INTRUSION-TOLERANT REPLICATION UNDER ATTACK

by

Jonathan Kirsch

A dissertation submitted to The Johns Hopkins Universitganformity with the requirements for

the degree of Doctor of Philosophy.

Baltimore, Maryland

February, 2010

(© Jonathan Kirsch 2010

All rights reserved

Abstract

Much of our critical infrastructure is controlled by largeftsvare systems whose participants
are distributed across the Internet. As our dependenceese ttritical systems continues to grow,
it becomes increasingly important that they meet strictlavéity and performance requirements,
even in the face of malicious attacks, including those tteasaccessful in compromising parts of the
system. This dissertation presents the first replicatiotogols capable of guaranteeing correctness,
availability, and good performance even when some of theeselare compromised, enabling the
construction of highly available and highly resilient gysts for our critical infrastructure.

Prior to this work, intrusion-tolerant replication protis were designed to perform well in
fault-free executions, and this is how they were evaludtethis dissertation we point out that many
state-of-the-art protocols are vulnerable to significarfgrmance degradation by a small number
of malicious processors. We define a new performance-edeobrrectness criteriomOUNDED-
DELAY, against which intrusion-tolerant replication protoctds be evaluated. Protocols that meet
BOUNDED-DELAY are required to provide a consistent level of performaneer &hen the system
is under attack by an adversary that controls some of theepsocs.

We present Prime, an intrusion-tolerant replication protdhat meet8OUNDED-DELAY and
thus offers a stronger performance guarantee under attackprevious state-of-the-art protocols.

An evaluation of a prototype implementation shows that Biirarforms competitively with existing

protocols in fault-free executions and achieves an ordenagnitude performance improvement in
under-attack executions in 4-server and 7-server configns
Using Prime as a building block, we show how to design and emgint an attack-resilient,

large-scale intrusion-tolerant replication system fodevarea networks. The system is hierarchical
and is suited to deployments consisting of several wida-sites, each with a cluster of replication
servers. We present three mechanisms for attack-resdieshtefficient inter-site communication,
which enable the system to perform well in bandwidth-caised wide-area networks without
making it susceptible to performance degradation causeddbigious servers. Our results provide
evidence that it is possible to construct highly resilidatye-scale survivable systems that perform

well even when some of the servers (and some entire sitesparpromised.

Advisor: Yair Amir

Readers: Randal Burns
Brian Coan

Acknowledgements

| am deeply indebted to my advisor, Yair Amir, for taking aisba on me in spite of the obstacles
we would have to overcome together. Yair fostered an enmiet of openness and collaboration
that helped make the lab such a special place to work. | thamKdr opening many doors for me
during my time at Johns Hopkins and for teaching me the inapoe of the big picture. | will carry
his lessons with me as | move to the next phase of my career.

| am profoundly grateful to two amazing colleagues, redeans; and friends, John Lane and
Brian Coan, with whom | collaborated on all aspects of thisditation. | thank John for being a
role model to me from the very beginning and for his wisdom patience. His ability to know
something about everything continues to inspire me to laammuch as | can each day. Brian Coan,
my mentor during my two summers at Telcordia Technologieshe type of researcher | hope to
become. His feedback over the years, especially his aitemti detail and his urge to simplify
and clarify, has improved my work immeasurably. | also thaitk for serving on my GBO and
dissertation committees.

I am thankful to the many other people with whom | collabodadeer the last five and a half
years. | thank Claudiu Danilov for teaching me a great deghdumy first years at Hopkins. The
warmth and enthusiasm he exuded during my initial visit el immediately put me at ease and

made me know | would feel comfortable here. | also thank Ddboigv, whose dedication and help

during his visit to the lab in 2005 made the Steward systersiples Danny’s level of patience and
persistence is something | strive to emulate. Thanks al€grigtina Nita-Rotaru, for her support
and advice over the years; John Schultz, for the countless i@ spent working with me on fault-
tolerant replication systems; Josh Olsen and David Zageh@&r help making Steward a reality;
and Marina Blanton, for collaborating with me on the seceidshakes work.

| wish to thank a number of faculty members at Johns Hopkinthteir help and support. Thanks
to Randal Burns, for serving on my GBO and dissertation cdtees and for his help during the
Transaction Processing Systems course; Giuseppe Atefaesellaborating with me on one of my
qualifying projects and for serving on my GBO committee; feab Terzis, whose kindness helped
convince me to come to Hopkins; and Robert Rynasiewicz,Hairing my GBO committee.

| am grateful for the support of a number friends associati#d the Distributed Systems and
Networks lab. | thank Raluca Musaloiu-Elefteri for helpime keep a positive perspective on
things, for keeping the lab running smoothly, and for herpsupin the days leading up to our
defenses. Thanks to Nilo Rivera for always being willingigtdn to me ramble about Byzantine
fault tolerance and for offering his insight. | thank Mich&aplan for his friendship during the first
two years, for working with me in the Distributed Systems &wsturity and Privacy courses, and
for making sure we took the time to have some fun once in a whidso wish to thank Ciprian
Tutu, Jacob Green, Jonathan Stanton, Michal Miskin-Annid, the other great people with whom |
have interacted over the years.

In Fall 2008, | had the privilege to spend a month working vitie Navigators Distributed
Systems Research Team at the University of Lisbhoa, Portugaish to thank Paulo Verissimo,
Miguel Correia, Alysson Bessani, Paulo Sousa, Antonio i@&ei Henriqgue Moniz, Giuliana San-
tos Veronese, Monica Dixit, and Wagner Dantas for makingfinsy trip to Europe an enjoyable

one.

Over the last five years, | had the pleasure to be part of Kethevlewish a cappella group
at Johns Hopkins. | am grateful to the members of Ketzev floméhg me to pursue my passion
for singing even as a graduate student and for helping mec&pesthe pressures of exams and
paper writing. | cherish the many friendships | have maddsd want to thank the students of the
Distributed Systems, Advanced Distributed Systems, atetrirediate Programming courses for
making our interactions so enjoyable.

| am indebted to Arvind Krishnamurthy and Michael J. Fiscleo of my professors at Yale,
for encouraging me to pursue graduate study and for agreéeingrk with me as | was learning
what computer science was all about.

| will forever be grateful to my girlfriend and best friendal Sepelyak. | can’t imagine having
gone through this process without her. | am so fortunate ¥e fraund someone who truly under-
stands me. Her sensitivity and love have made each day siecknlown her more special than the
last. | thank her for being such a good one. | also want to th&aks parents, Nancy and Bob, and
her brothers, Chris and Jaime, for making me feel so at homegdmy many visits to Delaware.

Last but not least, | want to thank my parents, Robert and &arband my siblings, Jamie,
Jennifer, and Matthew, for their endless and unconditisoglport over the years. | would be lost
without their guidance and love.

During my time at Hopkins | received support from the DefeAsiwanced Research Projects

Agency (contract FA8750-04-2-0232) and the National SmeRoundation (grants 0430271 and

0716620).

Vi

Contents

Abstract i
Acknowledgements iv
List of Tables Xii
List of Figures Xiii
List of Algorithms XV
1 Introduction 1
1.1 Contributions of the Dissertation 3
1.1.1 A New Way of Thinking about Intrusion-Tolerant Repion 4
1.1.2 Prime: Intrusion-Tolerant Replication Under Attack. 7

1.2

1.3

1.1.3 An Attack-Resilient Architecture for Large-Scalé¢rusion-Tolerant Repli-

cation L L e
Dissertation Organization i 11
RelatedWork 12
1.3.1 Benign Fault-Tolerant State Machine Replication 13
1.3.2 Intrusion-Tolerant State Machine Replication 14

Vii

1.3.3 Intrusion-Tolerant Group Communication
1.3.4 Intrusion-Tolerant Replication for Wide-AreaNetk®
1.3.5 State Machine-Based Logical Machines
1.3.6 Attack-Resilient Intrusion-Tolerant Replication.

1.3.7 Intrusion Tolerance in a Hybrid Failure Model

2 Background
2.1 Threshold Digital Signatures e
2.2 FErasure-ResilientCoding e

2.3 Intrusion-Tolerant Reliable Broadcast

3 Performance Under Attack: A Case Study
3.1 BFTOVerview
3.2 Attack 1: Pre-PrepareDelay 0.

3.3 Attack 2: Timeout Manipulatione....

4 The Prime Replication Protocol

4.1 System Model and Service Properties e ...
4.1.1 SafetyProperties
4.1.2 Liveness and Performance Properties
4.1.3 Practical Considerations

4.2 Prime: Designand Overview e
4.2.1 Separating Dissemination from Ordering
4.2.2 Ordering Strategies e
4.2.3 Mapping Strategies to Sub-Protocols

4.3 Prime: Technical Details e e

18

19

21

22

24

27

27

29

29

32

33

34

36

37

39

40

41

44

46

46

47

50

4.3.1 TheClient Sub-Protocol 52
4.3.2 The Preordering Sub-Protocol 54
4.3.3 The Global Ordering Sub-Protocol 57
4.3.4 The Reconciliation Sub-Protocol 60
4.3.5 The Suspect-Leader Sub-Protocol&.... 64
Mechanism 1: Reporting the Latesb-SUMMARY Messages 65
Mechanism 2: Measuring the Turnaround Time 66
Mechanism 3: The Distributed Monitoring Protocol 68
Correctness Proofs 73
4.3.6 The Leader Election Sub-Protocol 75
4.4 The Prime View Change Protocol 77
4.4.1 Background: BFT's View Change Protocol 77
4.4.2 Motivation and Protocol Overview 78
4.4.3 Detailed Protocol Description 80
4.5 Proof Sketch of Bounded-Delay 84
4.6 Performance Evaluation e 85
4.7 PrimeSummary i e e e e e e e e e e 93
An Attack-Resilient Architecture for Large-Scale Intrusion-Tolerant Replication 94
5.1 SystemModel 97
5.2 Background: A Customizable Replication Architecture 100
5.3 Building an Attack-Resilient Architecture 101
5.3.1 Making Each Piece Attack Resilient 102
5.3.2 Design Dependencies AmongthePieces. 103
5.3.3 Choosing the State Machine Replication Protocols 104

5.4 Attack-Resilient Logical Links
5.4.1 Erasure Encoding-Based LogicalLink
Blacklisting Servers that Send Invalid Parts
5.4.2 Hub-Based LogicalLink
5.4.3 Dependable Forwarder-Based Logical Link
5.4.4 Discussion
5.5 Putting It All Together e .
5.5.1 Handling Non-Determinism in the Global Instance ofrfer
5.6 Service Properties e
5.6.1 Safety Properties e
5.6.2 Liveness and Performance Properties
Achieving Bounded Logical Machine Processing Time
Supporting Prime’s Virtual TrafficClasses
5.7 Performance Evaluation. e
5.7.1 Testbedand Network Setup
5.7.2 TestConfigurations
57.3 Evaluation

5.8 Attack-Resilient Architecture Summary
6 Conclusions
Bibliography

A Design of an Attack on a Decentralized Intrusion-TolerantReplication Protocol

A.1l RITASOVEIVIEW o o e e e e e

A.2 Designingan Adversary e e e e e e

130

130

131

133

135

A.3 ABuilding Block: The Stagger Attack
A.4 Attack Part 1: Causing Divergence of MVC Ilnputs

A.5 Attack Part 2: Pushing Multi-Valued Consensus Towards.

Vita

Xi

174

List of Tables

4.1 Traffic class of each Prime message type.
4.2 Summary of Prime’s view change protocol.

5.1 Summary of Logical Link Protocols.

A.1 The Stagger Attack on Bracha’s Reliable Broadcast pmito

Xii

List of Figures

3.1 Common-case operation of the BFT algorithm wlfea 1. 33
4.1 Terminology used by the Preordering sub-protocol. 56
4.2 Fault-free operation of Primg¢g & 1), o . L Lo 60
4.3 Operation of Prime with a malicious leader that perfona enough to avoid being
replaced f =1). e e e e 66
4.4 Throughput of Prime and BFT as a function of the numbeliehts in a 7-server
configuration. Servers were connected by 50 ms, 10 Mbps.links. 88
45 Latency of Prime and BFT as a function of the number oftdien a 7-server
configuration. Servers were connected by 50 ms, 10 Mbps.links. 88
4.6 Throughput of Prime and BFT as a function of the numbeliehts in a 4-server
configuration. Servers were connected by 50 ms, 10 Mbps.links. 89
4.7 Latency of Prime and BFT as a function of the number oftdien a 4-server
configuration. Servers were connected by 50 ms, 10 Mbps.links. 89
4.8 Throughput of Prime as a function of the number of cli@mis 7-server, local-area
network configuration. 90
4.9 Latency of Prime as a function of the number of clients ifrserver, local-area
network configuration. 90
4.10 Throughput of BFT in under-attack executions as a fandf the number of clients
in a 7-server, local-area network configuration. 92
4.11 Latency of BFT in under-attack executions as a funcﬂfdhe number of cllents in
a 7-server, local-area network configuration. 92
5.1 Anexample erasure encoding-based logical link, with 1. 109

5.2 Intuition behind the correctness of the erasure engeld@ased logical link. In this
example,f = 2. The adversary can block at magstvirtual links by corrupting
servers in the sending site arfidzirtual links by corrupting servers in the receiving

SIte. . 110
5.3 Network configuration of the hub-based logical link. 116
5.4 Internal organization of a server in the attack-resiliarchitecture when the de-

pendable forwarder-based logical link is deployed. 126
5.5 Internal organization of a server in the attack-resilerchitecture When the erasure

encoding- or hub-based logical link isdeployed. 128

Xiii

5.6 Throughput of the attack-resilient architecture asation of the number of clients

5.7

5.8
59

Al

in a 7-site configuration. Each site had 7 servers. Sites s@maected by 50 ms,
10 Mbps links.

.................................... 144
Latency of the attack-resilient architecture as a foncof the number of clients

in a 7-site configuration. Each site had 7 servers. Sites s@maected by 50 ms,
10Mbpslinks. e e 144
Isolating the throughput obtained when using the higethdogical links. 145
Isolating the latency obtained when using the hub-blsgdal links. 145
The RITAS protocol stack. 162

Xiv

List of Algorithms

1 Bracha’s Asynchronous Reliable Broadcast Protocol 31
2 Prime Reconciliation Procedure 61
3 Suspect-Leader Distributed Monitoring Protocol 72
4 Blacklisting Protocol for the Attack-Resilient Architece 115
5 Attacking the RITAS Atomic Broadcast Protocol 169

XV

Chapter 1

Introduction

Much of our critical infrastructure is controlled by largeftsvare systems whose participants
are distributed across the Internet. These systems suppliverse set of important applications,
ranging from tools for e-commerce to the Supervisory Cdrdaral Data Acquisition (SCADA)
systems that control the power grid. As our dependence ®ethgstems continues to grow, it
becomes increasingly important that they meet strict abdity and performance requirements,
even in the face of malicious attacks, including those thatsaccessful in compromising parts of
the system. This dissertation is about how to design andeimht large-scale, survivable systems
that guarantee correctness, availability, and good pedace even when some of the machines are
compromised.

The most common approach taken today to securing our dritystems is to build aecurity
fortressaround them, protecting them with layers of defenses builinfwell-known and widely
used security technologies, such as firewalls and acces®korechanisms. The machines inside
the security fortress are assumed (and trusted) to be toaretthe goal is to protect the machines
on the inside from attackers on the outside. While critigatesms may have operated exclusively on

private networks in the past, thus affording them some degf@rotection from external attackers,

many of them are now connected to the Internet (e.g., [8,&@BY) are vulnerable to a range of
threats that may not have been considered when the systerasuginally designed. Given that
thousands of machines are compromised on the Internet eg¢B]dit seems likely that some of the
attacks will be able to breach the fortress walls of evendluiical systems specifically designed
with security in mind. In addition, insider attacks, suchfraen disgruntled employees who take
advantage of existing security vulnerabilities, are beognmore and more common [48, 66] and
are a growing source of machine compromise. Such attackstdweed to breach the fortress walls
at all: the attacker already has the credentials to access/tem, and the power to abuse them.

In order to bring the fault tolerance capabilities of calisystems in line with our requirements,
a great deal of research has been done on building systetaseairdrusion-tolerant{80]. Intrusion-
tolerant systems can continue functioning even if part efgjistem is compromised. The design
of intrusion-tolerant systems is motivated by the assumnpiiat it is not possible to enumerate all
of the potential attacks on a system that can be mounted bproonised machines. Therefore,
the system should be designed in a model that assumesasaditiossible about the way in which
faulty components can fail. The Byzantine failure model][S58 which a faulty processor can
deviate from its protocol specification arbitrarily, is fagood fit for the intrusion tolerance setting,
encapsulating failures ranging from hardware malfunatiansoftware bugs to actual compromises
by intelligent attackers.

Over the last decadéntrusion-tolerant replicatiorhas emerged as a promising technique for
building highly available, survivable systems. In ordemptovide fault tolerance and high avail-
ability, a group of server replicas coordinate to providewrvise; the replicated service acts like a
centralized implementation but has the desirable propbeiyit will continue to operate correctly
as long as enough of the servers follow the protocol spetiditdi.e., are not Byzantine). This

dissertation focuses on a particular type of replicatiorgvin asstate machine replicatiof9, 73].

In the state machine approach, the servers establish atd&lon operations submitted by clients,
and they execute the operations in the same order to ensusesiEncy.

Starting with Castro and Liskov’s BFT protocol [31] in 1998dacontinuing to the present,
(e.g., [47,53,56, 84]), there has been a great deal of pgegrade in designing high performance
intrusion-tolerant replication protocols that can achigigh throughput, on the order of thousands
of update operations per second, on local-area networkpanralel, our own work on the Stew-
ard system [18, 19] showed how to leverage a hierarchicdlitacture to scale intrusion-tolerant
replication to large numbers of servers organized in séwites distributed across the Internet.
The hierarchical architecture reduces the number of wida-aessages fro(N?), where N
is the number of servers in the system,OQSz), whereS is the number of sites in the system.
Given that intrusion-tolerant replication protocols tendhave high message complexity (requir-
ing several rounds of all-to-all exchanges), this greatlprioves performance compared to flat (i.e.,
non-hierarchical) architectures in bandwidth-constdiwide-area networks. Building on the ideas
developed in Steward, we also developed a customizabl@exatthre for wide-area replication [16]
that allows one to deploy either benign fault-tolerant drusion-tolerant protocols within each site

and on the wide area, enabling one to trade performancedtitfderance based on perceived risk.

1.1 Contributions of the Dissertation

This dissertation makes several contributions. Firstréppses a new way of thinking about
intrusion-tolerant replication. Before this work, intimis-tolerant replication protocols were de-
signed to meet safety (consistency) and liveness (eveptogfess). We point out, through analysis
and experimental evaluation, that many existing protoa#spite being correct according to safety
and liveness, are vulnerable to significant performanceadiagion by Byzantine servers. We intro-

duce a new, performance-oriented correctness criterioaviauating intrusion-tolerant replication

systems, calle@OUNDED-DELAY. Systems that me@®OUNDED-DELAY are required to provide
consistent performance in all executions, whether or netettare actually Byzantine faults. We
present Prime, a new intrusion-tolerant replication protthat meet8 OUNDED-DELAY and is the
first protocol to guarantee a meaningful level of perfornreaegen when some of the servers are
Byzantine. Finally, we present an architecture suitabteséaling attack-resilient intrusion-tolerant
replication to large wide-area deployments.

We now describe each contribution in more detail.

1.1.1 A New Way of Thinking about Intrusion-Tolerant Replication

Before the work presented in this dissertation, intrugmarant replication protocols were eval-
uated against two standard correctness critsafetyandliveness Safety means that correct servers
do not make inconsistent ordering decisions, while livemasans that each update to the replicated
state is eventually executed. Most intrusion-toleranticapion protocols (and all of the protocols
referenced above) are designed to maintain safety in alugioms, even when the network delivers
messages with arbitrary delay. This is a desirable profetpause it implies that an attacker cannot
cause inconsistency by violating network-related timiaguenptions. The well-known FLP impos-
sibility result [41] implies that no asynchronous Byzartegreement protocol can always be both
safe and live, and thus these systems ensure liveness ainlg gheriods of sufficient synchrony and
connectivity [39] or in a probabilistic sense [22, 65].

When the network is sufficiently stable and there are no Byzarfaults, intrusion-tolerant
replication systems can satisfy much stronger performgneaeantees than liveness; as noted above,
many systems have been evaluated in such benign executidrechieve throughputs of thousands
of update operations per second. Prior to this work, it hasladess common practice to assess the

performance of intrusion-tolerant replication system&mwhkome of the processors actually exhibit

Byzantine faults. In this dissertation we point out that iany systems, a small number of Byzantine
processors can degrade performance to a level far belowwdwdd be achievable with only correct
processors. Specifically, the Byzantine processors casectne system to make progress at an
extremely slow rate, even when the network is stable anddcawpport much higher throughput.
While “correct” in the traditional sense (both safety aneiess are met), systems vulnerable to
such performance degradation are of limited practical ngaelversarial environments.

We experienced this problem firsthand in 2005, when DARPAluoted a red team experiment
on our Steward system. Steward survived all of the testsrditgpto the metrics of safety and
liveness, and most attacks did not impact performance. Memve one experiment, we observed
that the system was slowed down to twenty percent of its piatgmerformance. After analyzing
the attack, we found that we could slow the system down tohiyugne percent of its potential
performance. This experience led us to a new way of thinklmmugintrusion-tolerant replication
systems. We concluded that liveness is a necessary buligiesalf correctness criterion for achiev-
ing high performance when the system actually exhibits Biima faults. This dissertation argues
that new,performance-orienteaorrectness criteria, and protocols that meet them, ardedket®
achieve a practical solution for intrusion-tolerant reation.

Preventing the type of performance degradation experitbgeSteward requires addressing
what we call aByzantine performance failurePrevious work on intrusion tolerance has focused
on mitigating Byzantine failures in the value domain (wharaulty processor tries to subvert the
protocol by sending incorrect or conflicting messages) haditne domain (where messages from a
faulty processor do not arrive within protocol timeoutstifall). Processors exhibiting performance
failures operate arbitrarily but correctly enough to avo&ing suspected as faulty. They can send
valid messages slowly but without triggering protocol touts; re-order or drop certain messages,

both of which could be caused by a faulty network; or, withigialis intent, take one of a number

of possible actions that a correct processor in the samenogtances might take. Thus, processors
exhibiting performance failures are correct in the valud ame domains yet have the potential
to significantly degrade performance. The problem is magphiin wide-area networks, where
timeouts tend to be large and it may be difficult to determireatitype of performance should
be expected. Note that a performance failure is not a newréaihode; rather, it is a strategy taken
by an adversary that controls one or more Byzantine proc®sso

In order to better understand the challenges associatédbwiliding intrusion-tolerant replica-
tion protocols that can resist performance failures, wdyaed existing protocols to assess their
vulnerability to performance degradation by malicious/ees. We observed that most of the pro-
tocols (e.g., [16, 19, 31, 47,53, 56, 84]) share a commomrfeathey rely on an elected leader to
coordinate the agreement protocol. We call such protdesider based We found that leader-
based protocols are vulnerable to performance degradediased by a malicious leader. This is the
same type of vulnerability uncovered by the red team exptron Steward, where the leader of
the local agreement protocol in the site that coordinatesaide-area agreement protocol reduced
performance by delaying its outgoing messages. In Chaptge 8lemonstrate the vulnerability of
existing leader-based protocols to performance degmaudaiy providing a detailed attack analysis
of Castro and Liskov's BFT protocol [31], an intrusion-t@at replication protocol that performs
well in fault-free executions. We present experimentalites/alidating the analysis in Section 4.6.

Not all intrusion-tolerant replication protocols rely oteader for coordination. Some protocols
[22, 29, 58] are more decentralized, relying on messages &éwough correct processors to drive
progress. Such protocols typically do not make any synghassumptions at all, guaranteeing
liveness with probability 1 and using randomization to winvent the FLP impossibility result.
Since they do not rely on a leader, these decentralizedquistare not vulnerable to the same types

of protocol-based attacks as leader-based protocols.hEordason, they are generally believed to

be harder to attack than leader-based protocols, with feetdieing that normal-case performance
tends to be lower, as the protocols require more messagemarel communication steps than
leader-based protocols.

Although this dissertation focuses on mitigating perfoncefailures in leader-based intrusion-
tolerant replication protocols, we show, in Appendix A,tteaen decentralized protocols may be
vulnerable to performance degradation by faulty servecgitain settings. We outline a theoretical
attack on the atomic broadcast protocol used in the Randuwimigtrusion-tolerant Asynchronous
Services (RITAS) [58] protocol stack. While it is an open sfign whether this attack can success-
fully degrade performance in practice, the design of trechtsuggests that even protocols believed
to be relatively immune to slowdown caused by Byzantine ggeors should be deployed with the

potential threat of performance failures in mind.

1.1.2 Prime: Intrusion-Tolerant Replication Under Attack

Based on the understanding gained from the red team exp@rimneSteward and our attack
analysis of existing leader-based intrusion-toleranlicaion protocols, we worked to address two

main problems:

1. Developing meaningful performance-oriented metricsf@luating intrusion-tolerant repli-

cation protocols.

2. Designing protocols that perform well according to they neetrics, even when the system is

under attack.

Although our ultimate goal was to design a large-scale sydteat could perform well un-
der attack (thus addressing the performance vulnerahitigovered in our work on Steward and

providing a solution for building large-scale critical t1:1s), we began by first developing a flat

intrusion-tolerant replication protocol, suitable forairscale deployments on local- and wide-area
networks, that can resist performance failures. The raguthis effort is the Prime replication
protocol [17], which we present in Chapter 4. Prime is the fitgusion-tolerant state machine
replication protocol capable of making a meaningful perfance guarantee even when some of the
servers are Byzantine.

Prime meets a new, performance-oriented correctnessi@nitealledBOUNDED-DELAY. In-
formally, BOUNDED-DELAY bounds the latency between a correct server receivingra olgeration
and the correct servers executing the operation. The bauadunction of the network delays be-
tween the correct servers in the system. This is a much strqgmerformance guarantee than the
eventual execution promised by existing liveness crite¥ige formally defineBOUNDED-DELAY,
and the level of network stability required to meet it, in @t 4.1.

Like many existing intrusion-tolerant replication proté&; Prime is leader based. Unlike exist-
ing protocols, Prime bounds the amount of performance degjtn that can be caused by the faulty
servers, including by a malicious leader. Two main insightstivate Prime’s design. First, most
protocol steps should not depend on messages from the feimters in order to complete. This
prevents the faulty servers from delaying these steps loketrantime it would take if only correct
servers were participating in the protocol. Second, theddeahould be given as little responsibility
as possible and should require a predictable amount of re=®to fulfill its role as leader. In Prime,
the resources required by the leader to do its job as leaddycamded as a function of the number
of servers in the system and are independent of the offeeet] [Bhe result is that the performance
of the few protocol steps that do depend on the (potentialijicious) leader can be effectively
monitored by the non-leader servers. Intuitively, the &rdwhs “no excuse” for not doing its job in a
timely manner. The non-leader servers compute a thresbedd ¢f acceptable performance, which

is a function of current network latencies, against whiaytjudge the leader. The protocol guar-

antees that a leader will be replaced unless it meets thastibid level of performance. We present
experimental results evaluating the performance of Primfault-free and under-attack executions.
Our results demonstrate that Prime performs competitmly existing intrusion-tolerant replica-
tion protocols in fault-free configurations and that Prineefprms an order of magnitude better in
under-attack executions in the 4-server and 7-server agatigns tested.

1.1.3 An Attack-Resilient Architecture for Large-Scale Intrusion-Tolerant Replica-
tion

Since the introduction of Prime in 2008, several new prdwbave been developed that con-
tinue to investigate how to provide stronger performancagutees than liveness even when some
of the servers exhibit Byzantine faults. We call such prot®attack resilient The Aardvark pro-
tocol of Clement et al. [34] can guarantee meaningful thhpugs over sufficiently long periods,
and it suggests important system engineering techniqasdm significantly improve robustness
to flooding-based attacks. The Spinning protocol of Vereretsl. [83] further explores the terrain,
constantly rotating the leader to prevent the system frdtfireon a malicious leader that degrades
performance.

Despite their attack resilience, this new generation ofligibn-tolerant replication protocols,
including Prime, employ flat architectures that are not walted to the large-scale wide-area de-
ployments needed by our critical infrastructure systenmus]what was needed was a way to unify
our work on hierarchical intrusion-tolerant replicatiopstems, which only guarantee safety and
liveness but which can scale to large numbers of server§, auit work on Prime, which shows
how to resist performance degradation in a small-scalangeffhe result of this effort is an attack-
resilient architecture for large-scale intrusion-tofgreeplication, which we describe in Chapter 5.

Our system builds on our work on the customizable replicaticchitecture presented in [16],

using a hierarchy to reduce wide-area message complexity.system is suited to wide-area de-

ployments consisting of several sites, each with a clusgteggication servers, all of which partici-
pate in a system-wide replication protocol. Unfortunatalshieving system-wide attack resilience
is not as simple as deploying attack-resilient protocoleaoh level of the hierarchy (i.e., within
each site and on the wide area). As we demonstrate, a ceteaponent of the system that must
be hardened against performance degradation is the meaiyi which two sites communicate,
which we call thdogical link protocol The logical link protocol defines which physical machines
pass wide-area messages on behalf of the site and to whidhimeadhey send. The performance
of many wide-area replication systems is constrained byirthited wide-area bandwidth between
sites. Therefore, the challenge is to build a logical lirkt fis attack resilierindthat uses wide-area
bandwidth efficiently so that performance remains accdptasigh both when the system does and
does not exhibit Byzantine faults. Existing approacheseaehone but not the other: Having many
servers send on behalf of the site (e.g., [27,60]) maskseahawior of faulty senders but can be in-
efficient, while having one elected server pass messagestwifiof the site (e.g., [16]) is efficient
but vulnerable to performance degradation when the sesvaulty.

If each site had access to a hardened forwarding device leapbsending wide-area messages
exactly once and in a timely manner, it would be relativelgightforward to achieve attack re-
silience while using wide-area bandwidth efficiently. Heee if the compromise of such a device
can cause inconsistency in the replicated service (as i), [ff&n deploying such a trusted for-
warder can improve performance but potentially decreasesyistem’s robustness. Therefore, we
explore the design space of how to build efficient, attaciliemt logical linkswithoutincreasing
the system'’s vulnerability to safety violations. In essgmwe consider how close one can get to the
benefits of a trusted forwarder without suffering its drasksa

We explore the trade-offs of deploying three logical linktacols, each offering different levels

of performance and requiring different assumptions ablogitenvironment. The first approach is

10

an erasure encoding-based logical link that does not re@uiy special components or additional
assumptions but which has the highest bandwidth overhetm @hree protocols we consider. The
second approach demonstrates that by equipping each siteavdroadcast Ethernet hub (where
each local server receives a copy of any message that phssagh the hub), one can significantly
improve throughput both in fault-free and under-attackceiens. The third approach shows that
by assuming each correct site has access to a simple fongadéiice capable of counting and
sending messages, the system can achieve optimal widéanesvidth usage without decreasing
robustness. Because of the cryptographic protection theeshold signatures) used on inter-site
messages, the compromise of the simple forwarding deviaesot lead to safety violations, al-

though it can impact performance negatively.

We discuss the trade-offs and practicality of the logicakdi and evaluate their performance
in a prototype implementation, both in fault-free and uralteick scenarios. Our results provide
evidence that it is possible to construct a large-scale -aida replication system that achieves rea-
sonable performance under attack, and that leveragindesimaiglitional components implementing
fairly limited functionality can significantly improve thgerformance of a fault-tolerant distributed
system. We note that all three logical link protocols aresgierand can be of use in any application
where sets of machines need to pass messages to each othextiack-resilient way. Thus, they
may shed some insight relevant to constructing intrusiderant systems that goes beyond state

machine replication.

1.2 Dissertation Organization
The remainder of the dissertation is organized as follows.

e Section 1.3 places Prime and the attack-resilient ardhitedn the context of related work

on benign and Byzantine fault-tolerant replication system

11

e Chapter 2 provides background on three protocols used lmgePand the attack-resilient
architecture: a threshold digital signature protocol, esere-resilient coding scheme, and

an intrusion-tolerant reliable broadcast protocol.

e Chapter 3 provides a detailed attack analysis of Castro &lav's BFT protocol, demon-
strating the vulnerability of existing leader-based regtiion protocols to performance degra-

dation by a malicious leader.

e Chapter 4 describes the Prime replication protocol andifspethe new performance guar-

antee BOUNDED-DELAY, that it meets.

e Chapter 5 presents the attack-resilient architectureaigrelscale intrusion-tolerant replica-

tion.

e Chapter 6 concludes the dissertation and summarizes itslmdions.

e Appendix A outlines a theoretical attack on the RITAS atobricadcast protocol [58].

1.3 Related Work

Replication is a widely used technique for improving theilabdlity and performance of client-
server systems. The protocols considered in this dissmrtase a particular type of replication,
known asstate machine replicationThe state machine approach was popularized by Lamport [49]
and Schneider [73]. The premise is that a group of serveiceeptoordinate to assign a total order
to operations submitted by clients. Assuming the servagmbe the same initial state and the state
transitions resulting from applying the operations aredeinistic, the servers will proceed through
exactly the same sequence of states and will remain conisigih one another.

The utility of the state machine approach is greatly redugbdn replica faults are strongly

correlated. For example, if replicas share a common vutiléya then if an attacker is able to

12

compromise one machine, it is likely that the attacker canmomise another. To cope with this
problem, replicas should be deployed with sufficient dikgt® reduce the correlation of faults. In
the N-version programming approach [21], multiple teamgl@ment the same abstract specifica-
tion (potentially with different programming languagesy, flifferent operating systems, etc.) in the
hopes that the implementations will not suffer the sameenalbilities. Newer approaches [4, 61]
aim to reduce the cost of creating diverse implementatignsubomatically creating functionally-
equivalent programs based on techniques such as compgifefarmations or run-time software

translation.

1.3.1 Benign Fault-Tolerant State Machine Replication

State machine replication has a rich history in the benigti-talerant setting, where the proto-
cols provide safety and liveness in spite of processor esaahd recoveries and network partitions
and merges.

Leslie Lamport’s Paxos algorithm [50,51] uses an electaddeto coordinate the ordering pro-
tocol. The leader proposes the order in which to executatctiperations, and the servers agree
upon the proposed ordering. If the leader is suspected ® fadled, the non-leader servers elect a
new leader and rundew changeprotocol to ensure that the new leader respects the ordeecig
sions made in previous views. The protocol requirést- 1 servers to tolerat¢ benign faults, and
it assumes that a static membership of servers participdateeiprotocol. Oki and Liskov’s View-
stamped Replication protocol [62] takes an approach sirtol&@axos in the context of distributed
transactions.

Several state machine replication protocols have beeodunted that are built above a group
communication system substrate (e.g., [13, 20]). Thestwgots build on the ordered multicast

and membership properties of the group communication systeachieve efficient replication.

13

The COReL protocol of Keidar and Dolev [44, 45] uses the prim@mponent approach, where
members of a single network component can continue glolmtiering new messages when a
network partition occurs. It uses the Agreed Delivery senwf the Extended Virtual Synchrony
[59] semantics to locally order the messages within the @orapt, and then it uses a separate round
of acknowledgements to achieve a global ordering on thélyooalered messages. Given sufficient
network stability and connectivity, any majority of serseran make forward progress, regardless
of past failures.

The Congruity replication protocol of Amir [15] uses the &dbelivery service of Extended
Virtual Synchrony to limit the need for synchronous disktesiand remove the need for server-
level acknowledgements per action. Instead, only theatoitiof an action needs to sync it to disk,
and there are no end-to-end acknowledgements during naamsal operation. The cost of this
performance improvement is that in rare cases, when alesein the primary component crash
before any of them could install a new membership, it can loesgary to communicate with every

member of the last primary component before a new one canrbretb

1.3.2 Intrusion-Tolerant State Machine Replication

Lamport, Shostak, and Pease [52] introduced the well-knByaantine Generals problem, an
abstraction for the problem of achieving agreement amongpapgof processors where some of
them may send conflicting values to different processorsa $olution to the Byzantine Generals
problem, a commanding general sends an order to the lieuttgeaerals such that all correct lieu-
tenants execute the same order, and if the commander i€t;dhre non-faulty lieutenants execute
the commander’s order. The authors demonstrate that &Blg¢as1 generals are needed to tolerate
f faults. They propose an algorithm that solves the problesuramg a synchronous network.

Castro and Liskov's BFT [31] was the first Byzantine fauletant state machine replication

14

protocol to guarantee safety in the presence of asynchemp(g as no more thahout of 3f + 1
servers are faulty) and to achieve high throughputs in faett executions. The protocol relies
on message authentication codes instead of digital sipggafar authentication, reducing its com-
putational overhead. BFT also shows how to use proactivevesg techniques to recover failed
replicas, preserving safety even when more tfidailures occur over the life of the system, as long
as no more thaif failures occur within a small enough window of time. Like BaxBFT relies on
an elected leader to coordinate the ordering protocol. Weriee BFT in more detail in Chapter 3,
where we provide an analysis of how it performs when some®f&trvers (including the leader)
exhibit Byzantine faults.

The BASE system of Rodrigues et al. [70] addresses an impiditaitation of state machine
replication protocols. Since replicas proceed througttthxghe same sequence of states, replicas
with the same deterministic software bug will all fail. Indiiion, since operations are required
to be deterministic, special techniqgues must be used ticatplapplications where some state
changes may be non-deterministic (such as those wherersdrase an action on their current
local clock value). BASE builds an abstraction on top of BRIlowing replicas to run different
implementations (which may not suffer the same set of soéwearors) as long as they conform to
a common abstract specification. Non-deterministic betiawian also be handled by forcing them
to conform to the abstract specification.

Yin et al. [84] show how to separate the agreement comporfeatByzantine fault-tolerant
replication protocol (which is responsible for orderingent operations) from the execution com-
ponent (which is responsible for applying operations tal, @intaining, the replicated state). This
approach reduces the number of required execution reflioas3f + 1 to 2f + 1 (while still
requiring3f + 1 agreement replicas). The system remains safe as long astfeameone-third of

the agreement replicas are compromised and no more thanftih execution replicas are com-

15

promised. The system also builds a privacy firewall that maps confidentiality by forcing data to
pass througly + 1 replicas before it is released onto the network.

Martin and Alvisi [56] show how to reduce the number of roundeded for reaching Byzantine
consensus from three to two by usiig + 1 replicas. They also prove that usifg + 1 replicas
is optimal for two-step consensus in the Byzantine settiAfhough the protocol increases the
number of replicas compared to three-step protocols sukasit can be useful in environments
where low latency is critical.

The Zyzzyva protocol of Kotla et al. [47] reduces the laten€glient operations in fault-free
executions by allowing servers to speculatively executapenation before knowing its final place in
the total order. Although the state of the servers may devéegnporarily, the client is still provided
with the strong consistency semantics of a state machinetegutes operations in a linearizable
order [30,43]. Replies contain a digest of the server'ssiaithe time that it executed the operation;
the client can use a collection of replies to determine ifdperation will eventually commit and
can therefore be accepted. The Scrooge protocol [74] akls® spEeculative execution to improve
performance, requiringf + 2b replicas to toleratg faults, out of which only < f are Byzantine;
the remaining faulty replicas can be unresponsive but nditimas. The replicas agree on a replier
qguorum of servers, which are responsible for returningiespb clients. If a member of the replier
quorum is faulty or unresponsive, the client triggers th#icas to agree on a new quorum.

A different way to achieve Byzantine fault-tolerant stateamine replication is to use a quorum-
based approach, where the protocol is driven by a clientdbadls its operation to a quorum of
servers. The operation is only executed at these serveishwdply to the client. The quorum-
based approach avoids the need for the servers to run amagreprotocol before replying to the
client. The Q/U protocol of Abd-El-Malek et al. [10] requiréf + 1 replicas to toleratg’ faults

and can achieve increased throughput as the number of sénageases, but it is vulnerable to

16

performance degradation when write contention occurs. dhicious environments, faulty clients
that fail to back off properly can therefore degrade perfamoe. The HQ protocol of Cowling et
al. [37] uses a lightweight quorum-based protocol duringmad-case operation and then uses BFT
to resolve contention when it arises. HQ requisgs+ 1 servers to toleratg faults. Since it uses
BFT to resolve contention, it is vulnerable to the same tygdedtacks presented in Chapter 3.

The protocols described above are all deterministic, mglygin certain synchrony conditions to
hold in order to circumvent the FLP impossibility result J4A different approach to circumventing
the impossibility result is to rely on randomization. Sudabtpcols typically do not require any
synchrony assumptions, but they are only guaranteed tartatenwith probability 1. Randomized
protocols are more resilient than the partially-synchtenieader-based protocols to network-based
attacks.

Ben-Or [22] and Rabin [65] proposed randomized Byzantind-falerant agreement protocols
for solving the consensus problem. Ben-Or’'s protocol agsueach processor has access to a
local coin that it can use to generate random bits, while Ralgirotocol assumes each processor
shares a common sequence of random bits, distributed imeelay a trusted dealer. Cachin et
al. [28] showed how to use threshold cryptography to avoedpioblem that the sequence of bits
may eventually be exhausted. Ben-Or’s approach requiesgpénsive cryptography but has a high
expected number of rounds, while Rabin-style protocolsitesite in a constant expected number
of rounds but rely on more heavyweight computations.

Two systems have been built that provide a stack of intrusdarant protocols based on a ran-
domized Byzantine fault-tolerant agreement protocol. BWETRA system of Cachin and Por-
tiz [29] provide a randomized binary consensus protocahqusi threshold cryptographic coin-
tossing scheme [28] to implement a distributed shared QIINTRA contains deterministic proto-

cols for multi-valued consensus, atomic broadcast, angreamusal atomic broadcast that use the

17

binary consensus protocol as a primitive. The RITAS prdtstack [58] provides a binary consen-
sus protocol in the Ben-Or style (i.e., with local coins) dhen builds protocols for multi-valued
consensus, vector consensus, and atomic broadcast onitop\ef describe RITAS in more detail

in Appendix A, where we outline an attack on its atomic br@astg@rotocol.

1.3.3 Intrusion-Tolerant Group Communication

The Rampart toolkit [67, 68] provides a Byzantine fauletaint group communication service,
providing protocols for group membership, reliable mast and atomic multicast. In the atomic
multicast protocol, a chosen sequencer processor peasltydbzoadcasts the order in which to atom-
ically deliver messages that have been reliably multicadte remaining processors follow the
sequencer’s decisions. If a group member believes the segués faulty, it requests that the se-
guencer be removed from the group membership. The Primeqmigiresented in Chapter 4 takes a
somewhat similar approach to establishing a total ordegrely the dissemination of client opera-
tions is separated from the ordering of client operationd,an elected leader proposes an ordering
upon which the servers agree. However, whereas Prime geamagafety in all asynchronous ex-
ecutions, Rampart guarantees safety only when at leasthivas of the members of the current
view are correct. Because asynchrony can cause corregb gnembers to be removed from the
membership, Rampart depends on synchrony for safety.

The SecureRing group communication protocols [46] progeerices for group membership
and ordered multicast in the face of Byzantine failures. pimtocols in SecureRing are based on
the benign fault-tolerant Totem single-ring protocol [Mhich passes a token around a logical ring
established on the group members. The total order is achigaea sequence number contained in
the token. In SecureRing, the token is digitally signed aonta@ins digests of the messages initiated

by the processor holding the token. Like Rampart, SecugeRilies on a Byzantine fault detector

18

to remove faulty processors from the group membership.tysefenly guaranteed to hold in those
executions in which each time the protocol installs a new beship, that membership has fewer
than one-third Byzantine processors.

Drabkin et al. [38] propose a Byzantine fault-tolerant graommunication system based on
JazzEnsemble, a variant of the Ensemble system [42]. Themsyglies on fuzzy mute and fuzzy
verbose failure detectors to suspect and remove procelssliesed to be exhibiting performance
failures (e.g., when their degree of slowness crosses a gfiveshold or when they are observed
to send messages that should not be sent according to theegirgpecification). Each layer in
the protocol stack can determine how to handle notificatfoms the failure detector. The system
does not specify how to set the slowness threshold used fectid® mute processors. In contrast,
Prime provides an explicit mechanism for determining wloesuspect a malicious leader, based on

measuring the current network conditions.

1.3.4 Intrusion-Tolerant Replication for Wide-Area Networks

The challenge in scaling intrusion-tolerant replicatioterge wide-area deployments is the high
message complexity of the protocols; most require seveualds of all-to-all exchanges, which can
become prohibitively expensive as the number of replicaesses, especially given that wide-area
bandwidth tends to be limited.

The Steward system [18, 19] was the first to scale Byzantink-falerant replication to large,
multi-site deployments by leveraging a hierarchical aediure. Steward runs local agreement
protocols in each site to convert the physical machinesénsite into a trusted logical machine.
A single benign fault-tolerant protocol (similar to Pax88[51]) runs among the logical machines
over the wide-area network. The system can tolerate the iBiymafailure of f out of 3f + 1

serverdn each site Steward’s hierarchical architecture reduces wide-aegpexity fromO(N?),

19

where N is the number of servers in the system,0S?), whereS is the number of sites in the
system. In order to mask Byzantine behavior in each site aedept faulty local servers from
misrepresenting the site’s decisions, each wide-areaagess Steward carries a threshold digital
signature. A server that verifies the correctness of theslimid signature is assured that at least
one correct server agreed with the content of the messagepraVele background on threshold
signatures (which are also used in our attack-resiliertitacture) in Chapter 2.

Because Steward runs a benign fault-tolerant wide-are@aqoh it is unable to tolerate entire
site compromises (i.e., where more thfaservers in a site are compromised). In some environments,
faults within a site may be highly correlated (e.g., whenrtechines are all under the control of
a malicious administrator), and thus it becomes importaliet able to guarantee correctness even
when the failure assumptions in some of the sites are vihldtmfortunately, it is not straightfor-
ward to modify Steward so that it runs a Byzantine fault+tate wide-area protocol instead of a
benign fault-tolerant one, because the protocol is mdriolithe local- and wide-area protocols are
intertwined. To address this shortcoming the customizadydication architecture in [16] uses a
two-level hierarchy in which the local and global protocate cleanly separated. This enables one
to deploy a Byzantine fault-tolerant wide-area protocadfdesired. The separation is achieved by
locally ordering all wide-area protocol events (using alatate machine replication protocol). In
contrast, Steward was optimized to only locally order evaviten necessary, making the protocol
more efficient but the system less customizable.

Our attack-resilient architecture (presented in Chaptdwufids on ideas used by Steward and
the customizable replication architecture. In particwee adopt the use of threshold signatures,
and we use logical machines built by running local state nim&cheplication protocols. The key
contribution of the attack-resilient architecture is iregnting efficient techniques for inter-site

communication even when some of the servers are Byzantine.

20

The ShowByz system of Rodrigues et al. [71] supports a laige-area deployment consisting
of many replicated objects. ShowByz adjusts the BFT quonzent® decrease the likelihood that
the fault assumptions of any replicated group are violateat is, each group can tolerate a higher
fraction of Byzantine faults. The cost of tolerating a larfraction of Byzantine faults is that the
protocol is less live. To address this issue, the systemaipemary-backup approach. The primary
group speculatively executes each operation, and the topei@nly becomes definitive when the

backup group has copied the new state from the primary group.

1.3.5 State Machine-Based Logical Machines

The concept of building logical machines out of collecti@fisintrusted components, used by
the customizable replication architecture and our attaskient architecture, has been well studied
in the literature (e.g., [27,64,72,79]). We describe tharamples here. Schlichting and Schnei-
der [72] describe how to build k-fail-stop processors, whice composed of several potentially
Byzantine processors. The logical k-fail-stop processitlrbvehave correctly (or will appear to
crash cleanly) as long as no more ttaof the constituent processors are Byzantine.

The Delta-4 system of Powell et al. [64] builds an intrustolerant architecture in which po-
tentially replicated software components are intercoteteby a constructed dependable communi-
cation system. The system converts the replicas into adbgiut via the state machine approach.
Each potentially Byzantine host is equipped with a fagisilcommunication processor known as a
Network Attachment Controller (NAC). Communication amdhg replicated entities is performed
using the NACs. The fail-silent nature of the NACs allows éfficient communication among the
replicated entities. In contrast, our attack-resiliechéecture attempts to build efficient techniques
for logical machine communication in which the constituentities can be Byzantine. The de-

pendable forwarder-based logical link protocol preseine8ection 5.4.3 uses a device that, like

21

the NAC, is relied upon to be correct and should be built t@ dhis reliance sufficient coverage.
However, unlike the NACs, the dependable forwarders arasgimed to be fail silent; the system
maintains safety even if the dependable forwarders are mmiped.

The Voltan system of Brasileiro et al. [27] builds a logicachine out of two potentially Byzan-
tine processors. The logical machine has the propertytteaher works correctly (when both con-
stituent processors are correct) or it becomes silent @f afrthe processors detects the failure of
the other). Valid messages sent by the logical machine arelglsigned (i.e., signed by both pro-
cessors). The logical machine may emit singly-signed ngessavhich can be detected as faulty by
other logical machines. Machines sent between logical inastare transmitted redundantly—each

processor sends a copy of the message to both processoesré@t#iving logical machine.

1.3.6 Attack-Resilient Intrusion-Tolerant Replication

Aiyer et al. [11] proposed the BAR model (Byzantine, Alttigs Rational) for designing coop-
erate services whose participants span multiple admatigtr domains. The model defines three
classes of processors. Rational processors participtte Bystem and may deviate from the speci-
fied protocol if it is to their benefit; Byzantine processorayndeviate from the protocol arbitrarily;
and altruistic processors always adhere to the protoceh &t would be rational to deviate from
it. The authors point out that a Byzantine leader in a BF&-{ikotocol can avoid being replaced
by ordering messages just fast enough so that correct sedwanot suspect it. We make a similar
observation in Chapter 3, where we describe an attack on BEment et al. provide a primer for
how to build distributed services in the BAR model in [33].

Singh et al. [77] present a simulation environment for eatihg the performance of Byzantine
fault-tolerant replication protocols under adverse neking conditions such as low bandwidth,

high latency, and high packet loss. They test the performafiseveral protocols under such con-

22

ditions but where processors exhibit benign rather tharaByae faults. Their results demonstrate
that certain protocols react to such imperfect operatinglitmons differently. This dissertation fo-
cuses on the related but different problem of how to buildqurols that perform well when the
network is sufficiently stable but some of the servers maylgxByzantine faults.

The Aardvark system of Clement et al. [34] proposes buildoigust Byzantine fault-tolerant
replication systems that sacrifice some normal-case ped#foce in order to ensure that performance
remains acceptably high when the system exhibits Byzafdiheges. Aardvark aims to guarantee
that over sufficiently long periods, system throughput nasiavithin a constant factor of what it
would be if only correct servers were participating in thetpcol. It achieves this by gradually
increasing the level of work expected from the current leaddich ensures that view changes
eventually take place. Aardvark guarantees high throuigivben the system is saturated, but indi-
vidual client operations may have higher latency (e.ghéftare introduced during the grace period
that begins any view with a faulty primary). As explained ihapter 4, the approach to resisting
performance attacks in Prime is quite different from therapph taken by Aardvark. Prime aims
to guarantee that there exists a time after wigeryclient operation known to correct servers will
be executed in a timely manner, limiting the leader’s resjmlities in order to enforce timeliness
exactly where it is needed. The system eventually settlésaaters that provide good performance.

Aardvark employs several system engineering techniquts#m be used to improve robustness
to certain types of attacks. For example, it isolates nétwesources to mitigate flooding-based
attacks, and it dedicates a separate network interfacef@arelceiving client operations to prevent
the effects of faulty clients from impacting agreementgadly in progress. Although we do not
discuss these techniques in this dissertation, they carbalapplied to Prime.

The Spinning protocol of Veronese et al. [83] takes the madicforcing the leader to be replaced

a step further. Spinning replaces the leader whenever érsra single batch of operations. If the

23

leader of the current view does not act quickly enough, tineroservers run a merge operation
to terminate its view and safely move to the next one. Sincéiyfdeaders repeatedly have an
opportunity to cause delay, the protocol blacklists leaaénose view results in a merge operation.

Blacklisted servers will be skipped over when deciding Wtserver should be the next leader.

1.3.7 Intrusion Tolerance in a Hybrid Failure Model

Verissimo [81] formalized the notion of a hybrid failure ded for distributed systems in which
different parts of the system operate under different faiknd timing assumptions. Those compo-
nents that operate under stronger assumptions are eaiedholes

Correia et al. [35] present an intrusion-tolerant relianidticast protocol that makes use of the
Trusted Timely Computing Base (TTCB), a security kerneuassd to exhibit only crash faults.
The TTCBs are synchronous and communicate over a synctsammirol channel; the rest of the
system is completely asynchronous. The reliable multipastocol makes use of an agreement
service of the TTCB. By using wormholes, the system reducesiumber of processors required
for intrusion-tolerant reliable multicast frofy + 1 to f + 2.

Survivable Spread [78] provides an intrusion-toleranticaion service for wide-area networks,
where at least one node per site is assumed to be impenetrblenumber of other daemons
within the site can be Byzantine. This represents an afti@enapproach to scaling intrusion-tolerant
replication to wide-area networks to the one used in Steaadthe customizable architecture (and
adopted for our attack-resilient architecture); the tasigstems do not assume any impenetrable
components. Survivable Spread’s trusted entities areonsdigle for detecting malicious behavior
within their local sites and excluding replicas from the nbemship if they behave in an inconsistent
manner. The system uses a hub within each site to enforcedastonly intra-site traffic, which

allows faulty servers that send inconsistent messagesdetbeted. Our attack-resilient architecture

24

can also make use of a hub in one of the logical link protocsde Section 5.4.2). The hub allows
a single message sent from one site to reach all servers ma@esite. It also allows local servers
to monitor outgoing messages to potentially optimize treeafsvide-area bandwidth.

In Survivable Spread, the trusted entities are respongblal inter-site communication. Since
they are assumed not to be compromised, they can mask nualibehavior within the site and
prevent it from being observed in other sites. Our attacidiesmt architecture takes a more general
approach to overcoming the problem of efficient inter-stemmunication. The erasure encoding-
based logical link protocol (see Section 5.4.1) does natireqany special components but is less
efficient than using trusted entities to pass inter-sitesagss. The attack-resilient architecture can
also be configured to make use of use dependable forwardeich are simple devices relied upon
to pass messages correctly. However, whereas the safetyraf/&le Spread can be violated if
the trusted forwarders are compromised, the compromisaradependable forwarders can impact
performance but not safety.

Correia et al. [36] developed a wormhole-based intrusiderant state machine replication pro-
tocol. Using wormholes enables one to reduce the numbermptitas from3f + 1to2f + 1 to
toleratef Byzantine faults. The protocol makes use of a Trusted MagtiOrdering (TMO) service
that runs between trusted components that can only crastihanidave synchronized clocks. When
a processor wants to atomically multicast a message, isséenger an asynchronoysyload net-
work and also provides a hash of the message to the TMO. When theréb#i¥es enough copies
of the hash, it assigns an ordering to the message. The |&¢@ domponents at each processor
communicate via a synchronogsntrol network As explained in Chapter 5, our attack-resilient
architecture can be configured to use dependable forwaddiviges which, like the TMO, perform
an action after receiving enough copies of a message (oratte df the message, in the case of the

TMO). Our dependable forwarders send a message over theangdenetwork when they receive

25

enough copies of it. The critical difference is that the deladle forwarders can be compromised
without violating the safety of the replication service, embas the wormhole-based protocol can
become inconsistent if the wormholes do not act as specified.

The RAM system of Mao et al. [55] provides a state machinacafbn service in a multi-site
environment. It deploys one server in each site and assumeeMtitually Suspicious Domains
model, where the server and clients in each site trust edwr dut need to protect themselves
against faulty behavior from entities in other sites. RAMwanes each server is equipped with a
trusted attested append-only memory device (as descnibfgP]) that only signs outgoing mes-
sages if their content is valid, preventing the server fratilgting two-faced behavior. This allows
for an efficient replication protocol requiring only two veighrea message delays in failure-free
executions.

Bessani et al. [23] build a protection service for critig#tastructure systems. When a message
passes from an unprotected to a protected realm, it mustprewaa by + 1 replicas to ensure
that it conforms to policy. Each replica has access to agdusbmponent that stores a shared
symmetric key. The component will only generate a messageeatication code on a message
when it collectsf +1 copies from different replicas. The system also uses a haloto messages to
be received by all replicas without modifying legacy comgats. Our attack-resilient architecture
can be configured to make use of hub in order to enable moréeffizide-area communication.

The EBAWA protocol of Veronese et al. [82] uses a trusted comept known as a Unique
Sequential Identifier Generator (USIG) to provide an iritmgolerant replication service. The
USIG assigns unique, monotonically increasing, and caotig sequence numbers to messages
and generates a certificate of correctness that can be gdrifiether USIGs. EBAWA is based on
the Spinning protocol [83] but reduces the number of replit@eded to toleratg Byzantine faults

from3f + 1to2f + 1 by using trusted components.

26

Chapter 2

Background

This chapter provides background on three protocols usédilting blocks in Prime and the
attack-resilient architecture. Section 2.1 describesestiold signature scheme, which is used by
each site in the attack-resilient architecture to genaigteed messages whose content was assented
to by at least one correct local server, even when there mayp bbe / faulty servers participating
in the generation of the message. Section 2.2 briefly desctiire Maximum Distance Separable
erasure-resilient coding scheme used by both Prime andtdukaesilient architecture. Section 2.3
presents a protocol for asynchronous intrusion-toleralible broadcast, which is used for state

dissemination during Prime’s view change protocol.

2.1 Threshold Digital Signatures

The intuition behind a threshold digital signature scheshat it allows a set of processors to
use a shared private key without any individual processtuadlg knowing the key. In dk, n)
threshold signature scheme, any setcafut of n processors can coordinate to generate a valid
digital signature, while any set of fewer thamprocessors is unable to generate a valid signature.

The private key is divided inta key shares, where each processor knows one key share. Ta sign

27

messagein, each processor uses its key share to genenadetial signatureon m. Any processor
that collectsk partial signatures can combine them to form a thresholdasige onm. The result-

ing threshold signature is the same signature that wouldebergted by an entity that knows the
shared private key. A threshold signature scheme is a Vialyaimitive in Byzantine environments
because, wheh > f + 1, wheref is the maximum number of processors that may be Byzantine,
generating a threshold signature on a message impliesttlegtsh one correct processor agreed to
send a partial signature on the message and attests thatemtcof the message is valid.

Our work assumes a threshold signature scheme with an@uhliimportant property, called
verifiable secret sharinf40]. In schemes that exhibit verifiable secret sharing,kiye share dis-
tributed to each processor can be used to create a proof gaatial signature was generated cor-
rectly. We leverage the fact that partial signatures ardiable by using the proofs to blacklist
Byzantine processors that submit invalid partial sigregumwhich can cause the combining to fail
and the resultant signature to be invalid). The combinatfandigitally-signed partial signature and
an invalid proof of correctness constitutes a proof of gatinn that can be shared among the correct
processors. Subsequent partial signatures from blaettlgtocessors are ignored, preventing them
from repeatedly disrupting threshold signature genematio

Our prototype systems of Prime and the attack-resilierticture make use of the OpenTC
implementation [7] of Shoup’s RSA threshold digital sigmat scheme [76]. The threshold signa-
tures generated from the Shoup scheme are standard RSAuse&m§69], which can be verified
using the public key corresponding to the divided privatg Réne scheme assumes a trusted dealer
to divide the private key and securely distribute the ihitey shares, after which the dealer is no

longer needed. The Shoup scheme provides verifiable séenéhg.

28

2.2 Erasure-Resilient Coding

An (m,n,b,r) erasure-resilient coding scheme maps a message consitingarts, eactb
bits long, to an encoding consistingoparts, eacl bits long, such that anyparts can be decoded
to recover the original message. A scheme is said to be a MemiDistance Separable (MDS)
code [54] whenr = m. Our implementation uses the MDS Cauchy-based Reed-Solenmasure
encoding presented in [25].

Our protocols make use of MDS codes in two contexts. Firdm®&s Reconciliation sub-
protocol (see Section 4.3.4) uses MDS codes to efficientld sanessage known By + 1 servers
(at leastf + 1 of which are correct) to a set of receivers that may not hageived the message.
The message is encoded irit¢ + 1 parts, f + 1 of which are sufficient to recover the original
message. Since at legst- 1 of the senders are correct, the receiver is guaranteeddivesenough
parts. The second context in which we use MDS codes is in tweological link protocols of the
attack-resilient architecture (see Section 5.4). In otdefficiently pass messages between wide-
area sites, each server in the sending site passes partroésage to a peer server in the receiving
site. The protocols guarantee that enough parts are sfidbessceived to be able to recover the

original message.

2.3 Intrusion-Tolerant Reliable Broadcast

This section describes an asynchronous intrusion-tdieediable broadcast protocol. The pro-
tocol was first presented by Bracha [26] in 1984 and is use@dd®pthe RITAS intrusion-tolerant
protocol stack of Moniz et al. [58].

The protocol requires > 3f + 1 processors to toleratg Byzantine faults. The messages

used in thej*" reliable broadcast from processoare tagged with a reliable broadcast identifier,

29

rbid = (i, j), to distinguish messages sent in different instances opth®col. The protocol

makes the following guarantees, even when the network ipliely asynchronous:

1. If a correct processor reliably broadcasts a messagten it eventually reliably delivens.

2. If a correct processor reliably delivers a messaggthen all correct processors eventually

reliably deliverm.

3. If two correct processors reliably deliver messageandm’ with the same tagibid, then

Intuitively, the first two properties guarantee that any sage reliably broadcast by a correct
processor will eventually be reliably delivered, and that mmessage reliably broadcast by a faulty
processor will either be reliably delivered by all correcogessors or none of them. The third
property guarantees that the correct processors agree @otitent of messages delivered with the
same tag.

Pseudocode for the reliable broadcast protocol can be fouAffjorithm 1. To reliably broad-
cast a message, a processor broadcasgBanIT message containing it. In Step 1 of the protocol
(Algorithm 1, lines 5-6), a processor waits for (1) tke-INIT message, (2)n + f)/2 RB-ECHO
messages, or (3 + 1 RB-READY messages. When one of these conditions occurs, the proces-
sor broadcasts aRB-ECHO message and moves to Step 2. When a processor collects (@ither
(n+ f)/2 RB-ECHO messages or (2 + 1 RB-READY messages, it sends aB-READY message
and moves to Step 3. Finally, a processor reliably delivieesmessage when it collecdg + 1

RB-READY messages.

30

Algorithm 1 Bracha’s Asynchronous Reliable Broadcast Protocol
1. // Step O (Performed by sender only)

2: Broadcast(RB-INIT, rbid, m)

3:

4: /[Step 1

5: Upon receivingone (RB-INIT, rbid, m) message, ofn + f)/2 (RB-ECHO, rbid, m) messages,
or (f + 1) (RB-READY, rbid, m) messages

6: Broadcast(RB-ECHO, rbid, m)

7

8: /] Step 2

9: Upon receiving (n + f)/2 (RB-ECHO, rbid, m) messages, dif + 1) (RB-READY, rbid, m)
messages

10: Broadcast(RB-READY, rbid, m)

11:

12: /l Step 3

13: Upon receiving (2f + 1) (RB-READY, rbid, m) messages
14: Reliably deliverm

31

Chapter 3

Performance Under Attack:

A Case Study

This chapter presents a theoretical analysis of Castro akdh\'s BFT protocol [31], a leader-
based intrusion-tolerant state machine replication pmitowhen under attack. We chose BFT
because (1) itis a common protocol to which other Byzant@sglient protocols are often compared,
(2) many of the attacks that can be applied to BFT (and the@spanding lessons learned) also apply
to other leader-based protocols, and (3) its implememtatias publicly available. BFT achieves
high throughput in fault-free executions or when servefsitek only benign faults. Section 3.1
provides background on BFT. Sections 3.2 and 3.3 then destsio attacks that can be used to
significantly degrade its performance when under attackpMsent experimental results validating

the analysis in Section 4.6.

32

Pre
Request Prepare Prepare Commit Reply

Client
Leader 0
1

2 “a

3 A

Figure 3.1: Common-case operation of the BFT algorithm when1.

3.1 BFT Overview

BFT assigns a total order to client operations. The protoequires3f + 1 servers, where
f is the maximum number of servers that may be Byzantine. Actadieleader coordinates the
protocol by assigning sequence numbers to operationgdubijratification by the other servers. If
a server suspects that the leader has failed, it votes taaefil Wher f + 1 servers vote to replace
the leader, a view change occurs, in which a new leader iseelend servers collect information
regarding pending operations so that progress can safiynein a new view.

The common-case operation of BFT is summarized in Figure 8.dlient sends its operation
directly to the leader. The leader assigns a sequence nuimlee operation and proposes the
assignment to the rest of the servers. It sendgaPREPAREmMessage, which contains the view
number, the proposed sequence number, and the operagétinlitpon receiving théREPREPARE
a non-leader server accepts the proposed assignment bychetimg aPREPAREmMessage. The
PREPAREMessage contains the view number, the assigned sequentemund a digest of the
operation. When a server collects theePREPAREand2f correspondingPREPARE messages,
it broadcasts @oMMIT message. A server globally orders the operation when iectsiR f +
1 coMMmIT messages. Each server executes globally ordered opera@mording to sequence

number. A server sends a reply to the client after executiegoperation.

33

3.2 Attack 1: Pre-Prepare Delay

A malicious leader can introduce latency into the globakarty path simply by waiting some
amount of time after receiving a client operation beforedgggit in aPREPREPAREMessage. The
amount of delay a leader can add without being detected &g faudependent on (1) the way in
which non-leaders place timeouts on operations they hawvget@xecuted and (2) the duration of
these timeouts.

A malicious leader can ignore operations sent directly ntes. If a client’s timeout expires
before receiving a reply to its operation, it broadcastoheration to all servers, which forward the
operation to the leader. Each non-leader server maintdiiS@ queue of pending operations (i.e.,
those operations it has forwarded to the leader but has nexgeuted). A server places a timeout
on the execution of the first operation in its queue; that Esxpects to execute the operation within
the timeout period. If the timeout expires, the server stispbe leader is faulty and votes to replace
it. When a server executes the first operation in its queuestarts the timer if the queue is not
empty. Note that a server does not stop the timer if it exescafgending operation that is not the first
in its queue. The duration of the timeout is dependent omit&i value (which is implementation
and configuration dependent) and the history of past viewgdm Servers double the value of their
timeout each time a view change occurs. The specificationFdf @es not provide a mechanism
for reducing timeout values.

BFT’s queuing mechanism ensures fairness by guarantdsangach operation is eventually or-
dered. However, it also allows the leader to significantliagiéhe ordering of an operation without
being replaced. To retain its role as leader, the leader pragentf + 1 correct servers from voting
to replace it. Thus, assuming a timeout valud pd malicious leader can use the following attack:
(1) Choose a sefy, of f + 1 correct servers, (2) For each server S, maintain a FIFO queue of

the operations forwarded hy and (3) For each such queue, senelR&EPREPARE coNntaining the

34

first operation on the queue every- e time units. This guarantees that tfie- 1 correct servers in
S execute the first operation on their queue each timeoutghelfithese operations are all different,
the fastest the leader would need to introduce operaticaisaisate off + 1 per timeout period. In
the worst case, th¢ + 1 servers would have identical queues, and the leader couttlirce one
operation per timeout.

This attack exploits the fact that non-leader servers piaoeouts only on the first operation in
their queues. To understand the ramifications of placingnadut onall pending operations, we
consider a hypothetical protocol that is identical to BFEapt that non-leader servers place a time-
out on all pending operations. Suppose non-leader sésmgtultaneously forwards operations to
the leader. If server sets a timeout on alt operations, them will suspect the leader if the system
fails to executen operations per timeout period. Since the system has a mhtinsaghput, ifn
is sufficiently large;j will suspect a correct leader. The fundamental problemasdbrrect servers
have no way to assess the rate at which a correct leader cedirate the global ordering.

Recent protocols attempt to mitigate theEPREPARE attack by rotating the leader (an idea
suggested in [11]). The Aardvark protocol [34] forces theent leader to eventually be replaced
by gradually requiring it to meet higher and higher throughgemands. The Spinning protocol
[83] rotates the leader with each batch of operations. Wthiégse protocols allow good long-term
throughput and avoid the scenario in which a faulty leader degrade performance indefinitely,
they do not guarantee that individual operations will beeoed in a timely manner. Prime takes
a different approach, guaranteeing that the system evgngeitles on a leader that is forced to
propose an ordering oall operations in a timely manner. To meet this requirement,l¢bder
needs only a bounded amount of incoming and outgoing barlkwiiddependent of the offered
load, which would not be the case if servers placed a timeoatlmperations in BFT. As explained

in Section 4.2, Prime bounds the amount of bandwidth reduisethe leader to propose a timely

35

ordering on all operations by separating the disseminatidhe operations from their ordering.

3.3 Attack 2: Timeout Manipulation

One of the main benefits of BFT is that it ensures safety régsswf synchrony assumptions.
The authors justify the need for this property by noting ttextial of service attacks can be used by
a malicious adversary to violate timing assumptions. Waitkenial of service attack cannot impact
safety, it can be used to increase the timeout value useddotdefaulty leader. During the attack,
the timeout doubles with each view change. If the adverstopssthe attack when a malicious
server is the leader, then that leader will be able to sloveylséeem down to a throughput of roughly
f + 1 operations per timeoUt, whereT is potentially very large, using the attack described in the
previous section. This vulnerability stems from the iniapibf BFT to reduce the timeout and adapt
to the network conditions after the system stabilizes.

One might try to overcome this problem in several ways, suchyaresetting the timeout to
its default value when the system reaches a view in whichrpesgoccurs, or by adapting the
timeout using a multiplicative increase and additive daseemechanism. In the former approach,
if the timeout is set too low originally, then it will be resgtst when it reaches a large enough
value. This may cause the system to experience long perigitsgdwhich new operations cannot
be executed, because leaders (even correct ones) cortihaestispected until the timeout becomes
large enough again. The latter approach may be more effebtiv will be slow to adapt after
periods of instability. As explained in Section 4.3.5, R¥iadapts to changing network conditions
and dynamically determines an acceptable level of timséitmsed on the current latencies between
correct servers. As stated in Section 4.1, it does so byniagua slightly stronger degree of network

synchrony for certain key messages.

36

Chapter 4

The Prime Replication Protocol

This chapter presents the Prime replication protocol [Pfime is the first intrusion-tolerant
state machine replication protocol to guarantee a meaulifeyfel of performance even when some
of the servers exhibit Byzantine faults. This is joint worktlwYair Amir, Brian Coan, and John
Lane.

Prime provides a state machine replication service thabearsed to replicate any deterministic
application. The protocol requires at ledgt-1 servers, wherg is the maximum number of servers
that may be faulty. Clients submit operations to the servénselected leader, chosen dynamically
from among the servers, proposes the order in which the tipesashould be executed, and the
servers agree on the proposed ordering. By executing thatapes in the same order, the servers
remain consistent with one another.

The main challenge that Prime overcomes is limiting the amhofi performance degradation
that can be caused by a malicious leader. Prime guarantae®rly a leader that assigns an
ordering—in a timely manner and on an ongoing basis—to @htloperations known to correct
servers can avoid being replaced. This ensures that thmejatd any operation can only be delayed

by a bounded amount of time, and it mitigates attempts bydhddr to decrease throughput. In

37

Prime, the amount of delay that can be added by the leaderuscidn of the current network
delays between the correct servers in the system. Thesgsdedanot be controlled by the faulty
servers. This allows Prime to meet a new performance guegaoalledBOUNDED-DELAY, when
the system is under attack.

Another challenge that Prime addresses is preventing npesfice degradation in thaew
changeprotocol, which runs when the servers decide to replacedetghey suspect to be faulty.
The view change protocol allows execution to resume safetieuthe coordination of a new leader
by making sure enough information is exchanged to ensutelétdsions made in the new view re-
spect decisions already made in previous views. Previgtgess rely on the newly elected leader
to coordinate the view change protocol. We present a new ef@mge protocol that takes a differ-
ent approach, relying on the leader only to send a singleagedhat terminates the protocol. This
step is monitored by the non-leader servers using the sasheitgie used to ensure that the leader
proposes a timely ordering during normal-case operation.

The remainder of this chapter is presented as follows. &edtil presents our system model
and describes the service properties that Prime providegatticular, it defines theOUNDED-
DELAY correctness property and describes the level of synchreeglad from the network in order
to meet it. Section 4.2 presents an overview of Prime, fogusen the key features of its design and
how they mitigate attempts to cause performance degradafection 4.3 describes the technical
details of Prime. The Prime view change protocol is presemteéSection 4.4. Section 4.5 sketches
the proof that Prime meetsOUNDED-DELAY. Section 4.6 evaluates the performance of Prime in
fault-free and under-attack executions. Finally, Sectloh summarizes the contributions of this

chapter.

38

4.1 System Model and Service Properties

We consider a system consisting 8f servers and\/ clients, which communicate by passing
messages. Each server is uniquely identified from thékset {1,2,..., N}, and each client is
uniquely identified from the se&8 = {N + 1,N +2,..., N + M}. We let the set oprocessors
be the union of the set of clients and the set of servers. Warass Byzantine fault model in
which processors are eitheorrect or faulty, correct processors follow the protocol specification
exactly, while faulty processors can deviate from the mottpecification arbitrarily by sending
any message at any time, subject to the cryptographic asmnsstated below. We assume that
N > 3f+1, wheref is an upper bound on the number of servers that may be fautysifplicity,
we describe the protocol for the case wheén= 3f + 1. Any number of clients may be faulty.

We assume an asynchronous network, in which message delagyfonessage is unbounded.
The system meets our safety criteria in all executions irctvlfi or fewer servers are faulty. The
system guarantees our liveness and performance propertigsn subsets of the executions in
which message delay satisfies certain constraints. For sébimear analysis, we will be interested
in the subset of executions that model Diff-Serv [24] withotwaffic classes. To facilitate this
modeling, we allow each correct processor to designate masBage that it sends as eitheneLy
Or BOUNDED.

All messages sent between processors are digitally sigéddenote a message,, signed
by processori as (m),,. We assume that digital signatures are unforgeable witkootving a
processor’s private key. We also make use of a collisioistas hash functionD, for computing
message digests. We denote the digest of message D¢n). We assume it is computationally
infeasible to find two distinct messages,andm’, such that D) = D(m/).

A client submits aroperationto the system by sending it to one or more servers. Operagi@ns

classified as read-onhggeried and read/write pdate¥. Each client operation is signed. There

39

exists a functionClient, known to all processors, that maps each operation to aesutight. We say
that an operationy, is valid if it was signed by the client with identifie€lient(o). Correct clients
wait for the reply to their current operation before subimgtthe next operation. Textually identical
operations are considered multiple instances of the saeraim.

Each server produces a sequence of operations,o,, . ..}, as its output. The output reflects
the order in which the server executes client operations.eM#server outputs an operation, it

sends a reply containing the result of the operation to fieatcl

4.1.1 Safety Properties

The safety properties in Prime constrain the sequence ohbipes output by correct servers
and define the semantics for replies to operations subntitgezbrrect clients. We now state the

properties.

DerINITION 4.1.1 Safety-Silin all executions in whicly or fewer servers are faulty, the output

sequences of two correct servers are identical, or one isé>pof the other.

DEFINITION 4.1.2 Safety-S2:In all executions in whicly or fewer servers are faulty, each oper-

ation appears in the output sequence of a correct server at omce.

DerINITION 4.1.3 Safety-S3:In all executions in whiclf or fewer servers are faulty, each oper-

ation in the output sequence of a correct server is valid.

Safety-Slimplies that operations are totally ordered at correctessrv As in BFT [31], an
optimistic protocol can be used to respond to queries wittaially ordering them. The optimistic
protocol may fail if there are concurrent updates, in whiakecthe query can be resubmitted as an

update operation and totally ordered.

40

Server replies for operations submitted by correct clianéscorrect according to linearizability
[43], as modified to cope with faulty clients in [30]; we referthis modified semantics &sodified-
Linearizability. We say that an operation isvokedwhen it is first submitted by a client, and it
completesvhen it is output byf + 1 servers. Modified-Linearizability holds for an executidn,
when the results returned by the service for operations gtdzhby correct clients are equivalent
to the results returned in some executidnjn which (1) the operations are atomically executed in
sequence one at a time, and (2) this sequence respects tieelgmee ordering of non-concurrent
operations in (i.e., where one operation completes before the next omedgéd). This notion is

captured in the following safety property:

DEFINITION 4.1.4 Safety-S4In all executions in whicly or fewer servers are faulty, replies for

operations submitted by correct clients satisfy Modifiguehrizability.

4.1.2 Liveness and Performance Properties

Like existing leader-based Byzantine fault-toleranticgtion protocols, Prime guarantees live-
ness only in executions in which the network eventually meetrtain stability conditions. The
level of stability needed in Prime differs from the level tdlsility commonly assumed in Byzantine
fault-tolerant replication systems (e.qg., [31,34,47].facilitate a comparison between the required
stability properties, we specify the following two degre#ssynchrony,Eventual-Synchronj39]
andBounded-VarianceBoth are parameterized by a traffic clagsand a set of processors, for
which the stability property holdsBounded-Variancés also parameterized by a network-specific

constantX, that bounds the variance.

DEFINITION 4.1.5 Eventual-Synchrony(S): Any message in traffic clast sent from server

s € Stoserverr € S will arrive within some unknown bounded time.

41

DEFINITION 4.1.6 Bounded-Variancé(S, K): For each pair of servers, sandr, in S, there exists
a value, MinLat(s, r), unknown to the servers, such that if s sends a rgesadraffic class T tor,

it will arrive with delay A, ,., where MinLat(s, r) < A, , < Min_Lat(s, r) x K.

We also make use of the following definition:

DEFINITION 4.1.7 A stable sets a set of correct server§table such thatStableé > 2f + 1. We

refer to the members &tableas thestable servers

Using the above synchrony specifications, we now define theaeork stability properties:

DEFINITION 4.1.8 Stability-S1 Let T,;; be a traffic class containing all messages. Then there

exists a stable set, Stable, and a timefter which Eventual-Synchror;, Stable) holds.

DEFINITION 4.1.9 Stability-S2 Let T3;,,,.;,, be a traffic class containing all messages designated
asTIMELY . Then there exists a stable set, Stable, a network-speoifistant, K .;, and a time¢,

after which Bounded-Varianc&,,.;, , Stable,K ;) holds.

DEFINITION 4.1.10 Stability-S3Let T}imery and Thoundeqa be traffic classes containing messages
designated asIMELY andBOUNDED, respectively. Then there exists a stable set, Stablewwoniet
specific constantir.;, and a time,t, after which Bounded-Variancgf,,.;,, Stable,K ;) and

Eventual-Synchron¥${,,..4cq, Stable) hold.

Note that although the three stability properties are ddfie holding from some point on-
ward, in practice we are interested in making statementstahe performance and liveness of the
replication systems during periods when the stability prips hold for sufficiently long.

We now specify the liveness guarantees made by existinggmist (using BFT as a representa-

tive example), as well as the one made by Prime:

42

DEFINITION 4.1.11 BFT-LIVENESS:. If Stability-S1holds for a stable set§, and no more tharf
servers are faulty, then if a server freceives an operation from a correct client, the operation

will eventually be executed by all serversin

DEFINITION 4.1.12 PRIME-LIVENESS: If Stability-S2holds for a stable setS, and no more than
f servers are faulty, then if a server fireceives an operation from a correct client, the operation

will eventually be executed by all serversin

Note that the levels of stability needed ®¥T-LIVENESS andPRIME-LIVENESS (i.e., Stability-
SlandStability-S2 are incomparableBFT-LIVENESS requires a weaker degree of synchrony for
all protocol messages, whilerRIME-LIVENESS requires a stronger degree of synchrony but only
for certain messages; the other messages can arrive celypstnchronously. We discuss the
practical considerations of this difference below.

We now specify a new performance guarantee that Prime ntedleg BOUNDED-DELAY ;

DEFINITION 4.1.13 BOUNDED-DELAY: If Stability-S3holds for a stable sefy, and no more than
f servers are faulty, then there exists a time after whichakenicy between a server freceiving

a client operation and all servers ifi executing that operation is upper bounded.

As we explain in Section 4.5, in Prime, the upper bound iskeu@l; . ..+ 2K 14 L}

timely

A, whereLy; ., is the maximum message delay between two stable serversfery messages;
L3 ..naeq 1S the maximum message delay between two stable serves®tonDED messagesi(y,q;

is the network-specific constant from Definition 4.1.10; dnds an implementation-specific con-
stant accounting for aggregation delays. Intuitively, tbial latency for the operation is derived

from at most 6 rounds in whicROUNDED messages are sent, 2 rounds in whichELY messages

are sent, and a constant accounting for aggregation delays.

43

4.1.3 Practical Considerations

We believeStability-S3 which Prime requires to guarante®UNDED-DELAY, can be made
to hold in practical networks. In well-provisioned locaka networks, network delay is often
predictable and queuing is unlikely to occur. To assessdhsilbility of meetingStability-S3on
bandwidth-constrained wide-area networks, we must cendite characteristics of thEMELY
andBOUNDED traffic classes. In Prime, messages ingleeysNDED traffic class account for almost
all of the traffic and assumBEventual-Synchronythe level of synchrony commonly assumed in
Byzantine fault-tolerant replication systems. Delay kely to be bounded as long as there is suf-
ficient bandwidth. Once the links become saturated (as fleeeof load increases), the delay may
become dominated by queuing time.

Messages in theiIMELY traffic class requir@ounded-Variangea stronger degree of synchrony,
but they are only sent periodically and are of small boundiesl ©n wide-area networks, one could
use a quality of service mechanism such as Diff-Serv [24th whe low-volume class forIMELY
messages and a second classstoUNDED messages, to givitability-S3sufficient coverage, pro-
vided enough bandwidth is available to passtheELy messages without queuing. The required
level of bandwidth is tunable and independent of the offéoed,; it is based only on the number of
servers in the system and the rate at which the periodic messae sent. Thus, in a well-engineered
system,Bounded-Varianceshould hold for messages in theveLy traffic class, regardless of the
offered load, because the amount of resources requiredN@mLy messages does not grow as the
load increases.

Of course, a Byzantine processor could attempt to flood theank with eitherBOUNDED or
TIMELY messages. This attack can be overcome either by policinigetffie from processors or by
using sender-specific quality of service classes (as in,[&Bbcating a certain amount of resources

to each sender.

44

As noted above, the degree of stability needed for liverreBsime (i.e. Stability-S2 is incom-
parable with the degree of stability needed in BFT (iSability-S). In Prime, the only messages
that require synchrony for liveness are those sent inTthELy traffic class, which have small
bounded size. In particular, messages that disseminata dperations (which account for the sig-
nificant majority of the traffic) can arrive completely asiinenously. Nevertheless, thleMELY
messages require a stronger degree of synchronyBhamtual-SynchronyOn the other hand, mes-
sages in BFT require a weaker degree of synchrony for livermsg this synchrony is assumed to
hold for all protocol messages, including those that disseminatet cjggrations.

In theory, it is possible for a strong network adversary béaf controlling the network vari-
ance to construct scenarios in which BFT is live and Primets Tihese scenarios occur when the
variance forTiIMELY messages becomes greater thai,, yet the delay is still bounded. This can
be made less likely to occur in practice by increasitig,;, although at the cost of giving a faulty
leader more leeway to cause delay (as explained in Sectos)4.

In practice, while the bound on message delay required byaifeTsimilar protocols can be met
as long as the offered load is finite (i.e., by doubling timeauntil they are long enough), the actual
bound in bandwidth-constrained environments may be daetnay queuing delays, rather than the
actual network latency. To ensure liveness in such prosotbe leader may need enough time to
push throughall offered operations. Increasing the timeout to this degreesaa faulty leader the
power to cause delay. In contrast, sirgtability-S2is only required to hold for a small number of
bounded-size messages, the bound that it implies is maly lik reflect the actual network delays,
allowing the bound to be met while still achieving good perfance under attack.

Finally, we remark that resource exhaustion denial of serdttacks may caus®tability-S3
to be violated for the duration of the attack. Such attackelfumentally differ from the attacks

that are the focus of this dissertation, where maliciouddes can slow down the system without

45

triggering defense mechanisms (see Chapter 3). Recent[@8fkas demonstrated that resource
isolation techniques can be effective in mitigating the @tipof flooding-based attacks mounted
by faulty servers and clients. In [34], each pair of serversannected by a dedicated wire, and a
server uses several network interface cards (one for eaedrsand a single card for all clients) for

communication. Pending messages are read based on a amhindscheduling mechanism across
the network interface cards. Handling resource exhaustitatks at the system-wide level is a
difficult problem that is orthogonal and complementary & $blution strategies considered in this

work.

4.2 Prime: Design and Overview

From a performance perspective, the main goal of Prime istioth the amount of time between
when a client operation is first received by a correct semdwehen all of the correct servers execute
the operation, assuming the network is well behaved. Inracdmeet this goal, Prime is designed so
that a correct leader can propose an ordering on an arbittanper of operations using a bounded
amount of bandwidth and processing resources. The bountliscion of the number of servers
in the system and is independent of the offered load. Bedheskevel of work required from the
leader to propose an ordering on operations is boundedptirdeader servers can more easily (and
more effectively) judge the leader’s performance. Wherlghder is seen either to be failing to do

its job or to be doing its job too slowly, it is replaced.

4.2.1 Separating Dissemination from Ordering

In existing leader-based protocols, the ordering of clap#rations is coupled with the dissem-
ination of the operations. For example, in BFT, the leadeRs-PREPAREMESSages contain a set

of operations and a sequence number indicating where inldhalgorder the operations should be

46

ordered. As the offered load increases, the leader must de amal more work to ensure that opera-
tions are ordered without delay: It must generate an incrgasimber ofPREEPREPAREMeSSsages,
and it requires an increasing amount of both incoming andag bandwidth to receive and push
out the operations. This makes it difficult for the non-leaskrvers to determine how long it should
take between sending an operation to the leader and seairip¢ieader has proposed an ordering
on the operation. This difficulty is especially pronouncedandwidth-constrained environments,
such as wide-area networks, where a correct leader simglitmbt be able to disseminate opera-
tions quickly enough because it lacks the bandwidth ressurthe usual approach to overcoming
this uncertainty is to double the timeout placed on the leadehat correct leaders will eventually
be given enough time and will not be suspected, guarantdigamess. However, as noted in Chap-
ter 3, a faulty leader can exploit this uncertainty to delasg ¢rdering of operations and go slower
than it should.

Prime takes a significant departure from existing leadsethgrotocols by completely separat-
ing the tasks of operation dissemination and operationriomgle In fact, the leader does not even
need to receive a client operation before it can propose @griag on it. As the offered load in-
creases in Prime, the amount of work required by the leadensare that operations are ordered
in a timely manner remains the same. The separation of disadon and ordering allows us to
bound the amount of resources needed by the leader, whiagmirbhables fine-grained monitoring

of the leader’s performance.

4.2.2 Ordering Strategies

Our overall strategy for establishing a global order onntlieperations is to have each server
incrementally construct a server-specific ordering of ¢hagent operations that it receives. As part

of this server-specific ordering, each server assumesmsijility for disseminating the operations

47

to the other servers. The only thing that the leader must dmild the global ordering of client
operations is to incrementally construct an interleavifghe server-specific orderings. In more
detail, the leader constructs the global order by peridigicpecifying for each server a (possibly
empty) window of additional operations from that serveesver-specific order to add to the global
order. The specified window always starts with the earlipstration from each server that has not
yet been added to the global order.

There are three main challenges in implementing this sfyaie the presence of Byzantine
faults. First, the servers must have a way to force the letademit global ordering messages at a
fast enough rate. Second, the servers must be able to Veaifyeach time the leader does expand
the global order it includes the latest operations that t&en given a server-specific order by each
server. This prevents a malicious leader from intentignaktending the time between when an
operation has been given a server-specific order and whesptration is assigned a global order.
Third, the leader must only be allowed to extend the globdkeomwith operations known widely
enough among the correct servers so that eventually akctservers will be able to learn what the
operations are. This prevents correct servers from beipga®d to execute operations known only
by the malicious servers, since such operations may be sitgeso recover.

Prime overcomes these challenges while making the leapdr'®f interleaving the server-
specific orderings require only a bounded amount of ressufeach server periodically broadcasts
a bounded-sizeummary messagdbat indicates how much of each server’s server-specifierorg
this server has learned about. To extend the global ordértht latest operations that have been
given a server-specific order, a correct leader simply ntegeriodically send anrderingmessage
containing the most recent summary message from each séiwelservers agree on a total order
(across failures) for the leader’s ordering messages. Wawning of an ordering message’s place in

the total order, the servers can deterministically map ¢éh@fssummaries contained in the ordering

48

message to a set of operations which (1) have not alreadydagput in the global order and (2) are
known widely enough among the correct servers so that theypeaecovered if necessary. These
operations can then be executed in some deterministic.order

Because the job of extending the global order requires alsbwminded amount of work, the
non-leader servers can effectively monitor the leaderi$opmance. When a non-leader server
sends a summary message to the leader, it can expect thedasald ordering message to reflect
at least as much information about the server-specific mgkeras is contained in the summary.
A correct leader’s job is made easy—it simply needs to aduptstmmary message if it reflects
more information about the server-specific orderings thhatwhe leader currently knows about.
The non-leader servers measure the round-trip times toaheh to determine how long it should
take between sending a summary to the leader and receivimgesponding ordering message; we
call this theturnaround timeprovided by the leader. Prime moves on to the next candidatel
whenever the current leader fails to provide a fast turnastdime (i.e., to propose a timely ordering
on summaries).

Note that there is a distinction between the amount of ressuneeded by the leader to extend
the global ordering and the amount of resources needed lgatier to disseminate operations from
its own clients. The former is bounded and independent obffeeed load; the latter necessarily in-
creases as more clients send their operations to the le&slexplained below, messages critical to
ensuring timely ordering are sent in theveLy traffic class. The leader must be engineered to pro-
CesSTIMELY messages as quickly as possible. In general, a well-dekigader should prioritize
its duties as leader above the duties required of leaders@amdeaders alike (e.g., disseminating

client operations).

49

4.2.3 Mapping Strategies to Sub-Protocols

We now briefly describe how the strategies outlined in th@iptes section are mapped to sub-
protocols in Prime. Complete technical details are pravideSections 4.3 and 4.4.

Client Sub-Protocol: The Client sub-protocol defines how a client injects an dpmranto the
system and collects replies from servers once the operatisieen executed.

Preordering Sub-Protocol: The Preordering sub-protocol implements the server-Gpemt
derings that are later interleaved by the leader to cortsthecglobal ordering. The sub-protocol
has three main functions. First, it is used to dissemina®ft¢ 1 servers each client operation that
will ultimately be globally ordered. Second, it is used tadiach operation to a uniqpeeorder
identifier, (i, seq), whereseq is the position of the operation in servis server-specific ordering;
we say that a servgareordersan operation when it learns the operation’s unique bindifigird,
the Preordering sub-protocol summarizes each serveriwlkdge of the server-specific orderings
by generating summary messages. A summary generated &y senntains a valueg, for each
serverj such thatr is the longest gap-free prefix of the server-specific ordegienerated by that
is known tos.

Global Ordering Sub-Protocol: The Global Ordering sub-protocol runs periodically and is
used to incrementally extend the global order. The subspobts coordinated by the current leader
and, like BFT [31], establishes a total order BREPREPARE messages. Instead of sending a
PRE-PREPAREMessage containing client operations (or even operatinmtifiers) like in BFT, the
leader in Prime sendsRRE-PREPAREMessage that contains a vector of at n®5t- 1 summary
messages, each from a different server. The summariesmedia the totally ordered sequence of
PRE-PREPAREMEeSsages induce a total order on the preordered operations.

To ensure that client operations known only to faulty preoces will not be globally ordered, we

define an operation adigible for executiorwhen the collection of summaries inP® EPREPARE

50

message indicate that the operation has been preorderétébgta f +1 servers: An operation that
is eligible for execution is known to enough correct sergerthat all correct servers will eventually
be able to execute it, regardless of the behavior of faultyese and clients. Totally ordering a
PRE-PREPAREextends the global order to include those operations thatrbe eligible for the first
time.

Reconciliation Sub-Protocol: The Reconciliation sub-protocol proactively recoversoglty
ordered operations known to some servers but not othersauBeccorrect servers can only exe-
cute the gap-free prefix of globally ordered operations fnevents faulty servers from blocking
execution at some correct servers by intentionally failimglisseminate operations to them. The
intuition behind the problem that motivates the Recontiilia sub-protocol is that although the
Global Ordering sub-protocol guarantees that at [2ést 1 servers have preordered any operation
that becomes eligible for execution, it does not guarant@ieh correct servers have preordered a
particular eligible operation. It should be clear that tHelfal Ordering sub-protocol could not be
modified to required f + 1 servers to preorder an operation before it becomes eljdieleause the
faulty servers might never acknowledge preordering anyatigss. Therefore, without a reconcil-
iation mechanism, each malicious server could block exatat / correct servers by not sending
an operation to them. Whefi > 3, all correct servers could be blocked, because the number of
servers that could be blocked?) would exceed the number of correct servexg { 1).

Suspect-Leader Sub-Protocol: Since the leader has to do a bounded amount of work, inde-
pendent of the offered load, to extend the global orderirg, (io emit the nexPRE-PREPARB, a
mechanism is needed to ensure that it actually does so. pe8tiseader, the servers measure the
round-trip times to each other in order to compute two vallié first is an acceptable turnaround

time that the leader should provide, computed as a functidheolatencies between the correct

'We could make an operation eligible for execution wifen 1 servers have preordered it, but this would make the
Reconciliation sub-protocol less efficient.

51

servers in the system. The second is a measure of the tunthtione actually being provided by
the leader since its election. The Suspect-Leader subgobguarantees that a leader will be re-
placed unless it provides an acceptable turnaround timdeast one correct server, and that at least
f + 1 correct servers will not be suspected (thus ensuring tlegbithtocol is not overly aggressive).
Leader Election Sub-Protocol: When the current leader is suspected to be faulty by enough
servers, the non-leader servers vote to elect a new leadadeks are elected by simple rotation,
where the next potential leader is the server with the nextsédentifier modulo the total number
of servers. Each leader election is associated with a uniguwenumberthe resulting configuration,
in which one server is the leader and the rest are non-leaderalled aview.
View Change Sub-Protocol: When a new leader is elected, the servers run the View Change
sub-protocol to preserve safety across views and to allowitaring of the new leader’s perfor-

mance to resume without undue delay.

4.3 Prime: Technical Details

This section describes the technical details of the sulspots presented in Section 4.2.3. We
defer a discussion of Prime’s View Change sub-protocoll @#ction 4.4. Table 4.1 lists the mes-
sage types used in each sub-protocol, along with theirdrelfiss and whether they are required to

have synchrony (as specified in Section 4.1) for the systegnaoantee liveness.

4.3.1 The Client Sub-Protocol

A client, ¢, injects an operation into the system by sendifglaEnT-oP, o, seq, c),, message,
whereo is the operation andeq is a client-specific sequence number, incremented eachttiene

client submits an operation, used to ensure exactly-ormoasics. The client sets a timeout, during

52

) Synchrony for
Sub-Protocol Message Type Traffic Class yn Y
Liveness?
. CLIENT-OP BOUNDED No
Client
CLIENT-REPLY BOUNDED No
PO-REQUEST BOUNDED No
Preordering PO-ACK BOUNDED No
PO-SUMMARY BOUNDED No
PRE-PREPARE
TIMELY Yes
(from leader only)
. PRE-PREPARE
Global Ordering BOUNDED No
(flooded)
PREPARE BOUNDED No
COMMIT BOUNDED No
RECON BOUNDED No
Reconciliation INQUIRY BOUNDED No
CORRUPTIONPROOF BOUNDED No
SUMMARY-MATRIX TIMELY Yes
RTT-PING TIMELY Yes
RTT-PONG TIMELY Yes
Suspect-Leader
RTT-MEASURE BOUNDED No
TAT-UB BOUNDED No
TAT-MEASURE BOUNDED No
. NEW-LEADER BOUNDED No
Leader Election
NEW-LEADER-PROOF BOUNDED No
REPORT BOUNDED No
PC-SET BOUNDED No
VC-LIST BOUNDED No
View Change REPLAY-PREPARE BOUNDED No
REPLAY-COMMIT BOUNDED No
VC-PROOF TIMELY Yes
REPLAY TIMELY Yes

Table 4.1: Traffic class of each Prime message type.

which it waits to collectf 4+ 1 matching(CLIENT-REPLY, seq, res, i), messages from different
servers, wherees is the result of executing the operation arid the server’s identifier.

There are several communication patterns that the cligntisa to inject its operation into the
system. First, the client can initially send to one serghé timeout expires, the client can send to
another server, or t¢ + 1 servers to ensure that the operation reaches a correct.s€heclient
can keep track of the response times resulting from sendidgferent servers and, when deciding
to which server it should send its next operation, the cleamt favor those that have provided the
best average response times in the past. This approacHasgine in fault-free executions or when
the system is bandwidth limited but has many clients, bexdusonsumes the least bandwidth

and will result in the highest system throughput. Howevihoaigh clients will eventually settle

53

on servers that provide good performance, any individuaragon might be delayed if the client
communicates with a faulty server.

To ensure that an operation is introduced by a server in dytimanner, the client can initially
send itSCLIENT-OP message tg + 1 servers. This prevents faulty servers from causing delay
but may result in the operation being ordergd- 1 times. This is safe, because servers use the
sequence number in tl|IENT-OP message to ensure that the operation is executed exacty onc
While providing low latency, this communication patternynrasult in lower system throughput
because the system does more work per client operationhiBaetison, this approach is preferable
for truly time-sensitive operations or when the system hidg @ small number of clients.

Finally, we also note that when clients and servers areddcah the same machine and hence
share fate, the client can simply send theeNT-OP to its local server. In this case, the client can
wait for a single reply: If the client’s server is correcteththe client obtains a correct reply, while

if the client’s server is faulty, the client is consideredIfs

4.3.2 The Preordering Sub-Protocol

As described in Section 4.2.3, the Preordering sub-protoicals each client operation to a
unique preorder identifier. The preorder identifier cossidta pair of integers(i, seq), where
1 is the identifier of the server that introduces the operatiorpreordering, andeq is apreorder
sequence numbed local variable atincremented each time it introduces an operation for peyerd
ing. Note that the preorder sequence number corresponésver8s server-specific ordering.

Operation Dissemination and Binding: Upon receiving a client operation, serveri broad-
casts §PO-REQUEST, seg;, o, i),, message. Theo-REQUESTdisseminates the client’s operation
and proposes that it be bound to the preorder identifieseq;). When a serverj, receives theo-

REQUEST, it broadcasts @0-ACK, i, seq;, D(o), j),; message if it has not previously received

54

aPO-REQUESTfrom 4 with preorder sequence numhbety;.

A set consisting of ®@0-REQUESTand2f matchingpo-ACK messages from different servers
constitutes @reorder certificate The preorder certificate proves that the preorder identifieseq;)
is uniquely bound to client operatiom We say that a server that collects a preorder certificate
preordersthe corresponding operation. The Preordering sub-prbtherantees that if two servers
bind operation® ando’ to preorder identifiefi, seq;), theno = o'.

Summary Generation and Exchange: Each correct server maintains a local vecRreorder-
Summary[] indexed by server identifier. At correct servgrPreorderSummary] contains the
maximum sequence number, such thatj has preordered all operations bound to preorder identi-
fiers(i, seq), with 1 < seq < n. For example, if server 1 hd&eorderSummary[}= {2, 1, 3, 0},
then server 1 has preordered the client operations boundetrder identifierg1,1) and (1, 2)
from server 1(2, 1) from server 2(3, 1), (3, 2), and(3, 3) from server 3, and the server has not
yet preordered any operations introduced by server 4.

Each correct server periodically broadcasts the currené if its PreorderSummaryector.
Specifically, servef broadcasts & 0-SUMMARY, vec, i),, message, whereec is serveri’s local
PreorderSummaryector. Note that theo-SUMMARY message serves as a cumulative acknowl-
edgement for preordered operations and is a short repatieenodf every operation the sender has
contiguously preordered (i.e., with no holes) from eackeserThis type of message is sometimes
called an ARU, or “all received up to,” vector [12].

A key property of the Preordering sub-protocol is that if @emtion is introduced for preorder-
ing by a correct server, the faulty servers cannot delayitieedt which the operation is cumulatively
acknowledged (i O-SUMMARY messages) by at leadf + 1 correct servers. This property holds
because the rounds are driven by message exchanges betwessn servers.

Each correct server stores the moptto-dateand consistentPro-SUMMARY messages that it

55

Letmi = (PO-SUMMARY, veci,)0,
Letma = (PO-SUMMARY, vecs, 1)o

1. my is at least as up-to-date asn. when
o (Vj € R)[vec[j] > veca[j]].
2. m; is more up-to-date thanms when

e m is at least as up to date as;, and
o (3j € R)wee1]j] > veca[j]].

3. m1 andms areconsistentwhen
e m is at least as up to date as;, or

e mg is at least as up to date as; .

Figure 4.1: Terminology used by the Preordering sub-patoc

has received from each server; these terms are defined fprmaFigure 4.1. Intuitively, two
PO-SUMMARY messages from servércontaining vectorsec andvec’, are consistent if either all
of the entries invec are greater than or equal to the corresponding entriegdh or vice versa.
Note that correct servers will never send inconsistEEsSUMMARY messages, since entries in the
PreorderSummaryector never decrease. Therefore, a pair of inconsistlef8UMMARY messages
from the same server constitutes proof that the server icimas. Each correct server,maintains
a Blacklistdata structure that stores the server identifiers of anyesefvrom whichi has collected
inconsistenPO-SUMMARY messages. We explain the importance of maintaining thekliéawhen
we describe the Suspect-Leader sub-protocol in Sectiob.4.3

The collectedPO-SUMMARY messages are stored in a local vect@stPreorderSummaries|[]
indexed by server identifier. In Section 4.3.3, we show hawvi¢lader uses the contents of its own
LastPreorderSummariegector to propose an ordering on preordered operationsedtidh 4.3.5,
we show how the non-leadersastPreorderSummariegectors determine what they expect to see

in the leader’s ordering messages, thus allowing them tatorathe leader’s performance.

56

4.3.3 The Global Ordering Sub-Protocol

Protocol Description: Like BFT, the Global Ordering sub-protocol uses three ngssaunds:
PRE-PREPARE PREPARE andcomMMIT. In BFT, thePREPREPAREMeESsages contain and propose
a global order on client operations. In Prime, thRee-PREPAREMeSSages contain and propose a
global order onsummary matrices Each summary matrix is a vector 8f + 1 PO-SUMMARY
messages. The term “matrix” is used because eaeRUMMARY message sent by a correct server
itself contains a vector, with each entry reflecting the apens that the server has preordered from
each server. Thus, rowin summary matrixsm (denotedsm/[i]) either contains ®0-SUMMARY
message generated and signed by sern@ara speciabmptyPo-SUMMARY message, containing a
null vector of length3f + 1, indicating that the server has not yet collectericasuMMARY from
serveri. When indexing into a summary matrix, we ket [:][j] serve as shorthand fern[i].vec[j].
Observe that, by definition, each servdrastPreorderSummariegector is a summary matrix.

A correct leader], of view v periodically broadcasts @RE-PREPARE v, seq, sm, l),, mes-
sage, whereseq is a global sequence number (analogous to the one assigreRIEtPREPARE
messages in BFT) angn is the leader'd_astPreorderSummariegector. When correct server
receives & PRE-PREPARE v, seq, sm, l), message, it takes the following steps. First, seiver
checks eaclPo-suMMARY message in the summary matrix to see if it is consistent whhatw
has in itsLastPreorderSummariegector. Any server whoseo-SUMMARY is inconsistent is added
to 's Blacklist Second, decides if it will respond to th@RE-PREPARE message using similar
logic to the corresponding round in BFT. Specificallyyesponds to the message if ([d)is the
current view number and (2)has not already processe®RE-PREPAREIN view v with the same
sequence number but different content: tfecides to respond to tlRE-PREPARE it broadcasts
a (PREPARE v, seq, D(sm), i), message, whereandseq correspond to the fields in treRE

PREPAREandD(sm) is a digest of the summary matrix found in thRE-PREPARE A set consisting

57

of aPRE-PREPAREaNd2 f matchingPREPAREmMessages constitutepeepare certificate Upon col-
lecting a prepare certificate, servdsroadcasts &COMMIT, v, seq, D(sm), i) message. We say
that a serveglobally ordersaPREPREPAREWhenN it collect®2 f + 1 cCOMMIT messages that match
the PREPREPARE

Obtaining a Global Order on Client Operations: At any time at any correct server, the
current outcome of the Global Ordering sub-protocol is allpbrdered stream cfREPREPARE
messages!’ = (11,75, ...,T,). The stream at one correct server may be a prefix of the stream a
another correct server, but correct servers do not havesigtent streams.

We now explain how a correct server obtains a total order iemtcbperations from its current
local value ofT". Let matbe a function that takes RREPREPAREMessage and returns the sum-
mary matrix that it contains. Let/, a function frompPREPREPAREMessages to sets of preorder

identifiers, be defined as:
M(Ty) = {(i, seq) :i € RAseq € N N|{j:j€RAmat(T,)[j][i] > seq}| > 2f + 1}

Observe that any preorder identifier (7},) has been associated with a specific operation by
at least f + 1 servers, of which at leagt+ 1 are correct. The Preordering sub-protocol guarantees
that this association is unique. As we describe in Sectidrdany operation ifi/ (7},) is known to
enough correct servers so that in any sufficiently stablewdan, any correct server that does not
yet have the operation will eventually receive it. Note alsat sincePO-SUMMARY messages are
cumulative acknowledgements, M (7;) contains a preorder identifi¢f, seq), thenM (T;) also
contains all preorder identifiers of the for seq’) for 1 < seq’ < seq.

Let L be a function that takes as input a set of preorder identifferand outputs the elements
of P ordered lexicographically by their preorder identifiersthvihe first element of the preorder
identifier having the higher significance. Lettinglenote concatenation adlenote set difference,

the final total order on clients operations is obtained by:

58

C1 = L(M(Ty))
Cy = L(M(Ty) \ M(Ty-1))

C = |Gl ... ||Ca

Intuitively, when aPRE-PREPAREIS globally ordered, it expands the set of preordered ojpersat
that are eligible for execution to include all operatian®r which the summary matrix in there
PREPAREproves that at leagf + 1 servers have preordered Thus, the set difference operation
in the definition of the”, components causes only those operations that have notlyalbeaome
eligible for execution to be executed.

Pre-Prepare Flooding: We now make a key observation about the Global Ordering sub-
protocol: If all correct servers receive a copy afRE-PREPAREMessage, then there is nothing the
faulty servers can do to prevent thee=PREPAREfrom being globally ordered in a timely manner.
Progress in theeREPARE and cOMMIT rounds is based on collecting setsXf + 1 messages.
Therefore, since there are at led@gt+ 1 correct servers, the correct servers are not dependent on
messages from the faulty servers to complete the globatiogde

We leverage this property by having a correct server braadr@rREPREPAREUPON receiving
it for the first time. This guarantees that all correct sesweiceive theeREPREPAREWithin one
round from the time that the first correct server receiveafiier which no faulty server can delay the
correct servers from globally ordering it. The benefit obthpproach is that it forces a malicious
leader to delay sendingRREPREPAREtO all correct servers in order to add unbounded delay to
the Global Ordering sub-protocol. As described in Sectigh54 the Suspect-Leader sub-protocol
results in the replacement of any leader that fails to serichelff PREPREPAREtO at least one
correct server. This property, combined witRe-PREPAREflooding, will be used to ensure timely

ordering. We note that in practice, the rate at which thedeagdnds*REPREPAREMESSages can

59

PO PO PO PRE

REQUEST ACK SUMMARY PREPARE PREPARE COMMIT
L — L = Leader
/ S = Server Introducing
Operation
S .
D = Aggregation Delay

Figure 4.2: Fault-free operation of Primg £ 1).

be tuned so thatRePREPAREflooding requires a small bandwidth overhead.

Summary of Normal-Case Operation: To summarize the Preordering and Global Ordering
sub-protocols, Figure 4.2 follows the path of a client operathrough the system during normal-
case operation. The operation is first preordered in twodsro-REQUESTand PO-ACK), after
which its preordering is cumulatively acknowledgetb{SuMMARY). When the leader is correct,
it includes, in its nexPREPREPARE the set of at leastf + 1 PO-SUMMARY messages that prove
that at leasRf + 1 servers have preordered the operation. PRe-PREPAREflooding step (not
shown) runs in parallel with theREPAREStep. The client operation will be executed once the
PRE-PREPAREIs globally ordered. Note that in general, many operaticesbaing preordered in

parallel, and globally ordering RRE-PREPAREWIll make many operations eligible for execution.

4.3.4 The Reconciliation Sub-Protocol

In this section we describe the Reconciliation sub-prdtagbich ensures that all correct servers
will eventually receive any operation that becomes el@ifilr execution. This prevents faulty
servers from blocking the execution of operations at sonmreecbservers, because recall that a
correct server can only execute the gap-free prefix of glplmbtered eligible operations that it
possesses. Together, the Preordering sub-protocol arRebenciliation sub-protocol provide a
reliable broadcast service. If an operation becomes #iddr execution, then all correct servers
will receive thePO-REQUEST that contains it, either from the original disseminatiorridg the

Preordering sub-protocol or from the Reconciliation suottgcol.

60

Algorithm 2 Prime Reconciliation Procedure

1. // Code run at servarupon receivingPREPREPAREWiIth global sequence numbeeq
2: pp < (PRE-PREPARE *, seq, sm, l),,

3: if seq > 1then

4. pp' — (PREPREPARE *, seq — 1, *, l’>ol,

5. else

6: pp < dummyPREPREPAREWhOSe summary matrix contaig + 1 emptyPO-SUMMARY
messages (each containing a null vector).

7: for all preorder identifiergj, k) in L(M (pp) \ M(pp')) do

8 c+—0

9. forx=1toNdo

10: if sm[z][j] > k then// Serverz is capable of reconcilingj, k)

11 c—rc+1

12: if xt=4andc < 2f + 1then

13: req = (PO-REQUEST k, *, j),

14: part — ErasureEncodedPart(-eq, c) // Send the" part

15: for r=1to NV do

16: if LastPreorderSummarie$[;] < k then

17 Send to server: (RECON, j, k, ¢, part, i),

Protocol Details: Pseudocode for Prime’s reconciliation procedure is coathin Algorithm
2. Conceptually, the Reconciliation sub-protocol operate the totally ordered sequence of opera-
tions defined by the total ord€r = C; || Cs || ... || C, (See Section 4.3.3). Recall that each
is a sequence of preordered operations that became elfgitéxecution with the global ordering
of pp;, the PREPREPAREglobally ordered with global sequence numberFrom the wayC; is
created, for each preordered operationseq) in C;, there exists a sefy; .., Of at leas2f + 1
servers whoseo-SUMMARY messages cumulatively acknowleddedseq) in pp;. The Reconcili-
ation sub-protocol operates by havihf+ 1 deterministically chosen serversi .., senderasure
encoded part®f the PO-REQUEST containing(i, seq) to those servers that have not cumulatively
acknowledged preordering it.

Letting ¢ be the total number of bits in ttre0-REQUESTtO be sent, Prime uses &fi+ 1,2f +
1,t/(f + 1), f + 1) Maximum Distance Separable erasure-resilient codingrseh@ee Section
2.2); that is, theeO-REQUESTIs encoded int@f + 1 parts, each /(f + 1) the size of the original

message, such that arfy+ 1 parts are sufficient to decode. Each of the+ 1 servers inR; s,

61

sends one part. Since at mgsservers are faulty, this guarantees that a correct serliereagive
enough parts to be able to decode BMlteREQUEST

We note that the only reason the Reconciliation sub-préte@sure encodes tie>-REQUEST
is for efficiency. The protocol would still work correctly gach server ink; .., sent the entire
PO-REQUESTt0 each server that has not yet cumulatively acknowledgeHatvever, this would
consume much more bandwidth and would reduce performance.

The servers run the reconciliation procedure speculgfivehen they first receive &RE
PREPAREMessage, rather than when they globally order it. This pireaapproach allows op-
erations to be recovered in parallel with the remainder efGobal Ordering sub-protocol.

Analysis: Since a correct server will not send a reconciliation messadess at leagtf + 1
servers have cumulatively acknowledged the corresporeliRgEQUEST, reconciliation messages
for a given operation are sent to a maximum fobervers. Assuming an operation sizesgf,
the2f + 1 erasure encoded parts have a total siz€g¢f+ 1)s,,/(f + 1). Since these parts are
sent to at mosy servers, the amount of reconciliation data sent per operatross all links is at
mostf(2f + 1)sep/(f +1) < (2f + 1)sop. During the Preordering sub-protocol, an operation is
sent to betweelf and3f servers, which requires at leasts,,. Therefore, reconciliation uses
approximately the same amount of aggregate bandwidth astape dissemination. Note that a
single server needs to send at most one reconciliation pamgeration, which guarantees that at
leastf + 1 correct servers share the cost of reconciliation.

Blacklisting Faulty Servers: Faulty servers may try to disrupt the reconciliation praged
by sendingrRecON messages that contain invalid erasure encoded parts. Aarerancoded part
is not individually verifiable; it does not contain a prooéthit was correctly generated. Therefore,
the Reconciliation sub-protocol requires a mechanismewgt faulty servers from causing correct

servers to expend computational resources to try to find afsgt+ 1 erasure encoded parts that

62

can be decoded to the desired message.

Before describing how we cope with this problem, we note tmy PO-REQUEST messages
with valid digital signatures can be preordered, becaus®raat server sendsrRD-ACK only after
verifying the correctness of theo-REQUESTs digital signature. Since only operations that have
been preordered are cumulatively acknowledged, only veh&kEQUESTmMessages will potentially
need to be reconciled. This implies that a correct servedetermine if a decoding succeeded by
verifying the signature on the resultes>-REQUEST

The Reconciliation sub-protocol uses a blacklisting maidm to prevent faulty servers from
repeatedly disrupting the decoding process. The blairidigtrotocol ensures that each faulty server
can disrupt the decoding process at most once before itékllsted. Subsequent messages from
blacklisted servers are ignored.

Upon detecting a failed decoding, servésroadcasts aQiINQUIRY, j, k, decodedSeti) mes-
sage, wheré¢j, k) is the preorder identifier of the corresponding-REQUESTanddecodedSeit
the set off + 1 signedRECON messages that resulted in the failed decoding. When caeeeer
s € R; receives anNQUIRY message from, it examines thelecodedSeand compares it to the
parts that it generated to determine if any of the parts arabg invalid. If all of the parts are valid,
then servet is provably faulty and can blacklist it. Serveg can broadcast @ORRUPTIONPROOF
message, containing tle-REQUESTand theiINQUIRY message, to prove to the other servers that
1 is faulty. If one or more erasure encoded parts ini@UIRY message are invalid, then serger
broadcasts a0ORRUPTIONPROOFMessage containing the signed invalid part and the comespo
ing PO-REQUEST, adding the servers that submitted the invalid parts to khekhst.

Once a correct server learns that a server is faulty, it shoatl use that serverlsSECONmessages
in subsequent decodings. We require a correct server to taaroutcome of the current inquiry

before making a new inquiry. Therefore, correct serverengenerate twaNQUIRY messages that

63

ultimately implicate the same faulty server. Two such mgssare proof of corruption, and the
sending server is blacklisted. This prevents faulty serf@m generating superfluousQuIRY

messages that can cause correct servers to consume regoucessing them.

4.3.5 The Suspect-Leader Sub-Protocol

The Preordering and Global Ordering sub-protocols enabteract leader to propose an order-
ing on an arbitrary number of preordered operations by pgaradly sendingPRE-PREPARE MeS-
sages containing sets Bb-SUMMARY messages. Moreover, the Reconciliation sub-protocol pre-
vents faulty servers from blocking execution. We now turth®problem of how to enforce timely
behavior from the leader of the Global Ordering sub-pratoco

There are two types of performance attacks that can be nabbgta malicious leader. First, it
can sendPREPREPAREMesSsages at a rate slower than the one specified by the dro8sxmnd,
even if the leader send=sRE-PREPARE messages at the correct rate, it can intentionally include
a summary matrix that does not contain the most up-to-datsUMMARY messages that it has
received. This can prevent or delay preordered operations thecoming eligible for execution.

The Suspect-Leader sub-protocol is designed to defenchsigiese attacks. The protocol

consists of three mechanisms that work together to enforeeyt behavior from the leader:

1. The first mechanism provides a means by which non-leadegrsecan tell the leader which
PO-SUMMARY messages they expect the leader to include in a subsegBE&RREPARE

message.

2. The second mechanism allows the non-leader servers imdjpadly measure how long it
takes for the leader to sendP& EPREPARE CONtainingPO-SUMMARY messages at least as
up-to-date as those being reported. We call this timetdhearound timeprovided by the

leader, and it is the metric by which the non-leader servesess the leader’s performance.

64

3. The third mechanism is a distributed protocol by whichriba-leader servers can dynami-
cally determine, based on the current network conditions; quickly the leader should be
sending up-to-dateRE-PREPAREMessages and decide, based on each server's measurements
of the leader’s performance, whether to suspect the leadler.call this protocol Suspect-

Leader'sdistributed monitoringorotocol.

In the remainder of this section, we describe each of the arésims of Suspect-Leader in more

detail and then prove some of the protocol’s important priigs

Mechanism 1: Reporting the LatestrO-SUMMARY Messages

If the leader is to be expected to sePHEPREPARE messages with the most up-to-date-
SUMMARY messages, then each correct server must tell the leadel mbisUMMARY messages
it believes are the most up-to-date. This explicit notifarats necessary because the reception of a
particularro-SUMMARY message by a correct server does not imply that the leadeeadive the
same message—the server that originally sent the messagkataulty. Therefore, each correct
server periodically sends the leader the complete continits LastPreorderSummariegector.
Specifically, each correct servér,sends to the leader(UMMARY-MATRIX, sm, i), message,
wheresm isi's LastPreorderSummariegector.

Upon receiving 8sUMMARY-MATRIX message, a correct leader updates é@stPreorderSum-
mariesvector by adopting any of theo-SUMMARY messages in theUMMARY-MATRIX message
that are more up-to-date than what the leader currentlyrhis data structure. SinCRUMMARY-
MATRIX messages have a bounded size dependent only on the numbereyésn the system (and
independent of the offered load), the leader requires alsbminded amount of incoming band-
width and processing resources to learn about the most-dptePO-SUMMARY messages in the

system. Furthermore, sinGREPREPAREMeESSsages also have a bounded size independent of the

65

PO PO PO SUMMARY PRE
REQUEST ACK SUMMARY MATRIX PREPARE PREPARE COMMIT
L

L = Leader

S = Server Introducing
Operation

= Aggregation Delay

Figure 4.3: Operation of Prime with a malicious leader tretgms well enough to avoid being
replaced { = 1).

offered load, the leader requires a bounded amount of cugdmndwidth to send timely, up-to-date

PREPREPAREMeESSages.

Mechanism 2: Measuring the Turnaround Time

The preceding discussion suggests a way for non-leadeerseto effectively monitor the
performance of the leader. Given that a correct leader ialdapof sending timely, up-to-date
PRE-PREPAREMeSSsages, a non-leader server can measure the time besvelmysasUMMARY-
MATRIX messageSM, to the leader and receivingRrRE-PREPARE that contain®®O-SUMMARY
messages that are at least as up-to-date as th&&¥irlhis is the turnaround time provided by the
leader. As described below, Suspect-Leader’s distriboteditoring protocol forces any server that
retains its role as leader to provide a timely turnaroune tionat least one correct server. Combined
with the PREPREPAREflooding mechanism described in Section 4.3.3, this enshetsll eligible
client operations will be globally ordered in a timely manne

Figure 4.3 depicts the maximum amount of delay that can bedatlg a malicious leader that
performs well enough to avoid being replaced. The leaderr@ggPo-SUMMARY messages and
sends itRE-PREPAREtO only one correct serveRRE-PREPAREflooding ensures that all correct
servers receive theRE-PREPAREWithin one round of the first correct server receiving it. Téeder
must provide a fast enough turnaround time to at least onmectaerver to avoid being replaced.

We now define the notion of turnaround time more formally. \Wgib by specifying theovers

predicate:

66

Let pp = (PRE-PREPARE *, *, M, *)q,
Let SM = (SUMMARY-MATRIX, sm’, *),

*

Thencoverspp, SM, 1) is true at server iff:

e Vj € (R \ Blacklist), sm[j] is at least as up-to-date as'[5].

Thus, server is satisfied that ® REPREPARE coversa SUMMARY-MATRIX, SM, if, for all
servers not in’s blacklist, eaclPO-SUMMARY in the PREPREPAREIS at least as up-to-date (see
Figure 4.1) as the correspondirg-SUMMARY in SM.

We now define turnaround time as follows.

Let ppARU be the maximum global sequence number such(ttatce N A 1 < n < ppARU), server; has either
e globally ordered @RE-PREPAREWIth global sequence number or
e received ePRE-PREPAREfOr global sequence numberin the current viewp.

Let teurrent denote the current time.
Lettsen: denote the time at which servesentSUMMARY-MATRIX messageS M to the current leadet,
Let treceived denote:

e The time at which serverreceives dPREPREPARE v, ppARU + 1, sm/, 1), that coversSM, or
e 00, if no such message has been received.
Then TurnaroundTime&(M) = min((treceived — tsent); (teurrent — tsent))

Thus, each time a server sends@IMARY-MATRIX messageSM, to the leader, it computes
the delay between sendirffj\/ and receiving @REPREPAREthat (1) coversSM, and (2) is for
the next global sequence number for which this server egpecteceive @REPREPARE The
reason for measuring the turnaround time only when recgigigoveringPREPREPAREMeESsage
for the next expected global sequence number is to estabtishhnection between receiving an up-
to-datePREPREPAREanNd actually being able to execute client operations oneerRifE-PREPARE
is globally ordered. Without this condition, a leader copldvide fast turnaround times without
this translating into fast global ordering.

Note that a non-leader server measures the turnaround éragally. If it has an outstanding
SUMMARY-MATRIX for which it has not yet received a correspond?®REPREPARE it computes
the turnaround time as the amount of time sincesh®MARY-MATRIX was sent. Therefore, this

value continues to rise unless an approprizre-PREPAREIS received.

67

Note also that theoverspredicate is defined to ignor-SUMMARY messages from blacklisted
servers. In particular, it ignores messages from thoseesetkiat send inconsisterd-SUMMARY
messages. The reason for ignoring such messages is sahiévély, we would like each server to
be able to hold a leader accountable if it does not se¥REBPREPAREMeSssage witlto-SUMMARY
messages that are at least as up-to-date as those in thesslEstsSUMMARY-MATRIX message.
However, if a faulty server sends two inconsistemtSUMMARY messages (see Figure 4.1), there
may be no way for a correct leader to meet this demand. An eeamefps to illustrate the problem.

Suppose a faulty server (server 1) sends h@ESUMMARY messagesy; andmsy, containing
the following vectors, respectivelyfl, 2, 3, 1] and[1, 3, 2,1]. Neither message is at least as
up-to-date as the other (i.e., the messages are incornkisBuppose the leader (server 2) receives
my and stores it irLastPreorderSummariesNow suppose server 3 receives and includes it
in @ SUMMARY-MATRIX message to the leader. When the leader receiveSURBIARY-MATRIX
message, it will not adopti,, because it is not more up-to-date than. Thus, the leader’s next
PRE-PREPARE (which includesmy) will not contain PO-SUMMARY messages that are at least as
up-to-date as those in server 3 MMARY-MATRIX, becausen, is not at least as up-to-date as
mso. Without accounting for this problem, a correct leader rmigdsuspected of being faulty, even
though it did not act maliciously. By blacklisting serversom receiving @REPREPAREMessage
(as described in Section 4.3.3), correct servers can iginoansistentrO-SUMMARY messages

before they cause a correct leader to appear malicious.

Mechanism 3: The Distributed Monitoring Protocol

Before describing the distributed monitoring protocolttBaispect-Leader uses to allow non-
leader servers to determine how fast the leader’s turndroores should be, we first define what it

means for a turnaround time to be timely. Timeliness is ddfineerms of the current network con-

68

ditions and the rate at which a correct leader would serEPREPAREMessages. In the definition
that follows, we letZy; .., denote the maximum latency forraveLy message sent between any
two correct serversp\,, denote a value greater than the maximum time between a tegaer

sending successiieRE-PREPAREMessages; anfl7,; be a network-specific constant accounting

for latency variability.

PROPERTY 4.3.1 If Stability-S2 holds, then any server that retains a roléesgler must provide a

turnaround time to at least one correct server that is no nthem B = 2K, L* + App.

timely

Property 4.3.1 ensures that a faulty leader will be susgdeatdess it provides a timely
turnaround time to at least one correct server. We consiti@maround timet < B, to be timely
becauseB is within a constant factor of the turnaround time that tlmvsist correct server might
provide. The factor is a function of the latency variabititat Suspect-Leader is configured to toler-
ate. Note that malicious servers cannot affect the valug,@nd that increasing the value AT,
gives the leader more power to cause delay.

Of course, it is important to make sure that Suspect-Leadeoti overly aggressive in the time-

liness it requires from the leader. The following propentg@res that this is the case:

PROPERTY 4.3.2 If Stability-S2 holds, then there exists a set of at Igagt 1 correct servers that

will not be suspected by any correct server if elected leader

Property 4.3.2 ensures that when the network is sufficiestéile, view changes cannot occur
indefinitely. Prime does not guarantee that the slowesbrrect servers will not be suspected
because slow faulty leaders cannot be distinguished from sbrrect leaders.

We now present Suspect-Leader’s distributed monitorirgogol. The distributed monitoring
protocol allows non-leader servers to dynamically deteenfiow fast a turnaround time the leader
should provide and to suspect the leader if it is not progdirfast enough turnaround time to at

least one correct server. Pseudocode for the protocol isioed in Algorithm 3.

69

The protocol is organized as several tasks that run in ghrallth the outcome being that each
server decides whether or not to suspect the current leddes. decision is encapsulated in the
comparison of two valuesTAT;.qqer aNAd TAT cceptaric (SE€ Algorithm 3, lines 40-43)TAT;qder
is a measure of the leader’s performance in the current vimhisscomputed as a function of the
turnaround times measured by the non-leader servefd, ..., tavic IS @ Standard against which
the server judges the current leader and is computed as t&oiummé the round-trip times between
correct servers. A server decides to suspect the lea@&Tif,qer > TATocceptabie-

As seen in Algorithm 3, lines 1-6, the data structures usdddrdistributed monitoring protocol
are reinitialized at the beginning of each new view. ThusewalIn elected leader is judged using
fresh measurements, both of what turnaround time it is diogi and what turnaround time is
acceptable given the current network conditions. Thevahg two sections describe holAT;. e
andTAT,cceptabic are computed.

Computing TATeader: Each server keeps track of the maximum turnaround time geavby
the leader in the current view and periodically broadcdss/alue in @aAT-MEASURE message (Al-
gorithm 3, lines 9-11). The values reported by other seragFsstored in a vectoReportedTATS
indexed by server identifielTAT;qq4e, is computed as thef + 1)t lowest value irReportedTATs
(line 15). Since at mosf servers are faultyTAT;..q4e- IS therefore a value such that the leader is
providing a turnaround time< v to at least one correct server.

As explained above, we can ensure the timeliness of glollriog if we can ensure that the
leader provides an acceptable turnaround time to at leastamect server. This sheds light on how
TAT;.q4er 1S USed in suspecting the leader. Suppose the non-leaderseould query an oracle to
find out what an acceptable turnaround tiM&T, ccptabie, IS- Then they could compa®ATcqqer
t0 TAT,cceptanie 10 determine if the leader is providing a fast enough turmadatime to at least one

correct server. Suspect-Leader enables exactly this aisppawithout relying on an oracle.

70

Computing TAT acceptable: Each server periodically runs a ping protocol to measurdriie
to every other server (Algorithm 3, lines 18-22). Upon cotimmithe RTT to serveyj, servers
sends the RTT measurementjtm anRTT-MEASURE message (line 25). Whejnreceives the RTT
measurement, it can compute the maximum turnaround tintleat: would compute ifj were the
leader (line 27). Note thdtis a function of the latency variability constaii; .:, as well as the rate
at which a correct leader would seRdE-PREPAREMeSsages. Servgrstores the minimum such
in TATsIf_Leaderf[i] (lines 28-29).

Each server;, can use the values storedTATsIf_Leaderto compute an upper bound, on
the value ofTAT;..q4e- that any correct server will compute foif it were leader. This upper bound
is computed as théf + 1)t highest value inTATsIf_Leader(line 33). The servers periodically
exchange theirv values by broadcastingaT-uB messages, storing the valuesTiAT LeaderUBs

(lines 34-37) TAT,cceptanie IS COMputed as thef + 1) highest value ifTAT_Leadet UBs

71

Algorithm 3 Suspect-Leader Distributed Monitoring Protocol

[EEY

AN D D W WWWWWWWWRNNNNNNNNRNNDNRRRRRR R B R R
WP O OXNOR®NEOO®NOOOR®®NEOOONOAEWDNREO

© X N a kR

/I Initialization, run at the start of each new view
fori =1to N do

TATs_If _Leader[i] — oo

TAT _LeaderUBSsJi] + oo

ReportedTATS[i] < 0
ping.seqg« 0

/| TAT Measurement Task, run at server i
Periodically:
max tat < Maximum TAT measured this view
Broadcast(TAT-MEASURE, view, maxtat, i),

: Upon receiving (TAT-MEASURE, view, tat,

if tat > ReportedTATSs[j] then
ReportedTATSs[j] < tat
TATcader < (f + 1)% lowest val in ReportedATs

- [/ RTT Measurement Task, run at server i
. Periodically:

Broadcast(RTT-PING, view, pingseq, },
ping.seq++

: Upon receiving (RTT-PING, view, seq, jo, :

Send to server {RTT-PONG, view, seq, j,

: Upon receiving (RTT-PONG, View, seq, o :

rtt «— Measured RTT for pong message
Send to server {RTT-MEASURE, View, rtt, i),

: Upon receiving (RTT-MEASURE, View, rtt, j>0j:

te—rtt* Ko+ App
if t < TATs.If _Leader[j]then
TATs_If _Leader[j] —t

. /| TAT _Leader Upper Bound Task, run at server i
. Periodically:

a «— (f + 1)t highest val in TATsIf _Leader
Broadcast(TAT-UB, view, o, i),

: Upon receiving (TAT-UB, view, tatub, j>0j:

if tatub < TAT LeaderUBs][j] then
TAT _LeaderUBsJj] < tatub
TATucceptavie — (f + 1) highest val in TATLeaderUBs

. /] Suspect Leader Task
. Periodically:

if TATleader > TATacceptable then
Suspect Leader

72

Correctness Proofs

We now prove a series of claims that allow us to prove Progeai3.1 and 4.3.2. We first prove

the following two lemmas, which place an upper bound on theevaf TAT,.ccptable -

Lemma 4.3.1 Once a correct server;, receives amRTT-MEASURE message from each correct

server in view, it will compute upper bound values, such thate < B = 2K, L} + App.

timely

Proof: From Algorithm 3 line 3, each entry iRATsIf_Leaderis initialized to infinity at the begin-
ning of each view. Thus, when servereceives the firsRTT-MEASURE message from each other
correct servery, in view v, it will store an appropriate measurementTiATsIf Leadef;] (lines
28-29). Therefore, since there are at lent+ 1 correct servers, at lea3ff + 1 cells in servet's
TATslIf_Leadervector eventually contain values, based on measurements sent by correct servers.
By definition, eachy < B. Since at mosf servers are faulty, at least one of the 1 highest values

in TATsIf _Leaderis from a correct server and thus less than or equdl.t&Gerveri computes its

upper boundg, as the minimum of thesg + 1 highest values (line 33), and thus< B.]

Lemma 4.3.2 Once a correct servel, receives arAT-UB messagein, from each correct server,
4, wherem was sent afterj collected anRTT-MEASURE message from each correct server, it will

COMPULETAT ycceptapie < B = 2K a1 L + App.

= timely

Proof: By Lemma 4.3.1, once a correct servgrreceives alRTT-MEASURE message from each
correct server in view, it will compute upper bound values < B. Call the time at which a correct
server receives thesa T-MEASURE messages. Any « value sent by this server befotawill be
greater than or equal to the firstvalue sent aftet: « is chosen as théf + 1)t highest value in
TATsIf_Leader and the values iTATsIf_Leaderonly decrease. Thus, for each serverserver;
will store the firsto value thatk sends after time (lines 36-37). This implies that at leaxsf + 1 of

the cells in servef's TAT_LeaderUBsvector eventually contaity values from correct servers, each

73

of which is no more thatB. At least one of the + 1 highest values iTAT_LeadetUBsis from a
correct server and thus less than or equaBtdserveri computesTAT, cccptarie @S the minimum of

thesef + 1 highest values (line 38), and thli&\T,cccptapic < B.]

We can now prove Property 4.3.1:
Proof: A server retains its role as leader unless at l8gst 1 servers suspect it. Thus, if a leader
retains its role, there are at leghst 1 servers (at least one of which is correct) for whiehT;. e
< TATyeceptavie @lways holds. Call this correct servierDuring vieww, server; eventually collects
TAT-MEASURE messages from at lea®f + 1 correct servers. If the faulty servers either do not
sendTAT-MEASURE messages or report turnaround times of zero, T80, 4., iS computed as a
value from a correct server. Otherwise, at least one of the 1) lowest entries is from a correct
server, and thus there exists a correct server being pabddernaround time < TATjcqger. IN
both cases, by Lemma 4.3.2, there exists at least one ceepar being provided a turnaround

timet S TATleader S TATacceptable S B. D

Now that we have shown that malicious servers that retaiin tbke as leader must provide a
timely turnaround time to at least one correct server, itai@sito be shown that Suspect-Leader is
not overly aggressive, and that some correct servers widlldbe to avoid being replaced. This is

encapsulated in Property 4.3.2. Before proving PropeBy24we prove the following lemma:

Lemma 4.3.3 If a correct server;, sends an upper bound value, then ifi is elected leader, any

correct server will cOmput@AT jcpger < .

Proof. At serveri, TATsIf_Leader[j] stores the maximum turnaround tinmeaxtat, that; would
compute ifi were leader. Thus, whenis leader,j will send TAT-MEASURE messages that report
a turnaround time no greater thamaxtat. Sinceca is chosen as théf + 1)*! highest value in
TATsIf _Leader 2f + 1 servers (at least + 1 of which are correct) will senGiAT-MEASURE mes-

sages that report values less than or equalwhens is leader. Since the entries ReportedTATs

74

are initialized to zero (line 5)TATcqqe Will be computed as zero untilAT-MEASURE messages
from at leas2f + 1 servers are received. Since any two set8 Of+ 1 servers intersect on one
correct server, th¢f + 1)t lowest value inReportedTATswill never be more thamv. Thus if

server; were leader, any correct server would compiAg ;. 4., < a.]

We can now prove Property 4.3.2:
Proof: Since TAT,cceptanie IS the (f + 1)** highesta value in TAT_LeadetUBs at least2f +
1 servers (at leasf + 1 of which are correct) sent values such thaty < TAT,.ceptabie: BY
Lemma 4.3.3, when each such correct server is elected |eddather correct servers will compute

TATicader < . Sincea < TAT,cceptabie, €aCh Of these correct servers will not be suspected.]

4.3.6 The Leader Election Sub-Protocol

The Suspect-Leader sub-protocol provides a mechanism hvehcorrect server can decide
whether to suspect the current leader as faulty. This secscribes the Leader Election sub-
protocol, which enables the servers to actually elect a addr once the current leader is suspected
by enough correct servers.

When servei suspects the leader of viemto be faulty (see Algorithm 3, line 43), it broadcasts
a(NEW-LEADER, v+1, i),, message, suggesting that the servers move towiewand elect a new
leader. However, servércontinues to participate in all aspects of the protocolluidiog Suspect-
Leader. A correct server only stops participating in viewhen it collect2f + 1 NEW-LEADER
messages for a later view.

When serveri receives a setS, of 2f + 1 NEW-LEADER messages for the same view,
wherev’ is later than’s current view, server broadcasts the set of messages {NnBW-LEADER-
PROOF v/, S, i),, message and moves to view; we say that the servepreinstallsview v’.

Any server that receives MEW-LEADER-PROOF message for a view later than its current view,

75

immediately stops patrticipating in viewand preinstalls view’'. It also periodically broadcasts
the NEW-LEADER-PROOFmMessage for view’ and continues to do so until it moves to a new view.
Broadcasting th& Ew-LEADER-PROOFensures that all correct servers preinstall viéwithin one
round of the first correct server preinstalling vietv When a server preinstalls view, it begins
running the View Change sub-protocol described in Sectidn 4

The reason why a correct server continues to participatded v even after suspecting the
leader of viewwv is to prevent a scenario in which a leader retains its roleeaddr (by sending
timely, up-to-datePRE-PREPAREMeSsages to enough correct servers) but the servers ate tmab
globally order theeREPREPAREMESSsages. If a correct server could become silent in vieithout
knowing that a new leader will be elected, then if the leadesdretain its role and the faulty servers
become silent, theREPREPAREMessages would not be able to gardgr+ 1 PREPAREMESsages
and ultimately be globally ordered. The approach taken leylLtbader Election sub-protocol is
similar to the one used by Zyzzyva [47], where correct sargentinue to participate in a view until
they collectf + 1 I-HATE-THE-PRIMARY messages.

Note that the messages sent in the Leader Election subepicioe in theBOUNDED traffic
class. In particular, they do not require synchrony for Rritm meet its liveness guarantee. The
Leader Election sub-protocol uses the reception of messagd not timeouts, to clock the progress
of the protocol. As described in Section 4.4, the View Chasueprotocol also uses the reception
of messages to clock the progress of the protocol, excepihéaiast step, where messages must be
timely and the servers resume running Suspect-Leader tweetisat the protocol terminates without

delay.

76

4.4 The Prime View Change Protocol

In order for theBOUNDED-DELAY property to be useful in practice, the time at which it begins
to hold (after the network stabilizes) should not be ablegtisédt arbitrarily far into the future by the
faulty servers. As we now illustrate, achieving this regment necessitates a different style of view

change protocol than the one used by BFT, Zyzzyva, and otisirg) leader-based protocols.

4.4.1 Background: BFT’s View Change Protocol

To facilitate a comparison between Prime’s view changegomitand the ones used by exist-
ing protocols, we review the BFT view change protocol. A nealected leader collects state from
2f +1 servers in the form ofIEW-CHANGE messages, processes these messages, and subsequently
broadcasts aEw-vIEwW message. ThREW-VIEW contains the set dff + 1 VIEW-CHANGE mes-
sages, as well as a set BREPREPARE messages thatplay pending operations that may have
been ordered by some, but not all, correct servers in a preview. TheviEw-CHANGE messages
allow the non-leader servers to verify that the leader canstd the set 0PREPREPAREMeSsages
properly. We refer to the contents of thew-vIEw as theconstraining statdor this view.

Although theviEw-CHANGE andNEW-VIEW messages are logically single messages, they may
be large, and thus the non-leader servers cannot determawtlyehow long it should take for
the leader to receive and disseminate the necessary stateon-feader server sets a timeout on
suspecting the leader when it learns of the leader’s elechiod it expires the timeout if it does not
receive theNew-VvIEW or does not execute the first operation on its queue withitirteout period.

The timeout used for suspecting the current leader doubildésewery view change, guaranteeing

that correct leaders eventually have enough time to comibet protocol.

77

4.4.2 Motivation and Protocol Overview

The view change protocol outlined above is insufficient flomi@. Doubling the timeouts greatly
increases the power of the faulty servers; if the timeoutvgreery high during unstable periods,
then a faulty leader can cause the view change to take mugkiddinan it would take with a correct
leader. If Prime were to use such a protocol, then the faeltyess could delay the time at which
BOUNDED-DELAY begins to hold by increasing the duration of the view chamgeghich they are
leader. The amount of the delay would be a function of how maew changes occurred in the
past, which can be manipulated by causing view changesgluristable periods (e.g., by using a
denial of service attack).

To overcome this issue, Prime uses a different approachsferew change protocol. Whereas
BFT's protocol is primarily coordinated by the leader, Peiswview change protocol is designed to
rely on the leader as little as possible. The key observagitimat the leader neither needs to collect
view change state froraf + 1 servers nor disseminate constraining state to the noreiessvers
in order to fulfill its role as leader. Instead, the leader canstrain non-leader servers simply by
sending a single physical message that identifies which gieamge state messages should consti-
tute the constraining state. Thus, instead of being redpen®r state collection, processing, and
dissemination, the leader is only responsible for makinggle decision and sending a single mes-
sage (which we call the leadelrEPLAY message). The challenge is to construct the view change
protocol in a way that will allow non-leader servers to fotbe leader to send a validEPLAY
message in a timely manner.

How can a single physical message identify the many view ghatate messages that con-
stitute the constraining state? Each server dissemintgegeiv change state using a Byzantine
fault-tolerant reliable broadcast protocol (e.g., [26¥g provide background on the asynchronous

reliable broadcast protocol used by the RITAS implemenmativhich was originally proposed by

78

Bracha [26], in Section 2.3. The reliable broadcast prdtgoarantees that all servers that collect
view change state from any servieim view v collect exactly the same state. In addition, if any
correct server collects view change state from seirvewriew v, then all correct servers eventually
will do so. Given these properties, the leaderisPLAY message simply needs to contain a list of
2f 4 1 server identifiers in order to unambiguously identify thestoaining state. For example,
if the leader'sREPLAY message contains the ligt, 3, 4), then the view change state disseminated
by serversl, 3, and4 should be used to become constrained. As described belevkEiLAY
message also contains a proof that all of the referencedchenwge state messages will eventually
be delivered to all correct servers.

A critical property of the reliable broadcast protocol u$edview change state dissemination
is that it cannot be slowed down by the faulty servers. Cosexvers only need to send and receive
messages from one another in order to complete the protdtwrefore, the state dissemination
phase takes as much time as is required for correct serveassthe necessary information between
one another, and no longer.

If the leader is faulty, it can sendrREPLAY message whose list contains faulty servers, from
which it may be impossible to collect view change state. Tthesprotocol requires that the leader’s
list be verifiable, which we achieve by using a threshold &igre protocol. Once a server finishes
collecting view change state frofy + 1 servers, it announces a list containing their server identi
fiers. A server submits a partial signature on a listif it has finished collecting view change state
from the2f + 1 servers inL. The servers combirf + 1 matching partial signatures into a thresh-
old signature orl; we refer to the pair consisting éf and its threshold signature a¥&-Proof At
least one correct server (in fagt;+ 1 correct servers) must have submitted a partial signatuie on
which, by the properties of reliable broadcast, implieg #ilbacorrect servers will eventually finish

collecting view change state from the serverd.inThus, by including a VC-Proof in itREPLAY,

79

the leader can convince the non-leader servers that théywentually collect the state from the
servers in the list.

We note that instead of generating a threshold-signed ptieefleader could also include a set
of 2f 4+ 1 signed messages to prove the correctness oRHm AY message. While this may be
conceptually simpler and somewhat less computationalpeesive, using threshold signatures has
the desirable property that the resulting proof is compadt@an fit in a single physical message,
which may allow for more effective performance monitorimghandwidth-constrained environ-
ments. Both types of proof provide the same level of guaesantgarding the correctness of the
REPLAY message.

The last remaining challenge is to ensure that the leadelsS&SsREPLAY message in a timely
manner. The key property of the protocol is that the leadaricanediately use a VC-Proof to
generate th&@EPLAY messagegven if it has not yet collected view change state from theesgiin
the list Thus, after a non-leader server sends a VC-Proof to thelghdan expect to receive the
REPLAY message in a timely fashion. We integrate the computatighisfturnaround time (i.e.,
the time between sending a VC-Proof to the leader and recpavivalidREPLAY message) into the
normal-case Suspect-Leader protocol to monitor the I&aldehavior. By using Suspect-Leader to
ensure that the leader terminates the view change in a timahner, we avoid the use of a timeout

and its associated vulnerabilities. Table 4.2 summarizieses view change protocol.

4.4.3 Detailed Protocol Description

Preliminaries: When a server learns that a new leader has been elected inyige/say that
it preinstallsview v. As described above, the Prime view change protocol usesyartiaronous
Byzantine fault-tolerant reliable broadcast protocol $tate dissemination. We assume that the

identifiers used in the reliable broadcast are of the fGrm, seq), wherew is the preinstalled view

80

Action Taken Upon

Phase Action Phase Completed Upon Phase Completion

Progress Driven By

All: Reliably broadcast

SFate s REPORTand Collecting complete state Broadcast/C-LIST Correct Servers
Dissemination from 2f + 1 servers

PC-SETmessages

All: Upon collecting

complete state from
Proof servers invC-LIST, Combining2f + 1 Broadcast/C-PROOF Correct Servers
Generation broadcast matching partial signatures| Run Suspect-Leader

VC-PARTIAL-SIG

(up to N times)

Leader: Upon receivingc-
PROOF broadcast| CommittingREPLAY and Execute all operation
REPLAY message collecting associated state | in replay window

All: Agree OnREPLAY

| Leader,
” monitored by
Suspect-Leader

Replay

Table 4.2: Summary of Prime’s view change protocol.

number andseq = j means that this message is tfié message reliably broadcast by servén
view v. Using these tags guarantees that all correct servers agtée messages reliably broadcast
by each server in each view. We refer to the last global segueuamber that a server has executed
as that server'sxecution ARU

State Dissemination PhaseA server’s view change state consists of the server's eixgtut
ARU and a set of prepare certificates for global sequence atsxfbr which the server has sent a
coMMIT message but which it has not yet globally ordered. We reférisoset as the serverC-
Set Upon preinstalling view, serveri reliably broadcasts &REPORT, v, execARU, numSeq, i),
message, where is the preinstalled view numbesxecARU is serveri's execution ARU, and
numSeq is the size of servers PC-Set. Servert then reliably broadcasts each prepare certificate
in its PC-Set in &PC-SET, v, pc, i),, message, where is the preinstalled view number apd is
the prepare certificate being disseminated.

A server will accept ®REPORTmessage from servérin view v as valid if the message’s tag
is (i,v,0); that is, theREPORTmMessage must be the first message reliably broadcast by sémve
view v. ThenumSeq field in theREPORTtells the receiver how many prepare certificates to expect.

These must have tags of the fofmv, j), wherel < j < numSeg.

81

Each server storeBEPORTand PC-SET messages as they are reliably delivered. We say that
server; hascollected complete stafeom serverj in view v wheni has (1) reliably delivereg’s
REPORTMessage, (2) reliably delivered themSeq PC-SET messages described;jis report, and
(3) executed a global sequence number at least as high ardlmntained irj’s report. To meet
the third condition, we assume that a reconciliation protoans in the background. In practice,
correct servers will reserve some amount of their outgoiagdividth for fulfilling reconciliation
requests from other servers. Upon collecting complete $tam a setS, of 2f + 1 servers, server
i broadcasts &vc-LIST, v, L,1i),, message, whereis the preinstalled view number aridis the
list of server identifiers of the servers

Proof Generation Phase:Each server storegc-LIST messages as they are received. When
serveri has a(vC-LIST, v, ids, j),; message in its data structures for which it has collected-com
plete state from all servers iils, it broadcasts gvC-PARTIAL-SIG, v, ids, startSeq, pSig, i),
message, where is the preinstalled view numbeiys is the list of server identifiersstartSeq is
the global sequence number at which the leader should bedgming in viewv, andpSig is a par-
tial signature computed on the tugle, ids, startSeq). startSeq is the sequence number directly
after the replay window. It can be computed determinidiicas a function of th&@EPORTMessages
collected from the servers iis.

Upon collecting? f 4+ 1 matchingvC-PARTIAL-SIG messages, servetakes the following steps.
First, it combines the partial signatures to generate a W#p, which is a threshold signature on
the tuple(v, ids, startseq). Second, it broadcasts(8C-PROOF, v, ids, startSeq, p,i),, message.
Third, it begins running the Suspect-Leader distributecibtooing protocol, treating thec-PROOF
message just as it would UMMARY-MATRIX in computing the maximum turnaround time pro-
vided by the leader in the current view (see Algorithm 3,4i8el5). Specifically, servérstarts a

timer to compute the turnaround time between sendingy th®ROOFto the leader and receiving a

82

valid REPLAY message (see below) for view Thus, the leader is forced to send thePLAY mes-
sage in a timely fashion, in the same way that it is forced mmldenely PREPREPAREMeESSages in
the Global Ordering sub-protocol.

Replay Phase:When the leadet, receives aszCc-PROOFmMessage for view, it broadcasts a
(REPLAY, v, ids, startSeq, p,), message. By sendingrePLAY message, the leader proposes an
ordering on the entire replay set implied by the contenth@ft-PrROOFmMessage. Specifically, for
each sequence numbeeg, between the maximum execution ARU found in tEPORTMeESSsages
of the servers inds andstartSeq, seq is either (1) bound to the prepare certificate for that segeien
number from the highest view, if one or more prepare certéicavere reported by the servers in
ids, or (2) bound to a No-op, if no prepare certificate for thatusege number was reported. It is
critical to note that the leader itself may not yet have atld complete state from the servers in
ids. Nevertheless, it can commit to using the state sent by therseinids in order to complete
the replay phase.

When a non-leader server receives a valiEPLAY message for view, it floods it to the other
servers, treating the message as it would a typie@ PREPAREmMessage. ThREPLAY message is
then agreed upon USITEPLAY-PREPAREANdREPLAY-COMMIT messages, whose functions paral-
lel those of typicaPREPAREaNdCOMMIT messages. ThHREPLAY message does not carry a global
sequence number because only one may be agreed upon (ardueiitty executed) within each
view. A correct server does not sentkBPLAY-PREPAREMessage until it has collected complete
state from all servers in the list contained in thePLAY message. Finally, when a server commits
the REPLAY message, it executes all sequence numbers in the replapwindne batch.

Besides flooding theEPLAY message upon receiving it, a non-leader server also stepisrtar
on computing the turnaround time for the-PROOF if one was set. Note that a non-leader server

stops its timer as long as it receivesmevalid REPLAY message, not necessarily one containing

83

the VC-Proof it sent to the leader. The properties of redidirioadcast ensure that the server will
eventually collect complete state from those servers itisheontained in th&kEPLAY message.
One consequence of the fact that a correct server stopsés déifter receiving any valiHEPLAY
message is that a faulty leader that sends conflictiegLAY messages can convince two different
correct servers to stop their timers, even though neleen Ay will ever be executed. In this case,
since theREPLAY messages are flooded, all correct servers will eventuatlgive the conflicting
messages. Since the messages are signed, the two messaiigsteqroof of corruption and can
be broadcast. A correct server suspects the leader uparttig this proof. Thus, the system will

replace the faulty leader, and the detection time is a fanaif the latency between correct servers.

4.5 Proof Sketch of Bounded-Delay

In this section we show that in those executions in wtitability-S3holds, Prime provides
the BOUNDED-DELAY property (see Definition 4.1.13). As before, we Igf,, ., and L, ,..q
denote the maximum message delay between correct servansfely andBOUNDED messages,
respectively, and we leB = 2K 4Ly, + Dpp. We also letA,y, denote a value greater than
the maximum time between a correct server sending any ofollving messages successively:
PO-SUMMARY, SUMMARY-MATRIX , andPRE-PREPARE

We first consider the maximum amount of delay that can be atigeximalicious leader that
performs well enough to avoid being replaced. The time betwseserver receiving and introducing
a client operationg, for preordering and all correct servers sendfuMMARY-MATRIX messages
containing at leas2f + 1 PO-SUMMARY messages that cumulatively acknowledge the preordering
of o is at most three bounded rounds plis, .. The malicious servers cannot increase this time

beyond what it would take if only correct servers were pguéittng. By Property 4.3.1, a leader

that retains its role as leader must provide a TAE B, to at least one correct server. By defini-

84

tion, Aggg > App. Thus,B < 2Kpat Ly, + Dagg- Since correct servers floREPREPARE
messages, all correct servers receivePRe-PREPAREWiIthin three bounded rounds and one aggre-
gation delay of when theUMMARY-MATRIX messages are sent. All correct servers globally order
the PREPREPAREIN two bounded rounds from the timg,the last correct server receives it. The
Reconciliation sub-protocol guarantees that all correntes's receive theo-REQUESTcontaining

the operation within one bounded round of timeSumming the total delays yields a maximum
latency of3 = 6L;,,,,40q + 2K Lat Liper, + 3Dagg-

If a malicious leader delays proposing an ordering, by miea@ B, on a summary matrix that
proves that at leagtf + 1 servers preordered operationit will be suspected and a view change
will occur. View changes require a finite (and, in practiama#l) amount of state to be exchanged
among correct servers, and thus they complete in finite tésedescribed in Section 4.4, a faulty
leader will be suspected if it does not terminate the viewngkan a timely manner. Property 4.3.2
of Suspect-Leader guarantees that at ragstiew changes can occur before the system settles on a

leader that will not be replaced. Therefore, there is a tifter avhich the bound of holds for any

client operation received and introduced by a stable server

4.6 Performance Evaluation

To evaluate the performance of Prime, we implemented thtmgoband compared its perfor-
mance to that of an available implementation of BFT. We shesults for configurations with 4
servers [= 1) and 7 serversf{ = 2) to see the effects of both faulty leader and faulty nondead
servers. We first present results evaluating the performafidrime in an emulated wide-area
setting, since the attacks that we have considered in tlipteh can cause greater performance
degradation in such an environment, where bandwidth igdisnand timeouts are larger. We then

present results evaluating Prime in a local-area netwdtihge where message delay is minimal

85

and bandwidth is plentiful.

Testbed and Network Setup: We used a system consisting of 7 servers, each running on
a 3.2 GHz, 64-bit Intel Xeon computer. RSA signatures [6%vjated authentication and non-
repudiation. Each computer can compute a 1024-bit RSA signan 1.3 ms and verify it in
0.07 ms. For the wide-area tests, we used the netem utility [Blace delay and bandwidth con-
straints on the links between the servers. We added 50 mg @etaulating a US-wide deployment)
to each link and limited the aggregate outgoing bandwidtbaah server to 10 Mbps. Clients were
evenly distributed among the servers, and no delay or baltdwbnstraints were set between the
client and its server. For the local-area tests, serversrugritated via a Gigabit switch.

Clients submit one update operation to their local servait for proof that the update has been
ordered, and then submit their next update. In the wide-depdoyment, updates contained 512
bytes of data. In the local-area deployment, we used updatesining null operations (i.e., 0
bytes of data) to match the way these protocols are commmalpated (e.g., [31, 34]). Taking
into account signature overhead and other update-speciitemt, each update consumed a total of
162 bytes. BFT uses an optimization where clients send apdiitectly to all of the servers and
the BFTPREPREPAREMESSage contains batches of update digests. Messages imsBFiessage
authentication codes for authentication. Each server garpate a message authentication code on
a 1024-byte block in approximatelys.

Attack Strategies: Our experimental results during attack show the minimunfoperance
that must be achieved in order for a malicious leader to aleidg replaced. Our measurements
do not reflect the time required for view changes, during Whicnew leader is installed. Since
a view change takes a finite and, in practice, relatively barabunt of time, malicious leaders
must cause performance degradation without being detatiadler to have a prolonged effect on

throughput. Therefore, we focus on the attack scenario evaenalicious leader retains its role as

86

leader indefinitely while degrading performance.

To attack Prime, the leader adds as much delay as possiltleo(wibeing suspected) to the
protocol, and faulty servers force as much reconciliatisp@ssible. As described in Section 4.3, a
malicious leader can add approximately two rounds of dedaheé Global Ordering sub-protocol,
plus an aggregation delay. The malicious servers forcengiitation by not sending theipo-
REQUESTMessages tg of the correct servers. Therefore, alb-REQUEST messages originating
from the faulty servers must be sent to th¢seorrect servers using the Reconciliation sub-protocol
(see Section 4.3.4). Moreover, the malicious servers arkp@wledge each otheriso-REQUEST
messages, forcing the correct servers to send recormiliatessages to them for &b-REQUEST
messages introduced by correct servers. Thup@REQUESTmMessages undergo a reconciliation
step, which consumes approximately the same outgoing hidtidas the dissemination of thre-
REQUESTmMessages during the Preordering sub-protocol.

To attack BFT, we use the attack described in Section 3.2hdnatide-area deployment, we
present results for a very aggressive yet possible time20Q (ns). This yields the most favor-
able performance for BFT under attack. In the local-areavorkt setting, we show results for two
aggressive timeouts (5 ms and 10 ms). We used the originaibdison of BFT [1] for all tests.
Unfortunately, the original distribution becomes unstalvhen run at high throughputs, so we were
unable to get results for BFT in a fault-free execution in tHeN setting. Results using an up-
dated implementation were recently reported in [34] and, [ddt we were unable to get the new
implementation to build on our cluster. We base our analgaithe assumption that the newer
implementation would obtain similar results on our own tgus

Performance Results, Wide-Area Deployment:Figure 4.4 shows system throughput, mea-
sured in update operations per second, as a function of tiéerof clients in the emulated wide-

area deployment. Figure 4.5 shows the corresponding ufatatecy, measured at the client. In the

87

1300 BFT Fault-Free-+-- ‘ 900 [|
| ault-Free-+- | i’
m 1200 Prime Fault-Free-x 800 4 /X
@ 1100 prime Attack, K =1 % % 700 o
3 1000 rPrime Attack, K =2 ---& IS L Q
g b BFT Attack —&— 1 = HEE g-BBIX
3 900 [T e e,) o 600 BEEE-E--8 T 2§.-|-
3 800 M S 500 [
S 700 A % = PORTRR e
= S S
é‘ ggg o o 400 g s et
a @ et

g 400 ; 5 L M g 300/ +:+,+...,+A...‘+.‘.“.+‘....+....,+ BFT FaultFree- -+
E 300 RO it < 2 oot _ Prime Fault-Freex
= . Prime Attack, K =1 %

200 ++~‘?§5;_~i—“7 * 100 | Prime Attack, K,=2 ---g-- |

100 *ﬁ - BFT Attack —=&—

0 0 L L L L
0 100 200 300 400 500 0 100 200 300 400 500
Number of Clients Number of Clients

Figure 4.4: Throughput of Prime and BFT asFigure 4.5: Latency of Prime and BFT as
a function of the number of clients in a 7- a function of the number of clients in a 7-
server configuration. Servers were connectederver configuration. Servers were connected
by 50 ms, 10 Mbps links. by 50 ms, 10 Mbps links.

fault-free scenario, the throughput of BFT increases astefaate than the throughput of Prime
because BFT has fewer protocol rounds. BFT's performareteguis due to bandwidth constraints
at slightly fewer than 850 updates per second, with aboutdi®&dts. Prime reaches a similar
plateau with about 350 clients. As seen in Figure 4.5, BFTehlmsver latency than Prime when
the protocols are not under attack, due to the differencéee@mumber of protocol rounds. The
latency of both protocols increases at different point®teethe plateau due to overhead associated
with aggregation. The latency begins to climb steeply wientbhroughput plateaus due to update
gueuing at the servers.

The throughput results are different when the two protoeoésattacked. With an aggressive
timeout of 300 ms, BFT can order fewer than 30 updates pemnsgeddith the default timeout of
5 seconds, BFT can only order 2 updates per second (not shdwithe plateaus at about 400
updates per second due to the bandwidth overhead incurrédebReconciliation sub-protocol.
Prime’s throughput continues to increase until it beconswividth constrained. BFT reaches its
maximum throughput when there is one client per server. thin@ighput limitation, which occurs

when only a small amount of the available bandwidth is usea consequence of judging the leader

88

1800 éFT = T oF - 900 ’ T T T T B
ault-Free- -+ &
< 1600 ori PriR"le Fl?ult—FrJefe x 800 ‘ E/
o rime Attack, K g=1 % -
% 1400 | prime Attack, Ka=2 -8 £ 700 . &
& 1200f BFT Attack — bt] > 600 ERR geaR o x
S 1000 & x XX g 500 kX < %
: + X X S ‘xxxxx % X X
2 800 A o 400 o
< & <
=) % |
600 8 3001 .
£ 400 & _ﬁ;;:ﬁ:;m" 200 ¢ Prime Attack, K =1 - |
200 Lou §é 100 | Prime Attack, K;=2 -8 |
‘ﬁ £ BFT Attack —&—
0 0 L L L L L L
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Number of Clients Number of Clients

Figure 4.6: Throughput of Prime and BFT asFigure 4.7: Latency of Prime and BFT as
a function of the number of clients in a 4- a function of the number of clients in a 4-
server configuration. Servers were connectederver configuration. Servers were connected
by 50 ms, 10 Mbps links. by 50 ms, 10 Mbps links.

conservatively.

Figure 4.6 shows similar throughput trends in the 4-serggefiguration. When not under attack,
both protocols plateau at higher throughputs than thosemsitothe 7-server configuration (Figure
4.4). Prime reaches a plateau of 1140 updates per secondttdrenare 600 clients. In the 4-
server configuration, each server sends a higher fractitmeaxecuted updates than in the 7-server
configuration. This places a relatively higher computatidiurden (due to RSA cryptography) on
the servers in the 4-server configuration. Thus, there igalalifference in performance when not
under attack between Prime and BFT. When under attack, Rrinmerforms BFT by a factor of
30.

In both the 7-server and 4-server configurations, the slépleeocurve corresponding to Prime
under attack is less steep than when it is not under attackodilie delay added by the malicious
leader. We include results with';,; = 1 and K1 = 2. K14 accounts for variability in latency
(see Section 4.1). AR} ,; increases, a malicious leader can add more delay to therowma time
without being detected. The amount of delay that can be abgedmalicious leader is directly

proportional toK ;. For example, ifK;.; were set to 10, the leader could add roughly 10 round-

89

225
200
175
150
125

100 Raceenes
75 P X
g

15000

12500

10000

7500

Update Latency (ms)

Prime Fault-Free: -+ ~ Prime Fault-Free- -+
Prime Reconc. Attack X 50l _ Prime Reconc. Attack:--
Prime 30ms PP, 40m§,, % | Prime 30ms PP, 40m§,,, -
Prime 30ms PP, 50m5,, o] 25 Prime 30ms PP, 50ms,,, £

5000 -

Throughput (updates/sec)

2500 /1

0 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Number of Clients Number of Clients

o

Figure 4.8: Throughput of Prime as a functionFigure 4.9: Latency of Prime as a function of
of the number of clients in a 7-server, local-areathe number of clients in a 7-server, local-area
network configuration. network configuration.

trip times of delay without being suspected. When underckitthe latency of Prime increases
due to the two extra protocol rounds added by the leader. WHigp = 2, the leader can add
approximately 100 ms more delay than wh€n,; = 1. The latency of BFT under attack climbs
as soon as more than one client is added to each server belcalsader can order one update per
server per timeout without being suspected.

Performance Results, LAN Deployment:Figure 4.8 shows the throughput of Prime as a func-
tion of the number of clients in the LAN deployment, and Feyu4r.9 shows the corresponding
latency. When not under attack, Prime becomes CPU constraina throughput of approximately
12,500 null operations per second. Latency remains bel@wi®with approximately 1200 clients.

When deployed on a LAN, our implementation of Prime uses Metlees [57] to amortize
the cost of generating digital signatures over many messagjthough we could have used this
technique for the WAN experiments, doing so does not signifly impact throughput or latency,
because the system is bandwidth constrained rather thancGfdtrained. Combined with the ag-
gregation techniques built into Prime, a single digitahsiyire covers many messages, significantly
reducing the overhead of signature generation. In faatesimr implementation utilizes only a sin-

gle CPU, and since verifying client signatures takes 0.07thesmaximum throughput that could

90

be achieved is just over 14,000 updates per second (if theapdration performed were verify-
ing client signatures). This implies that (1) signatureraggtion is effective in improving peak
throughput and (2) the peak throughput of Prime could beifsigntly improved by offloading
cryptographic operations (specifically, signature veadfin) to a second processor (or to multiple
cores), as is done in the recent implementation of the Aakdweptocol [34].

As Figure 4.8 demonstrates, the performance of Prime untiakas quite different on a LAN
compared to a WAN. We separated the delay attacks from tleacdiation attacks so their effects
could be seen more clearly. Note that the reconciliatioacitt which degraded throughput by
approximately a factor of 2 in a wide-area environment, hey little impact on throughput on a
LAN because the erasure encoding operations are inexgeasd/bandwidth is plentiful.

In our implementation, the leader is expected to serd@BPREPAREevery 30 ms. On a local-
area network, the duration of this aggregation delay doteghany variability in network latency.
Recall that in Suspect-Leader, a non-leader server comlugemnaximum turnaround time as-=
rtt * Krq + App, Wherertt is the measured round-trip time ary,, is a value greater than the
maximum time it might take a correct server to senelR&EPREPARE (see Algorithm 3, line 27).
We ran Prime with two different values df,,,: 40 ms and 50 ms. A malicious leader only includes
a SUMMARY-MATRIX in its currentPREPREPAREIf it determines that including theuMMARY-
MATRIX in the nextPREPREPARE (sent 30 ms in the future) would potentially cause the leader
to be suspected, given the value Af,. Figures 4.8 and 4.9 show that the leader’s attempts to
add delay only increase latency slightly, by about 15 ms &nthg, respectively. As expected, the
attacks do not impact peak throughput.

As noted above, the implementation of BFT that we tested doework well when run at high
speeds; the servers begin to lose messages due to a lackicg&atiflow control, and some of the

servers crash. Therefore, we were unable to generate gdsulfault-free executions. Recently

91

2000 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 180

—~ 1800)
S R, DT 160 - BFT Attack, 5ms Timeout: =+
] ¥ v ST .
© 1600 Y, . BFT Attack, 10ms Timeout-x
2 + P, w140
£ 1400 * £ X
2 1200% » 120
<) < X
= 1000 {4 g 100
2 i g X +
£ 800 [> 80
2 T XD X X K3 X < e
o 600 +>< s 60 e
o g
E 400 % BFT Attack, 5ms Timeout- -~ > 0 e

§< BFT Attack, 10ms Timeout % o

200 X e
o 20 e
0 20 40 60 80 100 120 140 0 L S : : : :
0 20 40 60 80 100 120 140

Number of Clients
Number of Clients

Figure 4.10: Throughput of BFT in under- Figure 4.11: Latency of BFT in under-attack ex-

attack executions as a function of the num- . ; ,
ecutions as a function of the number of clients

ber of clients in a 7-server, local-area network, .)
) . in a 7-server, local-area network configuration.
configuration.

published results on a newer implementation report peaugirputs of approximately 60,000 O-
byte updates/sec and 32,000 updates/sec when client ioperate authenticated using vectors of
message authentication codes and digital signatureseatbsgly. Latency remains low, on the
order of 1 ms or below, until the system becomes saturatednoted in [30] and [34], when
MACs are used for authenticating client operations, faalignts can cause view changes in BFT
when their operations are not properly authenticated. Asaged above, if BFT used the same
signature scheme as in Prime, it could only achieve peakigimauts higher than 14,000 updates/sec
if it utilized more than one processor or core. While the pdakughputs of BFT and Prime are
likely to be comparable in well-engineered implementatiohboth protocols, BFT is likely to have
significantly lower operation latency than Prime in faulte executions. This reflects the latency
impact in Prime of both sending certain messages peridgieald using more rounds requiring
sighed messages to be sent. Nevertheless, we believe thietabatency values for Prime are
likely to be low enough for many applications.

Figures 4.10 and 4.11 show the performance of BFT when uritherka With a 5 ms timeout,

BFT achieved a peak throughput at approximately 1700 upgstesecond. With a 10 ms timeout,

92

the peak throughput is approximately 750 updates/sec. peotad, throughput plateaus and latency
begins to rise when there are more than 7 clients, when BFSimgwonly a small percentage of
the CPU. As the graphs show, Prime’s operation latency uait@ck will be less than BFT’s once
the number of clients exceeds approximately 100. When ggeasive timeouts are used in BFT,

Prime’s latency under attack will be lower than BFT's for $ieranumbers of clients.

4.7 Prime Summary

In this chapter and the last, we pointed out the vulnerghilftcurrent leader-based intrusion-
tolerant state machine replication protocols to perforteadegradation when under attack. We
proposed thEOUNDED-DELAY correctness criterion to require consistent performamed execu-
tions, even when the system exhibits Byzantine faults. \WWegmted Prime, a new intrusion-tolerant
state machine replication protocol, which mestsUNDED-DELAY and is an important step towards
making intrusion-tolerant replication resilient to perfance attacks in malicious environments.
Our experimental results show that Prime performs conipalit with existing protocols in fault-
free configurations and an order of magnitude better whermatiack in 4-server and 7-server

configurations.

93

Chapter 5

An Attack-Resilient Architecture for
Large-Scale Intrusion-Tolerant

Replication

This chapter presents an attack-resilient architecturkafge-scale intrusion-tolerant replication
over wide-area networks. It is joint work with Yair Amir, B Coan, and John Lane. Some of the
ideas were developed during the author’s visit to the NawigeDistributed Systems Research Team
at the University of Lisboa, Portugal.

The material in this chapter unifies our work on hierarchinatusion-tolerant replication (i.e.,
Steward [18, 19] and the customizable replication arctutec[16]) with our work on Prime. The
end result is the first large-scale intrusion-tolerantestaschine replication system capable of mak-
ing meaningful performance guarantees even when some aidbhines are compromised.

Our system builds on our work on the customizable replicaticchitecture presented in [16],
using the same basic approach to scaling. It uses a twoHéexglrchy. Each site runs a local state

machine replication protocol and is converted intogical machinghat acts as a single participant

94

in a wide-area state machine replication protocol that ameng the logical machines. The local
protocols are cleanly separated from the wide-area prbtdé¢® benefit of this clean separation is
that the safety of the hierarchical system as a whole folldirectly from the safety properties of
the flat protocols running in each level of the hierarchy, mgkhe system easier to reason about.
Indeed, one can substitute in a different local state mactaplication protocol without impacting
the safety of the system.

This free substitution property does not necessarily halth wespect to performance under
attack. The performance characteristics of the local staehine replication protocol running
within a site determine the timing properties of the resagltiogical machine. Given that one has
selected to deploy a particular wide-area state machidgagpn protocol, P, not all local state
machine replication protocols will be able to provide thritig and performance properties that
needs to make a performance guarantee (or, potentiallyetoovide liveness) when the system is
under attack. For example, i requires certain messages to be delivered within a boundedrat
of time, then using a local protocol that only guarantees inessages will be eventually ordered
will not provide the necessary degree of timeliness. Putremavay, it is important to deploy local
protocols that, when the network is sufficiently stable vite the “right kind” of performance with
respect to the needs of the wide-area protocol.

Assuming the right set of local and global replication poois can be chosen, the main technical
challenge that must be overcome in building our attacKieesiarchitecture is to provide efficient
and attack-resilient communication between the wide-aies. Since the physical machines in
each site run a local state machine replication protocel; nocess the same global protocol events
in the same order. Thus, when the logical machine generatessaage to be sent in the global
protocol, any of the physical machines within the site isadd of sending it on the wide area. We

must define dogical link protocolto determine which local physical machine or machines send,

95

what they send, and to which remote physical machine or mastthey send it. We present three
logical link protocols, each with different performanceaddicteristics during fault-free executions
and in the face of Byzantine faults.

Our attack-resilient architecture relies solely on the@cness of the servers for safety. Specif-
ically, the system maintains safety as long as enough daegeeers in enough sites remain correct
(we define this notion formally in Section 5.1). At the sammdj the system can optionally be
configured to make use of two types of additional componenisprove performance. The first
is a broadcast Ethernet hub, and the second is a simple desjiable of counting and sending
messages. In our system, the failure (Byzantine or beni§ihese additional components can
impact performance or liveness negatively, but any numbéhe additional components can be
compromised without violating safety.

Other systems take a different approach, adopting a hyhiidré model in which additional
components are assumed not to be compromised or are assorakeays exhibit strong timing
guarantees; other components of the system can be Byzamithenay offer weaker timing guar-
antees. The benefit of making such a strong assumption aiewdditional components is that
replication systems that do so (e.g., [36, 55, 78]) tend teitmpler and can achieve higher perfor-
mance than those that do not. It is also easier to scale theaubse the core agreement protocol
(run among the additional components) can be more efficéanit,assumes a weaker fault model.
The trade-off is that such systems can typically lose safdtyn the assumptions made about even
a single additional component are violated.

To distinguish between the two patterns of use for additiocoenponents, we refer to compo-
nents whose compromise cannot lead to safety violatiorepsndable componeni@nd compo-
nents which are assumed not to be compromiseiuased componentsTrusted components are

sometimes referred to amrmholeqd81]. Both dependable and trusted components should be care

96

fully developed, and their correctness should be valid&tetthe extent possible. They may also
be deployed using techniques that make it hard for an attdokalter or bypass them, possibly

including special hardware. The design, verification, aaplayment of these components can be
an expensive process whose cost grows rapidly as the cotypdéxhe component increases. For

this reason, these types of components typically do a vea)l fmt useful job.

In the remainder of this chapter, we first present the syst@adeinassumed by the attack-
resilient architecture. The model is a straightforwardeagion of the one used by Prime (see
Section 4.1). Section 5.2 provides background on the hiki@al, customizable architecture on
which the new architecture is based. Section 5.3 descrilnespproach to making the pieces of the
customizable architecture attack resilient and hightight key design challenges that arise when
trying to integrate the pieces into a unified system. Sedidraddresses the important problem of
how to achieve efficient and attack-resilient inter-sitenatunication, describing three new logical
link protocols. Section 5.5 presents the complete attasKkient architecture and discusses several
practical issues related to its implementation. Sectiérspecifies the safety, liveness, and perfor-
mance properties of the system. Section 5.7 evaluates tf@pance of a prototype implemen-
tation of the system, focusing on the implications of dejigythe different logical link protocols.
Finally, Section 5.8 concludes the chapter by summarizilegcontributions of the attack-resilient

architecture.

5.1 System Model

We consider a system witlv sites, denoteds; through Sy, distributed across a wide-area
network. Each siteS;, has3f; + 1 servers. IfS; is a correct site, then no more th#nof its servers
are faulty; ifS; is a Byzantine site, then any number of its servers may be/fanbdeling situations

where entire sites can be compromised. We dehads an upper bound on the number of Byzantine

97

sites and assume that the total number of sites is eqddl to 1. For simplicity, we assume in what
follows that all sites tolerate the same number of fauftsand have the same number of servers,
3f + 1. The solutions presented in this chapter can be extendéx tmore general setting where
sites may have different numbers of servers.

We assume an asynchronous network. The safety properttas aftack-resilient architecture
hold in all executions in whichF' or fewer sites are Byzantine. The liveness and performance
properties of the system are only guaranteed to hold in ssib$¢he executions that satisfy certain
constraints on message delay.

We allow each correct processor to designate the traffic dagach message that it sends as
one of: LOCAL-TIMELY, LOCAL-BOUNDED, GLOBAL-TIMELY, and GLOBAL-BOUNDED. Mes-
sages sent in traffic classes with thecAL prefix are sent between servers in the same site, while
messages sent in traffic classes with thedBAL prefix are sent between servers in different sites.
Note that all four of these traffic classes are used in the ldexesl of the hierarchy (i.e., among
physical machines).

For some of our analysis, we will also be referring to two &ddal virtual traffic classes
VIRTUAL -TIMELY and VIRTUAL-BOUNDED. Intuitively, virtual traffic classes carry (inter-site)
messages between logical machines. However, the virtatficticlasses are abstract—they are
concepts supported by the protocols running in the lowesllef/the hierarchy. Thus, although we
say that a logical machine “sends” wide-area messages aighdées them as eith®@RTUAL -
TIMELY Or VIRTUAL -BOUNDED, wide-area messages are physically sent on the networkédpron
more physical machines, and the messages are physicaiigdcar either thesLOBAL-TIMELY or
GLOBAL-BOUNDED traffic class. As described in Section 5.6, the timing progsrof the virtual
traffic classes depend on the timing properties of all coreptsof the system that can delay the

(conceptual) sending or receiving of a message by a logieahine. We will be interested in ana-

98

lyzing the timing properties of the virtual traffic classasrder to prove that the system as a whole
meets certain performance and liveness properties.

All messages sent between servers, and between clientenratss are digitally signed. We
assume that digital signatures are unforgeable withoulvikagpa processor’s private key. We use
an(f + 1, 3f + 1) threshold digital signature scheme (see Section 2.1) foerg¢ing threshold
signatures on wide-area messages. Each site has a publemkkegach server within a site is given
a secret share that can be used to generate partial sighatWeeassume threshold signatures are
unforgeable without knowing the secret shares of 1 servers within a site. We also employ a
collision-resistant cryptographic hash function for caripy message digests.

A client submits an operation (query or update) to the sydtgnsending it to one or more
servers, which may be in the client’s local site or in a rensite. Operations submitted to the
local site are sent in theoCAL-BOUNDED traffic class, while operations submitted to remote sites
are sent in thesLOBAL-BOUNDED traffic class. Each client operation is signed. As in the rhode
assumed by Prime, there exists a functiGhent, known to all processors, that maps each operation
to a single client, and an operatian,is valid if it was signed by the client with identifieZlient(o).
Correct clients wait for the reply to their current operatioefore submitting the next operation.
Textually identical operations are considered multipitances of the same operation. Each server
produces a sequence of operatiofig, o, ...}, asits output. The safety, liveness, and performance
properties of the system depend on which state machineatiplh protocols are deployed in each
level of the hierarchy, so we defer a discussion of thesegrtigs until Section 5.6.

In Section 5.4 we present three logical link protocols feeirsite communication, two of which
rely on dependable componentdn the hub-based logical link (see Section 5.4.2), eaahisit
equipped with a dependable broadcast hub, through whidmiimg and outgoing wide-area traffic

passes. In the dependable forwarder-based logical lirk $&etion 5.4.3), each site is equipped

99

with a dependable forwarding device that sends and recait@ssite messages on behalf of the
site. Each dependable forwarder shares a distinct synuvieyi with each other dependable for-
warder and with each local server for computing messageeatitiation codes. The failure (crash
or compromise) of the dependable components can impadrpehce and liveness but cannot lead

to safety violations.

5.2 Background: A Customizable Replication Architecture

Our attack-resilient architecture builds on our previousrkvon wide-area intrusion-tolerant
replication [16,19], which demonstrated the performanmeefit of using hierarchy to reduce wide-
area message complexity. The new architecture can be thob@igis hardening the customizable
architecture presented in [16] against performance ataikis section provides background on the
customizable architecture.

The physical machines in each site cooperate to implemésdieal machinethat is capable
of processing global protocol events (i.e., message riecephd timeout events) just as a physical
machine would. Each logical machine acts as a single paatitiin a global, wide-area replication
protocol that runs among the logical machines. Intuitivaljogical machine executes the code that
would implement a single server in the global replicatioatpcol if the protocol were run in a flat
(i.e., non-hierarchical) architecture.

In order to support the abstraction of a logical machine, ghgsical machines in each site
run a local state machine replication protocol to totallgesrany event that would change the
state of the logical machine. Specifically, the local staéeinme replication protocol orders events
corresponding to either the reception of a global protocessage or the firing of a global protocol
timeout by the logical machine. A physical machine processlobal protocol event when it

locally executedt, which occurs after the machine learns of the event'slloodering and after it

100

has locally executed all previous events in the local or@#nce all physical machines in the site
locally execute the same global events in the same ordetpgiieal machine processes a single
stream of global protocol events.

When the logical machine processes an event, it may geregitebal protocol message that
should be sent on the wide area. For example, the logical imachight generate an acknowl-
edgement every time it processes a particular messagemaglit generate a status message when
it processes a timeout event (analogous to the firing of adimen a single physical machine).
Before the message can be sent on the wide area, the physichlnas implementing the logical
machine run a protocol to generate a threshold signaturbeomessage. The threshold signature
proves that at least one correct physical machine in theasgients to the content of the associated
message, preventing faulty machines in correct sites fremdiag spurious messages that purport
to be from the logical machine. Once a message is threshp@d; it can be sent to its destination
sites according to the communication patterns of the glodyalication protocol; we say that the
message is sent ovetagical link that exists between each pair of sites. Of course, the Ibliéa
must be implemented by actions taken by physical machindiseinower level of the hierarchy,

involving real network interfaces. These actions are tpéitof Section 5.4.

5.3 Building an Attack-Resilient Architecture

In this section we describe our approach to making the cugtdie architecture presented in
Section 5.2 attack resilient. There are four pieces of tlstommizable architecture: the global state
machine replication protocol, the local state machineicappbn protocol, the threshold signature
protocol, and the logical links that connect the logical maes. It is clear that in order for the
system as a whole to perform well under attack, each pieceépeu®rm well under attack. Section

5.3.1 describes how each piece can be hardened to resmtparice failures. However, converting

101

the customizable architecture into a unified, attackiegtilsystem is not as simple as making each
piece perform well in isolation. Section 5.3.2 describes &gy design dependencies that exist
among the pieces of the architecture. These dependenqiestinvhich protocols can be deployed
together and what type of performance each protocol musbiexiBection 5.3.3 discusses which

state machine replication protocols we chose to deploy fmroplementation.

5.3.1 Making Each Piece Attack Resilient

In order to resist performance failures in the global andllstate machine replication protocols,
the system should deploy, in each level of the hierarchy,tgftstocol that provides a meaningful
performance guarantee when some of the servers are Byeariiife know of two flat, attack-
resilient state machine replication protocols that do mb¢ pn trusted components: Prime and
Aardvark [34]. As described in Chapter 4, Prime bounds ttenkzy of operations submitted to, and
subsequently introduced by, correct participants. Aatdgamarantees that over sufficiently long
periods, system throughput will be within a constant factowhat it would be with only correct
participants, provided there are enough operations toaatthe system.

In environments where the risk of total site compromise ialsrthe global state machine repli-
cation protocol can be benign fault tolerant rather thanaByine fault tolerant and attack resilient;
this was the approach taken in Steward [18, 19]. This regulésmore efficient protocol that re-
quires only two wide-area crossings, and it also reducestingber of required local orderings.
Note that the logical link protocol must still be made attagegilient in order to avoid performance
degradation, even when a benign fault-tolerant globaiaepbn protocol is used.

To resist performance failures in the threshold signatuotopol, we use a protocol in which
partial signatures aneerifiable meaning they carry proofs of correctness that can be useéet¢at

(and subsequently blacklist) faulty servers that subrvilid partial signatures. This allows sub-

102

sequent messages from blacklisted servers to be ignomgemimg faulty servers from repeatedly
disrupting threshold signature generation. A represertaixample of such a scheme (and the one
used in our implementation) is Shoup’s threshold RSA signeascheme [76].

Finally, making the logical link protocol attack resiligatcritical to achieving high performance

under attack. We discuss this topic in detail in Section 5.4.

5.3.2 Design Dependencies Among the Pieces

The choice of which global state machine replication prokis deployed imposes certain per-
formance requirements on each of the other pieces of théeatre. Specifically, the other pieces
must exhibit performance characteristics that allow therig assumptions of the global protocol to
be met. The global protocol makes timing assumptions alieutogical machine processing time
and the inter-site message delay. We discuss each of thaga.in

Logical Machine Processing Time: The logical machine processing time is directly related
to the performance of the local state machine replicatiariogol. Just as individual servers are
expected to process events within some delay in a flat aothite (when the system is stable),
logical machines are expected to process events within slatag in the hierarchical architecture.
Intuitively, given a global replication protocal, the processing time of a logical machine running
P in the hierarchical architecture must meet the same paddllity requirements as those met by a
single physical machine running in a flat architecture.

Inter-Site Message Delay:In a flat architecture, the message delay between two seivers
the sum of the delay from the network itself and the procgstime of the receiving server. In
the hierarchical architecture, the message delay betweetogical machines is the sum of four
component delays: the delay from the threshold signatw®eol, the delay from the logical link

protocol, the delay from the network itself, and the protessime of the logical machine. Thus,

103

besides requiring a certain degree of network stabilitg, HFerarchical architecture requires the
performance of the threshold signature, logical link, axwl state machine replication protocols to

be predictable enough to support the timing assumptiortseafaffic classes of the global protocol.

5.3.3 Choosing the State Machine Replication Protocols

We now discuss which state machine replication protocolshese to deploy in our implemen-
tation, in light of the dependencies described above. Asdhdhe threshold signature and logical
link protocols must also exhibit specific timing properti®¥e defer a discussion of this issue until
Section 5.6, where we formally define the timing requireragr@eded for the system’s liveness and
performance properties to hold.

While either Prime or Aardvark can be used as the global statehine replication protocol,
we chose to use Prime in our implementation. Each patrtitipaRrime disseminates operations
from its own clients, and thus the protocol distributes #ektof disseminating operations across all
participants. In contrast, Aardvark requires the primargisseminate all client operations. When
the distribution of operations submitted to each site iatiedly balanced, this allows Prime to
achieve a higher peak throughput than Aardvark: while Aarids throughput is bandwidth limited
to the number of operations that can be disseminated by theapyr per second, Prime can use
more aggregate bandwidth for operation disseminationrbdfecoming bandwidth limited. This
is important because bandwidth is likely to be the perfortedmottieneck in wide-area replication
systems. On the other hand, we note that Aardvark may beex liethan Prime in environments
with stringent average latency requirements where theaffltoad is relatively light, since Aardvark
has fewer protocol rounds and requires fewer wide-aresicgs.

Having selected Prime as our global protocol, the locakstachine replication protocol must

be chosen such that the resulting logical machine has tli@rpemce and timing properties needed

104

to meet Prime’s timing assumptions. In a flat architectune, hinimum level of synchrony that

Prime requires from servers in order to me&iUNDED-DELAY is that they be able to process
events within a bounded time. Bounded processing time idate#r two reasons. First, to bound
the latency of a client operation, servers must be able togssoclient operations in bounded time.
Second, bounded processing time enables the timing reqeiris of Prime’s traffic classes to be
met! The same reasoning can be applied to the hierarchical ectinie, and thus the local protocol
must be able to bound the time required to locally order aajlplotocol event.

The ability to bound the local ordering time is precisely gneperty that a Prime-based logical
machine provides when (1) all events requiring boundedgssing time are introduced for local
ordering by at least one correct server, (2) the load offeréige logical machine does not exceed the
maximum throughput of the local instance of Prime that imp@ats the logical machine, and (3) the
network is stable. In our attack-resilient architectune first condition is guaranteed by the way in
which servers introduce events for local ordering. We érplehy the second and third conditions
can be made to hold in Section 5.6. Since Prime can provideethéred degree of timeliness even
when some of the servers are Byzantine, we chose to use irdscali state machine replication
protocol.

It is interesting to note that despite the fact that Aardwadkes a strong throughput guarantee
when the system is under attack, the type of guarantee thadkes does not support the timing
properties of the global instance of Prime. Aardvark gu@es a meaningful throughput over
sufficiently long periods of time. However, it does not gurea thatindividual operationsare
ordered in a bounded time. In fact, operations submittetchguhe grace period that begins a view
with a faulty primary can take several seconds to be ordesiade the system may need to rotate

through several faulty primaries before finding a correat.oifhe result is that even though the

! As explained in Section 5.6, meeting the timing requiremefthevIRTUAL -TIMELY traffic class (analogous to the
TIMELY traffic class in a flat system) also involves choosing a sldtitency variability constant.

105

average logical machine processing time of an Aardvarkdbésgical machine is likely to be low,
Aardvark does not support bounded logical machine proogs$sne. Note that the local ordering of
individual operations may also be delayed in Prime whendballleader is faulty. However, the key
difference is that Prime will eventually settle on leadérat tdo not cause delay or introduce only a
small bounded delay, while Aardvark will perpetually benarable to periods in which latency is

temporarily increased, potentially by many seconds.

5.4 Attack-Resilient Logical Links

The physical machines within a site construct and thressigid global protocol messages after
locally executing global protocol events. This raises thesgion of how to pass the threshold-signed
message from the sending logical machine to a destinatgicdbmachine. Each correct server that
generates the threshold-signed message is capable aigédsi any server in the destination site.
We must define #ogical link protocolto dictate which local server or servers send, what they,send
and to which server or servers they send it.

The challenge in designing a logical link protocol is to sitaneously achieve attack resilience
and efficiency. Existing approaches used in logical machinkitectures (e.g., [16,27,60]) achieve
one but not the other. For example fift- 1 physical machines in the sending site each transmit the
threshold-signed messagefto- 1 physical machines in the receiving site, then at least omecio
machine in the receiving site is guaranteed to receive a cbplye message—at least one of the
senders is correct, and at least one of that correct mashieegivers is correct. Such a logical link
is attack resilient, because faulty machines cannot pteveressage from being successfully trans-
mitted in a timely manner, but the protocol pays a high costimke-area bandwidth, transmitting
each message up (¢ + 1)? times.

Due to the overhead of sending messages redundantly, otioysewnork [16] adopted a dif-

106

ferent approach, called the BLink protocol, in which the sibgl machines in each site elect one
machine to act as site forwarder charged with the responsibility of sending messages oalbeh
of the site. The physical machines also choose the identifithhe machine in the receiving site
with which the forwarder should communicate. The non-fodeas use timeouts, coupled with
acknowledgements from the receiving site, to monitor threvéoder and ensure that it passes mes-
sages at some minimal rate. If the current (forwarder, vecgpair is deemed faulty, a new pair is
elected.

BLink is efficient but not attack resilient: the forwarderdareceiver can collude to avoid being
replaced as long as they ensure that the forwarder collekt®wledgements just before the timeout
expires, resulting in much lower throughput and highemegeon the logical link than correct ma-
chines would provide. Using a more aggressive approach titanimg (by attempting to determine
how fast the forwarder should be sending messages) reqdditonal timing and bandwidth as-
sumptions which may be difficult to realize in practice. Nittat BLink's performance degrades in
the presence of Byzantine faults because the protocol wksdansure liveness, not to achieve at-
tack resilience. Liveness requires the logical link to madeimal progress—and, for this purpose,
a coarse-grained timeout works well. BLink obtains higHtfénee performance by depending on
the site forwarder to pass messages, but giving a singleinettis power is precisely what makes
the protocol vulnerable to performance degradation by &inak forwarder.

In the remainder of this section, we present and compare tiee logical link protocols. The
design of the three protocols brings to light a trade-ofiMeetn the strength of one’s assumptions
and the resulting performance that one can achieve, withgatocol representing a different point

in the design space. All three protocols share the same:goals

Attack Resilience. The logical link protocol should limit or remove the powertbé adversary to

cause performance degradation, without unduly sacrifitanli-free performance.

107

Modularity. It should be possible to substitute one logical link protdopanother without impact-
ing the correctness of the global replication protocolpwihg deployment flexibility based
on what system components one wishes to depend on. Cornyeteelogical link protocol

should be generic enough so that it can be used with diffevield-area replication protocols.

Simplicity. Given the inherent complexity of intrusion-tolerant reption protocols, the logical

link protocols should be easy to reason about and straigtefo to implement.

Section 5.4.1 presents a logical link that does not requepeddable components and that era-
sure encodes outgoing messages to reduce the cost of seadingdantly. Section 5.4.2 shows
how augmenting the erasure encoding approach with a brsldah can improve performance in
fault-free and under-attack executions. Section 5.4.8riess how relying on a dependable for-
warder can yield an optimal use of wide-area bandwidth withaking it easier for an attacker
to cause inconsistency. Section 5.4.4 describes the confmatures of the logical link protocols
and discusses some general principles for intrusionantesystem design that can be gleaned from

them.

5.4.1 Erasure Encoding-Based Logical Link

We first present a simple, software-based logical link grotto In what follows, we consider
how a sending siteS, passes a threshold-signed message to a receivingzsitd/e definevirtual
link 7 as the ordered palrs;, r;), wheres; andr; refer to the physical machines with identifier
in sitesS and R, respectively. We cal}; andr; peers Communication over the logical link takes
place between peers using the se$ 6f+ 1 virtual links.

Instead of having each physical machineSitransmit the full threshold-signed message to its
peer inR, the physical machines first encode the message using a Maxidistance Separable

erasure-resilient coding scheme (see Section 2.2). Sgaifilettingt be the total number of bits

108

~
Message Server 1 +—/>
Server 2 ——)—»
Encode
> o)

e =

Sending Site Receiving Site

Figure 5.1: An example erasure encoding-based logical Viitk f = 1.

in a threshold-signed message, we uséfan 1,3f + 1,t/(f + 1), f + 1) MDS code. Thus, the
threshold-signed message is divided ifito 1 parts, eaclil/f +1) the size of the original message;
the message is encoded it + 1 parts, eaclil/f + 1) the size of the original message; and any
f + 1 parts can be decoded to recover the original message.

We number the erasure encoded partisrough3 f 4+ 1. To transmit an encoded message across
the logical link, machiné in site S sends part to its peer on the corresponding virtual link. More
formally, machine sends afERASURE erasureSegp, part,), message, where erasureseqgs
a sequence number incremented each timeSsgends a message to sie The erasure encoded
parts are locally ordered iR as they arrive. When a physical machineinocally executes + 1
parts, it decodes them to recover the original messagehvdain then be processed by the logical
machine. The procedure is depicted in Figure 5.1.

The erasure encoding-based logical link allows messagée fmassed correctly and without
delay. To understand why, observe that if béttand R are correct sites, then since at mgst
physical machines can be faulty in each site, at I¢astl of the3f + 1 virtual links will have two
correct peers (see Figure 5.2); we call such virtual liodsect Erasure encoded parts passed on
correct virtual links cannot be dropped or delayed by famigchines. Therefore, when a message
is encoded, at leagt+ 1 correctly generated parts will be sent in a timely mannersutsequently

received and introduced for local ordering i Since f + 1 parts are sufficient to decode, the

109

fL
f

|

Figure 5.2: Intuition behind the correctness of the erasmeoding-based logical link. In this
example,f = 2. The adversary can block at mogtvirtual links by corrupting servers in the
sending site angdf virtual links by corrupting servers in the receiving site.

N o oA wWwN
N o A WN

physical machines ik will be able to decode successfully.

As noted above, each erasure encoded part(i§ + 1) the size of the original message. Since
each of the8f + 1 servers inS sends a part, the aggregate bandwidth overhead of the lidigica
is approximately(3f + 1)(1/f + 1), which approaches 3 gsincreases to infinity. The bandwidth
overhead is slightly greater than this becauserssUREmMessage containing partarries a digital
signature from serverin site.S. Therefore, in the worst casgf + 1 signatures must be sent for each
original message, compared to one if a single server wedrggon behalf of the site. In practice,
the signature overhead can be amortized over several agtgassages by packing erasure encoded
parts for several messages into a single digitally-sigriegipal message.

The erasure encoding approach also has a higher compuafatimst than an approach in which
a single server sends messages on behalf of the site. Themgcste locally orders the incoming
parts as they arrive, meaning that the reception of a mesgafe logical machine requires the local
ordering of up to3f + 1 events. Section 5.5 describes implementation optimizatibat can be
used to mitigate this computational overhead. When theSmiz@ations are used, the performance
of the system becomes bandwidth limited, so it is desirabpay the cost of additional computation

in order to use wide-area bandwidth more efficiently.

110

Blacklisting Servers that Send Invalid Parts

The preceding discussion assumed that erasure encodedvemet generated correctly. How-
ever, as in Prime’s Reconciliation sub-protocol (see $acti.3.4), faulty servers may generate
invalid parts in an attempt to disrupt the decoding procédslike partial signatures, erasure en-
coded parts are not individually verifiable: they do not gqmoofs that they were created correctly.
If a server attempts to decode a message usimgl parts but obtains an invalid message (i.e., one
whose threshold signature does not verify correctly), fiinca, without further information, deter-
mine which (if any) of the parts are invalid. There are twogilie cases: (1) one or more of the
parts are invalid, or (2) all of the parts are valid, but the $hat sent the message is faulty and
encoded a message with an invalid threshold signature. iEtleserver waits for additional parts
to arrive, there is no efficient way for it to find a set pft+ 1 valid parts out of a larger set. With-
out a mechanism for determining which parts are faulty, onalis servers can repeatedly cause the
correct servers to expend computational resources (yeexbaustive search) to determine which
parts should be used in the decoding. If the site that sentib&sage is indeed faulty, then no
combination of parts may decode to a valid message.

To overcome these difficulties, we augment the basic eramureding scheme with a black-
listing mechanism that can be used to prevent faulty sefvens repeatedly causing the message
decoding to fail by submitting invalid parts. We employ bsite-level and server-level blacklists.
When a site is blacklisted, subsequent messages from adirsein that site are ignored. When a
server is blacklisted, only messages originating from flamer are ignored; messages from non-
blacklisted servers in the same site continue to be prodesse

In the description that follows, we consider a message bs@mg between two sites, and R,

2The fact that no combination of parts may decode to a valicsaggs makes the problem more severe than in Prime’s
Reconciliation sub-protocol, where orfyp-REQUESTMessages with valid digital signatures were encoded.

111

whereS sends an erasure encoded messadettmat results in a failed decoding. The blacklisting

protocol guarantees that:

e If both S and R are correct, then the correct serversRnwill blacklist a faulty server in
S after the server generates just one invalid erasure enquaigdfrom then on, that faulty

server will not be able to disrupt the decoding at any corsecter inR.

e If Sis faulty andR is correct, then each faulty server$hcan disrupt the decoding at most
once in each receiving site before it is blacklisted by the correct serversin|f S fails to
take part in the blacklisting protocol, messages from altsoervers will be ignored by the
correct servers ik, except for those messages that would implicate eithas a whole or

one or more faulty servers.

The intuition behind the blacklisting protocol is that avggrin site R can deduce which party is
at fault when a decoding fails (i.e., one or more servers or site S as a whole) if it has access to
the original message that was encoded. Each sernsrcan generate the correct parts that should
have been generated by the servers iand compare them to the parts it received and used in the
decoding. There are two possible cases. If all of the paetsarrect, then at leagt+ 1 servers in
site S encoded a message with an invalid threshold signaturee Sicorrect server only encodes a
message if it has a valid threshold signature, this indictitat siteS is faulty. If one or more parts
are invalid, then because each part is digitally signed ®naes in.S, the server inR can determine
exactly which servers i¥ submitted the invalid parts and blacklist them.

Pseudocode for the blacklisting protocol is presented goAthm 4. The code is structured as a
set of events, each occurring when a physical machine Joeaicutes a particular global protocol
event. Recall that all correct servers locally execute #maes events in the same order. Thus,

although the code is presented from the perspective of afigpgerver: within a site, all correct

112

servers in that site execute the code, and they executehié aime logical point in time.

When a servel, in site R executes a failed decoding on a message sent from§ sitgenerates
an (INQUIRY, inquirySeg; s, decodedSet, erasuregeg R) message, where inquirySeg is a
sequence number incremented each timeBitends anNQUIRY message to sitd, decodedSet
is the set off + 1 parts that were used in the failed decoding, and erasuggSexthe sequence
number assigned by siteto the erasure encoded message for which the decoding fAilgorithm
4, line 5). Once the message is threshold signed, sérvesite R sends it to server in site S
(line 6). Note that theNQUIRY message is not erasure encoded, preventing a circular di=pgn
that could occur if theNQUIRY message itself were not properly encoded (potentiallyingusn
inquiry for theINQUIRY message). Serveérlso stops handling all messages frénexcept for the
next expectedNQUIRY message or theNQUIRY-RESPONSEcorresponding to the current inquiry
(see below).

When the servers i§' locally execute siteR’s INQUIRY message (Algorithm 4, line 9), they
first examine the set of encoded parts to determine if anyeoptrts are actually invalid. If none
of the parts is invalid, then sit® is faulty, and the correct servers in sieblacklist R and stop all
communication with it (lines 10-11). This prevents fauliies from generating spuriousQUIRY
messages. If one or more parts are invalid, then$igenerates amQUIRY-RESPONSEmMessage,
which contains the full message that was originally encqded 15). The combination of the-
QUIRY message and it?iQUIRY-RESPONSEproves that one or more serversSnare faulty and
discloses the identity of the faulty servers. Note thatti §i is faulty, it may never generate an
INQUIRY-RESPONSEMessage at all. Although the correct servers inRiteill not be able to black-
list any servers fron%' in this case, the correct servers will only handle the negeetedNQUIRY
or INQUIRY-RESPONSEfrom S; all other messages will be dropped before being introddoed

local ordering. The correct serversihcontinue to processiQUIRY messages to avoid a deadlock

113

scenario in whichS and R are correct sites, each sendsigQUIRY to the other, but neither will
ever send amMQUIRY-RESPONSEMessage.

Upon locally executing theNQUIRY-RESPONSEmMessage from sitd, the servers in sit& use
the full message to determine which of the decoded parts iwesd (Algorithm 4, lines 19-20).

If none of the parts is invalid, then site must have encoded a message with an invalid threshold
signature. Therefore, sit€ is faulty and can be blacklisted by the servers in &it@lines 21-22).
This prevents faulty sites from generating spuricuQUIRY-RESPONSEmMessages. Otherwise, if
one or more parts are invalid, the correct servers inRitdacklist those servers whose parts were
invalid and resume handling messages from Sitdf the number of servers blacklisted from site
S exceedsf, then siteS is faulty and can be blacklisted (as a whole) by the corretess in R
(lines 26-27).

We impose one additional constraint on the processing ofN@wIRY message to prevent
servers in a faulty receiving site from wasting the resosi@ecorrect servers in a correct send-
ing site. Suppose sitg is correct but has a faulty server, that has sent invalid parts for multiple
messages, and suppose ditas faulty. Site R may generate multipleN\QUIRY messages, each
implying thatp is faulty. This cause$ to use up resources unnecessarily in order to generate
INQUIRY-RESPONSEmMessages. For this reason, sitavill only respond to anNQUIRY message if
(2) it is for the next expected inquiry sequence number figpand (2) it implicates a new faulty
server. A correct site will not send anQUIRY message with inquiry sequence number 1 until
it has processed anQUIRY-RESPONSEmMessage for sequence numbeiTherefore, if siteS re-
ceives anNQUIRY message that only implicates servers that have alreadyilmdicated by prior

INQUIRY messages, then sifeis faulty and can be blacklisted by the correct serverS.in

114

Algorithm 4 Blacklisting Protocol for the Attack-Resilient Architece

1: Upon server i in sitek executed a failed decoding for message from Site

2:

3
4
5:
6:
7
8
9

16:
17:
18:
: Upon server i in site? executing(INQUIRY-RESPONSE inquirySeg; s, erasureSegp,

19

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

inquirySecg s++

decodedSet- set of f + 1 parts used in failed decoding

erasureSegr < sequence number of message in question (generat&yl by

Inquiry < (INQUIRY, inquirySeg; s, decodedSet, erasuregeg R)

Initiate sending of Inquiry to server i in sitg

Stop handling messages frafrexcept next expectadlQUIRY andINQUIRY-RESPONSE

: Upon server i in sited executing(INQUIRY, inquirySeg; s, decodedSet, erasuregeg R):
10:
11:
12:
13:
14:
15:

if all parts in decodedSet are vatlteen
SiteBlacklist— SiteBlacklistU {R}

else
invalidSet« identifiers of local servers whose parts were invalid
fullMessage— original message encoded with sequence number erasurgSeq
InquiryResponse— (INQUIRY-RESPONSE inquirySeg; g, erasureSegp,

fullMessage, $

Initiate sending of InquiryResponse to server i in gite
ServerBlacklist[Sk— ServerBlacklist[SlU invalidSet

fullMessage, B
expectedSet- computed parts from fullMessage
if all parts from expectedSet match parts in decodetteet
SiteBlacklist— SiteBlacklistu {S}
else
invalidSet« identifiers of servers frony whose parts were invalid in decodedSet
ServerBlacklist[Sk— ServerBlacklist[SlU invalidSet
if |ServerBlacklist[S] > f then
SiteBlacklist— SiteBlacklistu {S}
else
Resume handling messages from $ite

115

Internet

LAN Switch

Sending Site Receiving Site

Figure 5.3: Network configuration of the hub-based logiz#.|
5.4.2 Hub-Based Logical Link

In this section we describe how we can improve upon the baaguee encoding scheme pre-
sented in Section 5.4.1 by placing the servers within a sita broadcast Ethernet hbFigure
5.3 shows the network configuration within and between twdevarea sites when the hub-based
logical link is deployed. The servers in each site have twwvokk interfaces. The first interface
connects each server to a LAN switch and is used for inteaegimmunication. The second inter-
face connects each server to a site hub and is used for sesmtihgeceiving wide-area messages.
This interface is configured to operate in promiscuous madiat the server receives a copy of
any message passing through the hub.

The hub-based implementation of the logical link explofte following two properties of a

broadcast hub:

Uniform Reception: Any incoming wide-area message received by one local sevilebe re-

ceived by all other local servers.

Uniform Overhearing: Any outgoing wide-area message sent by a local server witebeived

by all local servers.

3Some newer devices are called “hubs” but actually perfommiag by examining source MAC addresses to map
addresses to ports, subsequently forwarding frames ortlyeio intended destination. We explicitly refer to broagica
hubs that do not employ this optimization.

116

When integrated with the basic erasure encoding schemeaddast hub yields several benefits,
which we now describe. The Uniform Reception property ieplthat as long as the physical
machine that sends an erasure encoded part is correct, thkt @brrect physical machines in the
receiving site will receive the part. This means that anjyuair link whose sender is correct will
behave like a correct virtual link, even if the peer is faufiyovided at least one correct physical
machine in the receiving site assumes responsibility fimodhucing the part for local ordering. Since
there are at leagtf + 1 correct servers in the sending site, we can ugfat+ 1,3f + 1,¢/(2f +
1),2f + 1) MDS code, where is the number of bits in the original message. Thus, eaclueras
encoded part id/(2f + 1) the size of the original message, and &rfy+ 1 of the3f + 1 parts
are sufficient to decode. Using this modified coding imprahesworst-case aggregate bandwidth
overhead of the logical link to approximatelyf + 1)(1/(2f + 1)), which approaches an overhead
factor of 1.5 agf tends towards infinity, compared to an overhead factor oftB thie basic erasure
encoding scheme.

The Uniform Overhearing property enables local serversdoitar which erasure encoded parts
were already sent through the hub. If enough parts weredsireent, a local server need not send
its own part, saving wide-area bandwidth. Of course, sontkeoparts that the server overhears on
the hub may be faulty, and so the blacklisting protocol dbedrin Section 5.4.1 remains a critical
component of the logical link.

In more detail, we associate with each threshold-signedagestwo disjoint sets of servers;
andGy, where|G1| = 2f + 1 and|G2| = f. The sets are chosen dynamically as a function of the
server identifiers and the sequence number associatedheitihteshold-signed message. When a
server encodes a message with sequence nugabgit decides to send its part based on which set
itis in. If servers is in G, then it sends its erasure encoded part to its peer immadiéteerver

s is G, then it schedules the sending of its part after a local tuh@eriod. During the timeout

117

period s monitors theERASURE messages that arrive on the hub. Sewr/epunts the number of
validly-signedERASURE messages, from distinct local servers and contairiag that it receives.
If, before the timeout expires, the count reacB¢st 1, thens cancels the transmission of its part.
If the timeout expires, ther sends its part to its peer. Note that upftof the ERASUREmMessages
that s overhears may contain invalid parts. If any of thg+ 1 parts are invalid, the blacklisting
protocol will be initiated by the receiving site, ensuritigt it eventually recovers the full message
(provided neither the sending site nor the receiving sigyzantine).

When all of the members @f; are correct and the timeout values are set correctly, gxaft1
erasure encoded parts will be sent, edch2f + 1)) the size of the message. This yields a best-
case aggregate bandwidth overhead of approximately 1;ahdwidth overhead factor is slightly
greater than 1 because eaeRASURE message carries a digital signature. In the worst case, all
3f + 1 erasure encoded parts will be sent, yielding a bandwidthheasl factor of approximately
1.5. The bandwidth overhead realized in practice is baseth@mumber of parts actually sent,
which depends on the number of faulty servers and how webitké timing assumptions hold.

There are three potential costs of deploying the hub-bamgddl link: local computation, local
bandwidth usage, and latency. Since incoming wide-areaages are received on the hub, many
servers in the receiving site will receive a copy of eachwemsncoded part. This raises the question
of which server in the receiving site should be responsitMéntroducing a part for local ordering.
The approach we take is to assign a sef af 1 servers to each incoming part, based on the server
identifiers and the sequence number of the associated tidesigned message. This ensures that at
least one correct server will introduce each part for ordgrDuplicate copies of a part are ignored
upon local execution. Thus, while the hub improves widexdrandwidth efficiency, it increases
local computation and bandwidth usage in the receivinglstause it requires more events to be

locally ordered. We believe this trade-off is desirable ildavarea systems, whose performance

118

tends to be limited by wide-area bandwidth constraints.

The other potential cost of the hub-based logical link ishbiglatency compared to the basic
erasure encoding scheme. If any of #fe-1 servers inz; does not send its part when it is supposed
to, then the servers if¥; will wait a local timeout period before transmitting theangs. In the worst
case, thistimeout is incurred in each round of the wide-gretocol. A system administrator whose
focus is on minimizing latency may opt to configure the syssenthat all servers send their parts
immediately, reducing delay under attack but paying a higbst in wide-area bandwidth in fault-
free executions (yielding a fixed overhead of approximateb).

Finally, we note that while broadcast hubs are a natural fiofo architecture, they are some-
what dated pieces of hardware that are often replaced im &hawitches. Our system can achieve
the same benefit as a hub by using any device meeting the bnRexception and Uniform Over-
hearing properties. For example, one can emulate the piegpef a hub by using a collection of
network taps. A network tap is a simple device that passéfcteetween two endpoints as well as

to a monitoring port, allowing a third party to overhear thefftc.

5.4.3 Dependable Forwarder-Based Logical Link

We now consider the implications of equipping each site wittependable forwarde{DF), a
dedicated device that sits between the servers in a sitehantlitle-area network and is responsible
for sending and receiving wide-area messages on the sitbafb The basic premise is as follows.
When the physical machines in a site generate a threshmbégimessage, they send it to the site’s
dependable forwarder. When the DF receiyes 1 copies of the message, from distinct servers,
it sends exactly one copy of the message to the DF at eachakésti site. Upon receiving an
incoming wide-area message, a DF disseminates it to theégathysachines in the local site.

We designed the dependable forwarder to be neutral to the-ariel replication protocol be-

119

ing deployed. This makes it simpler to implement and reasmut(by avoiding protocol-specific
configuration and dependencies), as well as more genemlicable. Each local server communi-
cates with the local DF via TCP, tagging each message withssage authentication code (MAC)
computed using a symmetric key shared by the local servetrenDF. The DFs send messages to
each other using UDP, just as the servers would if they wareroanicating directly. Messages sent
between DFs contain MACs computed using the symmetric kageshby each pair of DFs.

After generating a threshold-signed wide-area messagmah $erver sends it to the DF, pre-
fixing a short header that contains (1) a sequence numbea,d@jtination bitmap, (3) the desired
traffic class, and (4) the message length. The sequence nisv&h€4-bit integer incremented each
time the server wants to send a wide-area message; sin¢adoears generate wide-area messages
in the same order, they will consistently assign sequenaogbets to outgoing messages. The des-
tination bitmap is a short bit string used to indicate to ahétes the message should be sent. The
traffic class field tells the DF in what traffic class the outgpmessage should be sent. The header
is stripped off before the DF sends the message on the wideratwork. Note that the DF does not
need to verify threshold signatures or know anything abloeiicontent of the wide-area messages.

Since it is depended upon to be available, the DF should bkykxp using best practices,
including protecting it from tampering via physical setyiand access control and configuring it to
run only necessary services to reduce its vulnerabilityofonsare-based compromise. A primary-
backup approach can also be used to fail over to a backup Dasatbe primary DF crashes.

As stated in Section 5.1, any number of dependable forwsuckm be compromised without
threatening the consistency of the global replication iserv Thus, we rely on the DFs to run
correct code and remain available, but not at the risk of ntpki easier to violate safety. A site
whose DF has been compromised but in whjtlor fewer servers have been compromised can

only exhibit faults in the time and performance domainst in the value domain. The reason

120

this property holds is that the DF passes threshold-sigrestages, which even a compromised DF
cannot forge. We believe relying on DFs whose compromisa@asause inconsistency, rather than
on devices the system requires to be impenetrable in ordgraiantee safety, is desirable given the
strong consistency semantics required by systems thatstageamachine replication service.

In order to justify the fact that system liveness and perforoe is placed in the hands of the
dependable forwarders, it is important that their impletatton be simple and straightforward so
that the code can be verified for correctness. The DF shostu lz# designed to use a bounded
amount of memory so that faulty servers cannot cause it toulif resources. We now describe
one possible implementation of the dependable forwarder.

Each DF maintains several counters. First, the DF maintisingle countedastSent which
stores the sequence number of the last message sent on difethafsite. The DF also maintains
one counter per local servdastReceived which stores the sequence number of the last message
received from servet. To keep track of which messages (and how many copies of then®
been received from local servers, the DF uses a two-levél tadde. The first level maps message
sequence numbers into a second hash table, which maps iteereessage (including the prefixed
header but excluding the MAC) to glot data structure. The slot contains a single copy of the
message (stored the first time the message is received) lassveeially of the number of copies that
have been received.

Local Message Handling Protocol: Each DF is configured with a parametarpCAL-
THRESHOLD, indicating how many copies of a message must be receivadlércal servers before
the message should be sent on the wide area. This value cat betweenf + 1 and2f + 1
(inclusive). Setting OCAL-THRESHOLDtO f + 1 ensures that at least one correct server wants to
send a message with the given content, while settmgaL-THRESHOLDto 2f + 1 ensures that a

majority of the correct servers want to send the given mesdsgte that the OCAL-THRESHOLD

121

parameter affects how the DF can be used. For example, ifataneter is set t¢g + 1, then the
protocol using the DF must ensure that at lefastl correct servers generate each outgoing message
so that the threshold will be reached. In our system all cotozal servers running Prime generate
each outgoing message, so we could set the parameter asstightal. We set the parameter to
f+1L

The DF expects to receive messages from each local servegiresce number order. WiIN-
DOW parameter dictates how many messages alast8enthe DF will accept from a local server
before it (temporarily) stops reading from the correspngdiession, which will eventually cause
the session to block until enough servers catch up and massages can be sent (i.e., utdstSent
increases). This guarantees that at mmastbow slots will be allocated at any point in time.

Remote Message Handling ProtocolA strategy similar to the one described above must be
used to bound the amount of resources needed by the depefolatdrder to handle messages from
remote sites. The DF maintains a queue per incoming wide{ark; each queue has a bounded
size. Incoming messages are placed in the appropriate gueumust be delivered to the servers
in the local site; an incoming message is discarded if theesponding queue is full. Since faulty
local servers may fail to read the messages sent by the daglerfdrwarder, bounding the memory
requirements of the DF implies that the DF must be able tq#trabout a message (i.e., perform
garbage collection) before it has successfully sent itlioel servers. The DF can be configured to
perform garbage collection when it has successfully writhe message to betwegn-1 and2f +1
local servers, depending on the requirements of the rdijaicarotocol. The former guarantees that
at least one correct local server will receive the messalie the latter guarantees that a majority of
correct servers will receive the message. In our implentienmtawhich uses Prime as the local state
machine replication protocol, we set the garbage collagtirameter tg' + 1, since it is sufficient

for one correct server to introduce each incoming globatigma message for local ordering.

122

Bandwidth Overhead Local Orderings Per Message Delay Per Message

Technique Fault-Free Under-Attack Fault-Free Under-Attack | Fault-Free Under-Attack
Erasure Codes % % 3f+1 3f+1 None None
Hub Optimistic, 3f+1 Local
2f+1,3f+1) ! 2f+1 (f+DEf+D | (F+DEF+1) None Timeout
Hub Immediate, 3 -
(@f + 1.3 +1) = EeaT (f+DBfF+1) | (F+1)BF+1) | None None
Dependable Forwarder 1 1 f+1 f+1 None None

Table 5.1: Summary of Logical Link Protocols.

5.4.4 Discussion

Table 5.1 summarizes the bandwidth, computational, anihgimroperties of the logical link
protocols in fault-free and under-attack executions. éHlub-Optimistic2f + 1, 3f + 1) approach,
amessage is encoded irt$+ 1 parts,2f + 1 of which are required to decod2f + 1 parts are sent
immediately, and the remaininfyparts may be sent after a local timeout. Hub-Immedgatef 1,
3f + 1) is similar to Hub-Optimistic, except that dlf + 1 parts are sent immediately.

As the table shows, the erasure encoding-based logicakkhlbits the same bandwidth over-
head, the same number of local orderings per message, arghiig timing properties in both
fault-free and under-attack executions. If all serverscareect, thersf + 1 erasure encoded parts
are sent, each of which must be locally ordered by the rawgisite, and no delay is added to the
link. If f servers are faulty, theBf + 1 parts may still be sent, but since only+ 1 parts are
required to decode in the receiving site, the faulty serearsmot add delay to the link by delaying
their individual parts.

The dependable forwarder-based logical link also exhthitsssame overhead and timing prop-
erties in fault-free and under-attack executions, whererater-attack execution is one in whi¢h
local servers may be compromised but the site’s dependablafder is not compromised. The
logical link achieves an optimal use of wide-area bandwatltt, like the erasure encoding-based
logical link, cannot be slowed down by faulty servefs+ 1 servers in the receiving site introduce

each message for local ordering.

123

The hub-based logical links demonstrate a trade-off betwle®ughput and latency in fault-free
and under-attack executions. Hub-Optimistic achieves-optimal wide-area bandwidth usage in
fault-free runs, but faulty servers can add one local tineblatency by withholding their erasure
encoded parts. Note that this latency may also be incurridiifree executions when the timeout
value used for monitoring the hub is set too low. In the fénde case, exactl@f + 1 parts are
sent, each of which is introduced for local ordering foy- 1 servers in the receiving site. When
servers are faulty, the local ordering overhead increaség + 1) = (3f + 1), because alBf + 1
erasure encoded parts are sent, each of which is introdecddclal ordering byf + 1 servers.
When the Hub-Immediate approach is used, the bandwidttheadris the same in fault-free and
under-attack executions (and is higher than the overhe&tlibfOptimistic in fault-free runs), but
the faulty servers cannot add delay to the link. In all exenost 3 f + 1 parts are sent, each of which
is introduced for local ordering by + 1 servers in the receiving site.

We conclude this section by commenting on some of the keygpti@gs of the logical links. One
important property of all three types of logical links is thiaey specifically avoid requiring correct
servers to dynamically determine how quickly a sendingtgistiould be able to pass messages.
This type of monitoring would be necessary to ensure gootbpeance if the site relied on a
single untrusted server to send messages, as was done ik [BBjn BLink also requires feedback
from the remote site, in the form of acknowledgements, tessshe performance of the logical
link, which makes it even more difficult to determine whichitgas to blame (the local forwarder or
the remote peer) if performance seems slow. The use of radtisénding in the erasure encoding-
and hub-based logical links removes the need for such morgtoand the use of erasure codes
reduces the overhead of redundant sending. In the one cage wie logical link is configured to
rely on a single entity (i.e., when the dependable forwabdesed link is deployed), the entity is

specifically designed so that the reliance is justified.

124

The second important property shared by the logical linkkas they offer predictable perfor-
mance when the network is stable. When the faulty serversotdsubmit invalid erasure encoded
parts, they either cannot delay a message, or they can delaly by the duration of a local timeout.
When the faulty servers do submit invalid parts, they arekbisted, after which they can no longer
cause any delay. The predictability of the logical linkstdaa them to support global state machine

replication protocols that have relatively strong timirggamptions, as discussed in Section 5.6.

5.5 Putting It All Together

In this section we show how the pieces of the attack-resiechitecture fit together to form
a complete system. Figure 5.4 depicts the internal orgoizaf a replication server when the
dependable forwarder-based logical link is deployed. Astiored in Section 5.3, we chose to
use Prime in both levels of the hierarchy (denoted Local €rimd Global Prime in the figure).
The local and global instances of Prime are cleanly segheatd operate on different sets of data
structures.

There are three kinds of messages that flow in Figure 5.4:|IRrdae messages, Global Prime
messages, and partial signatures (i.e., pieces of a thdesigmature) that are matched with their
peer pieces. Each of these kinds of messages has two flowstlinetwork and to the network.
We now describe each of these flows.

When a Local Prime message arrives from the network, it isn@xd by the Network Dis-
patcher, which forwards it to Local Prime for processingg(fFe 5.4, left side). When a server
generates a Local Prime message that should be sent on Wherknethe message passes through
the Local Merkle Tree module (explained below) and is thagitally signed with an RSA signa-
ture. The message is then sent on the local-area networkal Boone messages are sent in the

LOCAL-TIMELY andLOCAL-BOUNDED traffic classes.

125

Local
Execution

Unsigned
Local Protocol

Message Unsigned
(Batch) Global Protocol
: Unordered Message
. Global Protocol
: Message

i (Batch)

Local Protocol

Message Unsigned

Partial Sig

RSAtsigned
Message

Generate Partial Sig

Threshold-signed
Message

Incoming
Partial Sig

[1T [1 | Combine

Message from To Dependable
LAN or WAN ToLAN Forwarder
Y
{ Network (LAN and WAN))

Figure 5.4: Internal organization of a server in the attaedilient architecture when the dependable
forwarder-based logical link is deployed.

When a Global Prime message arrives on the network (i.em fiee site’'s dependable for-
warder), it passes through the Network Dispatcher and is thevarded to Local Prime so that
it can be locally ordered (Fig. 5.4, left side). Once the rageshas been locally executed, it is
examined by the Ordered Event Dispatcher and then disghtoh@lobal Prime for processing by
the logical machine (Fig. 5.4, top right).

When the logical machine generates a Global Prime messagsttbuld be sent on the wide
area, the message must first be threshold signed. Each gemverates a partial signature on the
message, which is a piece of the site’s threshold signailine. partial signature message is RSA
signed and then sent to the other local servers on the loealreetwork. Partial signatures are sent

in theLocAL-BOUNDED traffic class. When a partial signature arrives from the nekwit is exam-

126

ined by the Network Dispatcher and then passed directlyadtireshold Sign module, (Fig. 5.4,
bottom left), without undergoing a local ordering. Whenteaerver collecty + 1 matching partial
signatures, it combines them to obtain the threshold-signessage (Fig. 5.4, bottom middle). The
message is then passed to the Logical Link, which sends iittogdocal-area network to the site’s
dependable forwarder. The dependable forwarder (not shegnus the message to the destination
dependable forwarders over the wide-area network. Mesghage were designated by the logical
machine a¥IRTUAL -TIMELY are sentinthe&LOBAL-TIMELY traffic class, and messages that were
designated agIRTUAL -BOUNDED are sent in the&sLOBAL-BOUNDED traffic class.

To amortize the computational overhead of generating aligihd threshold signatures, each
server makes use of a Merkle Tree [57], a cryptographic dat@tare that can be used to sign
multiple messages at once. Our previous work on the cusaineizarchitecture [16] also employed
Merkle trees, but only for wide-area messages; we use it floereoth local and global protocol
messages. When a server is ready to sign a batch of messggases the digests of the messages
in the leaves of a binary tree, one per leaf. An internal nodthé tree stores the digest of the
concatenation of its two children. A server signs the batclsigning the digest at the root of the
tree. In order to ensure that each signed message is vegifihlel server includes in the outgoing
message the sibling digests along the path from the messdge itoot of the tree. This enables the
verifier to reconstruct the root digest and verify the sigrat

Using a Merkle tree to threshold sign wide-area messagesalbcincreases their size slightly
because a logarithmic number of digests must be appendethieesignature verification. While
this may seem counterintuitive (after all, we have beendeduwon limiting wide-area traffic), the
ability to aggregate signatures is what makes the logicahina throughput high enough so that
the system is bandwidth constrained, rather than CPU @nett. Thus, it is worth paying the cost

in digests to achieve much higher system throughput.

127

Local
Execution

Global
Event

Unsigned
Local Protocol

Erasure
Encoded

Message Unsigned
(Batch) Part (él\?ebnil Global Protocol
¢ Unordered Message
i Global Protocol (Batch)
o e ‘
Local Protocol

RSAjsigned Unsigned
Meksage Partial Sig

Generate Partial Sig

Threshold-signed
Message

Incoming
Partial Sig

[T T 1 | Combine

Signed Erasure Encoded Part

Message from

LAN or WAN To LAN To WAN

[Network (LAN and WAN))

Figure 5.5: Internal organization of a server in the atteedilient architecture when the erasure
encoding- or hub-based logical link is deployed.

Figure 5.5 shows the organization of a replication serveemwthne erasure encoding- or hub-
based logical link is deployed. The organization is simttarthe one presented in Figure 5.4,
but with two important differences. First, each server nsaise of an Erasure Code Services
module. This module collects locally executed erasure@et@arts and decodes them whfen 1
matching parts have been collected. The resulting globabpol message is then passed to the
logical machine for processing (Fig. 5.5, top right). Sekaafter a threshold-signed message is
generated (Fig. 5.5, bottom middle), it is passed from thgidad Link to the Erasure Code Services
module so that it can be encoded. Erasure encoded partsgtediglisigned and then passed back

to the Logical Link so that they can be sent onto the wide-astavork.

128

5.5.1 Handling Non-Determinism in the Global Instance of Pime

Recall that state machine replication can be used to répli@a application as long as it is
deterministic. Prime, however, is not a completely detarstic protocol. A server can take ac-
tion based on the expiration of a timeout (e.g., so that ngessean be sent periodically), and the
Suspect-Leader sub-protocol takes action based on lowaltieasurements. This section discusses
how Prime’s non-deterministic events can be consisterdlydled by the logical machine. Note
that non-determinism is not a problem for the local instaofcBrime because it runs on the native
hardware of a single physical machine.

We first explain how to implement the expiration of a logicahehine timeout, which might
fire asynchronously at the physical machines implementieddgical machine. Since the logical
machine is event based, the timeout is only set in responpeot@ssing some global event (i.e.,
when the event is locally executed). Therefore, each lbgiachine timeout can be uniquely
identified by the local sequence number of the global evaitdhused the timeout to be set. When
a physical machine believes enough time has elapsed (@t#kdlock) since the timeout was set, it
introduces for (local) preordering@MEOUT-REQUESTMessage, containing the sequence number
associated with the logical machine timeout. A logical niaghimeout is said to expire when the
logical machine executes + 1 such timeout requests. This ensures that faulty machieaseble
to unilaterally trigger, or block, a logical machine timéou

We now describe how to handle non-determinism in the Sudpesder sub-protocol. There
are two sources of non-determinism that must be addres#estl. tRe logical machine periodically
measures the turnaround time provided by the leader logiealhine in the current view. The
physical machines must decide on a single measurement saltieat they evaluate the leader
consistently. This measurement is done periodically atribigered in response to a logical machine

timeout. When a physical machine sends th@EOUT-REQUEST to implement this timeout, it

129

piggybacks the turnaround time that it measured based wtakclock. When the logical machine
timeout expires (i.e., aft&yf + 1 suchTIMEOUT-REQUESTmessages have been locally executed),
the physical machines sort tR¢ + 1 suggested values and select the middle value as the agreed
upon turnaround time for evaluating the leader. Choosimgntiddle value guarantees that the
chosen value is either (1) a value proposed by a correct gddysiachine, or (2) a value that falls
within the range of values proposed by the correct physicaihimes.

The other source of non-determinism in Suspect-Leaderrsaghen a logical machine needs
to construct arRTT-MEASURE message. The message is constructed after locally exgcanin
RTT-PONGMessage. In order to construct a threshold-sigeiedMEASURE, the physical machines
need to decide on a single value for the measured roundsiran Each physical machine computes
a local round-trip time measurement when it locally exestbt®RTT-PONG. A physical machine
then introduces for local preordering an event containiglocal measurement. When the logi-
cal machine executesf + 1 such measurements, the physical machines builHTaAMEASURE

message based on the middle value.

5.6 Service Properties

The safety, liveness, and performance properties provigethe attack-resilient architecture
depend on the protocols deployed in the local sites and omvitle-area network. This section

specifies the system'’s service properties assuming thaeRsiused in both levels of the hierarchy.

5.6.1 Safety Properties

The attack-resilient architecture meets similar safetpeprties to those met by a flat system
running Prime (see Section 4.1). The only difference in hecHication of the first three safety

properties is that they limit the number of sites that ardtyatather than the number of servers:

130

DEFINITION 5.6.1 Safety-Sl1in all executions in which¥ or fewer sites are faulty, the output

sequences of two correct servers are identical, or one iéxpof the other.

DEFINITION 5.6.2 Safety-S2:In all executions in whicl¥' or fewer sites are faulty, each opera-

tion appears in the output sequence of a correct server at ora.

DerINITION 5.6.3 Safety-S3:In all executions in whicl” or fewer sites are faulty, each opera-

tion in the output sequence of a correct server is valid.

The hierarchical system also meets a similar linearizgbiproperty to the Modified-
Linearizability property met by Prime in a flat system (seet®a 4.1). The only difference is
the condition under which an operation is saigttmplete In the hierarchical system, an operation
completes when it has been output by at least one correarsery’ + 1 sites. We refer to the re-
sulting property aslierarchical-Modified-Linearizability Thus, the system’s fourth safety property

can be specified as follows:

DEerINITION 5.6.4 Safety-S4i1n all executions in whichf' or fewer sites are faulty, replies for

operations submitted by correct clients satisfy HieracahiModified-Linearizability.

5.6.2 Liveness and Performance Properties

The liveness and performance properties of the attackemgisarchitecture running Prime as
the global protocol are similar to the liveness and perforceaproperties of a flat system running
Prime with one server per site. However, as noted in Secti®2 Swhereas in a flat system one can
assume that (when the system is not overloaded) processiags bounded and message delay is
composed of the delay from the network itself and the praegdsme of the receiving server, the
situation is more complicated in a hierarchical system.italgnachine processing time is related

to the performance of the local state machine replicatiatogol; message delay between logical

131

machines is influenced by the performance of the threshglthsire, logical link, and local state
machine replication protocols, in addition to the delayrirthe network itself.

Our goal in this section is to show that the hierarchicalesysprovidessLOBAL-LIVENESS and
GLOBAL-BOUNDED-DELAY (defined formally below), which are analogous to the comesing
properties when Prime is run in a flat system (see Definitich4.2 and 4.1.13). Recall from Section
4.1 that to show these properties hold in a flat system, we oorgtider the level of synchrony
provided by each of Prime’s traffic classes (ieMELY andBOUNDED). We take the same approach
in the hierarchical system, except that the traffic classesensider ar@irtual (see Section 5.1).
In other words, we must show that the pieces of the hieraatlichitecture are timely enough
so that thevIRTUAL -TIMELY andVIRTUAL -BOUNDED traffic classes provide the required level of
synchrony. This will enable us to show that the system as denheetsGLOBAL-LIVENESS and
GLOBAL-BOUNDED-DELAY.

Throughout this section, it is important to remember thétalgh we will be showing that
GLOBAL-LIVENESS andGLOBAL-BOUNDED-DELAY hold by making statements about the timeli-
ness of the virtual traffic classes, the virtual traffic ckssare conceptual. When a logical machine
sends a message, it may designate I&S UAL -BOUNDED Or VIRTUAL -TIMELY , but the physical
messages that are sent among servers in the site to threstpolthe outgoing message are sent in
the LoCcAL-BOUNDED traffic class, and the physical messages that are actuaityoetnveen sites
(on the physical network) are designated@®BAL-TIMELY Or GLOBAL-BOUNDED. Similarly,
the physical messages sent among servers in a site to oeleed@ption of the message by the
logical machine are desighated a3CAL-TIMELY Or LOCAL-BOUNDED. Thus, we use the virtual
traffic classes to reason about what degree of timelineggjisned of the pieces of the system, but
ultimately we will need to show that each of the pieces canaligt meet its required degree of

timeliness.

132

In the rest of this section, we first discuss the conditiondearwhich a Prime-based logical
machine exhibits bounded processing time. This is a negessadition both to bound the time
that it takes to introduce an operation into the system anthfovirtual traffic classes to have the
required degree of timeliness. We then show that the rekegiieces of the hierarchical architecture

are timely enough to provide the virtual traffic classes i necessary degree of synchrony.

Achieving Bounded Logical Machine Processing Time

As stated in Section 5.3.3, a Prime-based logical machihéiéx bounded processing time
(i.e., meetsBOUNDED-DELAY at the local level) when three conditions hold: (1) the neknis
sufficiently stable, (2) all events requiring bounded pssagg time are introduced for local ordering
by at least one correct server, and (3) the load offered tdotlieal machine does not exceed the
maximum throughput of the logical machine. We now consi@dehenf these conditions in turn.

The degree of network stability needed to ne@UNDED-DELAY at the local level was stated as
Stability-S3in Section 4.1 (see Definition 4.1.10). We restate this ptygdeere ad_ocal-Stability-
S3 modifying the definition slightly to take into account thiaffic classes used within a site in the

lower level of the hierarchy:

DEFINITION 5.6.5 Local-Stability-S3 Let Tjocqirimety @Nd TiocaiBoundeda D€ traffic classes con-
taining messages designated 1B3CAL-TIMELY and LOCAL-BOUNDED, respectively. Then there
exists a stable set, Stable, a network-specific constépg,,;, and a time¢, after which Bounded-

Variance(ocaiTimely, Stable,Kr,.,;) and Eventual-Synchrorii,cqi Bounded, Stable) hold.

As stated in Section 4.1, we beliekzecal-Stability-S3an be made to hold in well-provisioned
local-area networks, where latency is often predictabl@ l@@ndwidth is plentiful. Queuing is
unlikely to occur on such networks. In addition, messagdahénoCAL-TIMELY traffic class can

be processed with higher priority so that Beunded-Varianceondition has sufficient coverage.

133

We now discuss how the system meets condition (2), whichiregj@any global event that
must be processed by the logical machine in bounded timefoBAL-LIVENESS Or GLOBAL-
BOUNDED-DELAY to hold to be introduced for local ordering by at least ongexirserver. There
are two classes of events locally ordered by the logical machn the first class, the event to be
ordered consists of a single message. For example, wherepgendable forwarder-based logical
link is deployed, each server in the receiving site receve®mplete global protocol message.
Events in this class are introduced for local orderingfby- 1 servers, at least one of which is
correct. In the second class, the event to be ordered is iioke pieces, and the logical machine
processes the event when it executes a threshold numbezaafsii’. Events in this class include
erasure encoded parts (when the erasure encoding- or kel-bzgical link is deployed) and the
TIMEOUT-REQUEST messages used to expire a logical machine timeout. Thensygtarantees
that correct servers introduce at le@spieces for local ordering, so it is as if a single correct serv
introduced the complete event for local ordering. The Hlatikg protocol used by the logical link
ensures that there exists a time after which the faulty sede not disrupt the decoding process.

Finally, Prime provide8OUNDED-DELAY at the local level when the load offered to the logical
machine does not exceed its throughput. Without this ptgpgueues of unordered global protocol
messages could build up, effectively increasing the Idgicachine processing time. There are
two requirements to meeting this condition. First, the mtevhich a site’s local clients submit
operations to the system must be limited. This preventsatjiedl machine from being overloaded
by locally-submitted operations. Note that this requiratrie also needed in a flat architecture,
where the processing delay for operations submitted to glesserver would grow if the server
became overloaded. Second, the rate at which incoming Iglodssages arrive on the logical links
must not be too great. Because the number of incoming glalo&bqnl messages that need to be

locally ordered by the logical machine is limited by the watea bandwidth, we believe a well-

134

engineered logical machine is likely to be capable of doinglmmore processing than it needs to
do and is unlikely to become overloaded. Indeed, in our owisigerformance was limited by

wide-area bandwidth rather than the processing capabilitiye logical machine.

Supporting Prime’s Virtual Traffic Classes

In order for the system to achiev® OBAL-LIVENESS and GLOBAL-BOUNDED-DELAY, the
communication delay for messages sent between logical imexlii.e., for messages in Prime’s
virtual traffic classes) must meet the same stability priggeas those required when Prime runs
in a flat system. As noted above, the key difference introdume the hierarchical architecture
compared to a flat system is that the communication delayrdispeot only on the stability of the
network itself, but also on the performance charactessticthe threshold signature, logical link,
and local state machine replication protocols.

We begin by noting that whereas flat Prime required a stablef servers to guarantee liveness
and performance, the global instance of Prime running imttaek-resilient architecture requires a

stable set of sites:

DEFINITION 5.6.6 A global stable seis a set of at leas2F' + 1 correct sites,Stable such that
there exists a time after which each site in the set exhibitsiied logical machine processing time.

We refer to the members 8fableas thestable sites

The following two definitions state two stability propedithat will be used to define the level

of synchrony required from the virtual traffic classes:

DEFINITION 5.6.7 Virtual-Eventual-Synchrony(S): For each pair of logical machinesy; € S
and S, € S, any message in traffic clagssent fromS; to S, will arrive at and be processed b

within some unknown bounded time.

135

DEFINITION 5.6.8 Virtual-Bounded-Varianc&(S, K): For each pair of logical machinesy; €
S and S, € S, there exists a value, Mihat(S,, S2), unknown to the logical machines, such that
if S1 sends a message in traffic claBso S, it will arrive at and be processed by, with delay

Ag, s,, Where MinLat(S1, S2) < Ag, s, < Min_Lat(S1, S2) * K.

Note that Definitions 5.6.7 and 5.6.8 are specified with refsfgepairs of logical machines. To
reiterate the point stated above, we must show that the coemi® of the hierarchical architecture
are timely enough so that the virtual traffic classes, whadn€eptually) carry messages between
logical machines, provide a sufficient degree of timelinteshie global instance of Prime.

Given Definitions 5.6.7 and 5.6.8, we next specify the sitglibnstraint that the system needs

t0 meetGLOBAL-LIVENESS:

DEFINITION 5.6.9 Virtual-Stability-S2 Let T tuairimery € @ traffic class containing all mes-
sages designated asRTUAL-TIMELY. Then there exists a global stable set, GS, a network-
specific constantiSy ;,1.q1, and a time¢, after which Virtual-Bounded-Varianc&(;,;uairimety » GS,

KVirtual) holds.

In order to meeGLOBAL-BOUNDED-DELAY, the system requires the following stronger stabil-

ity constraint:

DEFINITION 5.6.10 Virtual-Stability-S3 Let T 1uaiTimely @NA Tyirtual Bounded D€ traffic classes
containing messages designated \AKRTUAL -TIMELY and VIRTUAL-BOUNDED, respectively.
Then there exists a global stable set, GS, a network-spemiistant, Ky ;.w.q1, @and a time,
t, after which Virtual-Bounded-Varianc&(;,ivairimety, GS, Kvirtua) and Virtual-Eventual-

SynCh roanirtualBounded ’ G S) hold.

Given the above definitions, we now state theOBAL-LIVENESS and GLOBAL-BOUNDED-

DELAY properties met by the hierarchical architecture:

136

DEFINITION 5.6.11 GLOBAL-PRIME-LIVENESS:. If Virtual-Stability-S2holds for a global stable
set, GS, and no more thaf sites are faulty, then if a stable server in sec G S receives an
operation from a correct client, the operation will everityde executed by all stable servers in all

sites in GS.

DEFINITION 5.6.12 GLOBAL-BOUNDED-DELAY : If Virtual-Stability-S3holds for a global stable
set, GS, and no more thansites are faulty, then there exists a time after which therley between
a stable server in sit& € GS receiving a client operation and all stable servers in atesiin GS

executing that operation is upper bounded.

In the remainder of this section, we present the timing pitiggeneeded from the components of
the hierarchical architecture so théattual-Stability-S2andVirtual-Stability-S3hold. This amounts
to showing howvirtual-Eventual-SynchrongndVirtual-Bounded-Variancean be made to hold for
a global stable set of sites.

Achieving Virtual-Eventual-Synchrony: To meetVirtual-Eventual-Synchronyeach compo-
nent that contributes to the communication delay betwegiocdbmachines (i.e., the threshold signa-
ture protocol, the logical link protocol, the local stateahime replication protocol, and the network
itself) must add a bounded amount of delay. We already destithe conditions under which the
logical machine exhibits bounded processing time. SVideial-Stability-S3requires messages in
the VIRTUAL -BOUNDED traffic class to meeYirtual-Eventual-Synchronywe require the physical

network to deliver messages in tbeoBAL-BOUNDED traffic class in bounded time:

DEFINITION 5.6.13 Global-Eventual-Synchronet GS be a global state set of sites. Then for
each pair of sitesS; € GS andS; € GS, any message designated @SOBAL-BOUNDED sent
from a stable server, € S, to a stable servery, € Sy will arrive within some unknown bounded

time.

137

It remains to be shown that the threshold signature anddbgjitk protocols add a bounded
amount of delay to the communication link between logicachiaes. The threshold signature
protocol involves a single round of communication and a lbeaghamount of computation. Partial
signatures are sent in the@cAL-BOUNDED traffic class. Therefore, when all local servers are cor-
rect andLocal-Stability-S3holds, the protocol will complete in a bounded amount of tifRaulty
servers may temporarily disrupt the protocol by submittimealid partial signatures. The black-
listing protocol guarantees that each faulty server campligthe combining process at most once.
Thus, there exists a time after which the threshold sigegtuntocol completes in a bounded time.

The logical link protocols also contribute a bounded amafrdelay. As argued in Section
5.4.4, in the erasure encoding- and dependable forwaatseblogical links, the faulty servers
cannot delay a message from being sent on time. In the hidstbagical link, the faulty servers can
only introduce a small, bounded amount of delay into the {ir, the value of the local timeout).
Servers that send invalid erasure encoded parts are IskwckliTherefore, there exists a time after
which at most a bounded amount of delay will be introducedhieyldgical link protocol.

Note that meeting/irtual-Eventual-Synchronglso requires the Merkle Tree modules to add a
bounded amount of delay to the logical link. For the local MieTree module (i.e., the one used
to aggregate the generation of standard digital signgtutigis is achieved by capping the period
during which unsigned messages are collected and by cagigmumber of messages that may be
aggregated into a single batch. For the global Merkle Treduied(i.e., the one used to aggregate the
generation of threshold signatures), bounded procesisirggi$ achieved as long as the input batch
size does not grow without bound. In practice, since compgutiessage digests is several orders
of magnitudes faster than computing signatures, the psoaptime of the Merkle Tree module can
be treated as constant.

Achieving Virtual-Bounded-Variance: To meetVirtual-Bounded-Variancdor messages in

138

theVIRTUAL -TIMELY traffic class, we need a stronger degree of stability frormétevork itself for

messages in theLOBAL-TIMELY traffic class:

DEFINITION 5.6.14 Global-Bounded-Variandg(: Let GS be a global stable set of sites. Then
for each pair of sitesS; € GS and S, € GS, there exists a value, Mihat(S;, S3), unknown
to the servers in the sites, such that if a stable senjere S; sends a message designated as
GLOBAL-TIMELY to a stable server, € S, the message will arrive with delas, s,, where

Min_Lat(S1, S2) < Ag, s, < Min_Lat(Sy, S2) * K.

To make Definition 5.6.14 hold, one can use a quality of sermechanism such as Diff-Serv
[24] to separate the low-volun@. OBAL-TIMELY traffic from the high-volume&LOBAL-BOUNDED
traffic. This is the same approach as the one that can be usadRvime is run in a flat architecture.

Given that the remaining components of the architectureadana bounded amount of delay to
the communication link between logical machines, the ehgk is to choose a suitable constant,
Kviwua, that defines the tolerated degree of variability for messagthevIRTUAL -TIMELY traf-
fic class (see Definitions 5.6.9 and 5.6.10). The constanildhake into account the expected
variability of the network itself, as well as of the logicabrhine processing time. When the hub-
based logical link is deployed, the constant should alsowtdor the fact that some messages may
have a delay larger by the value of a local timeout. Compardhe wide-area network delay, the

variability contributed by the threshold signature praids likely to be negligible.

5.7 Performance Evaluation

In this section we evaluate a prototype implementation ofattack-resilient architecture, fo-
cusing on the performance implications of deploying thédaldink protocols described in Section

5.4.

139

5.7.1 Testbed and Network Setup

We performed our experiments on a cluster of twenty 3.2 GHz)i6 Intel Xeon computers.
We emulated a wide-area system consisting of 7 sites, eabh/vgervers. Such a system can tol-
erate the complete compromise of 2 sites and can tolerate@riipe faults in each of the other 5
sites. We ran one fully deployed site on 7 machines (with @mees per machine) and emulated
the other 6 wide-area sites using one machine per site. Thaimeg machines were used to run
client processes and to emulate the wide-area topology. S&@ the Spines [9] messaging system
to place bandwidth and latency constraints on the links betwsites. We limited the aggregate
outgoing bandwidth from each site to 10 Mbps and placed 50eatay detween wide-area sites. No
constraints were placed on the links between the serveteifutly deployed site (which commu-
nicated via a Gigabit switch) or between clients and thaialservers. Clients submit one update
operation (containing 200 bytes of data, representative tgpical SQL query) and wait for proof
that the operation was ordered before submitting their opgtation. Clients were distributed as
evenly as possible among the sites.

The emulated sites process wide-area protocol eventsvadiéing an amount of time deter-
mined by measuring the local ordering delays in the non-atadlsite. The wide-area messages
generated by the emulated sites are exactly the same assitd¢lsevere not emulated, except that
they are not threshold signed; the messages contain 12&fjties to emulate the bandwidth cost of
a signature, and the emulated sites busy-waited for theragred to generate partial signatures
and combine them in order to emulate the computational eaeth

We used OpenSSL [6] for generating and verifying RSA sigretand for computing message
digests. The computers in our cluster can compute a 102884 signature in 1.3 ms and verify it
in 0.07 ms. We used the OpenTC implementation [7] of Shoupisshold RSA signature scheme

for generating threshold signatures. We used Luby’'s implgation of the Cauchy-based Reed-

140

Solomon erasure encoding scheme [2, 25] for performingngpdperations.

5.7.2 Test Configurations

Erasure Encoding-Based Logical Link: In the erasure encoding-based logical link, the
servers encode threshold-signed messages into 7 part®aghdserver sends a part to its peer
in the receiving site. The emulated sites send and receiveradure encoded parts on behalf of
the servers they emulate. Multiple erasure encoded parigaaked into a single physical message
(which is then digitally signed) to amortize the bandwidtreiead of the digital signature. To
evaluate the performance of the logical link under attalk, faulty servers delayed sending their
erasure encoded parts by 300 ms in an attempt to add latettoy twdering path.

Hub-Based Logical Link: We emulated the use of a hub by having servers (1) locallydsroa
cast outgoing wide-area messages before sending them plutd#ly broadcast incoming wide-
area messages before processing them. Servers were dssigrither the groug-; or G based
on their server identifiers and sequence numbers containak imessages. For example, servers
1 through 5 were in the first group for message 1, servers 2ghré for message 2, and so on,
wrapping around modulo 7. We used a similar strategy to agsig responsibility of proposing
incoming messages for local ordering to 3 servers.

We tested the hub-based logical link in four configuratiofi$e first is designated as Hub-
Optimistic. Wide-area messages are encoded into 7 partéwhioh are needed to decode. 5
servers send their parts immediately, and the other 2 omigt seeir parts if they do not overhear
enough parts before their local timeout expires. All sesweere assumed to be correct. Servers in
the second group used a local timeout of 25 ms. This value Waset after experimentation as
one that would not allow faulty servers to cause too muchydetaen the system is under attack,

but which was usually long enough so that correct serve€simwould not have to send their parts.

141

We observed correct servers to send their parts bet@&eand 10% of the time. Emulated sites
conservatively sent additional parts from server&ini0% of the time.

In the second configuration, Hub-Immediate, all serverewerrect and sent their parts imme-
diately. Thus, this configuration does not utilize the mamiig of outgoing wide-area messages.
Incoming messages are still introduced for local orderipg b+ 1 servers. In the third configura-
tion, we ran an attack on the Hub-Optimistic logical link.uFg servers in the first group delayed
sending their parts by 100 ms, causing correct servers isgt@nd group to have to send their parts
because their local timeouts expired. Finally, we testedorformance in a hypothetical scenario
in which all servers are assumed to be correct and the tinigset perfectly, so that extra parts are
never sent. This configuration is denoted Hub-OptimisticiMum-Parts.

Dependable Forwarder-Based Logical Link: We emulated the wide-area message patterns
of a dependable forwarder by having one chosen server seilmgegive threshold-signed wide-area
messages on behalf of the sife+ 1 servers are assigned the responsibility of proposing ifegm

messages for local ordering based on their server idestdied the message sequence numbers.

5.7.3 Evaluation

Figure 5.6 shows system throughput, measured in updatatapes per second, as a function
of the number of clients. Figure 5.7 shows the corresponiditegncy, measured in seconds. As ex-
pected, the dependable forwarder deployment achievestigbrformance, becoming bandwidth
constrained at a peak throughput of 2100 updates/sec. dyatemains relatively stable and is be-
low 1.5 seconds with 3000 clients. Hub-Optimistic-Minimufarts and Hub-Optimistic achieve the
next best performance, reaching peak throughput at 1730600 updates/sec, respectively. Hub-
Optimistic-Minimum-Parts demonstrates how the hub-bdegital link performs with no faults

and a perfect timeout. Since the emulated sites in Hub-Qgtiacracted conservatively and sent an

142

extra part (beyond the required 5) with% probability, a more accurate emulation would bring
its performance slightly closer to Hub-Optimistic-MinimeParts. The difference between Hub-
Optimistic-Minimum-Parts and the dependable forwarderfiguration is due to the bandwidth
overhead for digital signatures. An average of roughly Z1&oded parts were packed into each
physical message; more aggressive packing would furtldeiceethe signature overhead per part.

Figures 5.8 and 5.9 show the performance of the hub configngeain isolation so that the effects
can be seen more clearly. The Hub-Immediate and Hub-Oiimisder-Attack configurations
achieved a bandwidth-constrained throughput plateau20 Uipdates/sec. We expected these two
configurations to reach the same peak throughput becauseredirs send a part for each message
in both configurations, thus consuming the same amount gfoing bandwidth. Note that Hub-
Optimistic-Under-Attack has a slightly lower slope thanbHmmediate, reflecting the additional
latency incurred by a local timeout per wide-area round. ffext can be seen in Figure 5.9, as the
latency in the attack scenario is between 150 and 200 msigae in Hub-Immediate until the
curves meet when the system becomes saturated. Using & lnighleimeout value would increase
the peak throughput of Hub-Optimistic slightly, but it wduhlso create additional latency and
decrease the slope of the Hub-Optimistic-Under-AttackreuiThis reflects the trade-off between
obtaining better fault-free performance and making thégma more vulnerable to performance
degradation under attack.

Finally, the erasure encoding-based logical link confijors obtained bandwidth-constrained
peak throughputs at around 620 updates/sec. As expectealtsitk on the erasure encoding-based
logical link had almost no impact on performance. The faat fhulty servers delay the sending of
their parts does not prevent 5 correct parts (only 3 of whiemaeded to decode) from being sent to
the receiving site in a timely manner. In fact, the undesatiperformance is slightly higher because

a larger percentage of the site’s outgoing bandwidth isadéed to parts from correct servers.

143

3600 : :
3400 ~~<-~ Dependable Forwarder
3200 - ---%-- Hub Opt. Minimum Parts
3000 | ...av. Hub Optimistic
5288 ------ - Hub Immediate
2400 - Hub Opt. Under Attack
—=o— Erasure Encoding

2200
2000 | -+~ Erasure Encoding Under Attack@

1800

1400

1200

1000
800
600 | gkEe—6s
400 |

200 |

0 500 1000 1500 2000 2500 3000
Number of Clients

El

Throughput (updates/sec)

Figure 5.6: Throughput of the attack-resilient architegtas a function of the number of clients
in a 7-site configuration. Each site had 7 servers. Sites emrmeected by 50 ms, 10 Mbps links.

7.5 - -
7 ~-o-- Dependable Forwarder .
6.5 ~-%-- Hub Opt. Minimum Parts .
6 4 Hub Optimistic e
5.5t % Hub Immediate —
5| -+ Hub Opt. Under Attack
a5l —©— Erasure Encoding
'4 | ---+-- Erasure Encoding Under Attack-+"

3.5
3

III

Latency (sec)

0 500 1000 1500 2000 2500 3000
Number of Clients

Figure 5.7: Latency of the attack-resilient architectis@dunction of the number of clients in a
7-site configuration. Each site had 7 servers. Sites wengembed by 50 ms, 10 Mbps links.

144

Throughput (updates/sec)

2400 .

2200 ---%-- Hub Opt. Minimum Parts 1
2000} 4 Hub Optimistc]
------ - Hub Immediate

1800 ...~ Hub Opt. Under Attack . *¥x :
1600 MR ek

1400 M

A

1200 PO -
1000

800 Pl

600 %,;'E'

400 ﬁ.ﬁ"'

208 E' " L 1 1 1 1 1

0 500 1000 1500 2000 2500 3000

Number of Clients

Figure 5.8: Isolating the throughput obtained when usieghib-based logical links.

Latency (sec)

3.5

3 r ---%-- Hub Opt. Minimum Parts s .
---------- 4 Hub Optimistic -Q"
25 L~ Hub Immediate - G
-~~~ Hub Opt. Under Attack
B
ST - S
1.5 @g . g
B g AT h oo I '
0.5
0 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Number of Clients

Figure 5.9: Isolating the latency obtained when using tHetmased logical links.

145

Discussion: Our results demonstrate two main points. First, the lodiolik are effective in
mitigating performance attacks on the hierarchical aechitre’s inter-site communication, while
still allowing reasonable fault-free and under-attackfgrenance by using wide-area bandwidth
efficiently. Second, making slightly stronger assumptiabsut the resources available for building
a logical link can significantly improve performance. A simproadcast hub can yield fault-free
performance close to the performance achieved when a daplenfdrwarder sends parts on behalf
of the site. Even when under attack, the peak throughpuediitib-based logical link only degrades
by between 30 and 40 percent, while resulting in a relatigehall increase in latency.

Attacks on a flat deployment of Prime (whose effects were stinBection 4.6) can be mounted
against both levels of the hierarchy. In one attack, a falelyer can add at most two message
delays, plus an aggregation delay. In another attack, thg/fservers can cause the correct servers
to consume bandwidth for message reconciliation. When ¢feydattack is mounted in the local
site, the logical machine processing time increases by aydehose duration is dominated by
the aggregation constant (30 ms in our implementation).ceSlacal bandwidth is plentiful, the
reconciliation attacks do not have a significant impact oriopmance within the local site. The
same attacks can be mounted on the wide area and have an sinmpiat to when they are mounted
against physical machines. The attacks can decrease tmatulgy approximately a factor of 2 and
can increase update latency by two wide-area message gélgysn aggregation constant (roughly

200ms in our implementation).

5.8 Attack-Resilient Architecture Summary

This chapter presented an attack-resilient architectordafge-scale intrusion-tolerant repli-
cation. We described three logical link protocols for effitti attack-resilient inter-site commu-

nication, and we considered the practical and theoretinglitations of deploying different state

146

machine replication protocols in the hierarchical aratiee. Our experimental results showed
the performance benefits that can be realized by makingtisligttonger assumptions about one’s

environment, without making it easier for faulty serverg#unise inconsistency.

147

Chapter 6

Conclusions

Intrusion-tolerant replication is a promising tool for llimg a survivable critical infrastruc-
ture capable of remaining available even in the face of nmechompromises. Prior to this work,
intrusion-tolerant replication protocols were desigrnegdrform well (and were evaluated) in fault-
free executions. In this dissertation we pointed out thatamy systems, a small number of Byzan-
tine processors can degrade performance to a level far belaw would be achievable with only
correct processors. We presented the first intrusionaoteneplication systems capable of making
a meaningful performance guarantee even when some of thegzars are Byzantine.

We proposed a new, performance-oriented correctnessianit@ OUNDED-DELAY, for evalu-
ating intrusion-tolerant replication protocols. Protischiat meeBOUNDED-DELAY are required to
provide consistent performance in all executions, whathaot there are actually Byzantine faults.
We presented Prime, a new intrusion-tolerant replicatimotgzol that meet8 OUNDED-DELAY.
Prime bounds the amount of performance degradation thave@aused by a malicious leader by
effectively monitoring its performance. This monitorirgganabled by requiring the leader to do an
amount of work bounded as a function of the number of servetsd system and independent of

the offered load.

148

We also presented an attack-resilient architecture fgetacale intrusion-tolerant replication
over wide-area networks. The attack-resilient architecisi hierarchical and uses Prime as a build-
ing block in each site and on the wide-area network. We ptedeahree logical link protocols for
efficient, attack-resilient inter-site communication. r@uperimental results provide evidence that
it is possible to construct a large-scale wide-area refbicaystem that performs well under attack,
representing an important step towards being able to aargtractical critical systems capable of
surviving partial compromises.

In the body of this dissertation, we focused on intrusideremt replication protocols that rely
on a leader for coordination. In Appendix A, we give some eritk that performance attacks may

also be possible against decentralized protocols that tioseoa leader.

149

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

The BFT Project Homepagéttp://www.pmg.csail.mit.edu/bft

Cauchy-based Reed Solomon Codéxdtp://www.icsi.berkeley.edu/

cauchy.tar.uu

Ciphertrust's zombie statistics, http://www.ciphertrust.com/resources/

statistics/zombie.php

Genesis: A framework for achieving component diverdityp://www.cs.virginia.

edu/genesis/

The netem Utility, http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem

The OpenSSL Projechttp://www.openssl.org

The OpenTC Libraryhttp://projects.cerias.purdue.edu/ds2

~luby/

[8] Securing Cyberspace: Efforts to Protect National Infation Infrastructures Continue to Face

Challenges. Hearings from the Subcommittee on FederahEiadvianagement, Government

Information, and International Security of the Senate Cdttea on Homeland Security and

Governmental Affairs, 109th Congress, 1st Sess. (July Q05 testimony of Paul Skare,

Product Manager, Siemens Power Transmission and Disoihunhc.

150

[9] The Spines Projechttp://www.spines.org/

[10] M. Abd-El-Malek, G.R. Ganger, G.R. Goodson, M.K. Reitend J.J. Wylie. Fault-scalable
Byzantine fault-tolerant services. Rroceedings of the 20th ACM Symposium on Operating

Systems Principles (SOSP '0Bpages 59-74, Brighton, UK, 2005.

[11] S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlingan-Philippe Martin, and Carl Porth.
BAR fault tolerance for cooperative services.Rroceedings of the 20th ACM Symposium on

Operating Systems Principles (SOSP 'g8ages 45-58. ACM, 2005.

[12] Ofir Amir, Yair Amir, and Danny Dolev. A highly availablapplication in the Transis environ-
ment. InRevised Papers from a Workshop on Hardware and Softwaretacthres for Fault

Tolerance pages 125-139, London, UK, 1994. Springer-Verlag.

[13] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A conunication subsystem for high
availability. In Proceedings of the 22nd Annual International Symposium auit Holerant
Computing (FTCS '92)pages 76—84, Boston, Massachusetts, 1992. IEEE Compat&tys

Press.

[14] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwahnd P. Ciarfella. The Totem single-

ring ordering and membership protocdCM Trans. Comput. Sysfl3(4):311-342, 1995.

[15] Yair Amir. Replication Using Group Communication Over a PartitionestWork PhD thesis,

The Hebrew University of Jerusalem, Jerusalem, Israes199

[16] Yair Amir, Brian Coan, Jonathan Kirsch, and John Laneust®omizable fault tolerance for
wide-area replication. IRroceedings of the 26th IEEE International Symposium oraRlel

Distributed Systems (SRDS '0ppages 66-80, Beijing, China, 2007.

151

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Yair Amir, Brian Coan, Jonathan Kirsch, and John Langzdhtine replication under attack.
In Proceedings of the 38th IEEE/IFIP International Confererun Dependable Systems and

Networks (DSN '08)pages 197-206, Anchorage, AK, USA, June 2008.

Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kits John Lane, Cristina Nita-Rotaru,
Josh Olsen, and David Zage. Steward: Scaling Byzantiné-ti@lerant replication to wide

area networkslEEE Transactions on Dependable and Secure Compufifig:80—-93, 2010.

Yair Amir, Claudiu Danilov, Jonathan Kirsch, John Lamanny Dolev, Cristina Nita-Rotaru,
Josh Olsen, and David Zage. Scaling Byzantine fault-toteraplication to wide area net-
works. In Proceedings of the 2006 International Conference on DegleledSystems and

Networks (DSN’'0§)pages 105-114, Philadelphia, PA, USA, June 2006.

Yair Amir, Claudiu Danilov, and Jonathan Stanton. A Itatency, loss tolerant architecture
and protocol for wide area group communicationPhoceedings of the 30th Annual Interna-

tional Symposium on Fault Tolerant Computing (FTCS,@@)ges 327-336, 2000.

A. Avizeinis. The N-Version approach to fault-toletagoftware. IEEE Transactions of Soft-

ware EngineeringSE-11(12):1491-1501, December 1985.

Michael Ben-Or. Another advantage of free choice (edtxl abstract): Completely asyn-
chronous agreement protocols.Rroceedings of the 2nd Annual ACM Symposium on Princi-

ples of Distributed Computing (PODC '83)ages 27-30, 1983.

Alysson Bessani, Paulo Sousa, Miguel Correia, Nunadiger Neves, and Paulo Verissimo.
The CRUTIAL way of critical infrastructure protectiohEEE Security and PrivaGy6(6):44—

51, Nov-Dec 2008.

152

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, andMgiss. RFC 2475: An architecture

for differentiated services, December 1998.

Johannes Blomer, Malik Kalfane, Marek Karpinski, Ricth Karp, Michael Luby, and David
Zuckerman. An XOR-Based erasure-resilient coding schemaehnical Report TR-95-048,

International Computer Science Institute, August 1995.

Gabriel Bracha. An asynchronous [(n - 1)/3]-resiliennsensus protocol. IRroceedings of
the third annual ACM symposium on Principles of Distribu@omputing (PODC '84)pages

154-162, Vancouver, British Columbia, Canada, 1984.

Francisco V. Brasileiro, Paul D. Ezhilchelvan, Saht#s Shrivastava, Neil A. Speirs, and Sha
Tao. Implementing fail-silent nodes for distributed sysselEEE Transactions on Computers

45(11):1226-1238, 1996.

Christian Cachin, Klaus Kursawe, and Victor Shoup. @Ran oracles in constantipole: Prac-
tical asynchronous Byzantine agreement using cryptogrégttended abstract). Proceed-
ings of the nineteenth annual ACM symposium on Principlestfibuted computing (PODC

'00), pages 123-132, Portland, Oregon, 2000.

Christian Cachin and Jonathan A. Portiz. Secure iidn#olerant replication on the internet.
In Proceedings of the 2002 International Conference on DepleledSystems and Networks

(DSN '02) pages 167-176, Bethesda, MD, USA, June 2002.

Miguel Castro. Practical Byzantine Fault TolerancePhD thesis, Massachusetts Institute of

Technology, Cambridge, Massachusetts, 2001.

Miguel Castro and Barbara Liskov. Practical byzanfaugt tolerance and proactive recovery.

ACM Transactions on Computer Syste2®(4):398—-461, 2002.

153

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Byung-Gon Chun, Petros Maniatis, Scott Shenker, amh Jubiatowicz. Attested append-
only memory: Making adversaries stick to their wolglGOPS Oper. Syst. Re#1(6):189—

204, 2007.

A. Clement, H. Li, J. Napper, J-P Matrtin, L. Alvisi, and.Ndahlin. BAR primer. In38th An-
nual IEEE/IFIP International Conference on Dependablet®ygsand Networks (DSNJune

2008.

Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Datliand Mirco Marchetti. Making
Byzantine fault tolerant systems tolerate Byzantine faulh NSDI'09: Proceedings of the
6th USENIX symposium on Networked systems design and iemiktion pages 153-168,

Berkeley, CA, USA, 2009. USENIX Association.

M. Correia, L. C. Lung, N. F. Neves, and P. Verissimofidi#nt Byzantine-resilient reliable
multicast on a hybrid failure model. IRroceedings of the 21st Symposium on Reliable Dis-

tributed Systems (SRDS '0Pages 2-11, Suita, Japan, October 2002.

Miguel Correia, Nuno Ferreira Neves, and Paulo Vamss How to tolerate half less one
Byzantine nodes in practical distributed systems.Ptaceedings of the 23rd IEEE Interna-
tional Symposium on Reliable Distributed Systems (SRDS¥@gjes 174-183, Florianpolis,

Brazil, 2004.

James Cowling, Daniel Myers, Barbara Liskov, RodrigadRgues, and Liuba Shrira. HQ
replication: A hybrid quorum protocol for Byzantine faullérance. IrProceedings of the 7th
Symposium on Operating Systems Design and Implement&i8bPI(’06), pages 177-190,

Seattle, WA, November 2006.

Vadim Drabkin, Roy Friedman, and Alon Kama. PracticgkzBntine group communication.

154

In Proceedings of the 26th IEEE International Conference ostiiitiuted Computing Systems

(ICDCS '06) page 36, Lisboa, Portugal, 2006.

[39] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Cemsus in the presence of partial

synchrony.Journal of the ACM35(2):288-323, 1988.

[40] Paul Feldman. A practical scheme for non-interactiegfiable secret sharing. Proceedings
of the 28th Annual Symposium on Foundations of Computen&zipages 427-437, Los

Angeles, CA, USA, October 1987. IEEE Computer Saociety.

[41] Michael J. Fischer, Nancy A. Lynch, and Michael S. Pster Impossibility of distributed

consensus with one faulty procegs ACM 32(2):374—-382, 1985.

[42] Mark Hayden. The Ensemble System. Technical Repori8FR&52, Department of Computer

Science, Cornell University, January 1998.

[43] Maurice P. Herlihy and Jeannette M. Wing. Lineariziyil A correctness condition for con-

current objectsACM Trans. Program. Lang. Sys1.2(3):463-492, 1990.

[44] 1. Keidar. A highly available paradigm for consisterttject replication. Master’s thesis,

Institute of Computer Science, The Hebrew University ofidalem, Jerusalem, Israel, 1994.

[45] Idit Keidar and Danny Dolev. Efficient message ordeimgdynamic networks. IProceedings
of the 15th ACM Symposium on Principles of Distributed CamguPODC '96) pages 68—

76, 1996.

[46] Kim Potter Kihlstrom, Louise E. Moser, and P. M. Melli@mith. The SecureRing protocols
for securing group communication. Proceedings of the IEEE 31st Hawaii International

Conference on System Scienogsume 3, pages 317-326, Kona, Hawaii, January 1998.

155

[47] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Alle€lement, and Edmund Wong.

Zyzzyva: Speculative Byzantine fault tolerané€CM Trans. Comput. Sys27(4):1-39, 2009.

[48] Eileen Kowalski, Dawn Cappelli, and Andrew Moore. ki threat study: lllicit cyber ac-
tivity in the information technology and telecommunicasosector. Technical Report U.S.
Secret Service and Carnegie Mellon University CERT/SaivEngineering Institute. Avail-
able online ahttp://www.cert.org/archive/pdf/insiderthreat_it200 8.

pdf , 2008.

[49] Leslie Lamport. Time, clocks, and the ordering of egeinta distributed systemCommun.

ACM, 21(7):558-565, 1978.

[50] Leslie Lamport. The part-time parliamentACM Transactions on Computer Systems

16(2):133-169, May 1998.

[51] Leslie Lamport. Paxos made simpBIGACTN: SIGACT News (ACM Special Interest Group

on Automata and Computability Theor@R:18-25, 2001.

[52] Leslie Lamport, Robert E. Shostak, and Marshall C. Bedafie Byzantine generals problem.

ACM Trans. Program. Lang. Sys#(3):382—401, 1982.

[53] Jinyuan Li and David Mazieres. Beyond one-third faultplicas in Byzantine fault tolerant
systems. IrProceedings of the 4th USENIX Symposium on Networked Sy8&egsign and

Implementation (NSDI '07)pages 131-144, 2007.

[54] F. J. MacWilliams and N. J. A. Sloand&he theory of error correcting codedNorth-Holland

Pub. Co., New York, New York, 1977.

[55] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo.w@eods low latency state machine

156

[56]

[57]

[58]

[59]

[60]

[61]

[62]

replication for uncivil wide-area networks. Froceedings of the 5th Workshop on Hot Topics

in System Dependability (HotDep 'Q009.

Jean-Philippe Martin and Lorenzo Alvisi. Fast ByzasticonsensuslEEE Transactions on

Dependable and Secure Computig3):202—215, 2006.

Ralph Charles MerkleSecrecy, authentication, and public key systeRt®D thesis, Stanford

University, 1979.

Henrique Moniz, Nuno Ferreira Neves, Miguel Correiad @aulo Verissimo. Randomized
intrusion-tolerant asynchronous servicesPtoceedings of the 2006 International Conference

on Dependable Systems and Networks (DSNi@&jes 568577, 2006.

Louise E. Moser, Yair Amir, P. Michael Melliar-Smithnd Deborah A. Agarwal. Extended
virtual synchrony. IrProceedings of the 14th IEEE International Conference ostiibiuted

Computing Systems (ICDCS '94gages 5665, 1994.

Priya Narasimhan, Kim Potter Kihlstrom, Louise E. Mpsand P. M. Melliar-Smith. Pro-
viding support for survivable CORBA applications with therhune system. IRroceedings
of the 19th IEEE International Conference on Distributedn@puting Systems (ICDCS '99)

pages 507-516, Austin, TX, USA, 1999.

Anh Nguyen-Tuong, David Evans, John C. Knight, Benjar@iox, and Jack W. Davidson.
Security through redundant data diversity. Aroceedings of the 38th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Net{p8ds '08) pages 187-196, June

2008.

Brian M. Oki and Barbara H. Liskov. Viewstamped Replioa: A new primary copy method

to support highly-available distributed systems. Pimceedings of the seventh annual ACM

157

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Symposium on Principles of distributed computing (PODQ,' 88ges 8-17, New York, NY,

USA, 1988. ACM.

Radia Perlman. Network Layer Protocols with Byzantine Robustne$2hD thesis, Mas-

sachusetts Institute of Technology, Cambridge, Massatts,4988.

D. Powell, D. Seaton, G. Bonn, P. Verissimo, and F. \Wheek. The Delta-4 approach
to dependability in open distributed computing systems.Pioceedings of the 18th IEEE

International Symposium on Fault-Tolerant Computing (Bl(@ages 246-251, June 1988.

M. O. Rabin. Randomized Byzantine generals. Tlme 24th Annual IEEE Symposium on

Foundations of Computer Scienqgages 403-409, 1983.

Marisa Reddy Randazzo, Michelle Keeney, Eileen KoWialBawn Cappelli, and Andrew
Moore. Insider threat study: lllicit Cyber Activity in thedBking and Finance Sector. Tech-
nical Report U.S. Secret Service and Carnegie Mellon UsigelCME/SEI-2004-TR-021.
Available online athttp://www.sei.cmu.edu/library/abstracts/reports/

04tr021.cfm , 2005.

Michael K. Reiter. Secure agreement protocols: Rédiaimd atomic group multicast in Ram-
part. Inln Proceedings of the 2nd ACM Conference on Computer and QCmications Secu-

rity, pages 68—80. ACM, 1994,

Michael K. Reiter. The Rampart Toolkit for building Higntegrity services. IrSelected
Papers from the International Workshop on Theory and Pcadii Distributed Systempages

99-110, London, UK, 1995. Springer-Verlag.

R. L. Rivest, A. Shamir, and L. Adleman. A method for dhiag digital signatures and

public-key cryptosystemsCommun. ACM21(2):120-126, 1978.

158

[70] Rodrigo Rodrigues, Miguel Castro, and Barbara Liske&SE: Using abstraction to improve
fault tolerance. IfProceedings of the 18th ACM symposium on Operating systentpbes

(SOSP '01)pages 15-28, Banff, Alberta, Canada, 2001.

[71] Rodrigo Rodrigues, Petr Kouznetsov, and Bobby Bhhtigee. Large-scale Byzantine fault
tolerance: Safe but not always live. Rroceedings of the 3rd Workshop on Hot Topics in

System Dependability (HotDep 'Qf)age 17, 2007.

[72] Richard D. Schlichting and Fred B. Schneider. Failg3oocessors: An approach to designing

fault-tolerant computing system€&omputer System&(3):222—238, 1983.

[73] Fred B. Schneider. Implementing fault-tolerant seegi using the state machine approach: A

tutorial. ACM Computing Survey22(4):299-319, 1990.

[74] Marco Serafini and Neeraj Suri. Reducing the costs gfdarcale BFT replication. IRro-
ceedings of the 2nd Workshop on Large-Scale Distributete@gsand Middleware (LADIS

'08), pages 1-5, New York, NY, USA, 2008. ACM.

[75] Peter Shipley and Simson L. Garfinkel. An analysis of-dia modems and vulnerabilities.
Available online ahttp://simson.net/clips/academic/2001.Wardial.pdf ,

2001.

[76] Victor Shoup. Practical threshold signaturégcture Notes in Computer Sciend807:207—

220, 2000.

[77] Atul Singh, Tathagata Das, Petros Maniatis, Peter Evek and Timothy Roscoe. BFT proto-
cols under fire. IrProceedings of the 5th USENIX Symposium on Networked $yBtesign

and Implementation (NSDI '08pages 189-204, 2008.

159

[78]

[79]

[80]

[81]

[82]

[83]

[84]

The Boeing Company. Survivable Spread: Algorithms amsgurance argument. Technical

Report Number D950-10757-1, July 2003.

P. Verissimo, N.F. Neves, C. Cachin, J. Poritz, D. FpweDeswarte, R. Stroud, and I. Welch.
Intrusion-tolerant middleware: The road to automatic secu IEEE Security & Privacy

4(4):54-62, 2006.

P. E. Verissimo, N. F. Neves, and M. P. Correia. Intodolerant architectures: Concepts
and design. In R. Lemos, C. Gacek, and A. Romanovsky, editachitecting Dependable

Systemsvolume 2677. 2003.

Paulo Verissimo. Travelling through wormholes: A nlawk at distributed systems models.

SIGACT News37(1):66-81, 2006.

Giuliana Santos Veronese, Miguel Correia, Alysson @éseBessani, and Lau Cheuk Lung.
Highly resilient services for critical infrastructuresi Proceedings of the Embedded Systems

and Communications Security workshop (ESCS,’'20D9.

Giuliana Santos Veronese, Miguel Correia, Alysson éseBessani, and Lau Cheuk Lung.
Spin one’s wheels? Byzantine fault tolerance with a spippirimary. InProceedings of the

28th International Symposium on Reliable Distributed &yst (SRDS '092009.

J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and.N\dahlin. Separating agreement from
execution for Byzantine fault-tolerant services. Aroceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP ,08ages 253-267, Bolton Landing, NY, USA,

October 2003.

160

Appendix A

Design of an Attack on a Decentralized

Intrusion-Tolerant Replication Protocol

This dissertation focused on the design of leader-basedsioh-tolerant replication protocols
that could resist performance failures and guarantee geddrmance as long as the network is
sufficiently stable. In this appendix we consider the probtd performance under attack inde-
centralizedintrusion-tolerant replication protocol, which does neiyron a leader for coordination
and which requires no synchrony in the entire system to gieealiveness (with probability 1).
In existing leader-based protocols, it is relatively easgde how to design an attack that can be
effective in slowing down performance; since throughputetels on how fast the leader proposes
an ordering, one straightforward way to degrade performasto slow down the leader. It is more
difficult to see how to degrade performance in decentralmetbcols, and for this reason they are
generally believed to be harder to attack than leader-bassdcols.

This appendix explores the feasibility of designing anckitdnat can be effective in reducing
performance in the RITAS atomic broadcast protocol [58]eeemhtralized intrusion-tolerant proto-

col that can be used for state machine replication. Thelaktas a somewhat theoretical flavor, and

161

Vector Consensus Atomic Broadcast

Multi-valued Consensus

Binary Consensus

Reliable Broadcast Echo Broadcast

Figure A.1: The RITAS protocol stack.

it is an open question whether it can be successful in caymrigrmance degradation in practice.
Nevertheless, we present it to demonstrate the importaemnsidering performance failures even
in intrusion-tolerant protocols believed to be relativielymune to slowdown.

In the remainder of this appendix, we first provide an ovewid the RITAS protocol stack,
focusing on the protocols for multi-valued consensus aohatbroadcast, which will be the targets
of our attack. Section A.2 describes the capabilities ofateersary that we use to model the
attack. Section A.3 presents a building block used in owcktt The building block, which we
call thestagger attackis mounted against the reliable broadcast protocol useccammmunication
primitive in the atomic broadcast protocol. Finally, Sens8 A.4 and A.5 outline the main attack

and discuss its implications.

A.1 RITAS Overview

RITAS provides a stack of intrusion-tolerant consensusogals (see Figure A.1). The proto-
cols are time-free, meaning they do not make any timing apsans about processing speeds or the
timeliness of the underlying network. The protocols in tteck use two asynchronous intrusion-
tolerant protocols as communication primitives. The fissthe asynchronous intrusion-tolerant
reliable broadcast protocol of Bracha [26], which was dbscrin Section 2.3; readers unfamiliar

with this protocol are encouraged to review Section 2.31egfooceeding. The second communica-

162

tion primitive is anecho broadcasprotocol, which is similar to the reliable broadcast proldaut
with the last round removed. The protocols requife> 3f + 1 processors to toleraté Byzantine
faults.

In order to circumvent the FLP impossibility result, the foeml at the bottom of the stack, a
binary consensuprotocol, makes use of randomization. The rest of the poi¢éoa the stack are
deterministic but ultimately use the binary consensusogaitas a subroutine.

In binary consensus, each processor proposes an inpuffroi}, and the protocol guarantees
that (1) all correct processors decide on the same value{tom}, and (2) if all correct processors
propose the same value, then that value is the common deciSithile we do not describe the
details of the binary consensus protocol here, we make fiatescadditional important property: If
all correct processors propose valyghen all correct processors will deciden a single iteration
of the protocol (i.e., in the minimum number of rounds). Tiieperty of guaranteeing termination
when the correct processors’ inputs are sufficiently homegas is shared by the multi-valued
consensus protocol, which is used by the atomic broadcasbqm that we ultimately wish to
attack. The property implies that an attack must cause at Eame divergence in the correct
processors’ inputs to multi-valued consensus to have aagashof success.

As our attack primarily focuses on timeulti-valued consenswmndatomic broadcasprotocols,
we briefly review them now.

Multi-valued Consensus:The multi-valued consensus (MVC) protocol builds on a soituto
binary consensus to allow a set of processors to agree ome fram an arbitrary domain, rather
than simply from{0, 1}. Each processor proposes an input value, and the protdber eiecides
on one of the processors’ input values or on a default value,

Upon invoking an instance of the protocol, a processor lsilibroadcasts amvc-INIT mes-

sage containing its input value. Upon reliably deliveriNg— f MvC-INIT messages, a processor

163

computes a valuey, based on the messages it received. If at1dast2 f of the messages contained
identical valuesy, thenw is set tov. Otherwisew is set toL. The processor then echo broadcasts
its w value in anMVC-VECT message.

When a processor collecis — f MvC-VECT messages, it chooses an input to binary consensus
based on the contents of thw/Cc-VECT messages. If the processor did not receive e -VECT
messages with different values, and if it received at I@ast 2f messages with the same value,
then it proposes a 1 to binary consensus; otherwise, it gegp0. If binary consensus returns O,
then MVC returnsL. Otherwise, MVC returns the decided upon value. Like binamgsensus,
MVC has the important property that if all correct processpropose the same input value, then
the protocol is guaranteed to decide that value in the mimimumber of rounds.

Atomic Broadcast: In the RITAS atomic broadcast protocol, processors atdiyibaoadcast
messages such that all correct processors atomicallyedélie same set of messages in the same
order. The protocol uses a solution to multi-valued conseas a subroutine.

To atomically broadcast a message, a processor reliabbdbasts it in amm-MSG message.
Each processof, maintains a seR_delivered, containing the messages thias reliably delivered
but has not yet atomically delivered. When this set beconoesempty,: reliably broadcasts an
A-VECT message, which contains the message identifiers of the gessgeR_delivered. Upon
reliably deliveringN — f A-VECT messages, processogenerates a seltl;, containing the set of
identifiers of messages that appeared in at |€ast of the V — f A-VECT messages. The processor
proposedV; as its input to an instance of MVC.

If MVC returns a non-default valud}’, then the messages with identifiersiin can be atom-
ically delivered in some deterministic order. If MVC retarh, then no messages are ready for
atomic delivery; since a processoRsdeliveredset is still non-empty, it will start a new iteration

of atomic broadcast by sending anvECT message. The set of message identifiers inANgECT

164

message is a superset of the set of message identifiers imaieys, failed iteration of atomic
broadcast. In order to bound the number of times that MVC eturm L, RITAS uses a window
mechanism whereby the identifiers of only the nextibow undelivered messages from each pro-
cessor can be added to thevECT message. This helps the protocol terminate because ellgntua
all correct processors converge to the same inputs for MW @hich case they will all propose 1

to binary consensus and the atomic broadcast protocol vailenprogress.

A.2 Designing an Adversary

As noted above, when correct processors all propose the guevalue to MVC, there is
nothing the faulty processors can do to delay the protoashfcompleting successfully in the
minimum number of rounds. Whether or not the correct prarsgsropose the same input to MVC
depends on the order in which they reliably delivershmsG andA-VECT messages. Experimental
results (see [58]) indicate that on local-area network&guit-free configurations, correct processors
are in fact likely to all propose the same value to MVC.

The preceding discussion implies that in order to causepaence degradation in the atomic
broadcast protocol, an attacker must cause at least soergeince in the correct processors’ inputs
to the multi-valued consensus protocol. To determine iharcattack is possible, we must consider
what type of attack the adversary is capable of mountingtréng network adversargapable of
controlling the order in which messages are delivered toecbprocessors can cause divergence in
the MVC inputs by causing some correct processors to seeua Yal 1 times and other correct
processors to see a value fewer thfai 1 times. However, such a strong adversary may not reflect
the types of attacks that can actually be mounted in pradtideed, such a strong adversary could
likely block progress altogether by severing the commuiiodinks between correct processors.

Our attack on the RITAS atomic broadcast protocol requingsaker adversary, which we now

165

define. Our adversary does not have complete control ovesageslelivery orderings. Rather, it
only controls (1) when the faulty processors send their agess and (2) to which processors the
faulty processors send their messages. We assume thgtgeagdessors are capable of coordinating
their attacks. While the RITAS protocols are time-free,nibavork on which they are deployed may
actually be highly synchronous, especially in a local-arei@vork setting where message delays are
symmetric and timing is predictable. We design our advgrtatake advantage of these strong
timing properties. To simplify the analysis, we assume thettadversary has precise knowledge of
the network and processing delays. As explained below, \evieea weaker adversary for which

this assumption is relaxed may still have the potential toman effective attack.

A.3 A Building Block: The Stagger Attack

This section describes a simple attack, which we refer thastagger attackon Bracha's
reliable broadcast protocol (see Algorithm 1 for pseudecofithe reliable broadcast protocol).
The stagger attack has the modest goal of staggering tlableelielivery, at correct processors, of
messages reliably broadcast by faulty processors. Spalifithe faulty processors can collude to
cause some correct processors to reliably deliver a mesdagethree message delays and other
correct processors to reliably deliver the same messagefaftr message delays.

Each faulty processor divides tR¢ + 1 correct processors into two group$,and B, where
|A| = f+1and|B| = f. Afaulty processor also choosetagget sebf servers’, whose members
will reliably deliver the faulty processor's message iretnmessage delays. Those servers not in the
target set will reliably deliver the message after four rmgesdelays. In the description that follows,
we letC denote the set of all correct processors, and wé'ldenote the set of faulty processors.

The stagger attack is summarized in Table A.1. When a fautiggssor reliably broadcasts a

messagej/, it sends arrRe-INIT message only to the processorskirand A; the members of3

166

Round Messages Sent Messages Received

Round 1| Initiator: RB-INIT — F, A A RE-INIT
B: None
F': RB-ECHO — FA A: 2f 4+ 1 RB-ECHO
Round 2 A: RB-ECHO — All B: f + 1 RB-ECHO
Round 3 F': RB-READY — T T: 2f + 1 RB-READY
A: RB-READY — Al C\T: f+1RB-READY
Round 4| ¢ \T: RB-READY Al | C\T: 2f+ 1RB-READY

(if not sent already) -

Table A.1: The Stagger Attack on Bracha'’s Reliable Broadgasocol.

do not receive th&B-INIT. Upon receiving th&s-INIT, the members ofi broadcast arB-ECHO
message foi/, while the processors iR send theirB-ECHO messages only to the memberstof
andA. Thus, after two message delays, the membersiwdve received f +1 RB-ECHO messages,
and the members db have received + 1 RB-ECHO messages.

At the beginning of the third round, the membersdofroadcast theiRB-READY messages, and
the processors i’ send theilRB-READY messages only to the membersiof Hence, after three
message delays, the membersiohave collecte®f + 1 RB-READY messages and can reliably
deliver M. The processors i’ \ T have received’ + 1 RB-READY and will send their owrrB-
READY if they have not already done so. Thus, after four messaggsighe correct processors in
C'\ T have collecte@f + 1 RB-READY messages and will reliably delivd .

The success of the stagger attack depends on the abilityedhitlity processors to send their
messages to some correct processors but not to others. Shimption is likely to hold on a

switched LAN, but it may not be possible to mount the attachk broadcast-only environment.

A.4 Attack Part 1: Causing Divergence of MVC Inputs

We now describe how the faulty processors can use the statjgek to cause divergence on the
correct processors’ inputs to multi-valued consensus. ifftuétion behind the attack is that if the

faulty servers can predict when (in real-time) one iteratid atomic broadcast ends and the next

167

begins, they can trigger the stagger attack to begin solbateliable delivery of a message spans
this boundary. Some correct processors (those in the taegetill reliably deliver the message
before starting the new iteration of atomic broadcast; eh@®cessors will include the identifier

of the message in their next VECT message. Those correct processors not in the target set will
reliably deliver the message after starting the new itenatif atomic broadcast and thus do not
include the message identifier in theirvECT message.

We now describe the attack in detail. A timeline of the attisgbrovided in Algorithm 5. In the
example that follows, we assume a system with 7 processersf(i= 2). Five of the processors
are correct (denoted; throughC's) and two of the processors are faulty (denofédand F3).
Processord”, and F, each atomically broadcast a messal @nd M-, respectively) at the start
of the first round, which should be taken to mean the time atlwttiey predict the attack should
commence if it is to be mounted successfully (i.e., so thatréiable delivery coincides with the
end of the current iteration of atomic broadcast).

Both faulty processors use the stagger attack, but theysehdifferent target sets:

e Fj chooses a target set containifigandCs, causing them to delivev/; at the start of Round

4; Cs, C4, andC5 deliver M, at the start of Round 5.

e [, chooses a target set containiig andCy, causing them to delivel/, at the start of round

4; ¢y, Cy, andC5 deliver M, at the start of round 5.

168

Algorithm 5 Attacking the RITAS Atomic Broadcast Protocol

/l Round 1
Fy — Cy,Co,C3: (RB-INIT, M)
F, — C5,Cy, Cs: (RB-INIT, My)

=

/[Round 2

Cy,C4,C3 — All: (RB-ECHO, M)
Cs,Cy,C5 — All: (RB-ECHO, M)
i,y — C,Cy,Cs: <RB-ECHO, M1>
Fy, Fy, — C3,C4,Cs: (RB-ECHO, M>)

[EnY
e

// Round 3

: Cy,Cy,C5 — All: (RB-READY, M)
: C5,Cy,C5 — All: (RB-READY, My)
. F1, Fy — C1,C5: (RB-READY, M)
. F1, Fy — C3,Cy4: (RB-READY, Ms)

e e N e
o U N WN P

: // Round 4

. ** (1, Cy Deliver M, and start RB fofa-veCT, C;, M)
. ** (3, Cy Deliver M, and start RB fofA-VECT, C;, Ms)
: C1,Cy — All: (RB-READY, M)

: C4,C5 — All: (RB-READY, M)

NN N PR R
NP O © o~

: // Round 5

. ** (4, Cy Deliver M,

. ** (O3, Cy Deliver M;

. ** C5 Delivers M, M and starts RB fofA-VECT, Cs, M tirst)

NN NN N
N o g s W

: // Round 7

: **All Deliver (A-VECT, C1,
: **All Deliver (A-VECT, Co,
: **All Deliver (A-VECT, Cs,
: **All Deliver (A-VECT, Cy,

W W W NN
N P, O O
=ezk
N i

w
w

: //Round 8
: **All Deliver (A-VECT, C5, Myirst)

w w
(SN

169

When a processor reliably delivers its first messdgdefor i € {1, 2}, it initiates the reliable
broadcast of am-vECT message containingy/;. Note that thea-vECT messages frortt; andCo
contain M, but not M-, and thea-vVECT messages fromd’s and C contain Ms but not M. The
A-VECT message frond’s contains whichever message it reliably delivered first ot/ .,
but not both (Algorithm 5, line 26).

Thea-vECT messages from processdars, Co, Cs, andCy will be reliably delivered at the start
of Round 7; the steps of these reliable broadcasts are netsiidea-vECT message frond's will
not be reliably delivered until Round 8. If the faulty prosess sendh-vECT messages, they can
ensure the messages are reliably delivered by Round 7 bingetfieém in Round 4 (or by sending
them in Round 3 if the stagger attack is used).

Thus, at the start of Round 7, processots Cs, Cs, andC} reliably deliver twoA-VECT mes-
sages containing/; only, two A-VECT messages containing/, only, and (if the faulty processors
sendA-VECT messages), twa-VECT messages from the faulty processors. The key point to ob-
serve is that depending on how the faulty processors choosend theilnm-vECT messages, they
may be able to encourage divergence on which messages (btahd M) appear inf + 1 out of
the2f + 1 A-VECT messages used by correct processors to construct theirtaqpl/C. We now
explain how this is possible.

If the faulty processors reliably broadcast theiveECT messages in Round 4 without the stagger
attack, then the number efvECT messages that will be delivered in Round 7 idy and M are
equal (i.e., 3 and 3). Since a correct processor buildspistito MVC based on 5 messages, exactly
one of M7 and M will be proposed as input. Assuming messages arriving isdhge round have an
equal probability of being delivered, a correct processa dn equal chance of proposimfy only
and M, only, meaning the correct processors are expected to hem@pijhly evenly betweei/;

and M. This scenario is successful for the attacker, becausesiahkeast created an opportunity

170

for MVC to run for longer than the minimum number of rounds.

The faulty processors can control the split of correct gsrie a greater degree by using the
stagger attack on their owsrVECT messages. If the faulty processors initiate the relialbadcast
of their A-vECT messages in Round 3, then their messages will be reliabiyedetl beforeC’s’s
A-VECT is delivered (Round 6 or 7 compared to Round 8). This allowddhlty processors to bias
the likelihood that a correct processor propo&gsonly or My only to MVC. To bias a set of correct
processorsSy, towardsM, the faulty processors delay the deliveryfofs A-vECT message at the
members of5;. Similarly, to bias a seb,> towardsMs, the faulty processors delay the delivery of
I's A-VECT message at the members$f. If S; andS; are about the same size, then using this
attack increases the likelihood of a roughly even split agnthre correct processors betwekh
and M.

Note that the faulty processors need to send conflicngeCT messages in order to cause
divergence. If they do not send anyvVECT messages at all, then all correct processors will use
the same set dff + 1 A-VECT messages to build their input to MVC (i.e., when they recéiys
A-VECT message in Round 8). Therefore, all correct processorsrgifoposel); only or M,
only, depending on the content 6§’s message. Similarly, if the faulty processors senrdeCT
messages with matching content in Round 4, for eitligror M5 only, then all correct processors
will either proposel{; only or M5 only to MVC, depending on which message the faulty processor
used.

As the number of faulty processors increases, the attacd®muwore power to split the correct
processors into multiple disjoint sets. Note that if no detfor 1 correct processors proposes
the same input to MVC, then the atomic broadcast protocdlneied to run for at least one more

iteration, increasing latency.

171

A.5 Attack Part 2: Pushing Multi-Valued Consensus Towards.L

Assuming the faulty processors can cause divergent inputwitti-valued consensus, we now
describe how they can push MVC towards deciding the defalitey L. This delays the atomic
delivery of any messages for at least one more iterationeodtbmic broadcast protocol.

We begin by supposing that the faulty processors causeddirect processors to be split
roughly in half between two input valuelg, andVs, whereV; contains message/; but noti/,, and
V5 contains messag®, but notV;. Since there ar2f + 1 correct processors, we suppose (without
loss of generality) thaf + 1 correct processors proposggdand the otheyf correct processors pro-
posedVs. If the faulty processors do not send any messages in thévalled consensus protocol,
then the correct processors will all decide Wbn they will all receivef + 1 MvC-INIT messages
for V7 and f MvC-INIT messages foV,, meaning they will all senéhvc-vECT messages fov;.
This demonstrates that the faulty processors need to setiduter messages to have a chance at
causing delay.

We now describe how the faulty processors can encouragect@nocessors to semy/C-VECT
messages containing the default valug, (rather than a real value, assuming the correct processors
are split as above. If most correct processors propgstaen MVC will likely return L, in which
case the upper-level atomic broadcast protocol will beddito run again.

Since onlyf correct processors propos&d, the faulty processors can prevéait from being
sent in themvc-vECT message of any correct processor simply by sen#ivg-INIT messages
containing any value other than. This prevents MVC from returningy.

Sincef + 1 correct processors propos&g, a correct processor will only serid in its mvc-
VECT message if the set &f + 1 MvC-INIT messages that it collects contains all of the- 1
MVC-INIT messages from the correct processors that propgséaissuming the faulty processors

do not sendvvc-INIT messages proposirig). If the faulty processors semavC-INIT messages

172

proposing some other value (siy), and messages reliably delivered in the same round ardyqua
likely to be delivered first, the attacker already has a nealsie chance that one of tife+ 1 needed
MVC-INIT messages will be among the Igstelivered in the round.

In fact, the attacker can increase its probability of sugd®sstarting the reliable broadcast of
the faulty processorsivc-INIT messages early. Since the communication model is asyrmispn
a correct processor cannot “tell” that a faulty processartat! its reliable broadcast early, but in
practice the message will be reliably delivered before amss sent at the “correct” time. Therefore,
with high likelihood, thef mvc-INIT messages from the faulty processors will be among@ fhe 1
considered messages. This means that a correct procedkspropose L unless the nexf + 1
MVC-INIT messages it delivers are exactly the- 1 messages that proposgg. Thus, the correct
processors are likely to semglvC-VECT messages proposing, in which case MVC will likely
return_L and no messages will be atomically delivered in this rounti@atomic broadcast protocol.

Note that this attack can still be effective even if the catrpgrocessors are split less evenly. As
long as the number of correct processors whose inputs to Mg @lantical is less thadf + 1, the
attack has some chance of succeeding, although with lowbapility. As noted above, the window
mechanism used by the atomic broadcast protocol ensureththaorrect processors eventually
converge to the same inputs for MVC, at which point all messag the window will be atomically

delivered.

173

Vita

Jonathan Kirsch was born in 1982 on Long Island, New York. éteved his B.S. in Computer
Science from Yale University in May 2004 and joined the Digtred Systems and Networks Lab
at Johns Hopkins University in August 2004. His researcluged on building high performance,
survivable replication systems. He received his M.S.E.am@uter Science in 2007 and his Ph.D.

in Computer Science in 2010.

174

