) is

unconstrained when a Progress Rep calls Get Next To Propose, then the Progress Rep has u ei-

ther in its Unconstrained Updates data structure or as a Prepare Certificate, Proposal, or Glob-

ally Ordered Update.

Proof: If any stable server previously executed u, then by Claim 3.6.3, all stable servers (including

r) will eventually execute the update and global progress occurs.

When server r receives u, it broadcasts u within its site, R (Figure 3.7, line F2). Since R is

stable, all stable servers receive u within one local message delay. From Figure 3.7, line F5, they

place u in their Unconstrained Updates data structure. By definition, u is only removed from the

Unconstrained Updates (although it remains in the Update Pool) if the server obtains a Prepare

Certificate, Proposal, or Globally Ordered Update binding u to a sequence number. If the server

later removes this binding, the update is placed back into the Unconstrained Updates data structure.

Since u only moves between these two states, the lemma holds.

Lemma 3.6.38 allows us to consider two cases, in which some new update u, received by a

stable server in site R, is either in the Unconstrained Updates data structure of the Progress Rep,

or it is constraining some other sequence number. Since there are an infinite number of consecutive

views in which a Progress Rep exists, we consider those views in which R is the leader site. We

first examine the former case:

Lemma 3.6.39 If the system is stable with respect to time T , and some stable server r in site R

receives an update u that it has not previously executed at some time T ′ > T , then if no global

110

progress occurs, there exists a view in which, if sequence number (max stable seq + 1) is uncon-

strained when a Progress Rep calls Get Next To Propose and u is in the Unconstrained Updates

data structure of the Progress Rep, Get Next To Propose will return an update not previously exe-

cuted by any stable server.

Proof: By Lemma 3.6.38, u is either in the Unconstrained Updates data structure of the

Progress Rep or it is constraining some other sequence number. Since u is in the Uncon-

strained Updates data structure of the Progress Rep and (max stable seq + 1) was unconstrained,

u or some other unconstrained update will be returned from Get Next To Propose (Figure 3.13, line

A7). The returned update cannot have been executed by any stable server, since by Claim 3.6.3, all

stable servers would have executed the update and global progress would have been made.

We now examine the case in which (max stable seq +1) is unconstrained at the Progress Rep,

but the new update u is not in the Unconstrained Updates data structure of the Progress Rep. We

will show that this case leads to a contradiction: since u is constraining some sequence number

in the Progress Rep’s data structures other than (max stable seq + 1), some other new update

necessarily constrains (max stable seq + 1). This implies that if (max stable seq + 1) is uncon-

strained at the Progress Rep, u must be in the Unconstrained Updates data structure. In this case,

Get Next To Propose will return either u or some other unconstrained update that has not yet been

executed by any stable server.

To aid in proving this, we introduce the following terms:

DEFINITION 3.6.7 We say that a Prepare Certificate, Proposal, or Globally Ordered Update is a

constraining entry in the Local History and Global History data structures.

DEFINITION 3.6.8 We say that a server is contiguous if there exists a constraining entry in its

Local History or Global History data structures for all sequence numbers up to and including the

sequence number of the server’s highest constraining entry.

We will now show that all correct servers are always contiguous. Since correct servers begin

with empty data structures, they are trivially contiguous when the system starts. Moreover, all Lo-

111

cal Collected Servers State and Collected Global Constraints bundles are empty until the first view

in which some server collects a constraining entry. We now show that, if a server begins a view as

contiguous, it will remain contiguous. The following lemma considers data structure modifications

made during normal case operation; specifically, we defer a discussion of modifications made to

the data structures by applying a Local Collected Servers State or Collected Global Constraints

message, which we consider below.

Lemma 3.6.40 If a correct server is contiguous before inserting a constraining entry into its data

structure that is not part of a Local Collected Servers State or Collected Global Constraints mes-

sage, then it is contiguous after inserting the entry.

Proof: There are three types of constraining entries that must be considered. We examine each in

turn.

When a correct server inserts a Prepare Certificate into either its Local History or

Global History data structure, it collects a Pre-Prepare and 2f corresponding Prepare messages.

From Figure 3.7, lines B2 - B33, a correct server ignores a Prepare message unless it has a Pre-

Prepare for the same sequence number. From Figure 3.6, line A21, a correct server sees a conflict

upon receiving a Pre-Prepare unless it is contiguous up to that sequence number. Thus, when the

server collects the Prepare Certificate, it must be contiguous up to that sequence number.

Similarly, when a server in a non-leader site receives a Proposal message with a given sequence

number, it only applies the update to its data structure if it is contiguous up to that sequence num-

ber (Figure 3.5, line A9). For those servers in the leader site, a Proposal is generated when the

THRESHOLD-SIGN protocol completes (Figure 3.11, lines D2 and D3). Since a correct server only

invokes THRESHOLD-SIGN when it collects a Prepare Certificate (line C7), the server at least has a

Prepare Certificate, which is a constraining entry that satisfies the contiguous requirement.

A correct server will only apply a Globally Ordered Update to its Global History data structure

if it is contiguous up to that sequence number (Figure 3.8, line C2).

During CONSTRUCT-ARU or CONSTRUCT-GLOBAL-CONSTRAINT, a server converts its Prepare

Certificates to Proposals by invoking THRESHOLD-SIGN, but a constraining entry still remains for

112

each sequence number that was in a Prepare Certificate after the conversion completes.

The only other time a contiguous server modifies its data structures is when it applies

a Local Collected Servers State or Collected Global Constraints message to its data structures.

We will now show that the union computed on any Local Collected Servers State or Col-

lected Global Constraints message will result in a contiguous set of constraining entries directly

above the associated invocation sequence number. We will then show that, if a contiguous server

applies the resultant union to its data structure, it will be contiguous after applying.

We begin by showing that any valid Local Collected Servers State message contains contiguous

constraining entries beginning above the invocation sequence number.

Lemma 3.6.41 If all correct servers are contiguous during a run of CONSTRUCT-LOCAL-

CONSTRAINT, then any contiguous server that applies the resultant Local Collected Servers State

message will be contiguous after applying.

Proof: A correct server sends a Local Server State message in response to a Request Local State

message containing some invocation sequence number, seq (Figure 3.18, line B7). The server in-

cludes all constraining entries directly above seq (Figure 3.21, Block A). Each Local Server State

message sent by a contiguous server will therefore contain contiguous constraining entries begin-

ning at seq + 1. The representative collects 2f + 1 Local Server State messages. By Figure 3.6

line E4, each Local Server State message collected is enforced to be contiguous. When the Lo-

cal Collected Servers State bundle is received from the representative, it contains 2f +1 messages,

each with contiguous constraining entries beginning at seq + 1. The Local Collected Servers State

message is only applied when a server’s Pending Proposal Aru is at least as high as the invocation

sequence number contained in the messages within (Figure 3.18, lines D3 - D4). Since the Pend-

ing Proposal Aru reflects Proposals and Globally Ordered Updates, the server is contiguous up to

and including the invocation sequence number when applying.

When Compute Local Union is computed on the bundle (Figure 3.7, line D2), the result must

contain contiguous constraining entries beginning at seq + 1, since it is the union of contiguous

113

messages. After applying the union, the server removes all constraining entries above the highest

sequence number for which a constraining entry appeared in the union, and thus it will still be

contiguous.

We now use a similar argument to show that any contiguous server applying a Col-

lected Global Constraints message to its data structure will be contiguous after applying:

Lemma 3.6.42 If all correct servers are contiguous during a run of GLOBAL-VIEW-CHANGE, then

any contiguous server applying the resultant Collected Global Constraints message to its data

structure will be contiguous after applying.

Proof: Using the same logic as in Lemma 3.6.41 (but using the Global History and Global aru

instead of the Local History and Pending Proposal Aru), any Global Constraint message generated

will contain contiguous entries beginning directly above the invocation sequence number contained

in the leader site’s Aru Message. The Collected Global Constraints message thus consists of a

majority of Global Constraints messages, each with contiguous constraining entries beginning di-

rectly above the invocation sequence number. When Compute Constraint Union is run (Figure

3.8, line D2), the resultant union will be contiguous. A contiguous server only applies the Col-

lected Global Constraints message if its Global aru is at least as high as the invocation sequence

number reflected in the messages therein (Figure 3.5, lines H5 - H6), and thus it is contiguous up

to that sequence number. When Compute Constraint Union is applied (Figure 3.22, Blocks E and

F) the server only removes constraining entries for those sequence numbers above the sequence

number of the highest constraining entry in the union, and thus the server remains contiguous after

applying.

We can now make the following claim regarding contiguous servers:

Claim 3.6.13 All correct servers are always contiguous.

Proof: When the system starts, a correct server has no constraining entries in its data struc-

tures. Thus, it is trivially contiguous. We now consider the first view in which any constrain-

114

ing entry was constructed. Since no constraining entries were previously constructed, any Lo-

cal Collected Servers State or Collected Global Constraints message applied during this view must

be empty. By Lemma 3.6.40, a contiguous server inserting a Prepare Certificate, Proposal, or

Globally Ordered Update into its data structure during this view remains contiguous. Thus, when

CONSTRUCT-LOCAL-CONSTRAINT or GLOBAL-VIEW-CHANGE are invoked, all correct servers are

still contiguous. By Lemma 3.6.41, any contiguous server that becomes locally constrained by

applying a Local Collected Servers State message to its data structure remains contiguous after ap-

plying. By Lemma 3.6.42, any contiguous server that becomes globally constrained by applying a

Collected Global Constraints message remains contiguous after applying. Since these are the only

cases in which a contiguous server modifies its data structures, the claim holds.

We can now return to our examination of the Get Next To Propose function to show that, if

(max stable seq + 1) is unconstrained at the Progress Rep, then some new update must be in the

Unconstrained Updates data structure of the Progress Rep.

Lemma 3.6.43 If the system is stable with respect to time T , and some stable server r in site R

receives an update u that it has not previously executed at some time T ′ > T , then if no global

progress occurs, there exists a view in which, if sequence number (max stable seq + 1) is uncon-

strained when a Progress Rep calls Get Next To Propose, u must be in the Unconstrained Updates

data structure of the Progress Rep.

Proof: Since the Progress Rep is a stable, correct server, by Claim 3.6.13, it is contiguous. This

implies that, since (max stable seq+1) is unconstrained, the Progress Rep does not have any con-

straining entry (i.e., Prepare Certificate, Proposal, or Globally Ordered Update) for any sequence

number higher than (max stable seq + 1). By Lemma 3.6.38, u must either be in the Uncon-

strained Updates data structure or as a constrained entry. It is not a constrained entry, since the

Progress Rep has a Global aru of max stable seq and has not executed u (since otherwise progress

would have been made). Thus, u must appear in the Unconstrained Updates data structure.

115

Corollary 3.6.44 If the system is stable with respect to time T , and some stable server r in site

R receives an update u that it has not previously executed at some time T ′ > T , then if no

global progress occurs, there exists an infinite set of views in which, if the Progress Rep invokes

Get Next To Propose, it will return an update u that has not been executed by any stable server.

Proof: Follows immediately from Lemmas 3.6.39 and 3.6.43.

Corollary 3.6.44 implies that there exists a view in which a Progress Rep will invoke ASSIGN-

SEQUENCE with an update that has not been executed by any stable server, since it does so when

Get Next To Propose does not return NULL. We now show that there exists an infinite set of global

views in which ASSIGN-SEQUENCE will complete in some bounded finite time.

Lemma 3.6.45 If global progress does not occur, and the system is stable with respect to time T ,

then there exists an infinite set of views in which, if a stable server invokes ASSIGN-SEQUENCE

when Global seq = seq, then ASSIGN-SEQUENCE will return Proposal with sequence number seq

in finite time.

Proof: From Lemma 3.6.27, there exists a view (gv, lv) where a stable representative, r, in

the leader site S has Global Constraint(gv) messages from a majority of sites. Server r will send

construct and send a Collected Global Constraints(gv) to all stable servers in S. The servers become

globally constrained when they process this message. From Lemma 3.6.29, all stable servers in S

will become locally constrained. To summarize, there exists a view (gv, lv) in which:

1. Stable representative r has sent Collected Global Constraints

and a Local Collected Servers State message to all stable servers. This message arrives at

all stable servers in one local area message delay.

2. All stable servers in S have processed the constrain collections sent by the representative,

and, therefore, all stable servers in S are globally and locally constrained.

We now proceed to prove that ASSIGN-SEQUENCE will complete in a finite time in two steps.

First we show that the protocol will complete if there are no conflicts when the stable servers process

the Pre-Prepare message from r. Then we show that there will be no conflicts.

116

When r invokes ASSIGN-SEQUENCE, it sends a Pre-Prepare(gv, lv, seq, u) to all servers in site

S (Figure 3.11, line A2). All stable servers in S will receive this message in one local area message

delay. When a non-representative stable server receives a Pre-Prepare message (and there is no

conflict), it will send a Prepare(gv, lv, seq, u) message to all servers in S (line B3). Therefore,

since there are 2f stable servers that are not the representative, all stable servers in S will receive

2f Prepare messages and a Pre-Prepare message for (gv, lv, seq, u) (line C3). This set of 2f + 1

messages forms a Prepare-Certificate(gv, lv, seq, u), pc. When a stable server receives pc, it invokes

THRESHOLD-SIGN on an unsigned Proposal(gv, lv, seq, u) message (line C7). By Claim 3.6.5,

THRESHOLD-SIGN will return a correctly threshold signed Proposal(gv, lv, seq, u) message to all

stable servers.

Now we must show that there are no conflicts when stable servers receive the Pre-Prepare mes-

sage from r. Intuitively, there will be no conflicts because the representative of the leader site

coordinates the constrained state of all stable servers in the site. To formally prove that there will

not be a conflict when a stable server receives a Pre-Prepare(gv, lv, seq, u), preprep from r, we

consider block A of Figure 3.6. We address each case in the following list. We first state the con-

dition that must be true for there to be a conflict, then, after a colon, we state why this case cannot

occur.

1. not locally constrained or not globally constrained: from the above argument, all servers are

locally and globally constrained

2. preprep is not from r: in our scenario, r sent the message

3. gv &= Global view or lv &= Local view: all servers in site S are in the same local and global

views

4. There exists a Local History[seq].Pre-Prepare(gv, lv, seq, u′), where u′ &= u: If there are two

conflicting Pre-Prepare messages for the same global and local views, then the representative

at the leader site must have generated both messages. This will not happen, because r is a

correct server and will not send two conflicting Pre-Prepares.

117

5. There exists either a Prepare-Certificate(gv, lv, seq, u′) or a Proposal(gv, lv, seq, u′)

in Local History[seq], where u′ &= u: A correct representative makes a single Lo-

cal Collected Servers State message, lcss. All stable servers become locally constrained by

applying lcss to their local data structures. Block D of Figure 3.7 shows how this message is

processed. First, the union is computed using a deterministic function that returns a list of Pro-

posals and Prepare-Certificates having unique sequence numbers. The union also contains the

invocation aru, the aru on which it was invoked. On Lines D5 - D11, all Pre-Prepares, Prepare-

Certificates, and Proposals with local views < lv (where lv is the local view of both the server

and the Local Collected Servers State message) are removed from the Local History. Since

no Pre-Prepares have been created in (gv, lv), no Prepare-Certificates or Proposals exist with

higher local views than lv. Then, on D12 - D17, all Proposals and Prepare-Certificates in the

union are added to the Local History. Since all stable servers compute identical unions, these

two steps guarantee that all stable servers will have identical Local History data structures

after they apply lcss. A correct representative will never invoke ASSIGN-SEQUENCE such

that it sends Pre-Prepare(*, *, seq′, *) where seq′ ≤ the invocation aru. Therefore, when r

invokes ASSIGN-SEQUENCE, it will send a Pre-Prepare(gv, lv, seq, u) that doesn’t conflict

with the Local History of any stable server in S.

6. There exists either a Proposal(gv, lv, seq, u′) or a Globally Ordered Update(gv, lv, seq, u′)

in Global History[seq], where u′ &= u: A correct representative makes a single Col-

lected Global Constraints message, cgc. All stable servers become globally constrained by

applying cgc to their global data structures. Block D of Figure 3.8 shows how this message

is processed. First, the union is computed using a deterministic function that returns a list

of Proposals and Globally Ordered Updates having unique sequence numbers. The union

also contains the invocation aru, the aru on which GLOBAL-VIEW-CHANGE was invoked. On

Lines D5 - D9, all Prepare-Certificates and Proposals with global views < gv (where gv is

the local view of both the server and the Collected Global Constraints message) are removed

from the Global History. Any Pre-Prepares or Proposals that have global views equal to gv

118

must also be in the union and be consistent with the entry in the union. Then, on D10 - D14,

all Proposals and Globally Ordered Updates in the union are added to the Global History.

Since all stable servers compute identical unions, these two steps guarantee that all stable

servers will have identical Global History data structures after they apply cgc. A correct rep-

resentative will never invoke ASSIGN-SEQUENCE such that it sends Pre-Prepare(*, *, seq′, *)

where seq′ ≤ the invocation aru. Therefore, when r invokes ASSIGN-SEQUENCE, it will send

a Pre-Prepare(gv, lv, seq, u) than doesn’t conflict with the Global History of any stable server

in S.

7. The server is not contiguous up to seq: A correct server applies the same Lo-

cal Collected Servers State and Collected Global Constraints messages as r. Therefore, as

described in the previous two cases, the correct server has the same constraints in its Lo-

cal History and Global History as r. By Lemma 3.6.13, all correct servers are contiguous.

Therefore, there will never be a conflict when a correct server receives an update from r that

is one above r’s Global aru.

8. seq is not in the servers window: If there is no global progress, all servers will reconcile up

to the same global sequence number, max stable seq. Therefore, there will be no conflict

when a correct server receives an update from r that is one above r’s Global aru.

9. There exists a constraint binding update u to seq′ in either the Local History or

Global History: Since a correct server applies the same Local Collected Servers State and

Collected Global Constraints messages as r, the correct server has the same constraints in its

Local History and Global History as r. Representative r will send a Pre-Prepare(*, *, seq, u)

where either (1) u is in r’s unconstrained update pool or (2) u is constrained. If u is con-

strained, then from Lemmas 3.6.34, 3.6.35, and 3.6.36 the u must be bound to seq at both r

and the correct server. This follows because two bindings (seq, u) and (seq′, u) cannot exist

in any correct server.

We have shown that a Pre-Prepare sent by r will not cause a conflict at any stable server. This

119

follows from the fact that the local and global data structures of all stable servers will be in the

same state for any sequence number where r sends Pre-Prepare(gv, lv, seq, u), as shown above.

Therefore, Prepare messages sent by stable servers in response to the first Pre-Prepare message sent

by r in (gv, lv) will also not cause conflicts. The arguments are parallel to those given in detail in

the above cases.

We have shown that Pre-Prepare and Prepare messages sent by the stable servers will not cause

conflicts when received by the stable servers. We have also shown that ASSIGN-SEQUENCE will

correctly return a Proposal message if this is true, proving Lemma 3.6.33.

Having shown that ASSIGN-SEQUENCE will complete in a finite amount of time, we now show

that the stable non-leader sites will construct Accept messages in a finite time. Since Claim 3.6.5

states that THRESHOLD-SIGN completes in finite time if all stable servers invoke it on the same

message, we must simply show that all stable servers will invoke THRESHOLD-SIGN upon receiving

the Proposal message generated by ASSIGN-SEQUENCE.

Lemma 3.6.46 If the system is stable with respect to time T and no global progress occurs, then

there exists an infinite set of views (gv, lv) in which all stable servers at all non-leader sites invoke

THRESHOLD-SIGN on a Proposal(gv, *, seq, u).

Proof: We consider the global views in which all stable servers have already reconciled their

Global aru to max stable seq and in which a Progress Rep exists. By Corollary 3.6.44, the

Progress Rep will invoke ASSIGN-SEQUENCE when Global seq is equal to max stable seq + 1.

By Lemma 3.6.45, there exists an infinite set of views in which ASSIGN-SEQUENCE will return a

Proposal in bounded finite time. By Claim 3.6.10, there exists a view in which the Progress Rep

has enough time to send the Proposal to a stable representative in each stable non-leader site.

We must show that all stable servers in all stable non-leader sites will invoke THRESHOLD-

SIGN on an Accept message upon receiving the Proposal. We first show that no conflict will

exist at any stable server. The first two conflicts cannot exist (Figure 3.5, lines A2 and A4), be-

cause the stable server is in the same global view as the stable servers in the leader site, and

120

the server is in a non-leader site. The stable server cannot have a Globally Ordered Update in

its Global History data structure for this sequence number (line A6) because otherwise it would

have executed the update, violating the definition of max stable seq. The server is contiguous up

to (max stable seq + 1) (line A9) because its Global aru is max stable seq and it has a Glob-

ally Ordered Update for all previous sequence numbers. The sequence number is in its window

(line A11) since max stable seq < (max stable seq + 1) ≤ (max stable seq + W).

We now show that all stable servers will apply the Proposal to their data structures. From

Figure 3.8, Block A, the server has either applied a Proposal from this view already (from some

previous representative), in which case it would have invoked THRESHOLD-SIGN when it applied

the Proposal, or it will apply the Proposal just received because it is from the latest global view. In

both cases, all stable servers have invoked THRESHOLD-SIGN on the same message.

Finally, we can prove L1 - GLOBAL LIVENESS:

Proof: By Claim 3.6.3, if no global progress occurs, then all stable servers eventually reconcile

their Global aru to max stable seq. We consider those views in which this reconciliation has

completed. By Lemma 3.6.32, there exists an infinite set of views in which all stable servers become

globally and locally constrained within a bounded finite time ∆lc of the election of the second stable

representative serving for at least a local timeout period (i.e., the Progress Rep). After becoming

globally and locally constrained, the Progress Rep calls Get Next To Propose to get an update to

propose for global ordering (Figure 3.12, line A4). By Corollary 3.6.44, there exists an infinite

set of views in which, if some stable server receives an update that it has not previously executed

and no global progress has otherwise occurred, Get Next To Propose returns an update that has

not previously been executed by any stable server. Thus, the Progress Rep will invoke ASSIGN-

SEQUENCE (Figure 3.12, line A6).

By Lemma 3.6.33, some Progress Rep will have enough time to globally order the new update if

ASSIGN-SEQUENCE and THRESHOLD-SIGN complete in bounded time (where THRESHOLD-SIGN

is invoked both during ASSIGN-SEQUENCE and at the non-leader sites upon receiving the Proposal).

By Lemma 3.6.45, ASSIGN-SEQUENCE will complete in bounded finite time, and by Lemma 3.6.46,

121

THRESHOLD-SIGN will be invoked by all stable servers at the non-leader sites. By Claim 3.6.5,

THRESHOLD-SIGN completes in bounded finite time in this case. Thus, the Progress Rep will glob-

ally order the update for sequence number (max stable seq + 1). It will then execute the update

and make global progress, completing the proof.

3.7 Steward Summary

This chapter presented a hierarchical architecture that enables efficient scaling of Byzantine

replication to systems that span multiple wide-area sites, each consisting of several potentially ma-

licious replicas. The architecture reduces the message complexity on wide-area updates, increasing

the system’s scalability. By confining the effect of any malicious replica to its local site, the ar-

chitecture enables the use of a benign fault-tolerant algorithm over the WAN, increasing system

availability. Further increase in availability and performance is achieved by the ability to process

read-only queries within a site.

We implemented Steward, a fully functional prototype that realizes our architecture, and evalu-

ated its performance over several network topologies. The experimental results show considerable

improvement over flat Byzantine replication algorithms, bringing the performance of Byzantine

replication closer to existing benign fault-tolerant replication techniques over WANs.

122

Chapter 4

Customizable Fault Tolerance for
Wide-Area Replication

This chapter presents the composable architecture, a customizable Byzantine fault-tolerant state

machine replication architecture for wide-area networks. The composable architecture is designed

for the same wide-area environments as Steward, and provides similar scalability to Steward. It

improves upon Steward by offering superior customizability and simplicity. The work presented in

this chapter was done in collaboration with Yair Amir, Brian Coan, and Jonathan Kirsch.

4.1 Composable Architecture Overview

This chapter presents the first scalable wide-area replication system that (1) achieves high per-

formance through the efficient use of wide-area bandwidth and (2) allows customization of the fault

tolerance approach used within and among the local-area sites. The composable architecture uses

the state machine (SM) approach [13, 43] to transform the physical machines in each site into a

logical machine (LM), and the logical machines run a wide-area protocol.

Using the state machine approach to build logical machines is a well-known technique for

cleanly separating the protocol used to implement the logical machine from the protocol running on

top of it. Representative systems include Voltan [46], Immune [52], BASE [69], Starfish [47], and

Thema [48], which are described in more detail in Chapter 2. The state machine approach affords

free substitution of the fault tolerance method used in each site and in the wide-area replication

protocol, allowing a Byzantine or benign fault-tolerant protocol to be selected depending on system

requirements and perceived risks. Thus, the system is composable with respect to the protocols run

123

within and among the sites.

All previous Byzantine fault-tolerant SM-based logical machine abstractions send messages

redundantly in order to guarantee reliable communication in the presence of malicious protocol par-

ticipants. Typically, to prevent malicious servers from blocking the message transmission, at least

f + 1 servers in the sending LM will each send to f + 1 servers in the receiving LM, where f is

the number of potential faults in each LM.1 While this strategy works well on local-area networks,

where bandwidth is plentiful, it is impractical for replication systems that must send many messages

over wide-area links. In our experience, it is wide-area bandwidth and not computational constraints

that limits the performance of well-engineered wide-area replication systems. To address this weak-

ness, we present BLink, the first Byzantine fault-tolerant communication protocol that guarantees

efficient wide-area communication between logical machines. BLink is specifically designed for

use in systems where (1) the physical machines comprising an LM are located in a LAN that pro-

vides low-latency, high-bandwidth communication, and (2) the LMs are located in different LANs,

and are connected by high-latency, low-bandwidth links. BLink usually requires only one physical

message to be sent over the wide-area network for each message sent by the logical machine.

As explained in Chapter 1, Steward [16], shares some similarities with the composable architec-

ture presented in this chapter. Specifically, both systems use a hierarchical logical machine archi-

tecture and provide high performance by efficiently utilizing wide-area bandwidth. However, they

use fundamentally different techniques to construct their logical machines. The servers comprising

each LM in the composable architecture totally order all events that cause a state transition in the

protocol running on top of them (i.e., updates, acknowledgements, and wide-area timeouts), and

execute these events in the same order.2 This contrasts with the approach taken in Steward, where

the wide-area protocol makes state transitions based on unordered events. As a result, in Steward,

the protocols running within the sites and those running among the sites are interdependent and
1It may be possible to use a peer-based protocol in which each of 2f + 1 servers sends to a unique peer.

To the best of our knowledge, no existing system uses this method, except for Steward [16] (see Chapter 3),
which uses it sparingly to send global view change messages.

2An optimization in the protocol used to forward updates to the leader LM allows the updates to pass
through a non-leader LM unordered. These updates are ordered by the leader LM, as described in Section
4.5.

124

cannot be separated. Consequently, the fault tolerance approach within and among the sites cannot

be customized. Since Steward runs a benign fault-tolerant wide-area protocol, it cannot survive a

site compromise. It was this deficit in particular, coupled with Steward’s lack of customizability,

that led us to develop the composable architecture.

To mitigate the high cost of the additional ordering required by the state machine approach, the

composable architecture uses two optimizations. First, we amortize the computational costs associ-

ated with digital signatures within the LM ordering protocol using known aggregation techniques.

Second, we use a Merkle tree [70] mechanism to amortize the cost of threshold signatures while pro-

ducing a self-contained, threshold-signed wide-area message. Amortizing optimizations enable an

LM to process and send on the order of a thousand wide-area messages per second, preventing LM

throughput from limiting overall performance. State machine based LMs augmented with BLink

and the Merkle tree optimization have precisely the necessary properties to build a customizable

fault-tolerant replication system without sacrificing performance.

The contributions made by the our work on the composable architecture are:

1. It presents a new hierarchical replication architecture for wide-area networks that combines

high performance and customizability of the fault tolerance approach used within each site

and among the sites. Using a Byzantine fault-tolerant protocol on the wide area protects

against site compromises and offers fundamentally stronger security guarantees than our pre-

vious system.

2. It presents a new Byzantine fault-tolerant protocol, BLink, that guarantees efficient wide-area

communication between logical machines, each of which is constructed from several non-

trusted entities, such that messages usually require one send over the wide-area network. The

use of BLink increases performance by over an order of magnitude in comparison to an SM-

based logical machine approach that uses previous communication protocols, which require

at least 2f + 1, and typically (f + 1)2, redundant sends.

3. It shows that by using optimizations that amortize the computational cost of the logical ma-

chine ordering, the composable architecture achieves high performance, outperforming the

125

Steward system by a factor of 4 when running a composition with the same level of fault

tolerance.

We compare four possible compositions of the architecture, plus the Steward architecture, over

emulated wide-area networks. The experiments show that the composable architecture that runs

a wide-area benign fault-tolerant protocol and Byzantine local-area protocols within each site has

performance that is 4 fold better than the original Steward architecture, which was the previous

state of the art. The composable architecture achieves 12 percent lower performance than a new

version of Steward that we developed for comparison that uses similar amortizing optimizations.

This performance difference is the cost of providing clean separation and customizability. We also

benchmarked a Byzantine over Byzantine composition, which provides fundamentally stronger fault

tolerance than Steward, since Steward cannot survive a site compromise. While the systems are not

strictly comparable because they offer different guarantees, the Byzantine over Byzantine composi-

tion performs 3 times better than the original Steward and achieves 35 percent lower performance

than the new version of Steward that uses amortizing optimizations.

4.2 System Model and Service Guarantees

Servers are organized into wide-area sites; each site has a unique identifier known to all servers.

Each server belongs to one site and has a unique identifier within that site. The network may par-

tition into multiple disjoint components, each containing one or more sites. During a partition,

servers from sites in different components are unable to communicate with each other. Compo-

nents may subsequently re-merge. We can use a state transfer mechanism (as in [53]) or an update

reconciliation mechanism (as in [71]) to reconcile states after a merge.

The free substitution property afforded by using SM-based logical machines allows our archi-

tecture to support a rich configuration space. Each site can employ either a Byzantine or a benign

fault-tolerant SM replication protocol to implement its LM, and the system can run either a benign

fault-tolerant or a Byzantine fault-tolerant wide-area protocol. We classify both servers and sites as

either correct or faulty (benign or Byzantine). A correct server adheres to its protocol specification.

A benign faulty server can crash but otherwise adheres to the protocol. A Byzantine server can

126

deviate from its protocol specification in an arbitrary way.

In what follows, we assume that Paxos is used as our benign fault-tolerant protocol and BFT

is used as our Byzantine fault-tolerant protocol. Different protocol choices may require differ-

ent assumptions (e.g., some Byzantine fault-tolerant protocols require a smaller fraction of faulty

servers). A site running Paxos locally is benign faulty if more than f servers in the site are benign

faulty, where the site has 2f + 1 servers. A site running Paxos locally is Byzantine faulty if at least

one server is Byzantine. Otherwise, the site is correct. A site running BFT is Byzantine faulty if

more than f servers in the site are Byzantine, where the site has 3f + 1 servers; otherwise the site

is correct. When run on the wide area, Paxos can tolerate F benign faulty sites, where there are

2F + 1 sites, but cannot tolerate a single Byzantine site; BFT can tolerate F Byzantine sites, where

there are 3F + 1 sites. 3

Clients introduce updates into the system by communicating with the servers in their local site.

Each update is uniquely identified by a pair consisting of the identifier of the client that generated

the update and a unique, monotonically increasing sequence number. We say that a client proposes

an update when the client sends the update to a server in the local site. A client receives a reply

to its update after the update has been globally ordered and executed. Clients propose updates

sequentially: a client, c, may propose an update with sequence number ic + 1 only after it receives

a reply for an update with sequence number ic. A client retransmits its last update if no reply

is received within a timeout period. Clients may be faulty; updates from faulty clients will be

replicated consistently. Access control techniques can be used to restrict the impact of faulty clients.

We employ digital signatures, and we make use of a cryptographic hash function to compute

message digests. We assume that all adversaries are computationally bounded such that they cannot

subvert these cryptographic mechanisms. When BFT is deployed within a site, the servers in that

site use an (f + 1, 3f + 1) threshold digital signature scheme [56]. Each site has a public key,

and each server receives a share with the corresponding proof that can be used to demonstrate the

validity of the server’s partial signatures. We assume that threshold signatures are unforgeable
3We use capital F to denote the number of faulty sites that the wide-area protocol can tolerate and lower-

case f to denote the number of faulty servers that the local-area protocol can tolerate.

127

without knowing f + 1 or more shares. We assume each server knows (1) the public keys of the

other servers in its site, (2) the public keys for each of the other sites (used to verify threshold-signed

messages), and (3) the public keys of all clients.

Our system achieves replication via the state machine approach, establishing a global, total order

on client updates in the wide-area protocol. Each server executes an update with global sequence

number i when it applies the update to its state machine. A server executes update i only after

having executed all updates with a lower sequence number.

Our replication system provides the following two safety conditions:

DEFINITION 4.2.1 S1 - SAFETY: If two correct servers execute the ith update, then these updates

are identical.

DEFINITION 4.2.2 S2 - VALIDITY: Only an update that was proposed by a client may be exe-

cuted.

When running Paxos on the wide area, these safety conditions hold as long as no site is Byzan-

tine. When running BFT on the wide area, the conditions hold as long as no more than F sites

are Byzantine. We refer to these conditions as the fault assumptions needed for safety. Since no

asynchronous, fault-tolerant replication protocol tolerating even one failure can always be both safe

and live [63], we provide liveness under certain synchrony conditions. We first define the following

terminology and then specify our liveness guarantee:

• Two servers are connected or a client and server are connected if any message that is sent

between them will arrive in a bounded time. The protocol participants need not know this

bound beforehand.

• Two sites are connected if every correct server in one site is connected to every correct server

in the other.

• A client is connected to a site if it can communicate with all correct servers in that site.

128

• A site is stable with respect to time T if there exists a set, S, of c servers within the site (with

c = 2f + 1 for sites tolerant to Byzantine failures and c = f + 1 for sites tolerant to benign

failures), where, for all times T ′ > T , the members of S are (1) correct and (2) connected.

We call the members of S stable servers.

• Let F be the maximum number of sites that may be faulty. The system is stable with respect

to time T if there exists a set, W , of r wide-area sites (with r = F + 1 when sites may

exhibit benign failures and r = 2F + 1 when sites may be Byzantine) where, for all times

T ′ > T , the sites in W are (1) stable with respect to T and (2) connected. We call W the

STABLE-CONNECTED-SITES.

DEFINITION 4.2.3 L1 - GLOBAL LIVENESS: If the system is stable with respect to time T and

the fault assumptions needed for safety are met, then if, after time T , a stable server in the STABLE-

CONNECTED-SITES receives an update which it has not executed, then that update will eventually

be executed by all stable servers in the STABLE-CONNECTED-SITES.

4.3 Customizable Replication System Architecture

In our composable architecture, the physical machines in each site implement a logical machine

by running a local state machine replication protocol [13, 43]. We then run a state machine replica-

tion protocol on top of these logical machines, among the sites. Using SM-based logical machines

is an established technique for cleanly separating the implementation of the LM from the protocol

running on top of it. Our architecture leverages the flexibility afforded by this technique, allowing

one to customize the protocol and type of fault tolerance desired, both within each LM and among

the LMs. Further, we can use the known safety proof for the wide-area protocol (when run among

single machines), together with one for the local SM replication protocol, to trivially prove safety for

the composition. The liveness proof is more complicated, but much simpler than what is necessary

when the wide-area and local-area protocols are interdependent. See Section 4.8 for a more formal

discussion of the safety and liveness properties. In the remainder of this section, we first review

how we use the SM approach to build our logical machines, and then present several compositions

129

of our architecture.

Implementing Logical Machines: The wide-area replication protocol running on top of our

LMs runs just as it would if it were run among a group of single machines, each located in its own

site. Each LM sends the same types of wide-area messages and makes the same state transitions as

would a single machine running the wide-area replication protocol. To support this abstraction, the

physical machines in each site use an agreement protocol to totally order all events (messages and

timeouts) that cause state transitions in the wide-area protocol. The physical machines then execute

the events in the agreed upon order. Thus, the LM conceptually executes a single stream of wide-

area protocol events. The LMs communicate using BLink to avoid sending redundant wide-area

messages.

The SM approach assumes that all events are deterministic. As a result, we must prevent the

physical machines from diverging in response to non-deterministic events. For example, although

the physical machines within a site may fire a local timeout asynchronously, they must not act on

the timeout until its order is agreed upon. We use a technique similar to BASE [69] to handle

non-deterministic events. To implement an LM timeout when a Byzantine fault-tolerant agreement

protocol is used, each server in the site sets a local timer, and when this timer expires, it sends a

signed message to the leader of the agreement protocol. The leader waits for f +1 signed messages

proving that the timer expired at at least one correct server and then orders a logical timeout message

(containing this proof).

Outgoing wide-area messages carry an RSA signature [59]. When a logical machine is imple-

mented with a benign fault-tolerant protocol, the message carries a standard RSA signature. When

running a Byzantine fault-tolerant local protocol, the physical machines within the site generate an

RSA threshold signature, attesting to the fact that f + 1 servers agreed on the message. This pre-

vents malicious servers within a site from forging a message. Moreover, outgoing messages carry

only a single RSA (threshold) signature, saving wide-area bandwidth. Our architecture amortizes

the high cost of threshold cryptography over many outgoing messages. We use a technique similar

to Steward to prevent malicious servers from disrupting the threshold signature protocol.

Protocol Compositions: The free substitution property of our architecture makes it extensible,

130

Figure 4.1: An example composition of four logical machines, each comprising several physical
machines. The LMs receive wide-area protocol messages via BLink, which passes these messages
to the local-area ordering protocol (an independent instance of either Paxos or BFT). The local-area
protocol passes locally ordered messages up to the wide-area protocol (a single global instance of
BFT), which executes them immediately. If a state transition causes the wide-area protocol to send
a message, the LM generates a threshold signed message and passes it to Blink, which reliably
transmits it to the destination logical machine.

allowing one to use any of several existing state of the art replication protocols, both within each

site and on the wide area. In this paper, we focus on four compositions of our architecture, using

two well known, flat replication protocols: Paxos [18, 29] as our benign fault-tolerant protocol, and

BFT [10] as our Byzantine fault-tolerant replication protocol. We refer to compositions as wide-

area protocol/local-area protocol. For example, we refer to a composition which runs BFT on the

wide area and Paxos on the local area as BFT/Paxos.

Figure 4.1 shows a representative system having four logical machines, each running an inde-

pendent local ordering protocol. The logical machines run a single instance of BFT on the wide-area

to globally order client updates. Each LM can be configured with any number of physical machines.

Since the wide-area protocol is BFT, the system can withstand a site compromise, which occurs

when more than f servers in the site are faulty.

We conclude by providing an example of Paxos/BFT that traces the flow of a client update

through the system during normal-case operation. First, a client sends an update to a server in its

own site, which forwards the update to the leader site (i.e., the site coordinating the Paxos wide-area

protocol). Client updates are sent from a local server to the leader site using a separate protocol,

which is described in Section 4.5. The leader site LM uses BFT (requiring three local communi-

cation rounds), to locally order the message event corresponding to the reception of the update by

the LM. The LM generates a wide-area proposal message, binding a global sequence number to the

update. The message is then threshold signed by the leader site LM via a one-round protocol. The

131

threshold-signed proposal is then sent (using BLink) to the other sites. Each non-leader LM orders

the incoming proposal, generates an acknowledgement (accept) message for the proposal, and then

sends the acknowledgement (using BLink) to the other LMs. Each LM then orders the reception of

the accept message. When the proposal and a majority of accepts are collected, the LM globally

orders the client update, completing the protocol. We observe that the protocol consists of many

rounds, most of which are associated with ordering incoming messages; this is the price to achieve

protocol separation.

4.4 The BLink Protocol

To achieve high performance over the low-bandwidth links characteristic of wide-area networks,

our architecture requires an efficient mechanism for passing messages between logical machines.

As described in Section 4.3, each LM is implemented by a replicated group of physical machines,

some of which may be faulty. Faulty servers may fail to send, receive, and/or disseminate wide-

area messages. Existing protocols that use state machine based logical machines (e.g., [46, 48,

52]) overcome this problem by redundantly sending all messages between logical machines. For

example, in a system tolerating f faults, each of f + 1 servers in the sending LM might send the

outgoing message to f + 1 servers in the receiving LM. While this overhead may be acceptable in

high-bandwidth LANs or systems supporting a small number of faults, the approach (or even one

with O(f) overhead) is poorly suited to large-scale wide-area deployments.

Steward [16] avoids sending redundant messages during normal-case operation by choosing

one server (the site representative) to send outgoing messages. Steward employs a coarse-grained

mechanism to monitor the performance of the representative, using a lack of global progress to

signal that the representative may be acting faulty and should be replaced. This approach has two

undesired consequences: timeouts for detecting faulty behavior can be significantly higher than they

need to be, and the communication protocol is (1) not generic and (2) tightly coupled with global

and local protocols, making it unusable in our customizable architecture.

In this section we present the Byzantine Link protocol (BLink), a new Byzantine fault-tolerant

protocol that allows logical machines to efficiently communicate with each other over the wide-area

132

Figure 4.2: A logical link in the (Byzantine,
Byzantine) case is constructed from (3FA +1) ·
(3FB + 1) virtual links. Each virtual link con-
sists of a forwarder and a peer. At any time,
one virtual link is used to send messages on the
logical link. A virtual link that is diagnosed as
potentially faulty is replaced.

Figure 4.3: An example BLink logical link and
selection order, with FA = FB = 1. Numbers
refer to server identifiers. Boxed servers are
faulty, and their associated virtual links can be
blocked by the adversary. The selection order
defines four series, each containing four virtual
links. The order repeats after cycling through
all four series.

network, regardless of the protocols they are running.4 BLink consists of several sub-protocols;

the sub-protocol deployed between the sending and the receiving logical machines is based on

the fault tolerance method employed in each site: (benign, benign), (Byzantine, benign), (benign,

Byzantine), and (Byzantine, Byzantine). We first focus on the most challenging case, where each

LM runs a Byzantine fault-tolerant protocol. We then describe the other sub-protocols in Section

4.4.2.

4.4.1 (Byzantine, Byzantine) Sub-protocol

BLink establishes a reliable communication link between two LMs using three techniques. The

first technique provides a novel way of delegating the responsibility for wide-area communication

such that (1) messages are normally sent only once and (2) the adversary is unable to repeatedly

block communication between two logical machines. The second technique leverages the power

of threshold cryptography and state machine replication to allow the servers in the sending LM to

monitor the behavior of the link and take action if it appears to be faulty. The third technique ensures

fairness by preventing the adversary from starving any particular link.

Delegating Communication Responsibility: BLink constructs a set of logical links from each

LM to its neighboring LMs. These logical links are reliable, masking faulty behavior at both the

sending and receiving LMs. To support this abstraction, BLink defines a set of virtual links, each
4The term “link” refers to the logical communication link established between LMs. In particular, BLink

operates over UDP.

133

consisting of one server (the forwarder) from the sending LM and one server (the peer) from the

receiving LM. The servers on a virtual link form a (forwarder, peer) pair. The forwarder sends

outgoing wide-area messages to the peer, and the peer disseminates incoming messages to the other

servers in the receiving LM. The BLink logical link is shown in Figure 4.2.

For each outgoing logical link, the sending LM delegates communication responsibility to the

forwarder of one of its virtual links. This decision is made independently for each outgoing logical

link; different servers may act as forwarder on different logical links, and the same server may act as

forwarder on multiple logical links. Since either the forwarder or the peer may be faulty, the other

servers within the sending LM monitor the performance of the virtual link and move to the next

virtual link (electing the next forwarder) if the current forwarder is not performing well enough (we

define this notion more precisely below).

The properties of the logical link are based on (1) how one defines the set of virtual links that

compose the logical link and (2) the order through which the sending LM proceeds through the

virtual links in this set. We consider the logical link between two logical machines, LMA and

LMB , with fA ≥ fB. In our construction, the set of virtual links in each logical link is simply the

set of all A′ · B′ possible virtual links constructed by choosing a server in LMA and a server in

LMB . We define a selection order for virtual links as an infinite sequence 〈v0, . . . 〉 of virtual links;

the LM cycles through the set of virtual links according to this sequence.

We now describe the selection order used by our logical links. In what follows, LCM(x, y)

denotes the least common multiple of x and y, and GCD(x, y) denotes the greatest common divisor

of x and y. We define A′ series of virtual links, each series indexed by s ∈ {0, . . . , A′ − 1}. Within

each series, there are LCM(A′, B′) virtual links, with each virtual link in the series indexed by

i ∈ {0, . . . ,LCM(A′, B′) − 1}. We denote virtual link i in series s as Ls,i and define it to connect

the server in LMA with server id i + s mod A′ to the server in LMB with server id i mod B′. We

say that Ls,i = Lt,j if the two virtual links connect the same pair of servers. Our construction uses

the following selection order P :

v0≤i = L&i/ LCM(A′,B′)',i mod LCM(A′,B′)

134

Thus, our protocol selects virtual links by taking series in ascending numerical order modulo A′,

starting with series 0, and within each series taking the virtual links in ascending numerical order.

Figure 4.3 depicts an example with two logical machines, each with four servers, one of which may

be faulty. The selection order defines four series, each with four virtual links. Note that the servers

in LMB wrap around modulo 4, while the servers in LMA “shift” by one position from one series

to the next.

We state the following properties regarding the selection order P (proofs are provided in Section

4.4.3):

PROPERTY 4.4.1 ∀s∀i∀j #=i if s ∈ {0, . . . , A′ − 1} and i, j ∈ {0, . . . ,LCM(A′, B′) − 1}, then

Ls,i &= Ls,j . In other words, each series consists of LCM(A′, B′) distinct virtual links.

PROPERTY 4.4.2 ∀s∀t#=s∀i∀j , where s, t ∈ {0, . . . , A′−1} and i, j ∈ {0, . . . ,LCM(A′, B′)−1},

if s &≡ t (mod GCD(A′, B′)) then Ls,i &= Lt,j . In other words, if the indices of two series s and

t are not congruent modulo GCD(A′, B′), then s and t contain disjoint sets of virtual links.

PROPERTY 4.4.3 For all s, the set S = {s mod A′, . . . , (s+GCD(A′, B′)−1) mod A′} of series

contains A′ · B′ disjoint virtual links. In other words, proceeding through any set of GCD(A′, B′)

consecutive series cycles through the set of all virtual links.

Given Properties 4.4.1 - 4.4.3, we prove the following claim about the ratio of correct virtual

links (i.e., virtual links where both forwarder and peer are correct) to faulty links:

Claim 4.4.1 In the (Byzantine, Byzantine) sub-protocol, the selection order P consists of consecu-

tive blocks of A′ · B′ virtual links, and in each block the fraction of correct virtual links is at least

4/9.

Proof: In the (Byzantine, Byzantine) case, we have two logical machines, LMA and LMB, where

LMA has A′ = 3fA + 1 servers, and LMB has B′ = 3fB + 1 servers. By construction, each block

consists of GCD(A′, B′) consecutive series modulo A′ and hence Property 4.4.3 applies to each

135

block. Consider any block. By Property 4.4.3, all A′ · B′ possible distinct virtual links are used

exactly once in the block.

Assume that fA servers in LMA are faulty and fB servers in LMB are faulty. There are

fA(3fB + 1) virtual links that have a faulty server from LMA. There are fB(3fA + 1) virtual

links that have a faulty server from LMB . There are fAfB virtual links that have both a faulty

server from LMA and a faulty server from LMB . Taking into account the virtual links with two

faulty servers, there are fA(3fB + 1) + fB(3fA + 1) − fAfB virtual links with at least one faulty

server. Let b be the fraction of virtual links with at least one faulty server. Then:

b =
fA(3fB + 1) + fB(3fA + 1) − fAfB

(3fA + 1)(3fB + 1)

=
5fAfB + fA + fB

9fAfB + 3fA + 3fB + 1

≤ 5/9

This completes the proof.

In addition to the ratio of correct virtual links to faulty virtual links, we are also interested in

the maximum number of consecutive faulty links through which the LM must cycle before reaching

a correct virtual link. We refer to this value as V Lmax. In Section 4.4.3, we show that V Lmax is

bounded at 2fA.

Reliability and Monitoring: BLink uses threshold-signed, cumulative acknowledgements to

ensure reliability. Each message sent on an outgoing logical link is assigned a link-specific se-

quence number. Assigning these sequence numbers consistently is simple, since outgoing messages

are generated in response to events totally-ordered by the LM and can be sequenced using this to-

tal order. Each LM periodically generates a threshold-signed acknowledgement message, which

contains, for each logical link, the sequence number through which the LM has received all previ-

ous messages. The generation of the acknowledgement is triggered by executing an LM timeout,

as described in Section 4.3. Servers could also piggyback acknowledgements on regular outgoing

messages for more timely, fine-grained feedback. The peer server for each incoming logical link

136

sends the acknowledgement to its corresponding forwarder, which presents the acknowledgement

to the servers in the sending LM.

The acknowledgement serves two purposes. First, it is used to determine which messages need

to be retransmitted over the link to achieve reliability. This reliability is guaranteed even if the

current forwarder is replaced, since the next forwarder knows exactly which messages remain unac-

knowledged and should be resent. Second, the servers in the sending LM use the acknowledgement

to evaluate the performance of the current forwarder. Each server in the sending LM maintains a

queue of the unacknowledged messages on each logical link, placing an LM timeout on the ac-

knowledgement of the first message in the queue. If, before the timeout expires, the forwarder

presents an acknowledgement indicating the message was successfully received by the receiving

LM, the timeout is canceled and a new timeout is set on the next message in the queue. However, if

the timeout expires before such an acknowledgement is received, the servers suspect that the virtual

link is faulty and elect the next forwarder. This mechanism can be augmented to enforce a higher

throughput of acknowledged messages by placing a timeout on a batch of messages. Of course,

BLink does not guarantee delivery when a site at one or both ends of the logical link is Byzantine.

Fairness: The third technique used by BLink addresses the dependency between the evaluation

of the virtual link forwarder and the performance of the leader of the agreement protocol in the

receiving LM. Intuitively, if the leader in the receiving LM could selectively refuse to order certain

messages or could delay them too long, then a correct forwarder (in the sending LM) might not be

able to collect an acknowledgement in time to convince the other servers that it sent the messages

correctly. We would like to settle on a correct virtual link to the extent possible, and thus we augment

the agreement protocol with a fairness mechanism.

When a peer receives an incoming message, it disseminates the message within the site; all

servers then forward the message to the leader of the agreement protocol and expect it to initiate the

message for ordering such that the message can be executed by the LM. To ensure fairness, servers

must place a timeout on the leader of the agreement protocol to prevent the selective starvation of a

particular incoming logical link. Servers within the LM maintain a queue for each incoming logical

link. When the leader receives a message to be ordered, it places the message on the appropriate

137

queue. The leader then attempts to order messages off of the queues in round-robin fashion. Since

incoming link messages have link-based sequence numbers, all servers know which message should

be the next one ordered for each link. Thus, upon receiving the next message on a link, a server

places a timeout on the message and attempts to replace the leader if the message is not ordered in

time. We describe our mechanism for preventing the starvation of any particular client in Section

4.5.

4.4.2 Other BLink Sub-protocols

We now consider the problem of inter-LM communication when one or both of the LMs is

implemented using a benign fault-tolerant state machine replication protocol. We first consider

the (benign, Byzantine) and (Byzantine, benign) cases. As in the (Byzantine, Byzantine) case, the

number of virtual links that compose each logical link is equal to the number of servers in LMA

times the number of servers in LMB . In the following discussion, we assume that the number of

servers in LMA, A′, is greater than or equal to the number of servers, in LMB, B′. If LMA runs

a Byzantine fault-tolerant protocol and LMB runs a benign fault-tolerant protocol, then 3fA + 1 ≥

2fB + 1. Otherwise, we have 2fA + 1 ≥ 3fB + 1.

We use the same selection order as for the (Byzantine, Byzantine) case, and we use an argument

similar to the one found in Section 4.4.1 to obtain the ratio of correct to faulty virtual links. In

Section 4.4.3, we show that at least 1/3 of the virtual links are correct. Further, when LMA is

Byzantine fault-tolerant, the maximum number of consecutive faulty links (V Lmax) is bounded at

max($2.5fA%, 3fA − 2); when LMA is benign fault-tolerant, V Lmax is bounded at max(2fA −

1, $5
3fA%). Intuitively, the difference in the bounds is attributed to the difference in the ratio of

faulty servers within LMB : when LMB is Byzantine, the ratio is only 1/3, but when LMB is

benign, the ratio is 1/2.

In the (benign, benign) case, each logical link consists of (2fA+1)·(2fB +1) virtual links. This

yields a ratio of 1/4 correct virtual links. Since no server in either LM is Byzantine, it is possible to

use a simple and efficient selection order to cycle through the virtual links. The approach assumes

that the correct servers in the sending LM can communicate equally well with the correct servers

138

Sub-protocol Correct links V Lmax upper bound
(Byz, Byz) 4/9 2FA

(Byz, Benign) 1/3 max(&2.5FA', 3FA − 2)
(Benign, Byz) 1/3 max(&2.5FA', 3FA − 2)
(Benign, Benign) 1/4 FA + FB

Table 4.1: The ratio of correct virtual links and the maximum number of consecutive faulty virtual
links for each BLink sub-protocol.

in the receiving LM. This assumption implies that there is no need for the sending LM to replace a

correct forwarder. The sending LM thus allows its forwarder to try different peers until it establishes

a correct virtual link. The forwarder will need to cycle through at most fB + 1 such peers before

finding a correct one. The servers in the sending LM can use a standard ping/Hello protocol to

monitor the status of the current forwarder. A server only votes to replace the forwarder if it has not

received a response from the forwarder within a timeout period.

When a forwarder detects that a peer is faulty, it locally broadcasts a message indicating that

the peer should be skipped by other forwarders. The next forwarder then picks up where the last

forwarder left off. In this way, one can think of the logical machine as rotating through a single se-

quence of peers. Note that subsequent forwarders may eventually send to peers that were previously

diagnosed as faulty, because a correct peer may be diagnosed as faulty due to a transient network

partition. In Section 4.4.3, we show that V Lmax is bounded at fA + fB. We can use a similar

strategy in the (benign, Byzantine) case; however, the technique is not applicable to the (Byzan-

tine, benign) case, since the forwarder cannot be trusted to find a correct peer. We summarize our

results in Table 4.1.

4.4.3 BLink Protocol Proofs

We now prove several claims about the BLink protocol. In Section 4.4.4, we prove several

properties of the selection order used in the BLink protocol. In Section 4.4.5, we bound the max-

imum number of consecutive virtual links the adversary can block in the (Byzantine, Byzantine)

sub-protocol. In Section 4.4.6, we show the ratio of correct to faulty links in the (Byzantine, be-

nign), (benign, Byzantine), and (benign, benign) sub-protocols. In Section 4.4.7 we bound V Lmax

in the (Byzantine, benign), (benign, Byzantine), and (benign, benign) sub-protocols.

139

4.4.4 Proof of Selection Order Properties

In this section, we first prove Properties 4.4.1-4.4.3 of the BLink protocol, which were stated in

Section 4.4. We then prove Lemma 4.4.1, which will be used in subsequent sections.

PROPERTY 5.1 ∀s∀i∀j #=i if s ∈ {0, . . . , A′ − 1} and i, j ∈ {0, . . . ,LCM(A′, B′) − 1}, then

Ls,i &= Ls,j . In other words, each series consists of LCM(A′, B′) distinct virtual links.

Proof: Suppose not. ∃s∃i∃j #=i such that Ls,i = Ls,j . By the definition of virtual links, Ls,i consists

of the server in LMA with server id i + s mod A′ and the server in LMB with server id i mod B′.

Similarly, Ls,j consists of the server in LMA with server id j + s mod A′ and the server in LMB

with server id i mod B′.

Because Ls,i = Ls,j , we have i ≡ j (mod B′) and i + s ≡ j + s (mod A′). We can rewrite

the latter as i ≡ j (mod A′). Because i and j are congruent modulo A′ and modulo B′, we can

conclude that i ≡ j (mod LCM(A′, B′)). Because i &= j we can also conclude that |i − j| >=

LCM(A′, B′).

We now have a contradiction because i and j are each in the interval [0 . . . LCM(A′, B′) − 1],

which is of length LCM(A′, B′) − 1.

PROPERTY 5.2 ∀s∀t#=s∀i∀j , where s, t ∈ {0, . . . , A′ − 1} and i, j ∈ {0, . . . ,LCM(A′, B′) − 1},

if s &≡ t (mod GCD(A′, B′)) then Ls,i &= Lt,j . In other words, if the indices of two series s and

t are not congruent modulo GCD(A′, B′), then s and t contain disjoint sets of virtual links.

Proof: Suppose not. ∃s∃t#=s∃i∃j such that s &≡ t (mod GCD(A′, B′)) and Ls,i = Lt,j . By the

definition of virtual links, Ls,i consists of the server in LMA with server id i + s mod A′ and the

server in LMB with server id i mod B′. Similarly, Lt,j consists of the server in LMA with server

id j + t mod A′ and the server in LMB with server id i mod B′.

Because Ls,i = Lt,j , we have i ≡ j (mod B′) and i+ s ≡ j + t (mod A′). We can rewrite the

latter as i ≡ j + t − s (mod A′). Because GCD(A′, B′) divides both A′ and B′, we can replace

the two congruences with i ≡ j (mod GCD(A′, B′)) and i ≡ j + t−s (mod GCD(A′, B′)). By

transitivity of congurence modulo GCD(A′, B′), we have that j ≡ j + t−s (mod GCD(A′, B′)).

140

Adding s − j to both sides, we get s ≡ t (mod GCD(A′, B′)). This is the contradiction that we

were seeking.

PROPERTY 5.3 For all s, the set S = {s mod A′, . . . , (s + GCD(A′, B′) − 1) mod A′} of series

contains A′ · B′ disjoint virtual links. In other words, proceeding through any set of GCD(A′, B′)

consecutive series cycles through the set of all virtual links.

Proof: First we show that all of the virtual links in all series in S are disjoint. Consider two virtual

links v1 and v2. If v1 and v2 are in the same series, the property follows from Property 4.4.1. If

instead v1 and v2 are in different series in S, the property follows from Property 4.4.2.

Now we show that there are A′ · B′ virtual links. The number of series in S is GCD(A′, B′)

and the number of virtual links per series is LCM(A′, B′). Because the virtual links are disjoint,

the total number is the product, which is GCD(A′, B′) · LCM(A′, B′) = A′ · B′

Lemma 4.4.1 Any A′ − 1 successive virtual links in the selection order P will use disjoint servers

from LMA.

Proof: Recall that by definition each series contains LCM(A′, B′) virtual links. By construction

of the selection order P and because A′ ≤ LCM(A′, B′), we have that A′ − 1 successive virtual

links are either drawn from one series or from two consecutive series. Consider the two cases.

If the A′ − 1 virtual links are drawn from one series, the result is immediate because the virtual

links within a series take servers from LMA in increasing consecutive numerical order modulo A′.

Assume instead that the A′ − 1 virtual links are drawn from two consecutive series. Within the

first series, servers are selected from LMA in increasing consecutive numerical order modulo A′.

By the way that P is constructed, exactly one server from LMA is skipped at the boundary between

series. In the second series, servers continue to be selected from LMA in increasing consecutive

numerical order modulo A′. Thus we can take A′ − 1 servers from LMA with no repeats.

4.4.5 Bounding V Lmax in the (Byzantine, Byzantine) Sub-protocol

We now prove a bound on V Lmax, the worst-case number of faulty virtual links through which

a logical machine must cycle before reaching a correct virtual link, in the (Byantine, Byzantine)

141

BLink sub-protocol. In what follows, we consider the logical link between two logical machines,

LMA and LMB, where LMA has A′ = 3fA + 1 servers, and LMB has B′ = 3fB + 1 servers, with

fA ≥ fB.

We first derive an equation for how to compute the value of V Lmax. In our selection order P ,

the servers in LMB wrap around modulo B′ on successive virtual links. Given this property, we

consider the strategy taken by the adversary to maximize V Lmax across a run of successive virtual

links in which none of the servers from LMA is used more than once. Since none of the A′ servers

from LMA repeats, the adversary has a pool of at most fA faulty servers from LMA that it can use

to block a virtual link. In any set of B′ successive virtual links from this run, the adversary can

block fB virtual links by using a faulty server from LMB , and must then consume 2fB + 1 out of

the fA faulty servers in its pool from LMA. There are $ fA
2fB+1% such complete blocks of 3fB + 1.

In addition, the adversary can then use the fB servers from LMB once more, plus any remaining

servers from LMA. Thus, we can use the following equation to represent the maximum number of

consecutive virtual links the adversary can block:

V Lmax = $
fA

2fB + 1
%(3fB + 1) + fB + fA mod (2fB + 1) (4.1)

The following lemma bounds Equation 4.1:

Lemma 4.4.2 In the (Byzantine, Byzantine) sub-protocol, Equation 4.1 is bounded above by 2fA.

Proof: We consider two cases. In the first case, let fA < 2fB + 1. Then the first term of Equation

4.1 becomes 0. Since fB ≤ fA, we have:

142

V Lmax = 0 + fB + fA

= fB + fA

≤ fA + fA

= 2fA

In the second case, let fA ≥ 2fB + 1. We first rewrite Equation 4.1 by removing the floor from the

first term.

V Lmax =
fA

2fB + 1
(3fB + 1) −

fA mod (2fB + 1)

2fB + 1
(3fB + 1) + fB + fA mod (2fB + 1)

We can ignore the terms that are modulo 2fB +1, since we subtract at most 1.5(fA mod (2fB +1))

and add fA mod (2fB + 1), resulting in a net subtraction. Noting that fB ≤ fA−1
2 < fA

2 , we have:

V Lmax < 1.5fA + fB

< 1.5fA +
fA

2

= 2fA

Since these are the only two possible cases, this completes the proof.

Claim 4.4.2 Let LMA and LMB be two Byzantine fault-tolerant logical machines, with fA ≥ fB,

which use the selection order P . Then V Lmax is bounded above by 2fA.

Proof: Consider the set of selection orders O in which the servers from LMB wrap around modulo

B′. Lemma 4.4.2 implies that the maximum number of consecutive virtual links the adversary can

block in a run in which no server from LMA is repeated is 2fA. This property holds regardless of

143

how the servers from LMA are assigned within this run, as long as they do not repeat. The bound

holds for any selection order from O in which the servers in LMA do not repeat within 2fA virtual

links. By Lemma 4.4.1, any A′ − 1 = 3fA successive virtual links in the selection order P will use

disjoint servers from LMA. Thus, Lemma 4.4.2 applies to the selection order P , completing the

proof.

4.4.6 Ratio of Correct Links in Other Sub-protocols

We now show the ratio of correct links to faulty links in the (Byzantine, benign), (benign, Byzan-

tine), and (benign, benign) sub-protocols.

In the (Byzantine, benign) and (benign, Byzantine) sub-protocols, there are two cases to con-

sider. When the logical machine with a larger number of servers (i.e., LMA) is Byzantine fault-

tolerant, we have that 3fA + 1 ≥ 2fB + 1. In this case, there are fA(2fB + 1) virtual links with a

faulty server from LMA, and there are fB(3fA + 1) virtual links with a faulty server from LMB.

There are fAfB virtual links that have a faulty server from LMA and a faulty server from LMB.

Thus, there are fA(2fB +1)+ fB(3fA +1)− fAfB virtual links with at least one faulty server. Let

b be the fraction of virtual links with at least one faulty server. Then:

b =
fA(2fB + 1) + fB(3fA + 1) − fAfB

(3fA + 1)(2fB + 1)

=
4fAfB + fA + fB

6fAfB + 3fA + 2fB + 1

≤ 2/3

The second case, when LMA is benign fault-tolerant, is similar, except that there can be fA(3fB +

1) + fB(2fA + 1) − fAfB virtual links with at least one faulty server. This yields:

144

b =
fA(3fB + 1) + fB(2fA + 1) − fAfB

(2fA + 1)(3fB + 1)

=
4fAfB + fA + fB

6fAfB + 2fA + 3fB + 1

≤ 2/3

Thus, in both the (Byzantine, benign) and (benign, Byzantine) sub-protocols, at least 1/3 of the

virtual links are correct.

In the (benign, benign) sub-protocol, there are fA(2fB + 1) virtual links with a faulty server

from LMA, and there are fB(2fA +1) virtual links with a faulty server from LMB . There are fAfB

virtual links that have a faulty server from LMA and a faulty server from LMB . Thus, there are

fA(2fB + 1) + fB(2fA + 1) − fAfB virtual links with at least one faulty server. Thus:

b =
fA(2fB + 1) + fB(2fA + 1) − fAfB

(2fA + 1)(2fB + 1)

=
3fAfB + fA + fB

4fAfB + 2fA + 2fB + 1

≤ 3/4

Thus, in the (benign, benign) sub-protocol, at least 1/4 of the virtual links are correct.

4.4.7 Bounding V Lmax in the Other Sub-protocols

In the (Byzantine, benign) and (benign, Byzantine) sub-protocols, we bound V Lmax using a

similar technique to the one found in Section 4.4.5. As usual, we let LMA be the logical machine

with a larger number of machines. We consider two cases. First, let LMA run a benign fault-tolerant

local protocol, and let LMB be Byzantine fault-tolerant. Then 2fA + 1 ≥ 3fB + 1. We obtain the

same formula for V Lmax as in Equation 4.1. We obtain the following result:

Lemma 4.4.3 In the (Byzantine, benign) and (benign, Byzantine) sub-protocols, when LMA runs

a benign fault-tolerant protocol and LMB runs a Byzantine fault-tolerant protocol, Equation 4.1 is

145

bounded above by max($5fA/3%, 2fA − 1).

Proof: We consider two sub-cases. In the first sub-case, let fA < 2fB+1. Since 2fA+1 ≥ 3fB+1,

we have that fB ≤ 2fA/3. Using similar algebra as in the first case of Section 4.4.5, we have:

V Lmax = $
fA

2fB + 1
%(3fB + 1) + fB + fA mod (2fB + 1)

= fB + fA

≤ 2fA/3 + fA

= 5fA/3

In the second sub-case, let fA ≥ 2fB + 1. We use an identical argument to the second case of

Section 4.4.5 to obtain V Lmax < 2fA.

We can now prove the following claim:

Claim 4.4.3 Let LMA and LMB be two logical machines, whereLMA runs a benign fault-tolerant

protocol and LMB runs a Byzantine fault-tolerant protocol, with 2fA+1 ≥ 3fB +1. If both logical

machines use the selection order P , then V Lmax is bounded above by max($5fA/3%, 2fA − 1).

Proof: The bound established in Lemma 4.4.3 holds for any selection order in which (1) the

servers from LMB wrap around modulo B′ and (2) the servers from LMA do not repeat within

max($5fA/3%, 2fA − 1) virtual links. By Lemma 4.4.1, any A′ − 1 = 2fA successive virtual links

in the selection order P will use disjoint servers from LMA. Since 2fA is always greater than

max($5fA/3%, 2fA − 1), Lemma 4.4.3 applies to the selection order P , completing the proof.

We now consider the second case, when LMA runs a Byzantine fault-tolerant protocol and

LMB runs a benign fault-tolerant protocol. Then 3fA +1 ≥ 2fB +1. Our analysis yields a slightly

different equation, since within each block of 2fB + 1 virtual links, the adversary must consume

fB + 1 faulty servers from LMA. This produces the following modified equation for V Lmax:

146

V Lmax = $
fA

fB + 1
%(2fB + 1) + fB + fA mod (fB + 1) (4.2)

Lemma 4.4.4 In the (Byzantine, benign) and (benign, Byzantine) sub-protocols, when LMA runs

a Byzantine fault-tolerant protocol and LMB runs a benign fault-tolerant protocol, Equation 4.2 is

bounded above by max($2.5fA%, 3fA − 2).

Proof: We consider two sub-cases. In the first sub-case, let fA < fB+1. Since 3fA+1 ≥ 2fB+1,

we have that fB ≤ 1.5fA. The floor terms becomes 0, so we have:

V Lmax = 0 + fB + fA mod (fB + 1)

= fB + fA

≤ 1.5fA + fA

= 2.5fA

In the second sub-case, let fA ≥ fB + 1. We first remove the floor from Equation 4.2:

V Lmax =
fA

fB + 1
(2fB + 1) −

fA mod (fB + 1)

fB + 1
(2fB + 1) + fB + fA mod (fB + 1)

We can ignore the terms that are modulo fB + 1, since we subtract at most 2(fA mod (fB + 1))

and add fA mod (fB + 1), resulting in a net subtraction. Noting that fB ≤ fA − 1, we have:

V Lmax < 2fA + fB

≤ 2fA + fA − 1

= 3fA − 1

147

This completes the proof.

Claim 4.4.4 Let LMA and LMB be two logical machines, where LMA runs a Byzantine fault-

tolerant protocol and LMB runs a benign fault-tolerant protocol, with 3fA + 1 ≥ 2fB + 1. If both

logical machines use the selection order P , then V Lmax is bounded above bymax($2.5fA%, 3fA −

2).

Proof: The bound established in Lemma 4.4.4 holds for any selection order in which (1) the

servers from LMB wrap around modulo B′ and (2) the servers from LMA do not repeat within

max($2.5fA%, 3fA − 2) virtual links. By Lemma 4.4.1, any A′ − 1 = 3fA successive virtual links

in the selection order P will use disjoint servers from LMA. Since 3fA is always greater than

max($2.5fA%, 3fA − 2), Lemma 4.4.4 applies to the selection order P , completing the proof.

Claim 4.4.5 Let LMA and LMB be two logical machines running the (Byzantine, benign) or (be-

nign, Byzantine) sub-protocols. If both logical machines use the selection order P , then V Lmax is

bounded above by max($2.5fA%, 3fA − 2).

Proof: Follows immediately from Claims 4.4.3 and 4.4.4.

Finally, we argue that when both LMA and LMB run a benign fault-tolerant protocol, V Lmax

is bounded at fA + fB. Using the optimized strategy presented in Section 4.4.2, the adversary

can crash fA consecutive forwarders from the sending logical machine just before the forwarder

reports that it is moving to the next peer in the receiving logical machine. After this occurs, the next

forwarder elected will be correct, but this forwarder may need to cycle through fB faulty peers in

the receiving logical machine. Thus, V Lmax is bounded at fA + fB.

4.5 Client Updates

Our architecture guarantees that if the system is stable and a client is connected to a stable

site, the client will be able to order its update. Since BLink provides efficient communication

between logical machines, it is technically possible to treat each client as a non-replicated logical

machine and use BLink to provide Byzantine fault-tolerant communication between clients and

148

logical machines consisting of servers. However, using BLink in this manner requires (1) extra

overhead that increases normal-case latency, (2) sending threshold-signed acknowledgements from

the LM to the client, and (3) a separate queue for each client. Therefore, our architecture includes

a specialized protocol, CLink, which guarantees that clients will be able to efficiently and quickly

inject updates into the system. CLink only guarantees that a logical machine will order the client’s

update. Once this occurs, the wide-area protocol running on the logical machines uses techniques

similar to BFT to guarantee global ordering.

CLink consists of two sub-protocols, which we refer to as CLink-Opt and CLink-Order. CLink-

Opt is invoked only by servers in non-leader logical machines. Upon receiving an update from a

local client, a server in a non-leader LM attempts to optimistically forward the update to the leader

LM, without locally ordering the update or performing any cryptographic operation on it. This

saves in both computation and latency. CLink-Order can be invoked by any server in the system.

The protocol guarantees that the logical machine to which a local client is connected will locally

order the client’s updates. We now describe the two sub-protocols in more detail.

CLink-Opt: Each client maintains a list of the servers in its local site. At a given time, the client

sends its updates to the server at the front of the list and receives replies from this server after the

update is globally ordered. After sending an update to its local server, the client sets a timeout. If the

client does not receive a reply within the timeout period, it retransmits the update to f + 1 servers

in the local site, ensuring that at least one correct server will receive the update. The retransmitted

update is identical to the original update, except that it has a special retransmit flag, indicating that

the servers receiving the update should invoke CLink-Order (which we describe below). The client

also moves to the next server in its list, wrapping around when it reaches the end. The client will

first send to this new server when it sends its next update.

Each server in the non-leader LM maintains a list of the servers in the leader LM. Upon receiving

an update from a local client, a server forwards the update to the server in the leader LM at the front

of its list and sets a timeout. Upon receiving the update, the server in the leader LM invokes CLink-

Order to ensure that the update is locally ordered by the leader LM. Optimistic forwarding may fail

because a malicious server in the forwarding path drops the message. If the client’s local server does

149

not globally order and execute the update within the timeout period, then it invokes CLink-Order.

The server also moves to the next server in its list, wrapping around when it reaches the end of the

list. The server will optimistically forward an update to this new server the next time it receives a

new update.

CLink-Order: As described above, CLink-Order is a general mechanism that can be used to

ensure that a logical machine will locally order a message. CLink-Order is invoked in three cases:

1. A client is connected to a non-leader LM, and the client’s initial choice of local server expires

its timeout.

2. A server in a non-leader LM receives an update with the retransmit flag set.

3. A server in the leader LM receives a new update.

In the first two cases, the servers in the non-leader LM use CLink-Order, coupled with BLink, to

ensure that the update is propagated to the leader site. In the third case, the servers in the leader LM

ensure that the update is locally ordered by the leader.

Upon invoking CLink-Order on an update u, a server r generates anOrdering Request message,

OR(idr, u, seqr), signs it, and sends it to the other servers in the site. seqr is a local sequence

number, generated by r, that is incremented each time r sends a new Ordering Request message.

When a server receives an Ordering Request from server r, it stores the message and forwards it

to the leader. Additionally, the server sets a timeout on the message if it has executed all Order-

ing Request messages from server r up to and including seqr − 1. The server expects the message

to be locally ordered within the timeout period.

The leader attempts to locally order the Ordering Request messages from each server in round-

robin fashion. It decides whether to propose an Ordering Request from a server s for local ordering

using the following algorithm. If the leader does not have an Ordering Request from server s to

propose, then it moves to the next server modulo N , where N is the number of servers in the local

site. Otherwise, let Req(ids, u, seqs) be the Ordering Request message from server s with the lowest

sequence number. The leader proposes Req if seqs is one greater than the sequence number of the

last Ordering Request executed or proposed from s.

150

When a server executes an Ordering Request message from server s, it cancels the timeout asso-

ciated with the execution of that message, if one is set. If the server has the next Ordering Request

message from s, it sets a timeout on that message. Note that, if server s is Byzantine, some server

might have received an Ordering Request message from s with the same sequence number (seqs)

but a different update. In this case, the server cancels its timeout but has explicit proof that s is cor-

rupt and can broadcast the proof to the rest of the servers. We note that the protocol can be optimized

by including only a digest of the update in the Ordering Request message, reducing the amount of

bandwidth consumed when more than one server includes the same update in an Ordering Request.

4.6 Performance Optimizations

Our composable architecture has significant computational overhead, because each LM must

order all events that cause state transitions in the wide-area protocol. This Byzantine fault-tolerant

ordering (which in our architecture uses digital signatures) is computationally costly. In addition,

each LM threshold signs all outgoing messages, which imposes an even greater computational cost.

Consequently, we use Merkle hash trees [70] to amortize the cost of threshold signing, and we

improve the performance of LM event processing via well-known aggregation techniques. These

optimizations are applied only to the local protocols. Thus, there is a one-to-one correspondence

between wide-area messages in an optimized, composable protocol and its unoptimized equivalent.

Merkle Tree Based Signatures: Instead of threshold signing every outgoing message, we gen-

erate a single threshold signature, based on a Merkle hash tree, that is used to authenticate several

messages. Each outgoing message is self-contained, including everything necessary for validation

(except the public key). The leaf nodes in a Merkle hash tree contain the hashes of the messages

that need to be sent. Each of the internal nodes contains a hash of the concatenation of the two

hashes in its children nodes. The signature is generated over the hash contained in the root. When

a message is sent, we include the series of hashes that can be used to generate the root hash. The

number of included hashes is log(N), where N is the number of messages that were signed with the

single signature.

151

Protocol Rounds
Protocol Wide Area Local Area Total
Steward 2 4 6
Paxos/Paxos 2 6 8
BFT/Paxos 3 8 11
Paxos/BFT 2 11 13
BFT/BFT 3 15 18

Table 4.2: Normal-case protocol rounds.

Protocol Computational Costs
Protocol Threshold RSA Sign RSA Sign
Steward 1 3
Paxos/Paxos 0 2 + (S − 1)
BFT/Paxos 0 3 + 2(S − 1)
Paxos/BFT 1 3 + 2(S − 1)
BFT/BFT 2 4 + 4(S − 1)

Table 4.3: Number of expensive cryptographic
operations that each server at the leader site
does per update during normal-case operation.

Logical Machine Event Processing: We use the aggregation technique described in [53] to

increase the throughput of local event processing by the LM. The LM orders several events at once,

allowing the LM to order thousands of events per second over LANs while providing Byzantine

fault tolerance. With this performance, it is likely that the incoming wide-area bandwidth will limit

throughput.

4.7 Performance Evaluation

To evaluate the performance of our composable architecture, we implemented our protocols,

including all necessary communication and cryptographic functionality.

Test Bed and Network Setup: We used a network topology consisting of 5 wide-area sites,

each containing 16 physical machines, to quantify the performance of our system. In order to

facilitate comparisons with Steward, we chose to use the same topology and numbers of machines

used in [16]. If BFT is run within a site, then the site can tolerate up to 5 Byzantine servers. If Paxos

is run within a site, then the site can tolerate 7 benign server failures. If BFT is run on the wide area,

then the system can tolerate one Byzantine site compromise. If Paxos is run on the wide area, then

the system remains available if no more than two sites are disconnected from the others.

Our experimental test bed consists of a cluster with twenty 3.2 GHz, 64-bit Intel Xeon comput-

ers. Each computer can compute a 1024-bit RSA signature in 1.3 ms and verify it in 0.07 ms. For

n=16, k=6, 1024-bit threshold cryptography which we use for these experiments, a computer can

compute a partial signature and verification proof in 3.9 ms and combine the partial signatures in

3.4 ms. The leader site was fully deployed on 16 machines, and the other 4 sites were emulated by

one computer each.

152

Each emulating computer performed the role of a representative of a complete 16 server site.

Thus, our test bed is equivalent to an 80 node system distributed across 5 sites. Upon receiving a

message, the emulating computers busy-waited for the time it took a 16 server site to handle that

packet and reply to it, including intra-site communication and computation. We also modeled the

aggregation used by our composable architecture. We determined busy-wait times for each type of

packet by benchmarking the different types of ordering protocols on a fully deployed, 16 server site.

The Spines [65, 72] messaging system was used to emulate latency and throughput constraints on

the wide-area links. Wide-area links were limited to 10 Mbps in all tests.

We compared the performance results of five protocols, four of which use our composable ar-

chitecture:

Paxos/Paxos, BFT/Paxos, Paxos/BFT, BFT/BFT. The fifth is a new implementation of Steward,

which includes the option of using the same optimization techniques used in the composable archi-

tecture. The updates in our experiments carried a payload of 200 bytes, representative of an SQL

statement.

We exclusively use RSA signatures for authentication, both for consistency with our previous

work and to provide non-repudiation, which is valuable when identifying malicious servers. The

benign fault-tolerant protocols use RSA signatures to protect against external attackers. While it is

possible to use more efficient cryptography in the compositions based on Paxos, these changes do

not significantly affect performance when our optimizations are used. We also note that BFT can

use MACs, which improves its latency and results in much better performance when no aggregation

is used. However, this change has a smaller effect on our optimized protocols, because the total

update latency is dominated by the wide-area latency.

Protocol Rounds and Cryptographic Costs: Table 4.2 shows the number of normal-case pro-

tocol rounds, where view changes do not occur, in Steward and in each of the four combinations

of our composable architecture. The protocol rounds are classified as wide-area when the message

is sent between sites, and local-area when it is sent between two physical machines within a site.

The difference in total rounds ranges from 6 (Steward) to 18 (BFT/BFT). However, it is important

to observe that all of the protocols listed have either two or three wide-area rounds.

153

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

U
pd

at
e

Th
ro

ug
hp

ut
 (u

pd
at

es
/se

c)

Clients

Steward
Paxos/Paxos

Paxos/BFT
BFT/Paxos

BFT/BFT

Figure 4.4: Throughput of Unoptimized Proto-
cols, 50 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward
Paxos/Paxos

Paxos/BFT
BFT/Paxos

BFT/BFT

Figure 4.5: Latency of Unoptimized Protocols,
50 ms Diameter

Table 4.3 shows the computationally expensive cryptographic operations required for each up-

date during normal-case operation at the leader site when the optimizations presented in Section 4.6

are not used. The costs are a function of the number of sites, denoted by S. The table shows the

number of threshold signatures to which each server in the leader must contribute and the number

of RSA signatures that each server in the leader site must compute. In the tests presented in this

paper, the unoptimized versions of our algorithm are always limited by computational resources.

Consequently, these costs are inversely proportional to the maximum throughput.

Architectural Comparison: To evaluate the overhead of our composable architecture com-

pared to that of Steward, we first compare the performance of the five protocols when the optimiza-

tions presented in Section 4.6 are not used. Note that that the unoptimized results do not reflect our

architecture’s actual performance; we specifically removed the optimizations to provide a clear pic-

ture of their benefits. We used a symmetric configuration where all sites are connected to each other

with 50 ms (emulating crossing the continental US), 10Mbps links. Each client sends an update to a

server in its site, waits for proof that the update was ordered, and then immediately injects the next

update.

Figure 4.4 shows update throughput as a function of the number of clients. In all of the protocols,

throughput initially increases as the number of clients increases. When the load on the CPU reaches

100%, throughput plateaus. This graph shows the performance benefit of Steward’s architecture.

In Steward, external wide-area accept messages are not ordered before the replicas process them.

154

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

U
pd

at
e

Th
ro

ug
hp

ut
 (u

pd
at

es
/se

c)

Clients

Steward
Paxos/Paxos

Paxos/BFT
BFT/Paxos

BFT/BFT

Figure 4.6: Throughput of Unoptimized Proto-
cols, 100 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward
Paxos/Paxos

Paxos/BFT
BFT/Paxos

BFT/BFT

Figure 4.7: Latency of Unoptimized Protocols,
100 ms Diameter

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

U
pd

at
e

Th
ro

ug
hp

ut
 (u

pd
at

es
/se

c)

Clients

Paxos/Paxos
Optimized Steward

Paxos/BFT
BFT/Paxos

BFT/BFT
Redundant Send (2f+1) Bound
Redundant Send (f+1)2 Bound

Figure 4.8: Throughput of Optimized Protocols,
50 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Paxos/Paxos
Optimized Steward

Paxos/BFT
BFT/Paxos

BFT/BFT

Figure 4.9: Latency of Optimized Protocols, 50
ms Diameter

Steward achieves over twice the performance of Paxos/BFT, its equivalent composition, reflecting

the price of clean separation. Steward even outperforms Paxos/Paxos, which has more ordering and

RSA signature generation, but does not use threshold signatures. The initial slope of these curves is

most dependent on the number of wide-area protocol rounds. The peak performance of each of the

protocols is a function of the number of cryptographic operations (see Table 4.3). The Paxos/BFT

composition has about twice the throughput of the BFT/BFT composition, and it has approximately

half of the cryptographic costs. A similar relationship exists between Paxos/Paxos and BFT/Paxos.

Figure 4.5 shows average update latency measured at the clients as a function of the number of

clients. In each of the curves, the update latency remains approximately constant until the CPU is

100% utilized, at which point, latency climbs as the number of clients increases. In our system, we

155

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

U
pd

at
e

Th
ro

ug
hp

ut
 (u

pd
at

es
/se

c)

Clients

Paxos/Paxos
Optimized Steward

Paxos/BFT
BFT/Paxos

BFT/BFT
Redundant Send (2f+1) Bound
Redundant Send (f+1)2 Bound

Figure 4.10: Throughput of Optimized Proto-
cols, 100 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Paxos/Paxos
Optimized Steward

Paxos/BFT
BFT/Paxos

BFT/BFT

Figure 4.11: Latency of Optimized Protocols,
100 ms Diameter

queue client updates if the system is overburdened and inject these updates in the order in which

they were received.

Figures 4.6 and 4.7 show the results for the same tests as above with 100 ms network diameter.

We observe the same maximum bandwidth and latency trends. Additional latency on the wide-

area links reduces the slope of the lines in Figure 4.6 (update throughput), but has no effect on the

maximum throughput that is achieved.

Performance of Optimized Protocols: We now present the performance of the five protocols

with the optimizations described in Section 4.6. In these protocols, the cost of the cryptographic

operations listed in Table 4.3 are amortized over several updates when CPU load is high. In contrast

to the unoptimized protocols, none of our optimized protocols were CPU limited in the following

tests. Maximum throughput was always limited by wide-area bandwidth constraints. In all cases,

the optimized protocols increased throughput by at least a factor of 4 compared to their unoptimized

versions.

In Figures 4.8 and 4.10 (discussed below), we include two theoretical throughput upper bounds

of a Paxos/BFT composition in which LMs redundantly send physical messages over the wide area

to ensure reliable inter-LM communication. We computed the maximum throughput by assuming

that the wide-area Proposal message sent from the leader site contains at least a signed update from

the client and an RSA signature from the LM (456 bytes total). We present bounds based on (1)

an (f + 1)2 protocol where the leader site would need to redundantly send 36 of these messages to

156

each of the other 4 sites per update and (2) a (2f + 1) peer protocol where the leader site would

redundantly send 11 messages to each site per update. The second protocol was included within the

original Steward system for use during view changes, but we are unaware of any other systems that

use it. The upper bound is the throughput at which the leader site’s outgoing link reaches saturation.

The difference between the redundant send upper bounds and the performance of Paxos/BFT (with

BLink) attests to the importance of the BLink protocol.

Figure 4.8 shows the update throughput as a function of the number of clients. The relative

maximum throughput and slopes of the curves are very different from the unoptimized versions.

For example, Paxos/Paxos, Steward, and Paxos/BFT have almost the same maximum throughput.

This attests to the effectiveness of the optimizations in greatly reducing the performance overhead

associated with clean separation. The optimization improves the performance of the compositions

more than it improves Steward because the composable architecture uses many more local rounds.

In a wide-area environment, local rounds are relatively inexpensive if they do not consume too much

computational resources. The optimizations eliminate this computational bottleneck. Thus, perfor-

mance of the optimized version is predominantly dependent on the number of wide-area protocol

rounds.

The local-area protocol has a smaller, but significant, effect on performance. The slopes of the

curves are different because of the difference in latency contributed by the local-area protocols. BFT

and threshold signing contribute the greatest latency. As a result, Steward has a steeper slope than

its equivalent composition, Paxos/BFT. Here also, we can see the benefit of Steward, but the per-

formance difference is considerably smaller than in the unoptimized protocols. Paxos contributes

very little latency and therefore, Paxos/Paxos’s performance slightly exceeds Steward’s. Note that

Paxos/Paxos benefits slightly more than Steward from the optimizations, because Paxos/Paxos lo-

cally orders more messages than Steward (which orders the update locally only once).

Figure 4.9 shows the average update latency in the same experiment. Although aggregation is

commonly associated with an increase in latency, the optimized protocols have similar or lower

latency compared to the unoptimized variants. An LM locally orders at least two external messages

to execute a client’s update. Therefore, even with a single client in the system, if the external accept

157

messages arrive at about the same time, the latency can be lower with aggregation. When there are

many clients, the average latency of the optimized protocols is considerably less than that of the

unoptimized protocols, because the optimized protocols have much higher maximum throughput.

Figures 4.10 and 4.11 show the same trends on a 100 ms diameter network.

Discussion: Our optimized composable architecture achieves practical performance, with

throughputs of hundreds of updates per second, even while offering the strong security guarantees of

BFT/BFT. The performance of Paxos/BFT represents a factor of 4 improvement compared with the

previous state of the art for wide-area Byzantine replication (i.e., unoptimized Steward). The per-

formance of the unoptimized protocols is computationally limited and reflects the cost associated

with achieving composability and flexibility. Our results show that the optimizations effectively

eliminate this performance bottleneck.

4.8 Safety and Liveness Proof Sketch

Our composable architecture offers flexibility by separating the wide-area protocol, run among

the logical machines, from the local-area protocol, run within the logical machine. As a direct

consequence, it is possible to use a variety of replication protocols at each level of the hierarchy. Our

architecture uses Paxos and BFT, both of which guarantee safety with no synchrony assumptions

and liveness under certain synchrony assumptions. We can directly use the known properties of

these protocols when proving safety and liveness of our hierarchical architecture.

4.8.1 Safety

Paxos and BFT do not rely on synchrony assumptions for safety. As a result, the safety of a pro-

tocol composition follows directly from the safety of these two protocols. The local state machine

replication protocol used in the ordering component ensures that all replicas in a logical machine

transition through the same states and invoke the signing component on identical outgoing mes-

sages. When running BFT in the logical machine, we use threshold cryptography so that malicious

servers cannot generate messages that are signed by the logical machine. Thus the logical machine

will not exhibit two-faced behavior assuming that it contains at most f malicious servers.

158

In summary, the fact that logical machine safety is guaranteed under our fault assumptions

implies that a logical machine will either faithfully execute the wide-area protocol or halt. Since

the safety of the wide-area protocol does not depend on the speed at which the logical machine

executes this protocol, the safety of a protocol composition holds. The proof is straightforward

because, when considering safety, it does not matter whether a logical machine exhibits the same

behavior with respect to time as a physical machine.

4.8.2 Liveness

Although we can leverage the existing liveness properties of both BFT and Paxos, showing

liveness of the customizable architecture is more complicated than showing safety. Our strategy is

to first identify those timing properties that a logical machine must have in order for the protocol

that runs among the logical machines to be live. Intuitively, we wish to show that the properties of

our logical machines are sufficiently similar to physical machines so that, if a protocol is live when

run among physical machines, it follows that it is also live when run among logical machines. The

core requirement for Paxos and BFT liveness is that message delays between the physical machines

do not grow faster than the timeout used to detect faulty leaders. Thus, if we can show a similar

(or stronger) property for message delays between our logical machines, we can show that the

composable architecture is also live.

In the following claim, we formally state the characteristics of the message delay between stable

logical machines required for liveness.

Claim 4.8.1 LOGICAL MACHINE MESSAGE DELAY: Let the system be stable with respect to time

T . Then, at some time T ′ > T , for all pairs of stable connected sites comprising logical machines

lm and lm′, messages sent from lm to lm′ are locally ordered and executed by lm′ in a bounded

time.

If LOGICAL MACHINE MESSAGE DELAY (Claim 4.8.1) holds, then it follows that if BFT or

Paxos are live when run on physical machines, then both protocols are live when run on our logical

machines.

159

In our composable architecture, the maximum message delay between two logical machines is

a function of the following delays:

1. Wide-area delay between sites.

2. The latency required by the BLink protocol to send a message from the originating logical

machine to the correct servers in the receiving logical machine.

3. The latency required for the intra-site ordering protocol in the receiving logical machine to

locally order a message from the originating logical machine.

Wide-area delay, the first of the listed contributors to message delay, also contributes to the mes-

sage delay between physical machines. The other two sources of delay, due to (1) delays associated

with the BLink protocol and (2) delays associated with the local ordering within a site, are specific

to the composable architecture. We will argue that if the system is stable with respect to time T , then

there exists a time, T ′ > T , after which sources of delay specific to the composable architecture

are bounded. Since stability implies that the wide-area message delay is bounded, the total message

delay will necessarily be bounded after time T ′, and thus LOGICAL MACHINE MESSAGE DELAY

holds. This claim can be used to show that L1 - GLOBAL LIVENESS (see Section 4.2) holds.

We begin by specifying a property that we will use in the liveness proof. From our stability

assumption (see Section 4.2), which is necessary for the composable system’s liveness, it follows

that the message delay between any two correct servers is bounded. This holds for two servers in

the same site and for two servers in different sites. We formally state this property as follows:

DEFINITION 4.8.1 PHYSICAL MACHINE MESSAGE DELAY: Let the system be stable with respect

to time T . Then, at any time after T , for all pairs of stable connected servers, r and s, messages

sent from r to s arrive in a bounded time.

We prove that LOGICAL MACHINE MESSAGE DELAY holds by proving Lemma 4.8.1 which

states that the time required to locally order an event will eventually be bounded.

160

Lemma 4.8.1 If the system is stable with respect to time T , then in each stable site there is a time

T ′ after which the delay required to locally order a message is bounded.

Proof: To prove Lemma 4.8.1, we will show that for each stable site, s, there is a time after

which the local leader in site s will remain in power forever. In other words, each site settles on

a leader. It follows directly from the BFT (or Paxos) protocol that if a leader remains in power, it

must order one event (if present) from each queue (including the update queue) within the timeout

period. Otherwise, the stable servers in site s will elect a new leader.

We prove by contradiction that a stable site will settle on a leader. Assume that there is no

leader that will remain in power forever. Then, each time a new leader is elected it must eventually

be replaced. The local view change protocols (which elect and install new leaders in a round-robin

pattern) used in BFT and Paxos guarantee that the stable servers in site s will rotate through local

views together. Thus, during each view, all stable servers will be in the same view for to−∆, where

to is the value of the local timeout and ∆ is a constant that accounts for the local message delays.

Each time a new leader is elected, the local timeout increases. From Definition 4.8.1, the mes-

sage delay between any two stable servers in site s is bounded. From the checkpoint and view

change protocols, a leader can install a new view and order an event by exchanging a bounded

amount of information with 2f stable servers. Since s is stable, it must contain at least 2f +1 stable

servers. Therefore, there will be a time, T ′′, after which any stable server that is elected leader will

have a sufficient amount of time to complete the view change and order events at a sufficient rate so

that it will remain in power.

There are at most f malicious servers (out of a total of 3f + 1) that, when elected leader, might

intentionally fail to complete the view change protocol or order events in a timely manner. Thus,

there may be f view changes that occur after T ′′ before a stable server, c, is elected leader. If view

changes continue to occur, then c must fail to order events sufficiently quickly to stay in power.

This implies that c is malicious because a correct server will complete the view change protocol and

order events quickly enough to remain in power. Thus, we have a contradiction, because c must be

both correct (and stable) and malicious. It follows that view changes cannot happen forever and that

161

there is a time after which the site will settle on a leader.

We can now prove Claim 4.8.1:

Proof: We use a similar argument to the one used to prove Lemma 4.8.1 to prove Claim 4.8.1. We

will show that for each pair of stable sites, r and s, there is a time after which the virtual link (i.e.,

forwarder-peer pair) used by the BLink protocol to send messages from r to s will remain in power

forever. We say that r and s settle on a virtual link. It follows directly from the BLink protocol that

if a link remains in power, it must pass at least one message from r to s per timeout period. BLink

selects the next virtual link in the series unless at least f + 1 correct servers receive a threshold

signed cumulative acknowledgement (from logical machine s) for one message being sent from r to

s per timeout period. This ensures that, in order for a virtual link to remain in power, one message

must be sent from r to s and executed by s per timeout period (unless there are no messages that

need to be sent from r to s).

If we assume that the BLink protocol running between r and s does not settle on a virtual

link, then the BLink protocol must continue rotating through virtual links forever. The timeout for

suspecting the virtual link increases each time BLink rotates through all of the virtual links once.

Let T ′′ > T be a time after which the following conditions hold:

1. The delays required to locally order an update at site r and at site s is bounded and sums to

∆lo.

2. The delays required to propagate a message from r to all correct servers at s, generate a

cumulative acknowledgement, ack, at s, and propagate ack from s to the stable servers at r

are bounded and sum to ∆p.

3. ∆lo + ∆p < toBLink, where toBLink is the BLink timeout.

It follows from Lemma 4.8.1 that the delays in the first condition will eventually be bounded.

The delays in the second condition are bounded because of PHYSICAL MACHINE MESSAGE DE-

LAY (Definition 4.8.1) and the fact that generating a threshold signed acknowledgement consumes

162

a bounded amount of time. If virtual links continue to rotate (which we assume), then the third con-

dition holds because toBLink continues to increase while ∆lo and ∆p eventually become bounded.

Thus, any virtual link selected after time T ′′ has a sufficient amount of time to pass a message

from r to s and pass a cumulative acknowledgement back from s to the stable servers in r within

a BLink timeout. Since BLink guarantees that at least one virtual link has two stable endpoints,

such a link, lcorrect, will eventually be selected after T ′. In order for BLink to remove lcorrect from

power, one of the stable servers in either site r or site s must fail to follow the BLink protocol. This

is a contradiction because they are both correct servers, which implies that sites r and s eventually

settle on a virtual link. It immediately follows that Claim 4.8.1 holds.

As discussed above, Claim 4.8.1 implies that our logical machines provide message delays

sufficient to guarantee liveness of the wide-area protocol. From this, L1 - GLOBAL LIVENESS

(Definition 4.2.3) follows. Definition 4.2.3 requires that a stable server that receives an update

propagate it to all servers in its site. This is accomplished by the CLink-Order protocol (Section

4.5). We omit a proof because the mechanism used is the same as the one used by BFT [10].

4.9 Discussion

Our composable architecture can be extended by adding new replication protocols for use on

the wide area or local area besides Paxos and BFT. Several existing protocols provide desirable

properties and are promising candidates for use within our system. As demonstrated in Section

4.7, wide-area protocol rounds are very costly due both to increased latency and increased message

complexity. Therefore, if a system requires Byzantine fault tolerance and high performance and

can tolerate reduced availability, Martin and Alvisi’s two-round Byzantine fault-tolerant replication

protocol [12] is well suited for use as our wide-area protocol. We believe that a composition that

used this protocol would approach the performance of a composition that used Paxos on the wide

area, because both are two-round protocols. The work of Yin et al. on privacy firewalls [11] can

also be used effectively within a site, as part of our local-area protocol. Verrisimo’s work on hybrid

architectures [40, 41] is another excellent candidate for use within our architecture. Special trusted

hardware that provides stronger guarantees within a site can be used to strengthen the fault tolerance

163

of our logical machines.

We note that the consistency guarantees of our wide-area protocol can be relaxed for use with

systems that do not require state machine replication semantics. For example, a composition could

use a state machine replication protocol as the local-area protocol and a benign fault-tolerant anti-

entropy protocol [73] on the wide area.

Relaxing the consistency guarantees of intra-site protocols is problematic and requires a fun-

damental change to the composable architecture. If a full state machine replication protocol is not

run within the sites, we must take care to ensure that the logical machines function correctly with

respect to the wide-area protocol. Our experience with Steward demonstrates that this can be very

complicated. However, future research may yield logical machine abstractions that offer relaxed

semantics and improved performance while simultaneously providing services that can be used to

more easily construct correctly performing logical machines. Such abstractions might offer services

related to both persistent storage and speculative execution, which can improve performance while

still offering well-defined guarantees.

4.10 Customizable Replication for Wide-Area Networks Summary

This chapter presented a customizable, scalable replication architecture, tailored to systems that

span multiple wide-area sites. Our architecture constructs logical machines (enhanced for use on

wide-area networks) out of the physical machines in each site using the state machine approach,

enabling free substitution of the fault tolerance method used in each site and in the wide-area repli-

cation protocol. We presented BLink, a new Byzantine fault-tolerant communication protocol that

provides efficient and reliable wide-area communication between logical machines. BLink was

shown to be a critical addition to the logical machine abstraction for wide-area networks, where

bandwidth constraints limit performance. An experimental evaluation showed that our optimized

architecture achieves a maximum wide-area Byzantine replication throughput at least four times

higher than the previous state of the art.

164

Chapter 5

Building a Survivable Service

In this chapter, we describe how the hierarchical replication architectures presented in this dis-

sertation can be applied to construct large-scale, survivable systems. Our architectures can be used

to convert a suitable existing centralized service into a distributed, replicated service. The basic

idea behind this transformation is both elegant and relatively straightforward, and it is independent

of the fact that our architectures tolerate Byzantine faults. We use examples to explain the process.

We also discuss problematic issues that are likely to arise in practice. Many of these issues relate

directly to the Byzantine fault tolerance that our systems provide.

A non-replicated system that is a suitable candidate for conversion into a replicated system

typically consists of two components: a server that provides a service and clients that submit updates

and queries to the server. Keep in mind that these parts alone constitute a functional centralized

(non-replicated) system. For example, a credit card company could indeed use a single server to

verify charge requests. In this case, the clients correspond to the businesses that submit charges to

the server.

Although a centralized system contains all of the functionality necessary to provide a credit card

verification service, such a system clearly has disadvantages. The central server is a single point of

failure. If this server crashes or is partitioned away from the clients, the service will be temporarily

unavailable. Perhaps worse, if an adversary gains control of the server, it can control the service

for its own gain. In addition, the server may, because of a hardware or software error, deviate from

the protocol that implements the service with potentially catastrophic results. For example, a credit

card verification system could verify charge requests for overdrawn cards.

165

The centralized approach also suffers from a performance bottleneck. All queries, including

read-only queries that do not change the data on the server, need to be handled by a single server. In

systems where read-only queries constitute a significant fraction of the load, such as name servers,

multiple replicas distributed across a large area can improve throughput and reduce query latency.

In a replicated system, clients can send read requests to servers that are either geographically closest

or have the lowest load.

This dissertation focuses on constructing replication systems that offer scalability and intrusion

tolerance. The combination of these characteristics is what makes the architectures described here

challenging to design. Therefore, in the remainder of this chapter, we assume that the primary

goal of the system designer is to bestow a level of survivability on the system that was previously

lacking. We use a case study to (1) illustrate how a survivable service can be constructed using the

composable architecture and (2) explain an array of important challenges associated with this goal.

5.1 Automated Arbitrage: Case Study

We use a simplified automated arbitrage system as a concrete example. Such a system processes

prices of resources originating from different market sources and automatically executes a trade

when it determines that a particular resource can be purchased in one market for lower than it can be

sold in another market. Executing such a trade guarantees a profit. The model used to decide when

to buy and sell is likely to be deterministic. That is, the application’s current state is completely

determined by its previous state and the event that causes it to transition to its current state. This

is important because services that are nondeterministic require a modification that transforms them

into deterministic services (see Chapter 4).

Thus, we begin with a complete model that begins in a known state and accepts price information

from a variety of markets. It transitions from one state to the next based on each price update. When

it identifies a trade that is likely to make money, it sends a request to buy the resource on one market,

and then it immediately sells the resource on another market. Figure 5.1 shows a high-level view

of a centralized arbitrage system. In this system, the computers that produce the market data can

be viewed as clients and each message containing market data can be seen as an update. Note that

166

Figure 5.1: A centralized automated arbitrage system. The dotted lines represent messages sent
over a wide-area network. The central server receives price data from four markets. Based on this
information, it decides to execute buy and sell orders on these markets.

in our example, the clients are not as easy to identify as ATM machines interacting with a central

bank, for example.

A non-replicated system would consist of a single server that receives price data for a variety

of resources, perhaps stocks or commodities, and sends buy and sell orders to a variety of markets.

Suppose that the system owners have already implemented best-practice security measures, and they

wish to further harden the system against attackers. It is still clear that the system is vulnerable to a

single compromise – that of the central server. Although we are focusing on intrusion tolerance, we

note that real systems are also likely to be replicated in order to tolerate benign failures.

Both Steward and the composable architecture provide a state machine replication service.

These systems establish an agreed upon order on updates that are submitted by clients and deliver

the ordered updates to an application. In this case, our application consists of the arbitrage model

that processes price data and executes trades when there is a high probability of financial gain. If

the arbitrage model is deterministic, we can created a distributed, replicated service by taking the

arbitrage model and making copies of it that will run on each replica.

If one uses the composable architecture, we need to first decide on how many local-area sites

should be used, their locations, the fault tolerance (Byzantine or benign) desired in each site, and

how many faults should be tolerated in each site. We also need to decide whether to use Byzantine

or benign fault tolerance on the wide area. If a complete site compromise is considered likely, a

Byzantine wide- area protocol should be used. However, such a protocol has costs, specifically

higher update latency if BFT is chosen. We know of no simple recipe that can be used to select

the appropriate system fault tolerance and scale. It is a complicated problem that necessarily forces

167

Figure 5.2: A replicated automated arbitrage system. The dotted lines represent messages sent over
a wide-area network. The composable architecture receives price messages from the four market
computers, establishes an order on these messages, and delivers them to the replicated arbitrage
models. Each arbitrage model decides when to issue buy and sell orders and constructs the appro-
priate message. The composable architecture is responsible for signing these messages and sending
them to the appropriate market computer.

designers to make difficult trade offs.

Next, a copy of the arbitrage model is installed in each server. The centralized implementation

of the arbitrage model received price messages directly from various market computers. It also sent

buy and sell messages directly to market computers. In contrast, the replicated arbitrage model

processes an ordered stream of price messages that is delivered by the composable architecture.

Figure 5.2 shows a high-level view of our replicated arbitrage system. When the arbitrage model

decides to make a trade, it sends a buy or sell message to the composable architecture. If BFT is

run on the wide area, the composable architecture is responsible for generating F + 1 matching

threshold signatures that validate the message and propagating the resulting signed message to the

appropriate market computer. A confirmation of the transaction must be received by the composable

architecture and ordered before it is delivered to the replicated arbitrage models.

After deciding on the topology of the system and interfacing a copy of the arbitrage model with

the composable architecture, the servers must be deployed. The servers are supplied with a site

identifier and a server identifier. The tuple consisting of the two identifiers uniquely identifies each

server. The servers are given the addresses of all of the other servers via their identifying tuples.

Each server is supplied with a private RSA key and a RSA threshold cryptography share for its site.

Each server is also supplied with the public RSA keys of all of the servers in its own site and the

public RSA key for each site. This requires a secure means to distribute RSA keys.

It should be clear that the composable architecture sits between the replicated arbitrage models

168

and the external events that cause state transitions in these models. The composable architecture

delivers messages to the arbitrage models and constructs valid buy and sell messages on behalf of

a sufficient number of correct replicas. Clearly, this is necessary so that a single server does not

possess the ability to unilaterally execute a trade, in which case an attacker could exploit a single

computer compromise.

This isolation of the arbitrage model does pose a potential problem. The market computers are

not likely to be under the control of the owner of the automated arbitrage system. Since the market

computers are actually clients, it is easiest to construct the system if the market computers are aware

of the replicated system and its topology. For example, if a Byzantine fault-tolerant protocol is run

on the wide area, the market computer should execute a trade only if it receives matching threshold

signed orders from F + 1 sites.

Even at this level, we already see problematic issues. While it is theoretically straightforward

to construct a self-contained replicated system with a suitable service (and even to massage lim-

ited nondeterminism), problems are apt to arise when one tries to apply state machine replication

architectures to real systems. The hierarchical nature of our systems exacerbates these problems.

For example, if a buy order must contain a single threshold signature, then the composable system

is not currently able to create a wholly satisfactory buy order. A single site can create a signature

that represents the site, but there is no way currently to create a single signature that represents the

system (i.e., F + 1 sites). Solutions to these problems may require new cryptographic protocols

(e.g., a hierarchical threshold cryptography protocol).

We now examine our replicated system. Our original goal was to decrease the probability that

an attacker would compromise (i.e., assume control of) our automated arbitrage system. Indeed,

it is possible that our replicated system is less likely to be compromised. Instead of penetrating

the defenses of a single computer, the attacker would need to compromise several computers (de-

pending on our choice of protocols and system scale), which may be significantly less likely than

compromising one computer. Note that our replicated system does not improve confidentiality,

which would be very important for a real trading system. An attacker that controls a single server

can monitor when our system decides to trade. A privacy firewall [11] can be used to protect the

169

information contained within the arbitrage model.

In order to assess whether we improved the system, we need to estimate the probability that an

attacker compromises a server via physical access, a software vulnerability, or social engineering.

Even the type of software vulnerability is important. Is it a vulnerability in the replication archi-

tecture code, the operating system, the arbitrage model, or another application? This discussion

is intended only to emphasize the complexity in estimating the probability of system compromise.

Therefore, we give examples to illustrate the scope of the problem, but we do not describe how to

estimate probability of server and/or system compromise.

If there are some sites that have a relatively high chance of physical compromise, then we must

run a Byzantine fault-tolerant protocol among the sites because there is certainly a high probability

that if one server in a site is physically compromised, the attacker will also be able to compromise

other servers in the same site, ultimately leading to a site compromise. Unfortunately, there may be

correlated weaknesses in multiple sites because of similar security practices. If social engineering

techniques are used to penetrate a computer in one site, the same techniques are likely to be effective

in another site.

Remote compromises through software vulnerabilities pose an array of additional problems.

First of all, the resilience of the replicated system to software vulnerabilities depends on diversity

of the replicas. If an attacker is able to effectively use the same software exploit on all of the

servers, compromising one server is akin to compromising the entire system. We therefore should

use diverse operating systems and diverse software implementations of both the arbitrage model and

our replication architecture. N-version programming generates diversity manually [74, 75]. Recent

systems that automatically create diversity [76,77] have the potential to dramatically reduce the cost

of addressing correlated software vulnerabilities. We may also want to consider proactive recovery,

where servers are periodically reborn in a state that, hopefully, does not contain the same set of

vulnerabilities as their previous state.

We also need to consider the resources available to the attacker. If we make the attacker work

harder to compromise the system, and the attacker is resource constrained, then we may make our

system more survivable. If we assume that there is a particular cost associated with the compromise

170

of each server, then an attacker that can afford to compromise one server may clearly not be able

to afford to compromise multiple servers. However, an attacker with essentially limitless resources

can use multiple teams of hackers working in parallel to compromise our system. In such a case,

our replicated system is less effective. It is also important that the owner of the arbitrage system

has sufficient resources to create the requisite software diversity and, potentially, security policy

variability in different administrative domains. Costs associated with such efforts may be exorbitant.

We believe that a well thought out replicated system offers a significant increase in survivability.

However, the key to this statement iswell thought out. Naively converting a centralized system into a

Byzantine fault-tolerant service may in fact make it more likely that it either will be compromised or

simply fail because of a software error. Judicious use of Byzantine fault tolerance, on the other hand,

may be very effective. It remains to be seen if the types of systems described in this dissertation

will be used in practice. This dissertation provides a strong argument that the performance of such

systems is satisfactory for many services. However, the costs and benefits associated with an actual

deployment remain difficult to judge.

We conclude this example by noting that a replicated system has advantages beyond improved

survivability. As we noted early, replication can improve throughput and latency. However, repli-

cated systems offer other potential benefits by making it possible to exploit geographic locality.

In our automated arbitrage system, once a potentially profitable trade has been identified, it is

very important to initiate the trade as quickly as possible. If our system has replicas near different

market computers, then the closest computer may be able to optimistically initiate a trade based on

an update that has not yet been assigned an order, but is likely to trigger the trade when it is ordered.

A replica that is close to both the originator of the update that triggers the trade and the market

computer that will process the trade is in a prime position to optimistically initiate a trade.

Our hierarchical systems currently do not deliver an update to the replicated service unless its

order has been fixed. However, with relatively minor modifications, our systems can be made to

deliver updates earlier. An architecture modified in this manner can provide a rich set of semantics

that can be used by a system designer to balance performance and fault tolerance. It is possible that,

in practice, survivable replication architectures will provide weaker services in addition to state

171

machine replication. Such systems have the potential to improve both resilience and performance.

5.2 Identifying and Responding to Faulty Servers

Our architectures are designed to provide safety and liveness. With only one exception, this

can be achieved without identifying faulty servers.1 However, if a server is faulty, it is certainly

beneficial to identify and exclude it. If a server engages in an attack and is identified as faulty by

all correct servers, then the correct servers can prevent that server from engaging in the same attack

again by blacklisting it. Correct servers can ignore messages from blacklisted servers and prevent

blacklisted servers from becoming leaders or representatives.

Faulty servers can engage in two types of damaging malicious behavior. First, they can send

messages that conflict. For example, a malicious representative at the leader site may send two

Pre-Prepares that bind the same sequence number to two different updates. Since our systems use

signatures, this type of malicious behavior is easy to identify. Two correctly signed messages from

the same server that conflict constitute proof that the server is faulty. The second type of behavior

is more difficult to handle; a faulty server can delay sending its messages. Since our architectures

do not rely on synchrony assumptions to provide safety, servers that are slow cannot be excluded

because they may be correct. In summary, we can remove a slow server from power (which is

precisely what our view change protocols do), but we cannot blacklist it.

It is important to note that even when more than f but fewer than 2f + 1 servers within a site

are compromised, the malicious servers may not be able to make the site behave in a Byzantine

manner. If the malicious servers are identified and blacklisted by all correct servers, then they will

not be able to collect the necessary messages from the correct servers to generate a valid threshold

signed wide-area protocol message (when (2f+1,3f+1) threshold signatures are used). Therefore,

a practical system should include a rapid blacklisting mechanism. Such a mechanism may require

signatures. At the very least, signatures will make it easier to design an effective blacklisting pro-

tocol. Considering also that (1) optimizations can be used to distribute the cost of signatures across

multiple updates and (2) the computational cost associated with signatures is no longer exorbitant,
1The Steward THRESHOLD-SIGN protocol includes a blacklisting mechanism which is necessary for live-

ness (see Figure 3.10).

172

we believe that they are the best option for many practical Byzantine replication systems.

5.3 Summary

This chapter is intended to provide the reader with (1) a better understanding of how our archi-

tectures might be used to construct a replicated service and (2) an appreciation of the subtle issues

that a designer is likely to encounter in practice. Our architectures are research systems. They

have served their intended purpose by demonstrating that Byzantine fault-tolerant replication can

achieve practical performance on wide-area networks. We leave the task of uncovering an effective

methodology for reasoning about the probability of system compromise to future research.

173

Chapter 6

Conclusions

This dissertation presents the first two Byzantine fault-tolerant replication architectures that

scale to wide-area networks. Our systems achieve performance comparable to common benign

fault-tolerant protocols, which demonstrates for the first time that Byzantine fault- tolerant state

machine replication is practical for wide-area networks. The architectures also contain several im-

portant technological contributions that we summarize below.

Our first system, Steward, uses hierarchy to achieve performance that surpasses the previous

state of the art by an order of magnitude. Steward comprises a series of Byzantine fault-tolerant

protocols that allow the servers within each local-area site to act as a single participant in a benign

fault-tolerant, wide-area protocol. This dissertation contains a detailed proof of system safety and

liveness. Notable contributions of Steward include a reduction in wide-area message complexity,

improved availability, reduced update latency, and the ability to answer read-only queries locally.

Our second system, the composable architecture, improves upon Steward by offering customiz-

ability of the fault tolerance approach used within and among the sites. This customizability is

derived from cleanly separating the intra and inter-site protocols. Clean separation allows us to

leverage existing properties of the flat replication protocols used in the composition to reason about

safety and liveness. Notable contributions of the composable architecture include a new Byzantine

link protocol that allows efficient communication between logical machines and the use of opti-

mizations that improve performance.

174

Bibliography

[1] S. Schwankert, “U.s. congressmen accuse china of hacking their computers,” New York Times,

IDG News Service, June 2008.

[2] W. Jackson, “Government, health care web sites attacked: New wave of attacks compromise

government and health care web sites,” Government Computer News, July 2008.

[3] “Ciphertrust’s zombie stats,” http://www.ciphertrust.com/resources/statistics/zombie.php.

[4] D. Sevastopulo, “Chinese hacked into pentagon,” Financial Times, London, September 2007.

[5] P. E. Verı́ssimo, N. F. Neves, and M. P. Correia, “Intrusion-tolerant architectures: Concepts

and design,” in Architecting Dependable Systems, R. Lemos, C. Gacek, and A. Romanovsky,

Eds., 2003, vol. 2677.

[6] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, “An on-demand se-

cure routing protocol resilient to byzantine failures,” in ACM Workshop on Wire-

less Security (WiSe), Atlanta, Georgia, September 2002. [Online]. Available: cite-

seer.ist.psu.edu/article/awerbuch02demand.html

[7] R. Curtmola and C. Nita-Rotaru, “Bsmr: Byzantine-resilient secure multicast routing in multi-

hop wireless networks,” Sensor, Mesh and Ad Hoc Communications and Networks, 2007.

SECON ’07. 4th Annual IEEE Communications Society Conference on, pp. 263–272, June

2007.

[8] M. K. Reiter, “The Rampart Toolkit for building high-integrity services,” in Selected Papers

from the International Workshop on Theory and Practice in Distributed Systems. London,

UK: Springer-Verlag, 1995, pp. 99–110.

175

[9] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The SecureRing protocols for securing

group communication,” in Proceedings of the IEEE 31st Hawaii International Conference on

System Sciences, vol. 3, Kona, Hawaii, January 1998, pp. 317–326.

[10] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proceedings of the 1999

Symposium on Operating Systems Design and Implementation (OSDI ’99). New Orleans,

LA, USA: USENIX Association, Co-sponsored by IEEE TCOS and ACM SIGOPS, 1999, pp.

173–186.

[11] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Separating agreement from

execution for byzantine fault-tolerant services,” in Proceedings of the 19th ACM Symposium

on Operating Systems Principles (SOSP ’03), Bolton Landing, NY, USA, October 2003, pp.

253–267.

[12] J.-P. Martin and L. Alvisi, “Fast byzantine consensus,” IEEE Transactions on Dependable and

Secure Computing, vol. 3, no. 3, pp. 202–215, 2006.

[13] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communica-

tions of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[14] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of faults,” Journal

of the ACM, vol. 27, no. 2, pp. 228–234, 1980.

[15] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM Transactions

on Programming Languages and Systems, vol. 4, no. 3, pp. 382–401, 1982.

[16] Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru, J. Olsen, and D. Zage,

“Scaling byzantine fault-tolerant replication to wide area networks,” in Proceedings of the

2006 International Conference on Dependable Systems and Networks (DSN ’06). Philadel-

phia, PA, USA: IEEE Computer Society, June 2006, pp. 105–114.

[17] ——, “Steward: Scaling byzantine fault-tolerant replication to wide area networks,” To appear

in IEEE Transactions on Dependable and Secure Computing.

176

[18] L. Lamport, “The part-time parliament,” ACM Transactions on Computer Systems, vol. 16,

no. 2, pp. 133–169, May 1998.

[19] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Customizable fault tolerance for wide-area repli-

cation,” in Proceedings of the 26th IEEE International Symposium on Reliable Distributed

Systems (SRDS ’07), Beijing, China, 2007, pp. 66–80.

[20] M. J. Fischer, “The consensus problem in unreliable distributed systems (a brief survey),” in

Fundamentals of Computation Theory, 1983, pp. 127–140.

[21] D. Dolev and H. R. Strong, “Authenticated algorithms for byzantine agreement,” SIAM Journal

of Computing, vol. 12, no. 4, pp. 656–666, 1983.

[22] M. Cukier, T. Courtney, J. Lyons, H. V. Ramasamy, W. H. Sanders, M. Seri, M. Atighetchi,

P. Rubel, C. Jones, F. Webber, P. Pal, R. Watro, and J. Gossett, “Providing intrusion tolerance

with ITUA,” in Supplement of the 2002 International Conference on Dependable Systems and

Networks, June 2002.

[23] H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders, “Quantifying the cost of

providing intrusion tolerance in group communication systems,” in Proceedings of the 2002

International Conference on Dependable Systems and Networks (DSN ’02), Bethesda, MD,

USA, June 2002, pp. 229–238.

[24] P. Pandey, “Reliable delivery and ordering mechanisms for an intrusion-tolerant group com-

munication system,” masters Thesis, University of Illinois at Urbana-Champaign, 2001.

[25] H. V. Ramasamy, “A group membership protocol for an intrusion-tolerant group communica-

tion system,” masters Thesis, University of Illinois at Urbana-Champaign. 2002.

[26] V. Drabkin, R. Friedman, and A. Kama, “Practical byzantine group communication,” in

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems

(ICDCS ’06). Lisboa, Portugal: IEEE Computer Society, 2006, p. 36.

177

[27] K. Eswaran, J. Gray, R. Lorie, and I. Taiger, “The notions of consistency and predicate locks

in a database system,” Communication of the ACM, vol. 19, no. 11, pp. 624–633, 1976.

[28] D. Skeen, “A quorum-based commit protocol,” in 6th Berkeley Workshop on Distributed Data

Management and Computer Networks, 1982, pp. 69–80.

[29] L. Lamport, “Paxos made simple,” SIGACTN: SIGACT News (ACM Special Interest Group on

Automata and Computability Theory), vol. 32, pp. 18–25, 2001.

[30] A. Doudou, R. Guerraoui, and B. Garbinato, “Abstractions for devising byzantine-resilient

state machine replication,” in Proceedings of the 19th IEEE Symposium on Reliable Dis-

tributed Systems (SRDS ’00). Nurnberg, Germany: IEEE Computer Society, 2000, pp. 144–

153.

[31] M. Correia, N. F. Neves, and P. Verı́ssimo, “How to tolerate half less one byzantine nodes

in practical distributed systems,” in Proceedings of the 23rd IEEE International Symposium

on Reliable Distributed Systems (SRDS ’04). Florianpolis, Brazil: IEEE Computer Society,

2004, pp. 174–183.

[32] R. Rodrigues, P. Kouznetsov, and B. Bhattacharjee, “Large-scale byzantine fault tolerance:

safe but not always live,” in HotDep ’07: Proceedings of the 3rd workshop on on Hot Topics

in System Dependability. Berkeley, CA, USA: USENIX Association, 2007, p. 17.

[33] R. Kotla, L. Alvisi, M. Dahlin, A. C. t, and E. Wong, “Zyzzyva: speculative byzantine fault

tolerance,” in Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Prin ciples

(SOSP ’07), 2007, pp. 45–58.

[34] D. Malkhi and M. K. Reiter, “Secure and scalable replication in Phalanx,” in Proceedings of

the The 17th IEEE Symposium on Reliable Distributed Systems (SRDS ’98). West Lafayette,

IN, USA: IEEE Computer Society, 1998, pp. 51–58.

[35] D. Malkhi and M. Reiter, “Byzantine quorum systems,”Distributed Computing, vol. 11, no. 4,

pp. 203–213, 1998.

178

[36] ——, “An architecture for survivable coordination in large distributed systems,” IEEE Trans-

actions on Knowledge and Data Engineering, vol. 12, no. 2, pp. 187–202, 2000.

[37] D. Malkhi, M. Reiter, D. Tulone, and E. Ziskind, “Persistent objects in the Fleet system,” in

Proceedings of the 2nd DARPA Information Survivability Conference and Exposition (DISCEX

II), vol. 2, June 2001, pp. 126–136.

[38] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie, “Fault-scalable

byzantine fault-tolerant services,” in SOSP ’05: Proceedings of the twentieth ACM symposium

on Operating systems principles, 2005, pp. 59–74.

[39] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “HQ replication: A hybrid quo-

rum protocol for byzantine fault tolerance,” inProceedings of the 7th Symposium on Operating

Systems Design and Implementation (OSDI ’06), Seattle, WA, Nov. 2006, pp. 177–190.

[40] M. Correia, L. C. Lung, N. F. Neves, and P. Verı́ssimo, “Efficient byzantine-resilient reliable

multicast on a hybrid failure model,” in Proceedings of the 21st Symposium on Reliable Dis-

tributed Systems (SRDS ’02), Suita, Japan, Oct. 2002, pp. 2–11.

[41] P. Verı́ssimo, “Uncertainty and predictability: Can they be reconciled?” in Future Directions

in Distributed Computing, ser. LNCS, no. 2584. Springer-Verlag, 2003.

[42] “Survivable spread: Algorithms and assurance argument,” The Boeing Company, Tech. Rep.

Technical Information Report Number D950-10757-1, July 2003.

[43] F. B. Schneider, “Implementing fault-tolerant services using the state machine approach: A

tutorial,” ACM Computing Surveys, vol. 22, no. 4, pp. 299–319, 1990. [Online]. Available:

citeseer.ist.psu.edu/schneider90implementing.html

[44] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: An approach to designing fault-

tolerant computing systems,” ACM Transactions on Computer Systems, vol. 1, no. 3, pp. 222–

238, 1983.

179

[45] D. Powell, D. Seaton, G. Bonn, P. Verı́ssimo, and F. Waeselynck, “The Delta-4 approach

to dependability in open distributed computing systems,” in Proceedings of the 18th IEEE

International Symposium on Fault-Tolerant Computing (FTCS), Jun. 1988, pp. 246–251.

[46] F. V. Brasileiro, P. D. Ezhilchelvan, S. K. Shrivastava, N. A. Speirs, and S. Tao, “Implementing

fail-silent nodes for distributed systems,” IEEE Transactions on Computers, vol. 45, no. 11,

pp. 1226–1238, 1996. [Online]. Available: citeseer.ist.psu.edu/brasileiro96implementing.html

[47] K. P. Kihlstrom and P. Narasimhan, “The Starfish system: Providing intrusion detection and

intrusion tolerance for middleware systems.” inProceedings of the 8th International Workshop

on Object-Oriented Real-Time Dependable Systems (WORDS ’03). Guadalajara, Mexico:

IEEE Computer Society, 2003, pp. 191–199.

[48] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and P. Narasimhan, “Thema:

Byzantine-fault-tolerant middleware for web-service applications,” in Proceedings of the 24th

IEEE Symposium on Reliable Distributed Systems (SRDS ’05). Orlando, FL, USA: IEEE

Computer Society, 2005, pp. 131–142.

[49] P. Verı́ssimo, N. Neves, C. Cachin, J. Poritz, D. Powell, Y. Deswarte, R. Stroud, and I. Welch,

“Intrusion-tolerant middleware: The road to automatic security,” IEEE Security & Privacy,

vol. 4, no. 4, pp. 54–62, 2006.

[50] P. Felber, R. Guerraoui, and A. Schiper, “Replication of CORBA objects,” in Advances in Dis-

tributed Systems, Advanced Distributed Computing: From Algorithms to Systems. London,

UK: Springer-Verlag, 1999, pp. 254–276.

[51] R. Friedman and E. Hadad, “FTS: A high-performance CORBA fault-tolerance service,” in

Proceedings of the 7th IEEE International Workshop on Object-Oriented Real-Time Depend-

able Systems (WORDS ’02). San Diego, CA, USA: IEEE Computer Society, 2002, pp. 61–68.

[52] P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “Providing support for

survivable CORBA applications with the Immune system,” in Proceedings of the 19th IEEE

180

International Conference on Distributed Computing Systems (ICDCS ’99), Austin, TX, USA,

1999, pp. 507–516.

[53] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,” ACM

Transactions on Computer Systems, vol. 20, no. 4, pp. 398–461, 2002.

[54] Y. G. Desmedt and Y. Frankel, “Threshold cryptosystems,” in CRYPTO ’89: Proceedings on

Advances in cryptology. New York, NY, USA: Springer-Verlag New York, Inc., 1989, pp.

307–315.

[55] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 612–613,

1979.

[56] V. Shoup, “Practical threshold signatures,” EUROCRYPT 2000, Lecture Notes in

Computer Science, vol. 1807, pp. 207–220, 2000. [Online]. Available: cite-

seer.ist.psu.edu/shoup99practical.html

[57] P. Feldman, “A Practical Scheme for Non-Interactive Verifiable Secret Sharing,” in Proceed-

ings of the 28th Annual Symposium on Foundations of Computer Science, IEEE Computer

Society. Los Angeles, CA, USA: IEEE, October 1987, pp. 427–437.

[58] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold dss signatures,” Infor-

mation and Computation, vol. 164, no. 1, pp. 54–84, 2001.

[59] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining digital signatures and

public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126, Feb.

1978.

[60] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen, and D. Zage,

“Steward: Scaling byzantine fault-tolerant systems to wide area networks,” Tech. Rep. CNDS-

2005-3, Johns Hopkins University and CSD TR 05-029, Purdue University, www.dsn.jhu.edu,

December 2005.

181

[61] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control and recovery in

database systems. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1987.

[62] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness condition for concurrent objects,”

ACM Trans. Program. Lang. Syst., vol. 12, no. 3, pp. 463–492, 1990.

[63] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus with

one faulty process,” J. ACM, vol. 32, no. 2, pp. 374–382, 1985.

[64] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Byzantine replication under attack,” in Proceed-

ings of the 2008 International Conference on Dependable Systems and Networks (DSN ’08).

Anchorage, AK, USA: IEEE Computer Society, June 2008, p. xxxx.

[65] “The Spines project,” http://www.spines.org/.

[66] “Planetlab,” http://www.planet-lab.org/.

[67] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu, “On the performance of con-

sistent wide-area database replication,” Tech. Rep. CNDS-2003-3, December 2003.

[68] “The CAIRN Network,” http://www.isi.edu/div7/CAIRN/.

[69] R. Rodrigues, M. Castro, and B. Liskov, “BASE: using abstraction to improve fault tolerance,”

in Proceedings of the 18th ACM symposium on Operating systems principles (SOSP ’01).

Banff, Alberta, Canada: ACM Press, 2001, pp. 15–28.

[70] R. C. Merkle, “Secrecy, authentication, and public key systems.” Ph.D. dissertation, Stanford

University.

[71] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen, and D. Zage,

“Steward: Scaling byzantine fault-tolerant replication to wide area networks,” Tech. Rep.

CNDS-2006-2, Johns Hopkins University, www.dsn.jhu.edu, November 2006.

182

[72] Y. Amir and C. Danilov, “Reliable communication in overlay networks,” in Proceedings of

the IEEE International Conference on Dependable Systems and Networks, (DSN ’03), June

2003, pp. 511–520. [Online]. Available: citeseer.ist.psu.edu/article/amir03reliable.html

[73] R. A. Golding and K. Taylor, “Group membership in the epidemic style,” University of Cali-

fornia, Santa Cruz, CA, Tech. Rep. UCSC-CRL-92-13, Mar. 1992.

[74] A. Avizeinis, “The n-version approach to fault-tolerant software,” IEEE Transactions of Soft-

ware Engineering, vol. SE-11, no. 12, pp. 1491–1501, December 1985.

[75] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance approach to reliability

of software operation,” Twenty-Fifth International Symposium on Fault-Tolerant Computing,

1995,’ Highlights from Twenty-Five Years’., pp. 113–, June 1995.

[76] “Genesis: A framework for achieving component diversity,”

http://www.cs.virginia.edu/genesis/.

[77] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-Tuong,

and J. Hiser, “N-variant systems: a secretless framework for security through diversity,” in

USENIX-SS ’06: Proceedings of the 15th conference on USENIXSecurity Symposium. Berke-

ley, CA, USA: USENIX Association, 2006, pp. 8–8.

183

Vita

John Lane graduated from Cornell University in 1992 with a BA in Biology. He worked

in neuroscience research for several years at Johns Hopkins, first doing experiments and

then transitioning to designing and constructing computerized data-collection systems. In

1998 he became a programmer at the Krieger Mind/Brain Institute. In 2003, he became a

full-time graduate student in the Department of Computer Science at Johns Hopkins Uni-

versity. He was a member of the Distributed Systems and Networks Lab, and his research

focused on large-scale, intrusion-tolerant, distributed systems. John Lane joined Live Time

Net as a Senior Research Scientist in 2008.

184

