
A Highly Available Message Queue

Ashima Munjal

munjal@jhu.edu

January 22, 2003

Advisor: Dr. Yair Amir

yairamir@cs.jhu.edu

Submitted as partial fulfillment of the requirements for the degree of

Master of Science in Engineering from The Johns Hopkins University

1



1 Introduction

The ability to exchange messages via the Internet has become a basic necessity

in our day to day lives. Just as individuals exchange E-mails to keep up with their fellows,

several applications available today use various messaging systems to keep their information

current and consistent. This document proposes building a highly messaging system that

enables multiple clients to publish and subscribe messages, replicates messages at available

nodes and does not have a single point of failure. The distributed system would provide the

flexibility of initiating and retrieving messages at any given node.

The proposed system strives to achieve the same view of available messages on all

configured nodes, and cope with system crashes and network partitions. It accepts messages

from clients, secures them on stable storage, passes them around to other nodes and dis-

tributes them to connected clients. Each node passes state information and data messages

to other nodes as soon as possible (under the given network conditions), but it uses a fairly

lazy scheme for message annulment information as it assumes that disk space is not a scarce

resource.

The system provides first in first out (FIFO) service to all clients publishing mes-

sages. Clients may publish messages to any topic1, but to receive messages they must

subscribe to the topic. A subscription may be temporary or persistent. In case of a tempo-

rary subscription the system makes the best effort to deliver all messages while the client is

connected to the system, but only provides at most once guarantee. In case of a persistent

subscription, the system holds a copy of each message until it is delivered to the client. If the

client connects to the same physical server, the system can provide exactly once guarantee.

However, if the client moves from one system to another, then it must tell the server what

messages it has received for the exactly once guarantee.

1A topic is an administrative object that relays messages to the set of clients that register subscriptions

2



2 System Overview

Figure 1: Basic Architecture

Group Communication

Daemon

C C
C

Daemon

C C
C

Daemon

C C
C

The system uses multiple nodes to build a highly available message queue while

trying to present the notion of a single reliable entity to its clients. There are multiple

daemons that run on the configured nodes, that allow clients to connect to them. From the

clients perspective, connecting to any one of these daemons is mostly2 the same as connecting

to any other. These daemons communicate with each other using a group communication

system, namely the Spread toolkit which is described in more detail in Section 4.1.

To efficiently distribute messages, we create topics that act as message brokers

between different clients. This allows for a division of load, for different topics may have

distinctive lag and storage requirements. Suppose there is only one publisher and one sub-

scriber, and the subscriber keeps pace with the publisher. The number of messages stored for

2If the client changes the daemon it is communicating with, it must provide an uptodate copy of its

message headers to preserve exactly once delivery. Otherwise, some messages may be redelivered.

3



this topic and the overhead involving the calculations the servers have to make is rather low.

On the other hand, if there are many publishers and subscribers for a topic, all messages

will be kept around for the slowest client. Therefore, slower clients will only delay things in

the topics they subscriber to, and not all messages.

To create and delete topics, we have a more privileges topic called “directory”.

This is a default on all nodes. An administrative interface is used to make changes on this

topic, and it is replicated on all nodes. While the updates to this topic may only be made

by an administrator, all the clients can access it to get information about the current set

of topics. To avoid confusion on the state of directory information, full access is restricted

to the administrator. If the same topic is created at two nodes while they are unable

to communicate with each other, the data is simply merged. However, when it comes to

deleting topic, thing are no so simple 3.

All messages published to a topic must be delivered to clients in an order that

preserves FIFO guarantees. This means that messages from any publisher to the same topic

must be delivered in the order they where sent to all the subscribers. However, messages

from different publishers for the same topic may interleave in any random fashion. Also, this

guarantee makes no statement about the messages published to different topics by the same

subscriber. To order messages is rather simple, as they are sorted by the sequence number

created for them by the daemon that publishes them. But, deciding when a subscriber

joined the system and what is the first message it receives from each publisher is a bit more

cumbersome.

In order to publish a message to any given topic, a client must connect to a daemon

and send the message to that topic. When the daemon receives the message from the client,

it creates a sequence number for that message. Thus, every data message has a unique

3More details on this in Section 3

4



combination of sequence number and origin id. When a client subscribes to a topic, each

daemon must acknowledge its subscription. The new subscriber receives the data messages

incepted at a daemon only after the daemon sent the subscription acknowledgment messages

to its peers. This way, when a message originates at a daemon, the daemon knows the

exact set of recipients for that message i.e. the message can be deleted after this set of

clients receives it. In short, when a new subscription is created, a unique starting point for

messages originating at the various daemons is determined and FIFO guarantees are thereby

provided.

All the nodes that run daemons that provide a highly available message queue are

pre-configured. Therefore, the maximum number of nodes are known and all the daemons

communicate using the group communication system which is also pre-configured. Thus,

all calculations can be made deterministically. They also assume that ample amount of

disk space is available so that each topic can be hosted everywhere. However, it is possible

to host a topic at selected nodes only with certain variations to the algorithm. It is also

assumed that a message gets from one daemon to another (and thus to clients connected to

different daemons) if there is an eventual path between the two daemons. In other words,

two daemons need not be directly connected for an exchange of messages between them. As

long as pairs of processes are directly connected at successive periods in time, the messages

are passed around. The algorithm that achieves this is described in Section 3.

2.1 Architecture

The main components of this system, as presented in Figure 2 are:

• A client communication interface

5



Figure 2: System Architecture

Client

Group Communication

D

B

Cleint Communication

State sync/

Replication

Algorithm

Client

Client

…

Client

D

B

Cleint Communication

State sync/

Replication

Algorithm

Client

Client

• The replication and state synchronization algorithm

• A database manager

• A group communication system

The client communication interface receives clients requests asynchronously and

passes them on to the replication and synchronization algorithm. The main algorithm pro-

cesses the request, and uses the client communication interface to send messages back to

the client. It also uses the database manager to store messages and topic and client state

information on stable storage like a hard drive. It uses the group communication system

for membership information, and as a message bus for exchanging information with other

daemons. The algorithm presumes that the group communication system presents an accu-

rate view of the network in the membership information it provides and that it delivers the

messages in FIFO order to other daemons.

6



The replication and state synchronization algorithm maintains information about

the different topics, that includes the last message incepted for each topic at every node,

the clients subscriptions to the topic and the last message received by each client. This

information is passed around to other daemons when the group communication system re-

ports a membership change. Based on that, the daemons decide what messages need to be

re-sent to update other daemons, and this way a messages are received as long as there is

an eventual path between two daemons. Although not required for theoretical correctness,

state information is also periodically piggy backed on data messages to keep daemons up to

date.

The client state information is exchanged less often, as it is primarily used for

garbage collecting messages that have been consumed by all clients. Another consequence

of this is that if clients change the node they are connected to, then the new daemon may

not know which was the most recent message delivered to that client. Therefore, for exactly

once delivery, the client may have to provide the daemon with some information.

On a practical note, each of the nodes running this system must run the Spread

Toolkit as a process, and the persistent-messaging daemon as another process. They must

allocate local disk space for storing messages and other meta information. Since neither the

Spread Toolkit or persistent-messaging daemon support dynamic allocation of nodes, the

configuration files must be complete from the very beginning.

3 The Replication and State Synchronization Algorithm

The persistent messaging daemon runs a Replication and State Synchronization algorithm

that gives higher priority to the topic “directory”, for this topic stores meta information

7



regarding the other, more dynamic topics in the system. After each membership change

reported by Spread, first the directory information is synchronized to ensure that all the

replicas are up to date and then a slightly modified algorithm is run for the rest of the

topics. The main difference between directory messages and other messages is that directory

messages are deleted once all the daemons specified by the configuration apply it to their

state. However, messages related to other topics are deleted only when all the clients that

have subscribed to them either receive those messages or unsubscribe.

As mentioned earlier in Section 2, messages produced or incepted at one daemon

will be delivered to another daemon as long as there is an eventual path between the two

daemons. The delivery of pending messages also depends on the time duration of the network

connection between daemons. As stated earlier, directory messages are delivered before other

messages. An eventual path may be a direct network connection between two daemons, or a

connection between different sets of processors at successive periods of time e.g. if daemons

a, b and d are connected to each other during time interval t1, all messages produced by a

are shared with b and d. Later on, if c has a direct connection with d during time interval

t2, it will receive all the messages d had in t1, as long is t2 is long enough to transmit those

messages on the network. Thus, through d there exists an eventual path to c for the messages

produced at a and b during time t1. Of course, there is direct path between c and d.

A data messages is produced or incepted in the system as a consequence of a client

message. Therefore, the client interface, as described in Section 3.1 must be considered

before the algorithm run by the daemons can be understood. The algorithm run for the

directory information is described in Section 3.2. The difference between the algorithm run

for the directory topic and the rest of the topics are described in Section 3.3.

8



3.1 The Client Interface

An administrative client must have the ability to

• get a list of topics

• create a new topic

• delete an existing topic

A client must have the ability to

• get a list of current topics

• subscribe to any given topic

• send a message to any given topic

• unsubcribe to a given topic

• change subscriptions

• receive messages

A client may send messages to any topic, whether or not it has subscribed to that

topic i.e. topics are open to receiving messages from anybody. However, a client can only

subscribe to one topic per session, and each session can only have one active connection. A

client can subscribe to multiple topics by openening multiple simultaneous sessions4. The

client API transparently converts a change on subscription to a unsubscribe request and a

subscribe request. The API allows the clients to receive messages by a blocking receive call,

or by starting a message listening thread.

4this is required for JMS compatibility and is discussed in more detail in Section 4.2

9



3.2 The Directory

Messages that alter directory information are received by a daemon from a client, and then

distributed to all other daemons. A directory message may be destroyed once all the daemons

have applied it to their directory state database. To achieve this, as an administrative

client sends a message to a daemon, it creates a corresponding daemon level message called

directory message that includes the server’s id, a serial message index generated by the

server, and a lamport time stamp[2]. After the directory message is created, it is first applied

to the daemon’s local directory database. Storing the newly created directory message in the

database of messages and changing the directory state is done in one single transaction. The

newly created message is sent to all other daemons using the group communication service.

This message is piggy backed with the lowest lamport time stamp that the server knows off,

from any damon.

The combination of server id and message index are used to ensure that the

daemons are current with directory messages, and that messages are appropritately retrans-

mitted after a membership change. The lamport time stamp helps effectively detele directory

messages.

Each daemon stores a vector of last directory message index that it received from

other daemon. This vectory is updated as the server receives directory messages. When

the group communication system reports a membershrip change, a state message containing

the directory message vector is sent out. After all the state messages from the currently

connected members are received, each server calculates what messages need to be resent.

If there is a cascading memberhip change i.e. another memberhsip change while the state

messages are being exchanged, new state messages are sent. Each daemon calculates the

lowest and highest directory message sent by all the daemons in the system. Then they

retransmit the messages. Thus, after a membership change and one round of state messages,

10



the server know what messages need to be retransmitted. And if there is enough connected

time, there messages are retransmitted.

As various daemons receive directory messages, they record the highest lamport

time stamp that they have heard from that daemon in a vector, and then the update the

lowest lamport time stamp (min lts) that they have heard form any daemon. Each server

also advertises its min lts and then the least of the min lts is calculated. This is the all

received upto lamport time stamp (aru lts). All messages marked with a lamport time lower

than the aru lts can be safely deleted.

The min lts vector represents what each daemon knows about the other daemons

in the system. And the aru lts, which is the lower bound for min lts, represents global

knowledge. This works in case a server has crashed, as messages that are time stamped after

it will have an lts above the crashed server’s min lts. Therefore, new messsages created after

the aru lts was altered, are kept around until the crashed server recovers. This also works in

case of a partition, as each side will not be able to update the min lts of the daemons they

are partitioned from.

Here is a brief description of the data structures related to the directory.

server id is a unique indentifier held by each server

current lts is the current lamport time stamp.

When a new mesage is received, current lts = max(message.lts, current lts)

When a new directory message is incepted, it is marked with

lts = current lts = current lts + 1

directory index is a vector that stores the last index of messages created by each daemon.

directory lts is a vector that stores the maximum lts that has been created by each daemon.

11



directory aru is the all received upto lts that is advertised by daemons. For any given

daemon, its aru = min(directory lts vector)

topic info is the list of topics served by the highly available message queue.

3.3 Dynamic Topics

The dynamic topics enable applications to exchange messages among themselves. Once

created by an administrative user in directory, the dymanic topic runs an algorithm that

is very similar to the directory, but unlike the directory, the dymanic topics cannot delete

messages when all the servers have received them. The messages can only be deleted when

they have been delivered to all persistent subscriptions.

As described in Section 2, the client messages and client update messages share

the same message queue to achieve FIFO symantics. Client messages can be deleted only

after all the clients have received them, and client update messages can only be deleted after

all the daemons have received them. Therefore, we maintain two vectors related to deletion.

One related to the messages that have been delivered to clients (client messages) and the

other related to messages that have been received by all the daemons (client messages +

client update messages). The mesages that have been received by all the deaemons are com-

puted like directory messages. The other vector is updated each time a client acknowledges

it has received certain messages. If there are messages that have been delivered to all the

subscribers, but not received by all the daemon, they are marked deteleted and the message

body is shortened. It is only after a messages has been deliverd all the daemons and sub-

scribers, it can be deleted completely. Partial deletion is prefered because a client messages

can be quite space consuming.

12



4 Practical Considerations

A message queue must be highly responsive to be highly available. The biggest practical

challenge in implementing this system is to avoid huge lag in client server communication.

For example, when daemons merge, there may be a lot of messages to be exchanged between

them. The inter-daemon communication will tend to dominate the usage of bandwidth.

A happy median must be achieved in sending messages among servers and responding to

clients.

In this system, client messages are put on hold while state messages are exchanged.

Then the servers calculate what messages need to be resent, they start receiving client

messages again. The messages should be resent at a rate that does not overwhelm the client

messages completely and the service remains responsive. However, if there are membership

changes are a very fast pace, the system will become non-responsive to clients. Therefore,

network stability affects the availability of this message queue.

The groups communication system, as described is Section 4.1, is important for

its message thoughput affect the thoughput of this message queue and it correctness affects

the correctness of this system.

The message queue also fulfils many components fo the Java Messaging Sevice,

and those are described in Section 4.2

13



4.1 Group Communication – The Spread Toolkit

Spread[1] is a general-purpose group communication system for wide- and local-area net-

works. It provides reliable and ordered delivery of messages (FIFO, causal,agreed ordering)

as well as Virtual Synchrony and Extended Virtual Synchrony membership services.

Spread uses a client-daemon architecture. Node crashes/recoveries and network

partitions/remerges are detected by Spread at the daemon level; upon detecting such an

event, the Spread daemons install the new daemon membership and inform their clients

of the corre-sponding changes in the group membership that are introduced by the failure.

Clients are also notified when changes in the group membership are triggered by a graceful

leave or join of any client. The Spread toolkit is optimized to support the latter situation

without triggering a full daemon membership reconfiguration, but rather in-forming only the

participating group about the new group membership.

The Spread toolkit is publicly available and is being used by several organizations

in both research and production settings. It supports cross-platform applicationsand has

been ported to several Unix platforms as well as to Windows and Java environments.

4.2 Java Messaging Service

Sun Microsystems has defined an API for sending and receiving messages in the Java environ-

ments called Java Messaging Service (JMS)[[3]]. JMS supports both point to point message

exchange and well publish subscribe message queues. JMS also has a defined relationship

with other Java APIs susch as Java Database Connectivity Software (JDBC), Enterprise

Java Beans (EJB), Java Transaction API (JTI), etc.

14



The message queue described in this document fulfills all the requirements of the

publish subcribe system in JMS. The point to point system can be implemented within the

same system. However, this messaging system does not support the relationship JMS API

has with other Java APIs. For the rest of this section, I will decribe how the components

mentioned in the ealier sections map with the JMS API.

The directory topic is a rudimentary form of the Java Naming and Directory

Interface (JNDI). It is used a get information about topics. The topics, and subcriptions are

of course the same. In JMS, persistent subscriptions are known as durable and non-persistent

subscriptions are non-durable. Topic administration is done via the directory topic. JMS

uses a topic session for creating topic publishers, topic subscribers and for unsubscribing

from topics. Suppose we have a topic subscription session, all the messages for that topic

must be delivered to this session. For this reason, we consider the client connection to the

server as a topic session. This does limit the number of client the system can support to

much less than the number of connections that the machiene can support, but it allows us to

support multithreaded clients that want to recieve messages for serveral topics in a different

thread. If a single client is publishing and subcribing to the same topic, it would need

a publishing session and a subscribing session which translates into two different network

connection. Besides reducing the complexitiy of the server implementation, this also allows

us to have diffent error message handlers or exception listeners, as the are called in the Java

world.

5 Related Work

There has been a lot of work in group communication that supports a publish subscribe

system, but most of it does not provide persistence, though they are very efficient at best

15



effort delivery. Most current systems that support a persistent publish subscribe system are

based on a single server, and therefore do not support clustering.

One of the poineers in the group communication area is the Spread Toolkit, and

that is why it is the underlying infrastructure for this system. Another important project is

the ensamble project[4] developed at Cornell. It provides a library of protocols that can be

used for building distributed systems, and it is built in a higly modular fashion.

Many commertial systems such as IBM MQ, SonicMQ, and open source systems

such as JBoss offer message queues that provide exactly once message delivery symantics

for messages and persistence. The open source projects do not support clustering; the com-

mertical project don’t offer any information available freely that suggest that they support

clustering.

The Gryphon project[5] developed by IBM supports durable subscriptions in a

publish syscribe system. It logs each message only once, and actively filters each message

such that it only travels to brokers which have receivers. This is in much contrast to our

approach of replicating everything everywhere. Ofcourse, its a trade off in storage space

efficiency and avalablity of messages.

6 Conclusion

This document presents a software solution that provides a highly available message queue

using a cluster of computers that may be geographically apart. The builds on the Spread

Toolkit, a group communication, to provide persistence. This is also a limited Java Messaging

Service Support. JMS compatibility allows the possiblity of JMS users to use this in existing

16



systems without making many code changes.

References

[1] Y. Amir and J. Stanton. The spread wide area group communicatoin system. Technical

Report CNDS 98-4, Johns Hopkins University, Center for Networking and Distributed

Systems, 1998.

[2] L. Lamport. Time, clock and ordering events in a distributed system. Comm. ACM,

21(7):558-565, July 1978

[3] Java Messaging Service - http://java.sun.com/products/jms/

[4] M. Hayden The Ensemble System. PhD thesis, Cornell University, 1998

[5] S.Bhola, Y. Zhao and J. Auerbach. Scalably Supporting Durable Subscriptions in a

Publish/Subscribe System, IEEE DSN 2003.

17


