
Low-Overhead Routing for High-Performance
Wireless Mesh Networks

Independent Study, 600.810.12, Dr. Yair Amir

Michael Kaplan

kaplan@dsn.jhu.edu

June 16, 2006

Abstract

Routing, a task ordinarily performed solely by
the operating system, has since crossed over to the
user-space where sophisticated overlay networks can
make more informed next-hop forwarding decisions.
While application routing often improves network
performance, it does incur the cost of significant
CPU processing when copying packets between ker-
nel and application memory spaces. To date, over-
lays have primarily been intended for and deployed
over end-host machines that are comparable to or
better than regular PCs; thus additional computa-
tional overhead can be handled without hindering
network performance. However, in many practical-
purpose computing environments, Internet connec-
tivity is deployed quickly, easily, and inexpensively
using low-end commercial off-the-shelf (COTS) prod-
ucts. A 30-node mesh network of Linksys wireless
routers, for example, can be used to provide con-
nectivity over a large geographic area at a cost of
under $2000, revolutionizing the way many typical
users plan to build networks. The overlay is an
essential component in the communication infras-
tructure for these networks, but unlike high-end
devices, limited COTS products cannot transpar-
ently absorb the additional overhead. Throughput
degrades dramatically when the routers do not sim-
ply forward through the kernel as is their intended
manufactured purpose. In order to retain the ben-
efits of an overlay without sacrificing performance
in these weaker hardware environments, a new hy-
brid routing design is necessary that incorporates
the best aspects of overlay and kernel approaches.
We present the architecture of such a system based
on the SMesh network and evaluate its benefit.

1 Introduction

Routing in overlay networks traditionally fol-
lows one of two well-established design paradigms:

dynamic application-based protocols or static for-
warding over predefined kernel tables. The appli-
cation approach to routing tends to be more desir-
able since it enables the overlay to perform a num-
ber of smart algorithms that significantly improve
connectivity and performance. Spines for instance,
is a modern state-of-the-art overlay that provides
link assessment, hop-by-hop reliability, and appli-
cation multicast among a number of other flexible
user-space protocols [1]. However, this technique
does come with a price as it is highly CPU inten-
sive to manipulate packets from outside the kernel.
Because kernel and application memory spaces are
logically separate, memory copies are required to
move packets back and forth. This cost, neverthe-
less, is generally overlooked since the intended de-
ployment is over high-end host machines that can
easily handle the additional processing. Until re-
cently, this hardware assumption was reasonable,
but a developing trend in networking architecture
now challenges this notion.

Often it is desirable to quickly and cost-effectively
deploy a network that provides peer-to-peer and In-
ternet connectivity for clients. In such networks,
low-cost COTS equipment is especially useful as it
can provide coverage over a large area at little ex-
pense. Figure 1 for example, depicts our mesh net-
work of Linksys wireless routers spread across the
Johns Hopkins computer science building, retailing
at only $60 per router. Thus for a mere $2000,
we can quickly build a fairly large 30-node sys-
tem, revolutionizing the way network deployment
is typically carried out. The mesh connectivity in
our network is provided by two applications run-
ning on each router: SMesh and Spines. SMesh
implements various management protocols to han-
dle peer-to-peer connectivity, Internet connectivity,
and fast-handoff for mobile clients across the mesh
[2]. Spines serves as the generic overlay architec-
ture which monitors the quality of virtual links and
routes packets to the appropriate next-hop. In a

1

SMesh network, few of the nodes actually act as
Internet Gateways, so it is expected that mobile
clients require several wireless hops to obtain In-
ternet access.

4

6

35

23

 1

3

 34

31

Sky

Internet

Internet Gateway

Client

9

 33

LAN Switch

 8

32

37

26

Figure 1: Sample SMesh configuration [2].

The low cost of the Linksys routers is made pos-
sible by their use of limited hardware - the routers
feature only 200 MHz processors and 16 MB of
RAM. While this hardware is sufficient for native
packet forwarding, the devices are not well-equipped
for computationally expensive user-space operations.
SMesh runs well on better equipped machines, but
because it relies on application routing, it faces a
performance bottleneck when ported to the low-
end routers. On a single wireless hop to the In-
ternet gateway, the router is at nearly 100% CPU
usage during data transfer: 58% SMesh and 38%
Spines. With two wireless hops to the gateway,
CPU usage is similarly dominated by the applica-
tions: SMesh 25% and Spines 35%. Nothing has
actually improved for SMesh in the two-hop situa-
tion, but rather due to contention and exponential
back off, the client is inhibited from transmitting at
the same rate it did in the one-hop configuration.

Under these conditions, the transfer rate for mo-
bile clients peaks at only 1-1.5 Mbps. Even between
direct neighbors, in which the ideal transfer rate
should be on the order of 15-18 Mbps, the rate is
still unusually reduced due to the memory copies.
To avoid this excess processing, the alternative is
to switch back to a kernel-based approach in which
the node routing tables are preconfigured to reflect
the topology as is done in X-Bone[3], but unfortu-
nately this technique reduces the degree of control
needed to maintain a realistic network in which be-

nign failures occur.
Therefore, we present a new routing paradigm,

a hybrid approach that captures the best of both
worlds. Our mechanism falls between the two ex-
tremes, using flexible application forwarding for con-
trol messages and low-overhead kernel routing for
data packets. Under this scheme, the control infor-
mation is used to continuously update the kernel ta-
bles in order to reflect the current overlay topology,
allowing data packets to pass transparently with-
out user-space interaction. Control messages still
require essential application-level processing in or-
der to maintain the mesh and since these transfers
are less frequent and relatively small, the rate is
acceptable as we do not incur high computational
cost. We implemented this technique as an addi-
tional module in Spines and it achieves SMesh data
transfer rates of nearly 6 Mbps for UDP over three
wireless hops. The system has since become an in-
tegral part of SMesh as of version 1.2d.

2 Related work

Our research contributes to the field of overlay
networks and wireless mesh networks. The primary
benefit of an overlay is the ability to implement
new services and make complex routing decisions
on a subset of nodes to yield better performance
than that of the underlying Internet. There are
essentially two schools of thought with regard to
overlay routing as it has been implemented in pre-
vious systems: application-based and kernel-based.
Spines is one such system that performs significant
application-level computations to improve connec-
tivity for its nodes [1]. It actively measures link
qualities and chooses paths based on distance, la-
tency, or loss. Spines uses its own headers to pro-
vide overlay multicast, anycast, and hop-by-hop re-
liability. Additionally, Spines automatically recon-
figures its daemons upon detecting benign failures.

Conversely, the X-Bone [3] takes a kernel-based
routing approach. X-Bone provides a graphical tool
which allows the user to specify an overlay topol-
ogy from a set of participating nodes. The tool
then interacts with a management daemon to dis-
seminate the configuration. The affected nodes con-
figure tunnels and set their kernel routing table to
reflect the desired arrangement. No further appli-
cation interaction is necessary, allowing packets to
be forwarded using the native protocols. X-Bone,
however, does not monitor or dynamically update
the state of its links; thus a given configuration is
static until further interaction with the GUI. While
this approach may be less CPU intensive, we lose
the degree of routing control needed to handle un-

2

predictable links, particularly in the wireless envi-
ronment. Furthermore, X-Bone and similar kernel-
based approaches are not capable of providing mul-
ticast.

In our system, we modify Spines to share the
principle qualities of both options. Spines is inher-
ently an application overlay, but our modification
allows it to continuously update the kernel rout-
ing table to reflect the best path for data mes-
sages. Spines control messages continue to use the
application-based protocols, but since they are small
as compared to data, they do not incur significant
computational cost.

Interestingly, RON [4] already provides a form
of hybrid routing. In RON, packets are forwarded
natively through the kernel-space until a disrup-
tion in service is detected. At this point the pack-
ets are intercepted by the overlay and application
protocols are used to determine a better next-hop.
Our solution, improves upon this idea since we al-
ways route through the kernel and do not depend
on FreeBSD.

The MIT Roofnet [5] is one of the first mesh
networks that deployed Internet connectivity over
wireless nodes. The nodes consist of preconfigured
PCs connected to an antenna mounted at the node’s
location. SMesh on the other hand, presents a
more flexible approach. It is deployed over a series
of Linksys wireless routers and allows any 802.11
device to connect to the network without any ad-
ditional configuration by the client. Additionally,
SMesh is the first to provide fast-handoff between
access points as mobile clients traverse across the
mesh. Roofnet yields throughput of 627 kbps while
the original version of SMesh yields a slightly im-
proved 1-1.5 Mbps. Nevertheless, both suffer from
low transmission rates.

3 Overlay Infrastructure

The SMesh software facilitates the activity of
clients as they access the network. SMesh han-
dles the DHCP server that assigns IP addresses
to its clients. The software is then used to direct
client traffic and handle the selection of the clients
best access point. This communication is based on
our Spines messaging system which runs as a back-
ground daemon in conjunction with SMesh. Spines
provides transparent multi-hop unicast, multicast
and anycast communication between the wireless
mesh nodes. SMesh instantiates two Spines mul-
ticast groups for each client: a data group and a
control group. The groups are used to send their
respective message types to multiple access points
when a client is undergoing a handoff, switching

Figure 2: The original SMesh architecture [2].

between access points. SMesh also uses a Spines
anycast group to direct traffic towards the Inter-
net gateways. The routing in Spines is coordinated
by two modules: Link-State routing, and Group
Multicast/Anycast routing. The Link-State mod-
ule runs the Floyd-Warshall algorithm on each re-
ceived state update in order to compute the best
next-hop between nodes. The multicast module
maintains the node’s neighbors to the groups and
builds multicast trees as needed. As an optimiza-
tion, Spines only builds multicast trees for groups
to which messages are in the process of being sent.

4 Low-Overhead Routing

In an ideal situation, there is no need for SMesh
or Spines to intercept the data packets at any point
during the transfer. We can achieve near opti-
mal transfer rates if data packets traverse only the
kernel-space. In the original version of SMesh, such
routing does not occur since the packets need to
interact with Spines to reach the appropriate next-
hop. However, since the routing knowledge of these
applications is known beforehand from earlier con-
trol messages, we can use this information to run
system calls that dynamically update the kernel
routing tables to reflect that of the overlay. This
routing scheme in effect offloads the routing respon-
sibilities from the user-space to the kernel-space,
providing low-overhead routing without sacrificing
the benefits of an overlay. As desired, this new
mechanism requires no memory copies at any node

3

during data transfer. Implementation requires a
new module in Spines which sets the routing ta-
ble upon receipt of relevant topology state packets.
Section 4.1 describes the design of the kernel rout-
ing module and section 4.2 compares our changes
to their counterparts in the original version.

4.1 Route Management

Internal Routes
Internal routes refer to the virtual links between
Spines nodes participating in the network. These
routes are used to forward packets between routers
in the SMesh network. The appropriate paths can
be easily detected at the completion of the Floyd-
Warshall algorithm, which runs periodically in Spines
to compute the routes to all Spines nodes. For all
non-neighbors, a route must be set with the ap-
propriate next-hop as the routing entry gateway.
Neighbors do not require routes since they are within
radio range of each other and will match the default
subnet route, which in our network is 10.0.11.0/24
on interface eth1.

Client Routes (Access Points)
Client routes refer to the path required to reach
the mobile clients in the mesh. In SMesh, clients
are identified via unique multicast groups. When
Spines on a given router invokes a join for a group
of the form 227.x.x.x, this action indicates that the
router has become the access point for that client.
Spines must then set a route in which the destina-
tion and gateway are set to the clients IP address
10.x.x.x. This route allows the access point to de-
liver messages destined to its client. Conversely, if
Spines invokes a leave for the multicast group, it is
no longer the access point for the respective client
and must remove the previously added route.

Client Routes (Intermediate Nodes)
Client routes must also be set on the intermediate
nodes to reach the access point that is directly con-
nected to the client. However, these routes are not
trivial to compute. While Spines featured a peri-
odic mechanism that facilitated updating internal
routes, the client routes are dependent upon mul-
ticast trees which are not recomputed with state
updates. Tree computation is expensive and there-
fore is only performed when a message is sent to
the respective multicast group. However, in the
kernel routing scheme, no data messages are ever
sent to the multicast groups; they are only used in
this case to identify the access points. To circum-
vent this Spines design feature, the multicast mod-
ule was modified so that when it receives a group
state packet, it processes the update and refreshes

its direct neighbors to that multicast group. The
neighbor with the lowest routing cost to the group
is then used as the next-hop to the client, and the
route is set in the kernel. This action is still less ex-
pensive than computing a complete multicast tree,
but it should be noted that it does change the un-
derlying Spines code.

Default Routes
Default routes refer to the last entry in the routing
table which directs packets to a default next-hop
when their destination does not match that of an-
other entry. In SMesh, the default route must lead
back to the Internet gateway so that client Internet
activity can reach the external network. Internet
gateways join a predefined anycast group. Using
the technique described for client routes on interme-
diate nodes, upon processing a group state message
for this specific anycast group, the closest anycast
neighbor is retrieved and then set to be the node’s
default gateway. If the node later joins the anycast
group, it will clear this default route. The router
then automatically detects the network connected
to the vlan1 interface and sets a default route to
the server.

The routing entries are stored in a linked list and
updated in response to topology changes. In all
cases, new routes are added before old routes are
deleted to reduce message loss. The implementa-
tion is also able to respond to crash failures since
these events are topology changes which thus trig-
ger a review of next-hop selections for affected routes.
See figure 7 at the end of this report for a graphical
representation of a sample network.

4.2 Functionality Mapping

Unicast/Multicast/Anycast
In the original version of SMesh, Spines is used as
a message bus for data packets. Packets destined
for a client are sent on its respective multicast data
group. Packets destined for the Internet are sent
on the SMesh anycast group. The kernel version,
however, is a strictly unicast system for data trans-
mission. We use the multicast and anycast groups
in this case only to identify the access points. Mes-
sages sent to a client are sent directly, using the IP
of the client as the packets destination. The mem-
bership of the anycast group is used to determine
the closest Internet gateway, allowing nodes to set
the appropriate default route. Packets destined for
the Internet will traverse the default routes until
reaching the Internet gateway.

4

Handoff
Spines multicast allows the original SMesh to send
packets to the mobile client at multiple access points,
effectively eliminating loss while the user undergoes
handoff. As we do not provide multicast in the low-
overhead version, there is an increased delay dur-
ing handoff. First the new access point joins the
data group, causing it to update its client route
for direct forwarding. The join propagates through
the network, potentially causing routing updates
on the intermediate nodes. Eventually, one of the
access points leaves the data group, replacing its di-
rect route to the client with a best next-hop to the
clients data group. The leave propagates through
the network, again updating routes at intermediate
nodes if necessary. The handoff is complete when
the nodes reach a consistent view of the group-state
information such that a routing path exists between
the client and the other nodes. This delay can be
observed during a series of pings to the outside net-
work. We measured an approximate 5 second delay
during most handoffs which is acceptable for many
applications as it is typically less than the TCP re-
transmission timeout computed by the algorithm in
[6] which empirically has been on the order of 30
seconds in our network.

Hop-By-Hop Reliability
Both the original and current systems are semi-
reliable between hops. They rely only on 802.11 re-
transmissions to deliver packets even though Spines
is capable of providing hop-by-hop reliability.

Multiple Gateways
Similar to that of the original system, kernel rout-
ing supports multiple gateways in the same con-
nected component. Rather than simply send to the
anycast group, we retrieve the closest neighbor to
the anycast group and set it as the default gateway.
Joins and leaves on the anycast group trigger up-
dates on the default routes so that we are always
using the closest Internet gateway.

Multi-homed Network
The kernel version of SMesh does not yet handle a
multi-homed network; however, we do have a pro-
posed solution. The multi-homed system consists
of several SMesh networks connected over the Inter-
net from their respective Internet gateways. When
a mobile client moves between connected compo-
nents, we wish to transfer the client’s connections
so that the inter-domain handoff is transparent.
Our proposed solution requires that at configura-
tion time, a single Internet gateway is selected as

the primary gateway among the connected compo-
nents. All other gateways will configure a GRE
tunnel to the primary gateway and set the tun-
nel as its default route. All Internet connections
will thus be rooted at the primary gateway, al-
lowing a client to move between connected com-
ponents without a need for inter-domain handoff.
These changes require modifications to the SMesh
executable script. Figure 3 depicts the hardware
configuration for such a network.

Figure 3: Multi-homed network with 10.0.11.21 set
as primary gateway with GRE tunnels for kernel
routing.

5 Performance Evaluation

Figure 4: Throughput measurements for kernel and
overlay SMesh. UDP sending rate for kernel and
overlay versions were 20 Mbps and 3.125 Mbps re-
spectively so as not to overload the receiver.

5

To benchmark the kernel routing performance,
we deployed SMesh over four different networks con-
sisting of one, two, three, and four Linksys routers
respectively. We then measured the rate charac-
teristics using iperf between a wireless 2GHz IBM
Thinkpad and a wired Pentium III 500 MHz server
connected via wire to the Internet gateway. Through-
put measurements can be seen in figure 4. Each
data point represents an average of five measure-
ments taken in the indicated configuration. For
TCP, we can see that kernel routing is 7.6 times
faster on 1 wireless hop, 3.5 times faster on two
wireless hops, 2.4 times faster on three wireless
hops, and 1.9 times faster on four wireless hops.
Similarly UDP over kernel routing yields rates faster
than that of overlay links: 5.3 times on one hop,
3.1 times on two hops, 2.4 times on three hops,
and double on four hops. We expect that typical
SMesh clients will require two to three wireless hops
to reach the nearest Internet gateway, thus TCP
rates of 3.8 Mbps or 6.3 Mbps and UDP rates of
5.7 Mbps or 8.1 Mbps can be expected. We also
notice that throughput decreases as the number of
wireless hops increases when the routers are within
radio range of each other. This degradation results
primarily from contention among adjacent routers.
While it may appear that overlay rates are unaf-
fected by the different experimental configurations,
rather it is the CPU bottleneck acting as a more
dominating bound than is contention.

Figure 5: Loss rates with UDP sending rates of 20
Mbps in kernel mode and 3.125 Mbps in overlay
mode.

We now consider the loss rates during the UDP
transfers. Shown in figure 5, packet loss grows
rapidly in the overlay routing scheme. Loss is ap-
parently an indirect side-effect of the excess packet
movement between application-space and kernel-
space. Negligible loss is detected in kernel mode,
occurring at only 0.2% on four wireless hops.

6 Current Limitation

The one drawback to our current approach is
that we can no longer support application multi-
cast which is needed to provide fast-handoff. Ef-
fort was spent attempting to manipulate the mul-
ticast routing table in a similar fashion as we do
the unicast kernel table. However, since multicast
packets are sent unreliably without 802.11 retrans-
mission, the wireless environment would experience
unacceptable loss rates during such transfers. Cur-
rently, we have a proposed solution which involves
modifying the kernel to provide a type of multi-
cast. Ordinarily the kernel forwards a message to
the first match traversed in the routing table. In-
stead, we would want to enter multiple routes for
the same destination and have the kernel forward
the message over each matching entry. The mes-
sages are still sent unicast, but we could then send a
given message to multiple recipients. For example,
during a handoff between 10.0.11.30 and 10.0.11.40,
10.0.11.20 would be able to reach the client by send-
ing unicast data to both 10.0.11.30 and 10.0.11.40.
Further investigation is needed to determine if this
is a viable approach. Figure 6 illustrates the rout-
ing table during this configuration.

Figure 6: Routing table for 10.0.11.20 providing
multicast with proposed kernel modification.

7 Conclusion

In this study, we have presented an analysis
and implementation of a low-overhead kernel rout-
ing mechanism for wireless mesh networks. Overlay
routing on a wireless network is simply too costly
on limited-hardware devices as the required mem-
ory management creates a CPU bottleneck that in-
hibits performance. We can obtain better perfor-
mance when routing remains in the kernel. Yet
we do not want to sacrifice the routing benefits of
overlay networks. Thus, by dynamically updating
the kernel routing table to reflect the overlay knowl-
edge, we can achieve an effective balance that yields
higher performance.

6

References

[1] Yair Amir and Claudiu Danilov. Reliable com-
munication in overlay networks. In DSN [1],
pages 511–520.

[2] Yair Amir, Claudiu Danilov, Michael Hilsdale,
Raluca Musaloiu-Elefteri, and Nilo Rivera. Fast
handoff for seamless wireless mesh networks.
MobiSys, 2006.

[3] Joseph D. Touch. Dynamic internet overlay de-
ployment and management using the X-bone.
In ICNP, pages 59–68, 2000.

[4] David G. Andersen, Hari Balakrishnan,
M. Frans Kaashoek, and Robert Morris.
Resilient overlay networks. In SOSP, pages
131–145, 2001.

[5] John C. Bicket, Daniel Aguayo, Sanjit Biswas,
and Robert Morris. Architecture and evalua-
tion of an unplanned 802.11b mesh network.
In Tom La Porta, Christoph Lindemann, Eliz-
abeth M. Belding-Royer, and Songwu Lu, edi-
tors, MOBICOM, pages 31–42. ACM, 2005.

[6] Rfc 2988. http://www.rfc-archive.org.

7

Appendix A: Software Documentation

The following files were added or modified in the Spines distribution:

kernel routing.c and kernel routing.h
The functions implemented in these files control the management of the kernel routing table. The same
Route Entry structure is used for client routes and internal routes, but the alive field is needed only for
internal routes. When the Floyd-Warshall algorithm runs, internal routes are marked alive so long as
they are still in use. Internal entries no longer alive will be deleted when Set Internal Routes is run.
Function names indicate whether they are intended for client entries or internal entries. Functions that
can operate on either entry type require a mode parameter indicating the type so that discrepancies
between the two are handled.

multicast.c and multicast.h
In this module we modify the code to include a new function, Get Closest Mcast Neighbor. The func-
tion first discards and repopulates the neighbor structure for the requested multicast or anycast group.
This step is necessary to insure we are considering the most up-to-date group state information. It then
determines the neighbor with the lowest routing cost to the group and returns this node as the closest
multicast neighbor. This function is called at the end of Groups Process state cell in order to update
client routes when the multicast topology changes. Additionally, the Join Group and Leave Group func-
tions are modified to update access point client routes.

route.c
In this module we modify the Set Routes function to add routing entries during the progress of the
Floyd-Warshall algorithm. If the route has not changed since the last run, the route is marked alive by
the kernel routing module so that it remains in the table.

The following file was modified in the SMesh distribution:

smesh proxy.c
In this file, we add an if-clause to the packet interceptor. If the Kernel Routing parameter is enabled,
the libpcap socket is no longer used to intercept packets. If the parameter is disabled, SMesh continues
to intercept packets as it did in the original version.

8

Appendix B: Installation Instructions

Compilation
To compile the low-overhead routing, simply use the build script present in the SMesh source directory.
Set the BUILDSPINES and BUILDSMESH parameters to 1 and run the script.

Installation
After running the build script, the SMesh and Spines binaries appear in the source install directory.
Copy the contents of the entire directory to /jffs/ on the Linksys routers.

Execution
Open the smesh.conf configuration file. Low-overhead routing can be disabled or enabled automatically
in the configuration file by setting the KERNEL parameter to 0 or 1 respectively. When KERNEL is
disabled, the routing will take place as it did originally in the user-space. To enable low-overhead rout-
ing manually, use the following flags on the executable: In SMesh, the -k option enables low-overhead
routing. In Spines, -k1 enables kernel routing for internal routes and -k2 enables kernel routing for client
routes. The -k1 option should always be used to allow transparent ssh between non-neighbors. All flags
must be set to use low-overhead routing.

9

Routing Table for 10.0.11.10

Routing Table for 10.0.11.20

Routing Table for 10.0.11.30

Routing Table for 10.0.11.40

Figure 7: Routing tables for network depicted with client currently connected at 10.0.11.30.

10

