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Abstract

Group communication systems have a successful history of providing useful services for

the development of distributed applications. Several different semantic models for such

systems have been proposed, analyzed, and studied, and a number of systems have been

built and used in both commercial and research software systems. However, group commu-

nications has also been viewed by many as a niche service whose limitations make it useful

for only very restricted classes of applications. Two of the most significant limitations

have been their dependence on low-latency, high-bandwidth networks and the complexity

or inflexibility of the systems.

This thesis presents a formal model specifying the services that a wide-area group com-

munication system could support. It then discusses the challenges wide-area networks, such

as the Internet, present for group communications and how these challenges were met by

the design and implementation of a group messaging system called “Spread.” Finally the

performance of the system is evaluated and the impact of specialized network protocols is

discussed.

Advisor: Professor Yair Amir

Reader: Professor Scott Smith
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Chapter 1

Introduction

Observe constantly that all things take place by change, and accustom thyself to con-

sider that the nature of the universe loves nothing so much as to change things which

are and to make new things like them. For everything that exists is in a manner the

seed of that which will be.

– The Meditations of Marcus Aurelius (Book 4 - XXIX)

One of the main difficulties in distributed algorithms and systems is that the environ-

ment in which distributed software runs is very complex and has an extremely large number

of possible failure scenarios. Group communication systems attempt to hide that complex-

ity by providing a model that constrains the diversity of failures and enforcing a type of

synchronous behavior on messages and failures. Although Group communication systems

succeed in the theoretical sense, in that they can correctly provide well-defined message

semantics that are simpler then the unbounded behavior of asynchronous, multi-node dis-

tributed systems, they have not clearly succeeded in the practical sense. Group communi-

cation systems are not widely used in real applications or viewed by developers outside the

research community as a well-understood, reliable building block, upon which complex

applications can be built.

Several plausible reasons exist for this lack of acceptance. First, although group com-
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munications is a well-developed research field, it is quite young, only having begun 15

years ago. The beginning of the field is usually marked by the Virtual Synchrony paper by

Birman and Joseph in 1987 and the ISIS system [Bir86] in 1986. Flexible, general purpose

systems that are mature, well-tested, and evolved have not had much time to develop. Prac-

tical systems existed from the very beginning of the field, starting with the very successful

ISIS system. The solutions offered by systems, however, were often narrowly focused on

certain applications, or specific, limited classes of problems.

Second, even now, agreement on what the appropriate models and semantics that sys-

tems should support does not exist. All early models have been shown to be flawed, or lim-

ited in some way [ACBMT95]. More recent specifications [BDM99, FLS97] avoid these

flaws, however, they enforce properties that limit the performance of the system, and are,

therefore, non-optimal. More generally, an understanding of what properties are needed

for applications other than consistent replication has not been developed.

The debate over the usefulness of causal and totally ordered virtually synchronous com-

munication systems has occured since the first such system. Cheriton and Skeen [CS93]

claimed causal and total order communication was not applicable to several types of dis-

tributed applications. Birman [Bir93b] responds by providing a number of applications that

can take advantage of ordered communication to become fault-tolerant and have a simpli-

fied programming model. Schneider’s survey [Sch90] presents how to use total ordered

messages to manage a system with distributed state consistently without locks.

When examining distributed systems that function over wide-area networks, one of the

most important constraints is the latency of communications. While in local area networks,

message latency is significantly slower than local memory latency. It is still low enough

that for many applications involving user interaction or moderate amounts of messaging,

the latency does not contribute to user-experienced delays or become the bottleneck of the

system. In wide-area networks the network latency becomes critical for any application

involving interaction and can significantly affect even non-interactive applications by lim-
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iting their throughput and consuming large amounts of memory to store messages.

Network latency critically impacts the design of network and wide-area distributed sys-

tems not only because it causes delay, but also, and more importantly, because the delay

can not be overcome by future technological advances, faster hardware, or better designed

networks. The delay is fundamental to wide-area networks, as long as the physical prop-

agation delay of information remains limited by the speed of light. Sound engineering

and improved network hardware can reduce the latency to the minimum propagation delay.

The minimum delay, however, is still very significant in that it can be hundreds of times the

local area network latency even for networks just within the USA.

Many distributed algorithms, effective in networks with low latency, become slower in

proportion with the network latency. This does not mean that all distributed algorithms

increase in cost as the network latency increases. Many algorithms may increase only

slowly, or may be modified to increase slowly.

Supporting wide area group communication systems involves not only the obvious scal-

ing to more nodes, but more importantly, it means adapting to a more hostile networking

and process environment in which less can be trusted. In such environments, latency can be

high and widely varying. The system can not assume a flat (uniform) process group with

no regards to network locality and resource availability.

An effective implementation of a general group communication specification is not a

trivial problem. Because group communication systems require both providing network

services and implementing distributed algorithms, even simple specifications often require

significant effort to develop functional implementations. The high messaging and computa-

tion costs required by the first generation of systems implementing group communication

specifications, often led observers to believe that strong semantics group messaging was

fundamentally impractical due to the high cost. This belief was not based on fundamental

performance constraints of the model, but rather the performance of the initial implemen-

tations. Later work [AMMS+95, ADKM92, FvR97] improved the performance of group
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communication systems significantly and laid the groundwork for efficient, high perfor-

mance, scalable systems such as Spread.

A useful group communication system needs to provide a simple and consistent API for

membership, messaging, ordering, and reliability. It also needs flexible service semantics

that can be customized to fit application needs. At the same time it is more difficult to

maintain and understand a monolithic system. One approach is to provide one external

interface, with a number of internal interfaces between self-contained components, each

providing a portion of the services that make up the entire system. This gives some of the

benefit of modularity without losing the simplicity and ease of use of a single system.

The usefulness of group communication systems in supporting consistent replicated

state and reliable multi-party coordination is well known. Debate over the usefulness of

group communication systems for other applications and as a general model for distributed

applications is widespread. Many argue the strong semantics of traditional group commu-

nication models makes them unscalable or too slow for many applications. Researchers

generally agree that most existing group communication systems interfaces and semantics

are too complex and too difficult to understand.

The problem this thesis addresses is how to provide a useful set of services, specifically

wide-area reliable multicast, totally ordered messages, and a view-oriented membership

service for group-oriented messaging, in the context of wide-area networks.

1.1 Summary of Contributions

This dissertation studies a method for constructing scalable group communication systems

and presents a new architecture for building high performance group communication sys-

tems. This architecture includes algorithms for strong group membership, ordering and

reliability. The architecture is realized in the implementation of a group messaging toolkit

called Spread which provides high performance messaging on both local and wide area
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networks.

This dissertation makes the following contributions to distributed systems and network-

ing research in the field of Computer Science:

• the first formal specification of a complete Extended Virtual Synchrony-based model

for reliable group communications including light-weight FIFO and reliable messag-

ing services, and scalable, dynamic joins and leaves of processes.

• a flexible architecture and programming interface that supports both simple (reliable

multicast without membership) and complex (Extended Virtual Synchrony) services.

• the design of a scalable, hierarchical membership service and a proof that this design

correctly provides the Extended Virtual Synchrony specification.

• a scalable overlay network for routing, dissemination, reliability, and flow control of

group multicast messages.

• a high performance messaging system, Spread, that provides group communication

services to large numbers of clients across a wide area network.

1.2 Structure of thesis

This thesis is structured to present three views of a wide-area group communication system.

One might characterize these views as a journalist, “What is a group communication sys-

tem?”; “How does one build a correct, high-performance group communication system?”;

and “Why is a wide-area group communication system useful?”. First, we explore the

“What” by presenting the theoretical specification of a model for group membership, mes-

sage ordering, and reliability supporting wide-area networks. This model is independent

of any particular system, algorithm or protocol and specifies the behavior that applications

using the service can expect, as well as the behavior of certain sub-components that make

up a group communication system. Second, the “How” is explained in a detailed discussion

of the actual architecture, protocols, and implementation of a complete group communica-
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tion system implementing the model. Third, the “Why” is addressed through experimental

evaluation of the system.

Chapter 2 includes the complete specification of several models of group communica-

tion systems and network protocols. In Chapter 3 Spread is introduced as the wide-area

group communication system that implements the above specification. Chapter 3 also in-

cludes Spread’s history, overall architecture, and design. Chapter 4 explains the algorithms

and implementation of a wide-area reliable overlay network that disseminates messages

between the servers. Chapter 5 presents the algorithm for global ordering of messages,

and discuss its performance during intervals when the set of participating servers is stable.

Chapter 6 presents, and proves the correctness of, two complete group membership proto-

cols that implement the EVS specification among first the set of servers, and then among

all of the processes in the system. Finally Chapter 7, concludes and discusses the overall

impact of this work.

1.3 Related work

1.3.1 Group Communication Systems

Group communication systems have a well developed history beginning with the seminal

work on Virtual Synchrony by Birman and Joseph[BJ87] and the development of the ISIS

System[Bir86, Bir93a, BR94] in the late 1980’s and early 1990’s. Several other early sys-

tems such as Amoeba [KT91], Consul [MPS93], xAMp [RV92], Phoenix [MFSW95], and

Newtop [EMS95] provided services such as total order messages, membership, and some

supported Virtual Synchrony.

Since then a number of systems have been developed such as Transis [ADKM92], Ho-

rus [RBM96], Totem [AMMS+95, Aga94], RELACS [BDGB94] Ensemble [Hay98], and

RMP [WMK94].

6



Wide Area Group Communications A few of these systems have added some type of

support for either wide-area group communication or multi-LAN group communication.

The Hybrid paper [RFV96] discusses the difficulties of extending LAN oriented protocols

to the more dynamic and costly wide-area setting. The Hybrid system has each group com-

munication application switch between a token based and symmetric vector based ordering

algorithm depending on the communication latency between the applications. While their

system provides a total order using whichever protocol is more efficient for each partic-

ipant, Hybrid does not handle partitions in the network, or provide support for orderings

other then total.

Several new group communication protocols designed for such wide area networks

have been proposed [KK00, AMMSB98, AS98, ADS00, JJS99] and continue to provide

the traditional strong semantic properties such as reliability, ordering, and membership.

These systems predominantly extend a flow control model previously used in local

area networks, such as the Totem Ring protocol[AMMSB98], or adapt a window-based

algorithm to a multi-sender group[HvR95, ADS00].

Totem The Multiple-Ring Totem protocol [AMMSB98] allows several rings to be inter-

connected by gateway nodes that forward packets to other rings. This system provides a

substantial performance boost compared to a single-ring on large LAN environments, but

keeps the assumptions of low loss rates and latency and a fairly similar bandwidth between

all nodes that limit its applicability to wide-area networks. The latency of the Totem mul-

tiple ring protocol has been theoretically analyzed in [TMMS97].

Transis The Transis wide-area protocols Pivots and Xports by Nabil Huleihel [Hul96]

provide ordering and delivery guarantees in a partitionable environment. Both protocols

are based on a hierarchical model of the network where each level of the hierarchy is

partitioned into small sets of nearby processes and each set has a static representative who

is also a member of the next higher level of the hierarchy. Messages can be contained in
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any subtree if the sender specifies that subtree. The Congress work [ACDK98] approaches

the problem of providing wide-area membership services separately from actual multicast

and ordering services, and provides a general membership service that can provide different

semantic guarantees.

Inter-group Router The inter-group router model[JJS99] aggregates local ordering pro-

tocols into global ordering guarantees. Each local instance of a group is connected with

other instances through wide-area routers which provide ordered channels and groups. The

paper provides analysis of which orderings are required in the wide area groups in order to

preserve FIFO and Total order among the aggregated groups.

1.3.2 Semantics and Models

Several different models for what properties group communication systems should pro-

vide were developed. The first, was Virtual Synchrony [BJ87] which initiated the idea

of reliable groups with membership. Later other researchers developed Extended Virtual

Synchrony [MAMSA94] that provided semantics for partitionable systems.

One of the most fundemental problems in group communication systems is providing

an agreed membership view. Providing such a view requires some sort of consensus which

has been proven to be impossible in asynchronous systems [FLP85]. The idea of Failure

detectors as a way to solve Consensus was first proposed by Chandra and Toueg [CT96].

A number of specifications [JFR93, BDM99, BDMS98, DMS96, FLS01, MAMSA94,

HLvR99] for a group membership service have been developed.

One of the limitations of virtual synchrony is that the application must not send mes-

sages prior to a membership change for a period of time whose length is dependent on the

latency of the network. This result, along with a potential solution, appears in[FvR95].

Here the models of Strong and Weak Virtual Synchrony are defined and the approach of

sending a “suggested view” a superset of the final view is proposed as a method to allow
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messages to be sent at any time around a membership change.

The concept of a light-weight group that exists on top of a heavy-weight group mem-

bership protocol was explored in [Pow91, RGS+96]. The advantage of light-weight groups

is they improve the scalability of the system in terms of the number of groups that can

efficiently be supported. Each group does not need to run a full membership algorithm

every time the set of members changes but rather the heavy-weight algorithm runs once,

and translates the results for all of the light-weight groups. The main disadvantage that was

identified was the risk of interference from failures in the heavy-weight group.

Structured VS [GVvR96] presents a technique that added a two-level hierarchy to the

Horus implementation of Virtual Synchrony and decreased the number of messages re-

quired to compute message stability so the system could support more processes.

1.3.3 Group Membership Algorithms

More recent work in this area focuses on scaling group membership to wide-area networks

[ACDK98, KSMD00].

The client-server approach taken by [KSMD00] uses a set of membership servers who

maintain membership views on the behalf of clients and introduces a novel virtual syn-

chrony membership algorithm. This algorithm can achieve agreement on the view identi-

fier in only one round of network communication in the common cases and three rounds in

the worst case.

This approach separates the membership service from the associated multicast, order-

ing, and reliability services. The Congress [ACDK98] and Moshe [KSMD99, Now98]

systems take this approach. One distinction between the Moshe work and this thesis is that

in the Congress and Moshe approach, membership tracks client processes, while in this the-

sis the membership task is split into maintaining a stable set of servers and a light-weight

client membership that does not require participation of the clients.
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1.3.4 Applications of Group Communication

Schiper and Raynal[SR96] argue that to easily support fault-tolerant transactions with

Group communication systems, the Group communication systems need to support multi-

group multicast.

Other typical applications are state-machine replication [FV97a, KD96, ADMSM94,

Ami95, FLS97, KFL98], replicated distributed objects [FV97b, MDB00, Mon00, MMSN98,

Maf95], distributed transactions and database replication [GS95, KA98, Kei94, KA00], re-

source allocation [SM98], system management [ABCD96], distributed logging [ASSS01],

monitoring [ASAWM99], and highly available servers [MP99, ADK99].

Group communication systems are also used for audio and video conferencing [CHRC97]

and collaborative computing [BFHR98, ACDK97, RCHS97, KCH98].

Shared memory using GC [Fri95]. The Oasis system implements distributed shared

memory on top of a group communications system[WLF00, WLF01].

1.3.5 Reliable multicast and network protocols

IP-Multicast is actively developed to support Internet wide unreliable multicasting and to

scale to millions of users. Many reliable multicast protocols which use IP-multicast have

been developed, such as SRM [FJL+97], RMTP [LP96], Local Group Concept (LGC)

[Hof96], and HRMP [GGLA97].

The development of reliable protocols over IP-Multicast has focused on solving scal-

ability problems, such as ACK or NACK implosion and bandwidth limits, and providing

useful reliability services for multimedia and other isochronous applications. Several of

these protocols have developed localized loss recovery protocols. SRM uses randomized

timeouts with back-off to request missed data and send repairs, which minimizes dupli-

cates. SRM has enhancements to localize the recovery, using the TTL field of IP-Multicast

to request a lost packet from nearer nodes first, and then expands the request if no one close

has the packet. Several other variations in localized recovery such as using administrative
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scope and separate multicast groups for recovery, are discussed in [FJL+97].

Other reliable multicast protocols like LGC use the distribution tree to localize retrans-

mits to the local group leader who is the root of some subtree of the main tree. RMTP

also uses “Designated Receivers” (DR) who act as the head of a virtual subtree to localize

recovery of lost packets and provides reliable transport of a file from one sender to mul-

tiple receivers located around the world. RMTP is based on the IP-Multicast model, but

created user-level multicast through UDP and modifiedmroutedsoftware. RMTP did not

examine the tradeoffs in link protocols discussed in this paper because RMTP handles re-

liability over the entire tree, with the DR’s only acting as aggregators of global protocol

information. The system described in this thesis also provides localized recover. The pro-

posed system has additional information about the group membership and how messages

are disseminated, allowing more precise local recovery to get the packet from the nearest

source.

HRMP [GGLA97] is a reliable multicast protocol which provides an efficient local re-

liability based on a ring, while using standard tree-based protocols such as ack trees to

provide reliability between rings. This work theoretically analyzes the predicted perfor-

mance of such a protocol and shows it to be better then protocols utilizing only a ring or a

tree. This thesis actually uses a ring protocol for local area networks for many of the same

reasons as HRMP.
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Chapter 2

Specifications and Environment

This chapter presents a formal specification of a group communication system and how that

specification interacts with the surrounding environment. This formal specification of the

system allows a developer or researcher to understand the properties of the system without

having to understand, or examine the implementation. The specification also provides a

formal model for reasoning about the correctness of the system. The protocols can then be

studied to see whether or not they actually provide the specified properties.

Often no one “right” formal specification of a distributed system can be defined. Each

specification involves tradeoffs among the semantics provided, how strictly those semantics

are enforced, and the performance of an implementation of the specification.

The specification provided here focuses on several commonly accepted properties of

group communication systems and combines them into a complete specification that is

lighter weight then existing specifications. It is more flexible and so it is able to be im-

plemented in a more efficient way. The specification is still, however, strong enough to

solve any of the traditional fault-tolerant consistent replication problems discussed in the

literature [Ami95, AT01].

Group communication systems usually support one of two group models, open-groups

or closed-groups. In the open-group model clients can send messages to a group without
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joining the group. The client will not receive these messages since they have not joined

the group to which the messages were sent. Despite the sender not being in the group, the

messages will support the same semantics with regards to the members of the group as a

message sent by one of the current members. In a closed-group model, clients can only

send messages to groups in which they are members.

Many specifications of group membership and virtual synchrony models assume a

closed-group model. This limits the usefulness of the model as open groups map effi-

ciently to many common designs such as client-server or request-response applications.

Open groups are a more general model as they can efficiently emulate closed-groups by

not sending to groups an application has not joined, while closed-groups cannot emulate

open-groups send-without-receiving service or without the sender receiving messages it

does not need or want.

This specification adds connect and disconnect events to support the open-group model.

Instead of the model assuming joining a group is the initial event a process sees, the first

event is a connect event which is not related to any particular group. After the connect is

complete, the client can send messages, but will not receive any messages.

2.1 Failure Model

This thesis discusses adistributed system. A distributed systemcan be defined as a group

of processes executing on one or more computers and coordinating actions by exchanging

messages [Bir96]. Processes communicate via asynchronous multicast and unicast mes-

sages. Messages can be lost.

The system can experience process crashes and recoveries. A crash of any portion of

the running process, such as the application or a communication library is considered a

process crash. A machine crash can be treated as the crash of all the application processes

as well as the group communication server. Each process can detect the crash of any other
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process on the same machine using standard operating system services.

Additionally, the system can suffer network partitioning failures in which the network

splits into disconnected subnetworks. When the network recovers from such a failure,

the disconnected components merge into a larger connected component. Unlike processes

from connected components, processes from disconnected components can not exchange

messages.

More formally, given a set of processes S, and potential bidirectional links between

every pair of processes in S, a processp can be either alive or dead and a linkpq where

p, q ∈ S can be either up or down.

A connected componentC is defined as a set of alive processes that have direct bidi-

rectional communication links in the up state to all of the other processes inC but all

communication links to processes inS \ C are in the down state.

This thesis assumes that message corruption is masked by a lower layer. Byzantine

failures are not considered.

It is well known that solving the consensus problem is impossible in an asynchronous

network [FLP85]. The Group Membership problem has also been shown to be unsolvable

in asynchronous networks with failures [CHTCB96]. Both of these results rely on the

fact that certain loss or failure patterns are possible, and in executions with those patterns,

the membership or consensus algorithm will fail. We avoid these results by making the

specification conditional on certain failure patterns not occurring. If the patterns do occur,

since they are possible in an asynchronous network, certain specified properties will not

hold. The only property that will be violated in this case is the Membership Precision

property. Since the condition on certain failure patterns is external to the actual algorithm,

the algorithm does not know in what executions the failures will prevent a successful result.

So the algorithm must always make a best effort to provide a correct solution and this

conditional property does not allow the algorithm to take any shortcuts.
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2.2 System and Layer Specifications

This specification divides the task of providing a complete messaging and group communi-

cation system into several components. Each component, or layer, relies on the semantics

and services provided by lower layers and provides a well-specified set of semantics and

services to layers above it.

Dividing the system into well-defined components both improves the analysis and

makes a quality implementation easier. The separation of network-focused tasks such as

providing a reliable point-to-point link protocol from more complex distributed algorithms,

like membership, creates more specific tasks that each component must accomplish. This

specification also maps quite naturally onto an actual software implementation with sepa-

rate software modules providing the different services at each layer.

Four boundary levels exist: first, between the physical network and the network link

layer; second, between the network link layer and the protocol layer; third, between the

protocol layer and the session layer; and fourth, between the session layer and the applica-

tion. Each of these boundary levels has a well defined specification of the semantics that

layers above the boundary can rely on.

The boundary levels are not walls. Higher layer components can directly access any

lower layer if needed. One case which requires layer skipping is probing for new servers.

No current network link can exist to a server that has never been contacted before, so the

probe must be sent using the lowest layer, unreliable UDP messages.

The boundary levels are marked B1, B2, B3, and B4 in Figure 2.1. Boundary B1 repre-

sents a minimum required network service level of unreliable point-to-point and multicast

datagrams. Multicast datagrams are only assumed to work within local area networks and

are not routed. This level is clearly provided by the standard IP Internet protocol of UDP.

Boundary B2 provides the abstraction of a reliable datagram link between two or more

machines. The link guarantees that any messages sent through it will arrive at the other

end, or if they cannot, the link will declare itself failed. The link also provides flow control
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and congestion control sufficient to meet the requirements of Internet standards. For this

work, this set of semantics has the name “Reliable Link” semantics, or RL semantics.

Boundary B3 provides full EVS semantics for the group of servers. These semantics

are defined below in Section 2.2.5. This set of semantics has the name “EVS-S” or EVS-

Servers.

Boundary B4 provides full EVS semantics for all of the clients and all of the groups

they use. These semantics are defined below in Section 2.2.4. This set of semantics has the

name “EVS-C” or EVS-Clients.

An important observation is that both the EVS-S and EVS-C provide essentially the

same set of semantic guarantees. The difference between the two semantic layers is in

what assumptions they make about the layers underneath them. For example, the EVS-S

layer only assumes the existence of unreliable and reliable communication links between

hosts, but does not assume anything regarding the reliability of messages sent to the entire

system, or the coherency of the server state. The EVS-C layer on the other hand does

assume that messages it sends have the ordering, safety, and membership guarantees of the

EVS model, since those services are provided by the EVS-S layer below it.

Despite the fact that the EVS-C layer already assumes a complete EVS-S layer below

it, the design and implementation of the EVS-C layer is definitely non-trivial. It is difficult

for two reasons. First, the EVS-C layer has to map the EVS guarantees from a set of

hosts (the EVS-S group) to a very large set of client members and groups. Second, the

EVS-C layer provides a stronger service than the EVS-S layer in terms of performance

guarantees. EVS-C guarantees that a group join or leave operation will not require any

additional synchronization beyond one totally ordered message, while the EVS-S layer

requires a full flush of messages and state synchronization when a join or leave operation

occurs. To maintain this better performance guarantee, the EVS-C layer must maintain the

consistent state of the groups while both network level changes occur (views delivered by

the EVS-S layer) and group level changes occur (client joins and leaves).
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2.2.1 Basic Model and Definitions

This specification draws on the IO atomota model developed by Lynch and Tuttle [LT87,

Lyn96] and previous GCS specifications by Schultz[Sch01].

This section provides a set of definitions and properties.

The following symbols are used throughout the rest of this work.

N set of natural numbers.

C set of client processes.

S set of server processes.

M set of sent client messages.

P set of sent packets on the network.

G set of groups joined by clients.

Vid set of delivered view ids in strict partial order.

SVid set of delivered server view ids in strict partial order.

MT set of message types{R,F, A, S}.

In this thesis the variables a,b,i,j,k, and l are members of N, variables named c or d are

members of C, variables named s or t are members of S, variables named g or h are members

of 2G, variables named m are members of M, variables named D and T are members of2P ,

and variables named id are members of Vid or SVid.

The external signature of the EVS-C specification consists of the actions:

• input connect(c, s), c ∈ C, s ∈ S

• inputdisconnect(c, s), c ∈ C, s ∈ S

• inputsend(c, s, m), c ∈ C, s ∈ S, m ∈ M

• input join(c, s, g), c ∈ C, g ∈ 2G

• input leave(c, s, g), c ∈ C, g ∈ 2G

• outputdeliver(c, s, g,m), c ∈ C, s ∈ S, g ∈ 2G, m ∈ M
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• outputview(c, s, g, id, D, T ), c ∈ C, s ∈ S, g ∈ 2G, id ∈ V id, D ∈ 2P , T ∈ 2P

• outputtranssig(c, s, g, id), c ∈ C, s ∈ S, g ∈ 2G, id ∈ V id

The complete signature also includes the actions:

• inputsdeliver(s, m)

• inputsview(s, id,D, T )

• inputstranssig(s, T )

• outputssend(s, m)

These actions provide the interface between the EVS-S specification and the client level

EVS specification.

Notice that this specification does not provide any actions referring to the failure or

recovery of a process or a network link. This is because the EVS-C specification assumes

an underlying EVS-S specification that will provideview events with information about

network partitions and host crashes and recoveries. A client treats the detected crash of

the server it is connected to as a disconnect. As when a client crashes, the data in buffers

between the server and client is considered lost.

Client processes can also crash and recover, but for the signature of the GCS these

events do not matter. The server treats the crash of a client process as a disconnect. The

server handles a disconnect by initiating a leave of all the groups the client process had

joined. The recovery of a client consists of initiating a connect event and then joining

whatever groups it requires. Any additional state synchronization or recovery is outside of

the GCS.

DEFINITION 2.1 (EVENT )
The occurrence of an action from the automaton’s external signature.

DEFINITION 2.2 (TRACE)
A sequence of events.
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Each event occurs at a single client process connected to a single server. Thus, a func-

tion cid mapping events to the client process for which they occurred and a functionsid

mapping events to the server process on which they occurred are well defined.

DEFINITION 2.3 (CID )
The cid of an eventta is the client process at which the eventta occured. Formally:

cid(ta) = c if ∃s | ta = connect(c, s) ∨ ta = disconnect(c, s)
∨ ∃m∃g | ta = send(c, s, g, m) ∨ ta = deliver(c, s, g, m)
∨ ta = join(c, s, g) ∨ ta = leave(c, s, g)
∨ ∃id∃D∃T | ta = view(c, s, g, id,D, T ) ∨ ta = transsig(c, s, g, id)

DEFINITION 2.4 (SID)
The sid of an eventta is the server process at which the eventta occurred. Formally:

sid(ta) = s if ∃c | ta = connect(c, s) ∨ ta = disconnect(c, s)
∨ ∃m | ta = sdeliver(s,m) ∨ ta = ssend(s,m)
∨ ∃g∃m | ta = send(c, s, g, m) ∨ ta = deliver(c, s, g, m)

ta = join(c, s, g) ∨ ta = leave(c, s, g)
∨ ∃id∃D∃T | ta = view(c, s, g, id,D, T ) ∨ ta = transsig(c, s, g, id)
∨ ta = sview(s, id, D, T ) ∨ ta = stranssig(s, T )

Each event occurs within the context of a view. The symbol⊥ represents the initial

view for any process and the view at a client after disconnecting. The view in which event

tk = view occurs is nottk itself, but rather the previous view for that process. The function

vid returns the view in which an event occurred at a client. Definition 2.5 provides the

formal specification.

DEFINITION 2.5 (VID )
The vid of an eventtk at a process c is the view identifier delivered in a view eventti at c
which precedestk such that there are no view or connect events betweenti and tk at c. If
there is no such view event then the vid is the null view identifier,⊥. Formally:

vid(tk, c, g) = id if ∃i 6 ∃j∃s∃D∃T | i < j < k ∧ ti = view(c, s, g, id,D, T ) ∧
(tj = connect(c, s) ∨ ∃id′∃D′∃T ′ | tj = view(c, s, g, id′, D′, T ′))

⊥ otherwise
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The causal order as defined by [Lam78] provides a strict partial order on events in a

trace.

DEFINITION 2.6 (→)
The→ relation defines an irreflective, anti-symmetric, transitive partial order. Formally:

ti → tk ≡ (cid(ti) = cid(tk) ∧ i < k)
∨ (ti = send(c, s, g, m) ∧ tk = deliver(d, s′, g, m))
∨ (∃j | ti → tj andtj → tk)

All messages sent have an assigned, absolute order within the system. This order can

be considered a one-to-one function from the set of messages to the set of natural numbers.

This order is not necessarily the order in which the group communication system delivers

the messages to clients, and clients do not have access to this order.

DEFINITION 2.7 (ORD)
The ord function is a one-to-one mapping from M to the set of natural numbers that is
consistent with the causally precedes strict partial order of send events. Formally:

ord(m) = n | (ord(m) = ord(m′) ⇐⇒ m = m′) ∧
(ta = send(c, s, g, m) ∧ ti = send(d, s′, g′,m′) ∧ ta → ti ⇒ ord(m) < ord(m′))

To assist in specifying some of the following properties, a few terms are defined con-

cerning the order of events with regards to the client.

DEFINITION 2.8 (FIRSTEVENT )
The eventtj is the first event that occurs at a client c.

firstevent(tj , c) ≡6 ∃i | i < j ∧ cid(ti) = cid(tj) = c

DEFINITION 2.9 (NEXTEVENT )
The eventtk is the next event afterti at client c.

nextevent(tk, ti, c) ≡ i < k ∧ cid(ti) = cid(tk) = c∧ 6 ∃j | cid(tj) = c ∧ i < j < g

21



DEFINITION 2.10 (PREVEVENT )
The eventti is the previous event prior totk at client c.

prevevent(ti, tk, c) ≡ i < k ∧ cid(ti) = cid(tk) = c∧ 6 ∃j | cid(tj) = c ∧ i < j < g

DEFINITION 2.11 (FIRSTGROUPEVENT )
The eventtj is the first event referring to group g that occurs at client c.

firstgroupevent(tj , c, g) ≡6 ∃i | i < j ∧ cid(ti) = cid(tj) = c ∧ (ti = join(c, s, g) ∨ ti = leave(c, s, g))

DEFINITION 2.12 (LASTGROUPEVENT )
The eventtj is the last event referring to group g that occurs at client c.

lastgroupevent(tj , c, g) ≡6 ∃k | j < k ∧ cid(tj) = cid(tk) = c ∧ (tk = join(c, s, g) ∨ ti = leave(c, s, g))

We also need a similar set of terms for the order of events with regards to the servers.

DEFINITION 2.13 (SFIRSTEVENT)
The eventtj is the first event that occurs at a server s.

sfirstevent(tj , s) ≡6 ∃i | i < j ∧ sid(ti) = sid(tj) = s

DEFINITION 2.14 (SNEXTEVENT )
The eventtk is the next event afterti at server s.

snextevent(tk, ti, s) ≡ i < k ∧ sid(ti) = sid(tk) = s∧ 6 ∃j | sid(tj) = s ∧ i < j < g

DEFINITION 2.15 (SPREVEVENT)
The eventti is the previous event prior totk at server s.

sprevevent(ti, tk, s) ≡ i < k ∧ sid(ti) = sid(tk) = s∧ 6 ∃j | sid(tj) = s ∧ i < j < g

2.2.2 System Assumptions

To provide a more precise representation of the environment the model makes several as-

sumptions about the behavior of the surrounding environment and the system.
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ASSUMPTION 2.1 (SERVER EXECUTION STRUCTURE )
The first event at a server process is a recover event. If a recover event occurs at a server
process, then it is either the first event at that process or the previous event was a crash
event. The next event that occurs at a server process after a crash event is a recover event.

sfirstevent(tj , s) ⇒ tj = recover(s)
tj = recover(s) ⇒ sfirstevent(tj , s) ∨ (sprevevent(ti, tj , s) ∧ ti = crash(s))
ti = crash(s) ∧ snextevent(tj , tis) ⇒ tj = recover(s)

ASSUMPTION 2.2 (CLIENT EXECUTION STRUCTURE )
The first event at a client process is a connect event. The last input event at a client process
is a disconnect event. The first event at a client that refers to a group is a join event. The
last input event at a client process for each group is a leave event, the last output event is a
view.

firstevent(tj , c) ⇒ tj = connect(c, s)
6 ∃j |nextevent(tj , ti, c) ⇒ ti = disconnect(c, s)
firstgroupevent(tj , c, g) ⇒ tj = join(c, s, g)
lastgroupevent(tj , c, g) ⇒ tj = leave(c, s, g) ∨ tj = view(c, s, g, id,D, T )

Each message sent by a client to the same group is assumed to be unique. The client can

easily guarantee this property by appending a unique sequence number on every message.

ASSUMPTION 2.3 (CLIENT M ESSAGE UNIQUENESS)
Any two send events of the same message body to the same group are actually the same
event.

ti = send(c, s, g, m) ∧ tj = send(c′, s′, g, m) ⇒ i = j

2.2.3 Extended Virtual Synchrony

These properties define the general Extended Virtual Synchrony properties that both the

EVS-C and EVS-S specifications have in common. Sections 2.2.4 and 2.2.5 discuss the

properties that are unique to the EVS-C specification and the EVS-S specification, respec-

tively. The properties are formally defined in terms of the EVS-C primitives specified

above, as that is the specification provided to the applications using the system. The dif-

ferences in the EVS-S specification are either obvious (as in replacingvid(ti, c, g) with
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svid(ti, s)) or are discussed in Section 2.2.5.

2.2.3.1 Membership Safety Properties

These properties define the safety guarantees of the Extended Virtual Synchrony Model.

PROPERTY 2.1 (INITIAL V IEW EVENT )
Every deliver and transsig event at a process occurs within some view.1

ti = deliver(c, s, g, m) ∨ ti = transsig(c, s, g, id) ⇒ vid(ti, c, g) 6= ⊥

PROPERTY 2.2 (SELF I NCLUSION )
If a process p installs a view, then p is a member of the membership set.

ti = view(c, s, g, id,D, T ) ⇒ c ∈ D

The Self Inclusion property provides a constraint on the set of members by giving a base

membership that always exists as long as the process has not crashed itself. The usefulness

of a membership view which excluded the process is also very limited.

PROPERTY 2.3 (LOCAL M ONOTONICITY )
If a process p installs a view with identifier id’ after installing a view with identifier id, then
id’ is greater then id.

ti = view(c, s, g, id,D, T ) ∧ tj = view(c, s, id′, D′, T ′) ∧ i < j ⇒ id < id′

PROPERTY 2.4 (TRANSITIONAL SET)
1. The transitional set for the first view installed at a process following either a connect

or recover event is the empty set.

2. If a process p installs a view in a previous view, then the transitional set for the new
view at p is a subset of the intersection between the two views’ membership sets.

3. If processes p and q install the same view, then q is included in p’s transitional set
for that view if and only if p’s previous view was identical to q’s previous view.

1For closed-groups, every send event also occurs within some view, but in open groups a send event can
occur at a process who is not in the group

24



4. If processes p and q install the same view in the same previous view, then they have
the same transitional sets in their new views.

2.2.3.2 Message Properties

PROPERTY 2.5 (NO DUPLICATION )
A process never delivers a message more than once.

ti = deliver(c, s, g, m) ∧ tj = deliver(c, s, g, m) ⇒ i = j

PROPERTY 2.6 (DELIVER I NTEGRITY )
A deliver event in a view is the result of a preceding send event2.

tj = deliver(c, s, g, m) ⇒ ∃i∃c′∃s′ | i < j ∧ ti = send(c′, s′, g, m)

Several later properties use the idea of processes “moving together” from one view to

another. A formal definition of “moving together” follows:

DEFINITION 2.16 (VSYNCHRONOUS IN )
If processes c and d both install the same view in the same previous view and d is in c’s
transitional set, then they were virtually synchronous in that previous view.

vsynchronous in(c, d, g, id) ≡ ∃i∃id′∃s∃D∃T∃j∃s′ | ti = view(c, s, g, id′, D, T )
∧ tj = view(d, s′, g, id′, D, T ) ∧ vid(ti, c, g) = vid(tj , d, g)
∧ d ∈ T

PROPERTY 2.7 (VIRTUAL SYNCHRONY )
If processes p and q are virtually synchronous in a view (as defined above), then any mes-
sage delivered by p in that view is also delivered by q.

vsynchronous in(c, d, g, id) ∧ ti = deliver(c, s, g, m) ∧ vid(ti, c, g) = id

⇒ ∃j∃s′ | tj = deliver(d, s′, g, m)

2In a closed-group model the deliver must be the result of a send by a member in that view.
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PROPERTY 2.8 (TRANSITIONAL SIGNALS )
1. At most one transsig event occurs at a process during a view.

ti = transsig(c, s, g, id′) ∧ vid(ti, c, g) = id

⇒ 6 ∃j | j 6= i ∧ tj = transsig(c, s, g, id′) ∧ vid(tj , c, g) = id

2. If two processes p and q are virtually synchronous in a view v and p has a transsig
event occur in v, then q also has a transsig event occur in v and they both deliver the
same sets of agreed messages before and after their transsig events in v.

vsynchronous in(c, d, g, id) ∧ tb = transsig(c, s, g, id′) ∧ vid(tb, c, g) = id ⇒
∃j | tj = transsig(d, s′, g, id′) ∧ vid(tj , d, g) = id

∧ (∃a∃m | a < b ∧ ta = deliver(c, s, g, m) ∧ vid(ta, c, g) = id ∧ agreed(m)
⇐⇒ ∃i∃m | i < j ∧ ti = deliver(d, s′, g, m) ∧ vid(ti, d, g) = id ∧ agreed(m))
∧ (∃l∃m′ | b < l ∧ tl = deliver(c, s, g, m′) ∧ vid(tl, c, g) = id ∧ agreed(m′)
⇐⇒ ∃k∃m′ | j < k ∧ tk = deliver(d, s′, g, m′) ∧ vid(tk, d, g) = id ∧ agreed(m))

A number of GCS provide a property called Sending View Delivery which guarantees

that messages will be delivered in the same view as they were sent in. However, providing

this guarantee requires that a flush of all outstanding messages occur at every membership

change which is very costly for dynamic systems. The EVS specification provided here

does not require Sending View Delivery. As a result, the general EVS properties from

Section 2.2.3 are not sufficient to require reasonable behavior as to which view a message

is delivered in. One could imagine that all processes deliver a message in the same view,

but it is a view that is much later then expected or earlier then one would think possible.

The following properties constrain in which views a message is delivered and are provided

by all known EVS implementations.

PROPERTY 2.9 (SANE V IEW DELIVERY )
1. A message m withm.type ∈ {A, S} is not delivered in a view earlier than the one in

which it was sent.

ti = send(c, s, g, m) ∧ vid(ti, c, g) = id ∧ m.type ∈ {A,S}
∧ tj = deliver(d, s′, g, m) ∧ vid(tj , d, g) = id′ ⇒ id ≤ id′

2. If a process p sends a message m, crashes and later recovers in a view v and a process
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q delivers m, then m is delivered in a view before v.

ti = send(c, s, g, m) ∧ tk = view(c, s, g, id,D, T ) ∧ vid(tk, c, g) = ⊥
∧ i < k ∧ tj = deliver(d, s′, g, m) ⇒ vid(tj , d, g) < id

The different types of messages have well-defined properties that they maintain. The

message types form a hierarchy where each message type contains all of the properties of

those types lower in the hierarchy, as well as some additional properties. All of the message

types are consistent with lower types. Each message sent may have its own type, so if a

client sends messagem1 and then messagem2, m1 may be of type AGREED andm2 may

be of type FIFO, in which casem2 may not be delivered beforem1 because AGREED is

also FIFO. The use of a hierarchy makes Spread useweak incorporated[WS95] delivery

semantics when delivering messages of two different types.

PROPERTY 2.10 (RELIABLE M ESSAGES)
The Self-Delivery, Sane View Delivery and Virtual Synchrony properties define the safety
properties of Reliable messages.

reliable(m) ≡ m.type ∈ {R,F, A, S}

PROPERTY 2.11 (FIFO MESSAGES)
1. FIFO messages are Reliable messages.

fifo(m) ≡ m.type ∈ {F,A, S}

2. If a process sends a FIFO message after sending a previous message, then all pro-
cesses which deliver both messages deliver them in the order in which they were
sent.

ta = send(c, s, g, m) ∧ tb = send(c, s, g′,m′) ∧ a < b ∧ fifo(m′)
∧ ti = deliver(d, s′, g, m) ∧ tj = deliver(d, s′, g′,m′)

⇒ i < j
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PROPERTY 2.12 (CAUSAL M ESSAGES)
1. Causal messages are FIFO messages.

causal(m) ≡ m.type ∈ {A,S}

2. If a process sends a causal message m’ such that the send of another message m
causally precedes the send of m’, then any process that delivers both messages deliv-
ers m before m’.

ta = send(c, s, g, m) ∧ tb = send(c′, s, g′,m′) ∧ ta → tb ∧ causal(m′)
∧ ti = deliver(d, s′, g, m) ∧ tj = deliver(d, s′, g′,m′)

⇒ i < j

PROPERTY 2.13 (AGREED M ESSAGES)
1. Agreed Messages are causal messages.

agreed(m) ≡ m.type ∈ {A,S}

2. If a process p delivers an agreed message m, then after that event it will never deliver
a message that has a lower ord value.

ta = deliver(c, s, g, m) ∧ tb = deliver(c, s, g, m′) ∧ agreed(m′) ∧ ord(m) < ord(m′) ⇒ a < b

3. If a process p delivers an agreed message m’ before a transsig event in its current
view, then p delivers every message with a lower ord value than m’ delivered in that
view by any process.

tk = deliver(c, s, g, m′) ∧ agreed(m′)
∧ (6 ∃j | j < k ∧ tj = transsig(c, s, g, id) ∧ vid(tj , c, g) = vid(tk, c, g))

⇒ ∀a∀d∀m | ta = deliver(d, s′, g, m) ∧ vid(ta, d, g) = vid(tk, c, g) ∧ ord(m) < ord(m′);
∃i | ti = deliver(c, s, g, m)

4. If a process p delivers an agreed message m’ after a transsig event in its current view,
then p delivers every message with a lower ord value than m’ sent by any processes
in p’s next transitional set that were delivered in the same view as m’.

ti = transsig(c, s, g, id) ∧ tk = deliver(c, s, g, m′) ∧ tl = view(c, s, g, id′, D′, T ′)
∧ i < k < l ∧ agreed(m′) ∧ vid(ti, c, g) = vid(tk, c, g) = vid(tl, c, g) = id

⇒ ∀a∀d ∈ T ′∀m∀b∀c′ | ta = send(d, s, g,m) ∧ tb = deliver(c′, s, g, m)
∧ vid(tb, c′, g) = id ∧ ord(m) < ord(m′);

∃j | tj = deliver(c, s, g, m)
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PROPERTY 2.14 (SAFE M ESSAGES)
1. Safe messages are agreed messages.

safe(m) ≡ m.type ∈ {S}

2. If a process p delivers a safe message m before a transsig event in its current view id,
then every member of that view delivers m, unless that member crashes in id.

ti = view(c, s, g, id,D, T ) ∧ tk = deliver(c, s, g, m) ∧ safe(m) ∧ vid(tk, c, g) = id

∧ 6 ∃j | i < j < k ∧ tj = transsig(c, s, g, id)
⇒ ∀d ∈ D;∃a∃D′∃T ′∃b | ta = view(d, s′, g, id,D′, T ′)

∧ (tb = deliver(d, s, g,m) ∨ (tb = disconnect(d, s′) ∧ vid(tb, d, g) = id))

3. If a process p delivers a safe message m after a transsig event in its current view
id, then every member of p’s transitional set from p’s next view delivers m, unless a
member crashes in id.

ti = view(c, s, g, id,D, T ) ∧ tj = transsig(c, s, g, id) ∧ tk = deliver(c, s, g, m)
∧ tl = view(c, s, g, id′′, D′′, T ′′) ∧ safe(m) ∧ j < k

∧ vid(tj , c, g) = vid(tk, c, g) = vid(tl, c, g) = id

⇒ ∀d ∈ T ′′;∃a∃D′∃T ′∃b | ta = view(d, s′, g, id,D′, T ′)
∧ (tb = deliver(d, s, g,m) ∨ (tb = disconnect(d, s) ∧ vid(tb, d, g) = id))

A SAFE message is not an atomic message, in that the delivery of a safe message does

not guarantee all or none of the applications will receive the message. It is a guarantee that

if no processes crash, but the network partitions in arbitrary ways, then all of the daemons

and applications will receive the message.

2.2.3.3 Liveness Properties

The liveness properties of Extended Virtual Synchrony are determined by the liveness prop-

erties of the failure detector as well as the algorithm.

The properties that define the liveness guarantees are below.

PROPERTY 2.15 (SELF DELIVERY )
If a process p sends a message m to group g, and p is a member of g and does not leave
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group g, then m is delivered to p unless p crashes3.

ti = send(c, s, g, m) ∧ ∃l | l < i ∧ tl = view(c, s, g, id,D, T ) ∧ c ∈ D

∧ 6 ∃j | i < j ∧ (tj = disconnect(c, s) ∨ tj = leave(c, s, g))
⇒ ∃k | tk = deliver(c, s, g, m)

PROPERTY 2.16 (MEMBERSHIP PRECISION )
If a stable component S exists, then a view v exists with member set equal to S, and every
process p in S installs v and does not install any later views.

PROPERTY 2.17 (TERMINATION OF DELIVERY )
If a process p sends a message m in view v, then for each member q of view v, either q
delivers m, or p installs a view v’ such thatvid(v′) = v.

They are conditional on the networks behavior and thus they are only required to hold

in runs when a stable component exists.

2.2.4 EVS-Client Semantics

The EVS-C specification includes all the standard EVS semantics as specified above, with

one exception. The exception is that Same View Delivery does not hold for RELIABLE or

FIFO messages.

Often reliable and FIFO ordered messages are not even included in group communica-

tion specifications because the traditional users of such systems, such as consistent repli-

cation, required causal or total ordered multicast. Also, the benefit of reliable and FIFO

messages are that they may be delivered with less latency then messages with stronger

ordering. However, to preserve Same View delivery for them and to allow the EVS-C im-

plementation to optimize group join and leave events such that they do not require any

synchronization, would require that they not be delivered until they were totally ordered,

so the entire latency benefit would be lost. By weakening the specification for reliable and

3If the server p is connected to crashes, then p will detect that it must treat the crash the same as if p had
crashed itself, such as an explicit disconnect event, with regards to data and state recovery.
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FIFO messages, the specification allows an implementation that optimizes both group join

and leave events as well as provides low-latency reliable and FIFO messages.

2.2.5 EVS-Server Semantics

For the specification of the EVS-S semantics a different set of actions are possible:

• inputssend(s, m), s ∈ S, m ∈ M

• inputnreceive(s, m), s ∈ S, m ∈ M

• inputureceive(s, m), s ∈ S, m ∈ M

• input crash(s), s ∈ S

• input linkfailed()

• internalrecover(s), s ∈ S

• outputmcast({s1, s2, . . .}, m), si ∈ S, m ∈ M

• outputnmcast(m), m ∈ M

• outputsdeliver(s, m), s ∈ S, m ∈ M

• outputsview(s, id,D, T ), s ∈ S, id ∈ SV id,D ∈ 2P , T ∈ 2P

• outputstranssig(s, T ), s ∈ S, T ∈ 2P

Just like the EVS-C specification, the EVS-S specification provides that every event

occurs in the context of some view, which may be the null view⊥. The views seen at the

EVS-S layer are a subset of the views deliverd by the EVS-C layer as the view changes

caused by clients joining or leaving groups do not cause view changes at the EVS-S layer.

Because of this a new svid function must be defined, corresponding to the vid function 2.5

defined earlier.

DEFINITION 2.17 (SVID)
The svid of an eventtc at a server s is the view identifier delivered in a view eventta at s
which precedestc such that there are no view or recover events betweenta and tc at s. If
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there is no such view event then the svid is the null view identifier,⊥. Formally:

svid(tc, s) = id if ∃a 6 ∃b∃D∃T | a < b < c ∧ ta = sview(s, id, D, T ) ∧
(tb = recover(s) ∨ ∃id′∃D′∃T ′ | tb = sview(s, id′, D′, T ′))

⊥ otherwise

The EVS-Server specification actually provides a stronger semantic then general EVS,

namely Same View Delivery. This is specified below:

PROPERTY 2.18 (SAME V IEW DELIVERY )
If servers s and t both deliver a message m then they both deliver m in the same view.

ti = sdeliver(s,m) ∧ svid(ti, s) = id ∧ tj = sdeliver(s′,m) ∧ svid(tj , s′) = id′ ⇒ id = id′

The EVS-Server specification is also slightly stronger with regards to the Sane View

Delivery property as well. Specifically the guarantees about messages not being delivered

in earlier views then they were sent is guaranteed for all messages types, not only Agreed

and Safe messages.

PROPERTY 2.19 (SANE V IEW DELIVERY )
1. A message m is not delivered in a view earlier than the one in which it was sent.

ti = send(c, s, g, m) ∧ vid(ti, c, g) = id

∧ tj = deliver(d, s′, g, m) ∧ vid(tj , d, g) = id′ ⇒ id ≤ id′

2. If a process p sends a message m, crashes and later recovers in a view v and a process
q delivers m, then m is delivered in a view before v.

ti = send(c, s, g, m) ∧ tk = view(c, s, g, id,D, T ) ∧ vid(tk, c, g) = ⊥
∧ i < k ∧ tj = deliver(d, s′, g, m) ⇒ vid(tj , d, g) < id

PROPERTY 2.20 (MEMBERSHIP AGREEMENT )
If a process p installs a view with identifier id and a process q installs a view with the same
identifier, then the membership sets of the views are identical.

ti = view(c, s, g, id,D, T ) ∧ tj = view(c′, s′, g, id,D′, T ′) ⇒ D = D′
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Membership Agreement provides a unique mapping from view ids to membership sets.

This allows clients to compare view id histories and construct a consistent picture of the

membership of views in which the clients were both present. This is only strictly provided

by the EVS-S algorithm as in the EVS-C algorithm member sets that partition away from

each other can deliver some view id’s that are identical but do not contain identical sets

of members. These occur due to single member joins or leaves while a heavy-weight

membership change is in process. An application can work around this by including in

the unique view id the membership set delived with that view. Then if two views ids

are identical and the membership sets are identical, then the two processes historically

delivered the same view.

2.2.6 Network Specification

The network specification is a very simple model that represents a reliable overlay network.

The possible actions are:

• inputninit({s1, s2, . . .}), si ∈ S

• inputnmcast(m), m ∈ M

• outputnreceive(s, m), s ∈ N, m ∈ M

• outputlinkfailed()

The purpose of this model is to capture the dissemination and routing properties of an

overlay network upon which messages can be multicast. The properties of this model only

hold during an window of time, which may be infinite, during which the network maintains

the same connectivity.

PROPERTY 2.21 (NETWORK SERVER SET)
N equals the set of servers in theninit event.

N = {s1, s2, . . .}
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PROPERTY 2.22 (RELIABLE NETWORK M ULTICAST )
Everynmcast event will have a correspondingnreceive event at all servers inN in
the network unless alinkfailed event occurs.

ti = nmcast(m) ⇒ (∀s ∈ Ntj = nreceive(s,m) ∧ i < j) ∨ (tk = linkfailed() ∧ i < k)

PROPERTY 2.23 (NETWORK END)
No events occur between alinkfailed event and the nextninit event.

ti = linkfailed()tk = ninit(si, . . .) ⇒ 6 ∃j | i < j < k ∧ (tj = nmcast(m) ∨ tj = nreceive(s,m))

Although no liveness or performance properties for the Network specification are pro-

vided, in practice the performance of this model is critical to the performance of the entire

system. The actual implementation and algorithms provide a “best effort” solution to this

problem.

2.2.7 Reliable Link Semantics

The Network model uses a number of Reliable Links, both point-to-point and multicast, to

present a wide-area reliable multicast service. These links are specified below and have the

following actions:

• input rmcast({p1, p2, . . .}, m), pi ∈ P, m ∈ M

• outputrreceive(p, m), p ∈ P, m ∈ M

• outputlinkfailed()

All links are uniquely identified by the endpoints they connect, either two IP addresses for

point-to-point links, or a multicast IP address for multicast links. All actions on links are

parameterized by the link id of the link, even though that parameter is not shown in the

action specification.

For point-to-point links the rmcast parameterpi must be a singleton set of one process.
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2.2.8 Unreliable Multicast Semantics

The unreliable multicast channel provided by UDP datagrams is modeled by an IO automa-

ton with the following events in its signature.

• inputmcast({p1, p2, . . .}, m), pi ∈ P, m ∈ M

• outputureceive(p, m), p ∈ P, m ∈ M

2.3 Discussion

2.3.1 Minimal vs. “Best Effort” Implementations

In any system, even one with strong specifications, a system implementation that provides

exactly the required specifications, while correct, may not be useful. This occurs because it

is very difficult to specify liveness and performance constraints that are sufficiently strong,

while still being implementable in arbitrary, or even common, networks. Also, just as

with most software, significant differences exists between different implementations of the

same systems because of differences in quality of software design and engineering or in the

myriad of detailed design and implementation choices which are not specified.

Systems which will be useful must not only provide the required specifications, they

must also do so in a high-quality implementation that provides not just the minimal re-

quired service, but rather a “best effort” service. This “best effort” will, although only

guaranteed to provide what was specified, actually provide better service in most scenarios

and practical environments (usually in performance and liveness properties).

2.3.2 Service Interactions

Traditionally, most group communication systems have been used to send Agreed (total)

ordered messages. Spread attempts to provide not only the strongly ordered Agreed mes-

sage service, but also less-ordered FIFO and Reliable message service. FIFO and Reliable
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have the advantage in that they provide lower latency, from send to receive, then Agreed

order messages. These messages can be delivered when they meet a specific set of con-

straints. For Reliable, the only constraint is the complete receipt of the message. For FIFO,

the constraints are that the entire message must have arrived and that all messages prior to

this one, from the same client must have already been delivered.

Since each message sent may request a different ordering or delivery guarantee the way

differently ordered messages interact acquires importance.

2.3.3 Obsolete Views

When designing membership specifications for wide-area and large distributed systems,

the issues of whether or not to deliver obsolete views, and second, if they are delivered,

how often to deliver them, has significant interest. An obsolete view is a view delivered by

the system that is known by the membership algorithm to not represent the most current

information about the underlying hosts and network.

The question is when the network is unstable, should the group communication system

tell the client about the interim views during the unstable period or should it block or wait

until things stabilize and then tell the client only the final result.

If one assumes that the clients act as blind responders to view events, then obsolete

views can cause significant performance problems. Clients will have to run a synchro-

nization protocol in response to the view event, which will turn out to be unnecessary or

redundant because of a rapidly following new view event. In essence, the view that the

application received was already obsolete even when it received it because the lower level

group communication system already knew of additional group changes.

However, in larger networks the possibility of longer stabilization times and more fre-

quent view changes make waiting until the network stabilizes a strategy with high live-lock

potential, as the network may take a long time to stabilize sufficiently. Many applications

which do not require strict replica consistency can still make use of the group messaging
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system during these periods of instability if they are given some indication of what is go-

ing on. They can use the information in obsolete views to adapt their own behavior to the

network changes. Many applications would also prefer a system that ’never’ blocked, but

instead occasionally gave inaccurate information rather than one that was always accurate

but could block for noticeable periods of time.
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Chapter 3

Spread System Architecture

The Spread messaging toolkit is a concrete realization of the hierarchical group commu-

nication architecture discussed in this thesis. The goal of the architecture is to provide

scalable and strong wide-area group communication services, as well as light-weight mes-

saging services. The architecture is designed to be flexible, allowing network protocols,

service guarantees, and groups to be selected to best support each application.

The overall design philosophy was, to borrow from the common saying about the Perl

programming language, “Easy things should be easy and efficient, hard things should be

correct, useful, and as efficient as possible.”

When discussing distributed systems efficiency usually refers to efficiency in the num-

ber of messages or efficiency in the amount of latency added by the protocol. In the case of

wide-area group communication, both are important with latency having a higher priority.

Latency is the critical resource that must be optimized because it provides the fundamental

lower-bound on the performance of an application. Faster networks and better hardware

can improve the bandwidth of wide-area networks to an almost unbounded degree, but the

latency of the network is already approaching the basic speed-of-light limits and is not

expected to improve in the future. Therefore, in the Spread architecture when a tradeoff

between bandwidth and latency is required, the choice made is to decrease latency even at
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the cost of some increase in the required bandwidth.

Spread is a client-server system. The core component in Spread is the Spread daemon

or server. It is called a daemon because in the Unix lexicon a daemon is a long-running

background process that provides some system service. The daemon acts as a local server

to a possibly large number of client connections and coordinates the messages sent by those

clients, and the actions requested by those clients, such as joins and leaves of a group. In

addition to supporting directly connected clients, the daemon also provides message routing

and reliability for messages sent by other daemons. Finally, the daemon detects network

and host failures and reconfigures the system to work around those failures.

A client of the Spread system is an application program that communicates with the

daemon over a local IPC mechanism or a remote TCP connection. A standard Spread

library implements the client-server protocol and can be linked into an application.

The Spread system as presented in this and the following chapters provides a complete

implementation of the specification given in Chapter 2. As well as providing a provably

correct functional implementation, Spread also provides a high-performance implementa-

tion with a variety of experimental validation and evaluation.

Spread is implemented in a general modular framework that permits a number of dif-

ferent network protocols to be added to the system with minimal changes. This modularity

extends to the creation of new message types for specific purposes, and different configu-

rations for different network and application environments.

3.1 History

Spread goes back to research done by my advisor Professor Yair Amir and was originally

an attempt to make a high quality, production ready group communication system based

on academic and individual research. It provided primitive support for wide area networks

and a highly-optimized protocol for local area networks.
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Figure 3.1: Sites and Links

Over the course of my research Spread has evolved into a complete system with sev-

eral independent implementations of certain key components and has been continually im-

proved in terms of performance and scalability.

This work presents the first complete architecture for wide area group communication

and its implementation in the Spread system.

3.2 Architecture

The overall architecture of the Spread system is a three-level hierarchy of client applica-

tions, communication servers, and network sites.

The Spread system uses generally long-running servers to establish the basic message

dissemination network and provide basic membership and ordering services, while user ap-

plications link with a small client library, can reside anywhere in the network, and will con-
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nect to a server to gain access to the group communication services. There is a small cost

to using a server-client architecture. The cost is extra context-switches and inter-process

communication. On modern systems, however, this cost is minimal in comparison with

wide-area latencies. The benefit of using a client-server architecture is vastly increased

scalability both in terms of clients connected and the efficiency of the messaging and dis-

tributed membership protocols.

A “site” in Spread consists of a collection of servers which can all communicate over

a broadcast or multicast domain. This is usually limited to a local area network. We will

use the term “site” to refer to this collection of locally connected servers as a whole. Each

site selects one server, based on the current membership of the site, that acts as a gateway,

connecting all the members of the site to other sites. An example of an actual Spread

configuration is shown in Figure 3.1 where sites with multiple local hosts exist at UCSB,

Rutgers and Johns Hopkins CNDS lab, while sites with single hosts exist at OSU, Mae

East, and Johns Hopkins Computer Science Department.

The Spread system is implemented as a server process and a client library. The overall

software architecture is shown in Figure 3.2. The applications link directly with the client

library. The client library is is fairly small. Its primary purpose is to provide a good API and

to translate client requests and messages and server responses between the API provided to

the client application and the message interface expected by the server.

The server implements most of the algorithms and protocols of the system. It contains

three identifiable layers: a session layer, a server protocol layer, and a network layer.

These three layers define the structure of both the architecture and the software im-

plementation. The first, and lowest level task, is to provide a reliable wide-area network

multicast service that provides dynamic routing depending on the set of available servers.

This task is discussed below in Section 3.3 and Chapter 4.

The second task is to provide the various supported message ordering services and a

membership service across the set of servers who are active in the network. This task is
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discussed in Chapter 5 and the first half of Chapter 6.

The third task, at the session layer, is to provide the full set of group services to ap-

plications who use the group communication system. This allows many different users to

share one server and permits them to create, join and leave groups and send messages to

those groups efficiently. This task is discussed below in Section 3.4 and in the second half

of Chapter 6.

3.3 Overlay Network, Routing, and Reliability

An “overlay network” is defined as a virtual network constructed so that each link connects

two edge nodes in an underlying physical network, such as the Internet. Each virtual link

in the overlay network can translate into several hops in the underlying network and the

cost attached to a virtual link is some aggregated cost of the underlying network links over

which it travels. A sample overlay network is shown in Figure 3.3. In the figure, the Spread

daemons are located at hosts located in leaf networks.
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Spread constructs an overlay network between all the sites that currently have active

servers. This network is constructed based on information contained in the static configu-

ration file given to Spread, the current server membership list, and any available network

cost information. These sources produce a network that dynamically changes as servers

start or crash, and as partitions or merges occur. The configuration file provides infor-

mation about all potential machines in the Spread system, but does not constrain which

members are currently running.

The overlay network is used to calculate source-based optimal routing paths from each

source to all other Spread servers. Source-based routing over the shortest path[NB97] pro-

duces better routes than either a single shared multicast tree or incrementally constructed

source routes. The cost of per-source shortest path routing is the computational calculation

of routes and the necessity of maintaining complete knowledge of current members and

the costs between them. In a group communication system, such as Spread, this is an ac-

ceptable cost because the number of nodes in the routing graph is limited, the system must

maintain accurate, current membership anyway to provide the guaranteed semantics. Link

costs are not too expensive to maintain for a limited number of nodes. After a membership

change a new overlay network is constructed and the routing trees are recalculated based

on the new network.

The membership service provides each server with an identical view of the current

global membership and the link weights of the current overlay network. Then, each Spread

server independently calculates a shortest path multicast tree from each site to every other

currently connected site. Since each server uses identical weights and an identical graph

they are guaranteed to compute the same routing trees. The routes are calculated by apply-

ing Floyd-Warshall[Flo62] all-pairs shortest path algorithm to the set of sites and link-costs.

The major cost of using an overlay network is that since the overlay is constructed

only between end nodes in the underlying network, inefficiencies exist in the routing paths.

Some experimental work [ABKM01, hCRSZ01, SCH+99] has recently shown that the in-
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efficiency is actually very small. This disadvantage is outweighed by several key benefits

provided by the overlay architecture: First, the algorithms used in the overlay network can

be easily changed and do not require changes to basic network infrastructure (e.g. routers).

Second, routers can be made simpler and faster, while complex protocols and processing

can occur on end nodes where more abundant resources exist. For example, as a result of

the difficulties encountered while deploying and upgrading IP-Multicast in routers, most

of the work on high level multicast services, such as reliability, uses an overlay network

approach.

In general, Spread decouples the dissemination and local reliability mechanisms from

the global ordering and stability protocols. This decoupling allows messages to be for-

warded on the network immediately despite losses or ordering requirements. The only

place where messages are delayed by Spread is just before delivering them to the clients,

when delay is needed to preserve the semantic guarantees. Decoupling local and global

protocols also permits pruning, where data messages are only sent to the minimal neces-

sary set of network components without compromising the strong semantic guarantees.

Spread allows different low level protocols to be used to provide reliable dissemination

of messages, depending on the configuration of the underlying network. Each protocol can

have different tuning parameters applied to different portions of the network. In particular,

Spread integrates three low-level protocols: one for local area networks called Ring, and

two for the wide area overlay network connecting the local area networks; the standard

TCP, and our new protocol called Hop.

As discussed in Chapter 1, one of the motivations for this approach to wide-area group

communication is the realization that the main limiting factor for distributed algorithms in

wide-area networks is the unavoidable latency required to communicate between nodes.

While the physical network latency is unavoidable, the latency experienced by applications

is often much higher then the required physical latency. This led to one of the main design

criteria for this system: the additional latency imposed by the membership, ordering, and
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dissemination protocols must be minimal. Ideally, the latency of a message should be the

physical latency of the required dissemination network plus a variable delay to establish

correct semantic guarantees. This might require delaying the message until its ordering has

been established, or until it is known to be stable in the case of SAFE messages. The pro-

cess of determining both ordering and stability should also require little additional latency.

Ideally, the process should run in parallel with the dissemination, so that when a message

arrives at a destination node, the information necessary to deliver it arrives within a small

δ not much more than the delay required for necessary information flow.

A second result of the minimal latency goal is that as many actions as possible should

be able to occur independently of any other system action. Independent actions minimizes

the problem of dependency chains of actions that each require earlier actions to complete.

These chains increase latency because dependent actions must receive information from the

actions they depend on. The flow of information may include high latencies to cross the

wide-area network. Avoiding chains also improves the potential throughput of the system

by allowing more actions to occur at the same time in different areas of the network.

The key idea is to not delay messages prior to them arriving at receivers. If there is a

delay, to delay them only if the delay is necessary to maintain the semantics the application

requested. One of the discoveries of this work is that the delay caused by dissemination,

flow control and routing is significant. Using custom network protocols to minimize this

can provide significant advantages.

3.4 Group Scalability and Services

One of the fundamental scalability limits of any strong group communication system is

the requirement that delivery of messages is tied to the membership of the group. Thus, all

members of a group must at all times have accurate knowledge of the complete group mem-

bership. The costs of maintaining this state can be significant. One can decrease the costs
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by recognizing that the failure of a process and the failure of a machine do not have the

same consequences in real systems. The assumptions of an asynchronous network model

are actually much weaker in practice then the actual behavior of a machine’s operating sys-

tem. Even if we maintain the asynchronous model for communication between machines,

the model for processes interacting on one machine can be stronger.

The failure of a process is accurately detectable by the operating system kernel. Al-

though some ‘long’ delays are possible if swapping and virtual memory are used, the kernel

can have accurate, and timely information about the state of the system, even following a

failure. The kernel therefore is able to reliably notify other local processes about the fail-

ure. In the case of a communication server, this could be by marking the socket connecting

the server with the failed process as a closed socket. The difference between a very slow

process, and a crashed process becomes detectable. Some forms of process failures, such as

Byzantine failures, can cause behavior which is characterized as failed, but does not result

in a crash of the process. Most operating systems provide protection against some types

of misbehavior by processes. Higher level monitoring can sometimes detect such process

misbehavior, although not in all cases.

When the processes and servers reside on different hosts, one no longer receives these

stronger guarantees. Instead, one can use the existing failure detection built into standard

Internet protocols such as TCP/IP. This is not reliable in the same sense as local kernel

based fault detection. It is an accepted level of accuracy, however, with known behaviors

and misbehaviors and is a usable substitute in practice when it is necessary or desirable to

locate client processes on hosts separate from servers.

If a machine fails upon which a process is running, then processes running on different

machines will have to detect the failure in the traditional way and will have no accurate

means of differentiating a slow from a failed machine.

Maintaining the per-group state in the servers allows each server to fully synchronize

with other servers only when a machine running a server fails and not when a machine
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running a client fails or when a client process fails and the machine keeps running. Each

server can track the status of the clients directly connected to it and delegate to other servers

the tracking of all the other clients.

Using a client-server system to provide clients with the traditional View Synchrony or

Virtual Synchrony model would provide some benefit over using a purely process based ap-

proach. However, maintaining View Synchrony requires synchronizing, sometimes called

flushing, the message state at each process whenever a group membership change occurs.

As a result, even though the servers can use faster, more reliable failure detectors and do

not have to resynchronize membership state when a process failure occurs, they still have

to synchronize the message state at all of the group member processes. This will make

group join and leave events costly and require applications to consider them as heavy-

weight events that must occur rarely. Yet, many applications need to join or leave groups

often or may be of such size that joins and leaves will occur often despite attempts by the

application to minimize them to avoid the scalability limits of the system.

Because of the high cost of group membership changes in View Synchrony, this thesis

argues that using Extended Virtual Synchrony (EVS) as the base group membership model

is a better design than using View Synchrony. EVS does not require end-to-end acknowl-

edgments and synchronization of message state when group joins or leaves occur. EVS

provides slightly weaker guarantees to the client application but improves the performance

of basic operations such as join, leave, so to be useful for both weak-semantic and strong-

semantic applications. Additionally, if View Synchrony semantics are needed or useful for

a particular application, they can be provided by an additional library running on top of

EVS at essentially no more cost then implementing native View Synchrony. For details

see[Sch01].

The application will always need to synchronize some, so avoiding synchronization

and end-to-end acknowledgments at the group layer does not avoid them entirely. How-

ever, applications can tightly control and limit their synchronization to exactly that required
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by their particular services while the group layer imposes whatever synchronization it pro-

vides on every application that uses it. So, a general purpose group layer must minimize

the synchronization and costs it imposes while still providing a useful set of semantics.

Minimizing synchronization and costs in a network layer for distributed systems has the

same advantages as it does in networking protocols.

3.4.1 Light-Weight Groups

The group abstraction provided by the system is fundamental to both the semantics and

performance of a group messaging system. Groups can define many different aspects. For

example, a group is often defined as a set of recipients of a message. That definition while

accurate, does not capture a number of group properties. For example, does the group have

a name by which others can address it? Or is the name just the list of members? The answer

distinguishes a group which is just an aggregated target for a message from a group which

has meaning outside the delivery of a particular message; i.e. are the recipients the most

important component or is the group identity itself the most important concept.

If the group is considered as more then just a set of recipients, additional, stronger

properties can be provided by the group. These properties enhance the system model from

multicast-oriented to a group-oriented.

Once a group has state, for example, the set of group members or the set of messages

that have been delivered to the group successfully, one can consider how strongly the group

should enforce guarantees about its state and the messages that are sent to the group.

Light-weight groups provide two advantages:

1. Traditional advantage – only run membership and synchronization algorithms be-

tween nodes ONCE for all the groups. This is normal heavy/light weight groups.

2. Fast, lightweight Joins and Leaves – New – Each join or leave of a group is only

an Agreed message and requires only a small local computation once messages is
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Figure 3.4: Scalability with Groups

received.

Scalability of the system as the number of groups increases is an important characteris-

tic. Figure 3.4 shows the latency to send and receive a reliable message when the number

of groups in the system increases. Each datapoint represents 10 messages and the system

was running on a 100 Mbps Ethernet with two daemons.

When the number of connections to the system is increased as well as the number of

groups the latency to send a message increases close to linearly, as is shown in Figure 3.5.

This is mostly because of the overhead of using the “poll” system call on linux to check

which of the connections currently have packets waiting to be handled. The poll call scales

linearly, or worse then linearly, with the number of file descriptors it is checking. With

more connections, checking what packets are ready for the daemon to process takes longer.

This performance could be improved in several ways. First, some operating systems have a
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Figure 3.5: Scalability with Groups

different interface that is more scalable than poll to receive notifications of network socket

activity. Furthermore, in a system with lots of busy connections instead of just one, the

overhead of poll will be amortized over more actual work. As the system gets busier, the

overhead will decrease.

3.4.2 Message Pruning

The two disadvantages of this light-weight group model are; first, the interference caused

by the failure of hosts who are participants in the system but who have no members of

a particular group; and second, the requirement that all hosts in the system receive all

messages, even those who have no local clients.

The first disadvantage implies that if one instance of the system is used for many dif-

ferent purposes, for example different applications, the stability of the the system for all of
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the applications will approximate the stability of the most unstable host running a daemon.

This disadvantage can easily be mitigated by running separate sets of daemons for each

non-interacting application. Then the set of hosts whose stability will affect the application

is no larger then the set of hosts required for the application.

The second disadvantage of a light-weight group model occurs because all messages in

the system are part of a single global total order. Thus, for any daemon to know the order

of messages sent to some groups it has to also know about all of the messages sent to other

groups. Clearly this is a tradeoff. If lots of groups have similar sets of members, then this

is quite efficient. If most groups have disjoint sets of members, then messages must be sent

to lots of locations that would otherwise not need them, thereby significantly increasing the

message overhead. The advantage of a single global order is both a decrease in the state

required to be tracked, from per-group sequence counts to a single sequence count, as well

as a decrease in state exchange during membership changes, as a single number sent to

other daemons communicates the set of messages instead of sending a number for every

group.

It turns out that the cost of sending actual messages to all daemons can be avoided.

Only a small set of meta-data about each message needs to be sent to all daemons. The

actual message content, which is usually much larger then the meta-data, only needs to be

sent to those daemons who have local clients who have joined the group. Thus, the realized

overhead of sending a message is fairly small, even when only a small number of daemons

have group members.

“Pruning messages” is the process of sending a message content only to the daemons

who have clients who are members of the group. The multicast tree that disseminates

messages from the source site to all of the other sites in the system prunes off branches

which have no clients on them and instead of sending the data message, sends a small meta-

data message that only contains the sequence numbers of the message and the originating

daemon identity, but none of the additional information about the message. It is known that
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no daemon down this branch will need any of the additional information.

On face, it is not obvious that this optimization is correct. If a process were to join a

group at a daemon, sayd1 who had not previously had a member of that group, until all

of the daemons were to learn of that join, daemond1 would not receive any of the data

messages destined for that group and would not be able to deliver them to the new member.

This problem does not actually occur because when the set of sites who should receive a

message is calculated at the initiator of the message, the set is computed conservatively.

This means that all sites who might need this message, even if they do not need it yet,

will receive it. When a new member joins a group, that join does not take effect until

the message containing the join becomes globally ordered as an Agreed message. That

member, however, is added to the set of sites who receive messages for the group as soon

as the join is seen.

3.5 End-To-End Principle

Many subscribe to the Internet’s “end-to-end” principle that states any service that can be

provided “efficiently and correctly” at a higher layer of the networking stack should be

provided at that higher layer and not in any lower layer.

The “end-to-end” principle directly applies to distributed systems. Even if a lower level

service could provide, for example, persistent storage of messages so that when a node

fails and then recovers some other node can resend the messages the failed node missed,

the application still must have its own stable message store to correctly match the state

of the failed node with the continuously running nodes. The application must have its

own knowledge of which messages were actually acted upon by the application. Over

the last ten years, two different approaches have been proposed. The first integrates the

networking protocols with the application, either as a library or a separate service that

gives the application tight control on the service’s state. The second decouples the lower-
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level distributed services from the application, but provides well-defined guarantees to the

application which allows it to minimize the additional work the application must do to

synchronize.

The first approach, by giving the application complete knowledge and control of the

state of the network layer, enables the application to make decisions based on network state

and integrate application and network buffers. This coupling requires both the application

protocol and network protocols to work end-to-end. Scalability limitations, caused by a

lack of hierarchy, is the cost of working strictly end-to-end.

This approach was applied in the “Application Level Framing”(ALF) work developed

by Floyd et al, [FJL+97]. ALF tried to solve this problem by requiring the communication

protocol, in this case a reliable IP-Multicast protocol called “SRM”, to give the application

control of how messages were framed and stored. This allowed the application to not

require its own storage since it directly controlled the networking layer.

The second approach maintains separation between the applications and network proto-

cols. The network protocols run end-to-end on the underlying physical network, however,

the application protocols establish a structure of processes providing different services.

This structure allows aggregation of information and decreases in the number of parties in-

volved in each service, thereby improving scalability. Spread follows this second approach.

Spread runs at the application level of the network protocol stack and requires minimal

services from the network needing only unreliable, point-to-point datagram service and

can use an unreliable local area multicast service if it is available. Spread thus avoids any

specialized networking equipment or the deployment of any new networking protocols.

From the network protocol stacks perspective Spread is an end-host application.

Applying the end-to-end principle to distributed systems shows potential. The princi-

ple clearly makes sense in a multi-layer distributed system. If a lower layer provides some

service that all the upper application or layers do not need then it probably imposes unnec-

essary costs on those layers. However, the layers of a distributed system seem much less
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well-defined then networking layers, and vary significantly between applications. Thus, the

question becomes how to define appropriate, general purpose layers in a distributed system.

Given the amount of discussion and disagreement that occurred in the past about the lay-

ered network model (OSI or Internet), universal agreement on a common set of layers for

distributed systems will prove difficult if not impossible. Instead, layers can be used as an

analytical tool that assist a system designer in understanding which services should be im-

plemented in each part of the software. The layers appropriate for a particular application

or set of applications can be specified by the designer. Those layered services then can be

mapped to different pieces of software in order to provide a good balance of performance

and flexibility to the application.

For example, a number of group-based applications might have a set of specified layers

like this:

• Application

• Stability, Safety, Acknowledgments

• Ordering

• Groups, Message Delivery and Addressing

• Message dissemination

Message dissemination is probably a network level service, either provided natively by

the operating system such as IP-Multicast, or by a network toolkit handles dissemination

and reliability. The Ordering service may be done either by the application if the order-

ing constraints are very specialized, or by a messaging toolkit below the application. If

the application does the ordering it gets fully control over what happens but at the cost of

increased overhead and coordination costs because every application instance must partic-

ipate in ordering its own and other’s messages.

Stability and safety information can provide several different types of guarantees de-

pending on the application’s requirements. If the application requires knowledge that a
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message has been acted upon by another application, then the acknowledgments and sta-

bility service must be implemented by the application itself, because only the application

will know when it has completed acting upon a message. This type of stability is very

costly, however, as every application must send an acknowledgment to every other applica-

tion for every message. One of the key observations of researchers in group communication

systems is that a layer of software running below the application can provide a type of sta-

bility information that is much less expensive to compute and can still provide the same

correctness guarantees as end-to-end stability services. Therefore it might make sense for

Stability to be split into two components, Network Stability, and Application Stability like

Spread provides.
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Chapter 4

Network Protocols

Thus far this thesis has presented the arguement that overlay networks are a sound archi-

tecture for building wide-area group communication systems. This chapter discusses the

ideas and algorithms developed for Spread to construct and disseminate reliable messages

over an overlay network.

Overlay networks must provide a way to both route messages and provide reliable deliv-

ery of messages. The goal is to extract the nodes from a network that are actively involved

in a service, in this case those hosts running Spread servers, and have the nodes construct

a network of links that connect them. The network creates routing tables so that a message

sent at any one of them will be forwarded to all of the others. Additionally, if a packet is lost

between two hosts, the packet or the complete message will be recovered by the network

from a host who does have the message and it will eventually reach all of the destinations.

To provide this service each link between two hosts provides local reliability, guaran-

teeing that packets sent to the other side are either received or the link is declared failed.

The overall overlay network is constructed by instantiating a set of such links sufficient to

reach from every host to every other host in some reasable shortest path.

Since often some of the hosts participating in a group-oriented application may be col-

located in the same local area network, the existance of LANs should be taken into account
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when the overlay network is constructed. The approach taken here is to treat an entire local

area network as one single host on the wide-area overlay network. This allows local area

reliability and multicast protocols to run on the local area networks where they are very

efficient and specific wide-area protocols are used on the high latency links.

The next several sections present the specific protocols used for reliability in both local

area multicast networks, the Ring protocol, and wide-area point-to-point network links, the

Hop and TCP protocols.

For all of these protocols, the discussion below is done in terms of individual control

packets or data packets. However, as a performance optimization all of the actual protocols

fill packets with as many data and control messages as possible, without introducing delay,

so as to send full-sized packets.

4.1 Ring Protocol

The Ring protocol provides a high throughput, efficient reliable, ordered multicast protocol

for local-area networks. Each site in the Spread architecture runs an instance of the Ring

protocol among all of the servers in the site. Each server in the site has an identifier, their

IP address, that is considered static. The identifier of a particular host, however, can change

between a crash and restart as Spread does not maintain any state across a crash.

The Ring protocol is a modification of the ring protocol used in Totem and Transis.

In Totem and Transis, the ring protocol provides reliability, global flow control and global

ordering.

Spread uses the Ring protocol for one main purpose: packet-level reliable multicast and

flow control within a site, and one secondary purpose: message-level stability detection

for all the servers in a site. The same circulating token packet is used for both of these

functions. In each cycle of the token the ring ARU calculation algorithm updates both the

packet and message ARU fields. Therefore, the cost of using the token to maintain site
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wide message stability knowledge is minimal.

In contrast to Totem and Transis, global ordering and flow control are provided by

higher level protocols described in Chapter 5. The Ring protocol is very efficient in low-

latency environments, but becomes extremely costly as latency increases. At the extreme,

the entire collection of servers can be configured as one site, connected by routed IP-

Multicast. This configuration would not take advantage of the optimized wide-area reli-

ability protocols and would have poor performance.

The rotating token has the following fields:

link seq The highest sequence number of any reliable packet sent on the

ring.

link aru The sequence number of which all reliable packets have been re-

ceived up to by all members of the ring. It is used to control when

a link can discard any local references to a packet.

flow control A count of the number of packets sent on the ring during the last

rotation of the token, including retransmits.

rtr list A list of all the sequence numbers that the previous token holder

is asking to be retransmitted.

site seq The highest sequence number of any reliable message originating

on this ring. This sequence is local to the site and combined with

the siteid provides a unique identifier of every message sent in

the system.

site lts The highest LTS value seen by any member of the ring so far.

This is used to provide a causally consistent ordering for Agreed

and Safe messages.

site aru modifier The identifier of the ring member that last modified the sitearu

value on the token.
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Upon receiving the token a server will handle any retransmits requested by the previous

token holder then process messages received from client applications, send packets up to

the limit imposed by the ring flow control. Finally, the server will update the token with new

information and send it to the next server in the ring. After sending the token the server

will attempt to deliver any messages it can to the client applications. For each message

processed into the system, a new siteseq and sitelts value is assigned and the counters are

incremented. For every reliable packet sent, a unique linkseq is assigned and the counters

incremented.

To update the link and site aru values on the token, a server compares the local aru

values with those on the token. If the local value is less, then the token value is lowered to

be the local value and the sitearu modifier field is set to the id of the server. If the local

value is equal to or higher then the token value, and the sitearu modifier on the token is

equal to this servers id or is zero, then the daemon raises the token value to be equal to

the local value. The sitearu modifier value being zero indicates that no server lowered the

token value during the last rotation. By following this algorithm, all members of the ring

can calculate the highest aru value they can locally use by taking the lesser of the recently

calculated token aru value and the token aru value from the previous round of the token.

The Ring protocol provides flow control within the site by limiting the number of pack-

ets each member can send during each rotation of the token. The number of packets which

can be sent on the entire ring per round, and the limit on how many packets each individual

member can send per round are tunable parameters. The server simply sends the lessor of

its individual limit and the total limit minus the value in the flowcontrol field plus whatever

it sent last time.
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4.2 TCP Protocol

TCP is a very mature protocol and is the standard reliable transport protocol of the Internet.

TCP provides stream based reliable transport with flow and congestion control. Because it

is stream based TCP delivers data in a FIFO order. Using TCP as the point-to-point protocol

in an overlay network is an obvious choice. It provides good performance, is very stable

and has well-understood properties in wide-area networks. It provides a gold standard to

which other protocols may be compared. For these reasons, the Spread overlay network

supports using TCP as a link protocol.

It is fairly obvious that TCP provides the properties required by the Reliable Link speci-

fication in Section 2.2.7. By simply adding a length field to the beginning of every message

written to the TCP connection and discarding any partial messages when a connection is

closed, TCP can emulate the datagram-style service specified. TCP detects the failure of

connections by either timeouts or active resets and so the link can declare anlinkfailed

event. On the overlay network links thermcast events have only one destination. TCP

clearly provides the necessary reliability and congestion control guarantees.

Messages can be forwarded out of order in overlay networks as the order of delivery is

constructed at the end hosts who have additional information about how messages need to

be ordered. The network is permitted to deliver them out of order.

When multiple TCP connections are chained together, as they are in an overlay network,

the FIFO order on messages that TCP delivers can limit the end-to-end throughput and

increase the latency experienced by messages. This occurs because when a packet is lost

all later packets, even if they belong to different “messages,” are also delayed because TCP

will not deliver data out of order. However, while TCP is recovering the lost packet the

next link in the chain of TCP links is idle, even though messages are available, waiting

to be relayed by the available links. This idle link is an inefficient use of bandwidth and

will limit the throughput of the system. The increased latency occurs because messages are

blocked in queues behind other messages that contained packets dropped by the network
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and awaiting recovery. If these later messages were not blocked, they could have passed on

and reached their destinations in less time, and thereby experience less latency.

4.3 Hop Protocol

The second point-to-point protocol used to connect sites in the overlay network is the Hop

protocol. The Hop protocol operates over an unreliable datagram service such as UDP/IP.

The Hop protocol attempts to provide the lowest latency and highest throughput possible

when transferring packets across wide-area networks. Three ideas characterize the Hop

protocol.

1. Non-Blocking:packets are forwarded despite the loss of packets ordered earlier.

2. Lazy-Selective-Retransmits:nacks are sent for specific lost packets after a short delay

to avoid requesting data which was not lost but merely arrived out of order or is

sequenced after lost data.

3. TCP fair flow and congestion control:a TCP style flow regulator provides fair be-

haivor with competing TCP flows.

The Hop protocol establishes a bidirectional connection between every two servers who

should connect on the overlay network. Each pair of servers maintains several counters

and a table of open packets which have not yet been acknowledged. To establish reliable

transmission in the presence of losses, Hop uses selective nacks where the receiver requests

specific data packets (identified by their sequence number) when loss is detected. The

receiver continues to request lost packets until it has recovered them.

Hop has several ways of detecting when a link fails. In all of these cases Hop will

trigger a membership change when it detects a failure. The first method of failure detection

involves a failure to recover a lost packet. If a lost packet has not been received after the

receiver has sentk nacks, the receiver declares the link failed. This particular failure case
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Hop: Sender protocol

1 switch (event)
2 lrecv (NACK) :
3
4 N [nack.n] ⇐ N [nack.n] + 1
5 send (receiver, Msg[nack.n])
6 if N [nack.n] > MaxNACKS then
7 linkfailed ()
8 ACKtimeout :
9

10 ack.max ⇐ Seq
11 send (receiver, ack)
12 schedule timeout(ACK)
13 lsend (PACKET) :
14
15 Seq ⇐ Seq + 1
16 Msg[Seq] ⇐ packet
17 send (receiver, packet)
18 lrecv (ACK) :
19
20 for i ⇐ smallest(Msg) to ack.aru
21 DISCARD(Msg[i])

Figure 4.1: Hop Link: Sender protocol

is necessary to eliminate the “failure to receive” problem that can occur either because of

a networking fault that deletes certain packets or a malicious attacker who keeps removing

one particular packet from the network. The second method of failure detection involves

the inverse problem, where a sender keeps resending a packet, but the receiver also keeps

sending nacks for it. This indicates that an asymmetric network situation exists where the

sender can receive responses from the receiver, but the receiver cannot receive packets from

the sender. After resending the packetMaxNACKS times, the sender will fail the link.

The receiver has two methods to detect loss. First, when the receiver receives a packet

which is sequenced beyond the next expected packet, it adds the sequence numbers between

the highest previously received sequence number and the just arrived packet to a list of

proposed lost packets. This method is shown in Figure 4.2. The receiver schedules a nack

packet containing the newly lost sequence numbers to be sent in a short time if the packets
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do not arrive. In real-life networks one expects some reordering of packets, so the delay

can help avoid false positive loss indications. The delay does add a cost in both the latency

to recover the truly missed packets and the memory requirements because the sender must

store a larger number of messages. The delay is small and fixed. It should be possible to

set the delay based on the amount of reordering experienced.

Second, to detect loss when no further packets are sent, or when there is a long time

before the next packet, the sender sends a link acknowledgment to the receiver periodi-

cally, based on time and number of packets sent and received, which specifies the highest

sequence value sent by the sender. This is shown in Figure 4.1. Sequence numbers that are

equal to or below the specified value that the receiver has not yet received are added to the

list of missing packets. After a short delay these sequence numbers are sent to the sender

in a nack packet.

When the sender receives a nack packet it adds the packets represented by the requested

sequence numbers to its outgoing retransmit queue as shown in Figure 4.1. The packets will

be sent along with other data when flow control allows. Retransmissions are sent even when

the limit on the number of outstanding packets has been reached. Therefore, the packet will

cross the link in a bounded time or else the link will be declared failed.

The Hop protocol eliminates duplicates by checking every received packet against the

list of known missing packets. If the received packet’s sequence number is less than the

highest previously received, either the missing packet list contains the packet or the packet

has already been received. Therefore, if the missing packet list does not contain the packet,

the packet is a duplicate and the receiver discards it.

To enable the sender to release buffered copies of packets, the receiver sends link ac-

knowledgments either periodically or after some number of packets, whichever is sooner.

The generation of these acks can be seen in Figure 4.2. These acknowledgments contain the

sequence number of the packet for which all previous packets were received. This combina-

tion of acks and nacks provides a fully reliable channel with bounded buffers. However, it
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Hop: Receiver protocol

1 switch (event)
2 lrecv (PACKET) :
3
4 Packets since ACK ⇐ Packets since ACK + 1
5 if Packets since ACK > MaxUnAckedPackets then
6 ack.aru ⇐ HARU

7 send (sender, ack)
8 Packets since ACK ⇐ 0
9 if packet.seq > Next Packet then

10 for i ⇐ Next Packet + 1 to packet.seq
11 Missing ⇐ Missing ∪ i
12 Next Packet ⇐ packet.seq + 1
13 schedule timeout(SendNACK)
14 deliver (packet)
15 return
16 if packet.seq = Next Packet then
17 deliver (packet)
18 if HARU = Next Packet then
19 HARU ⇐ HARU + 1
20 Next Packet ⇐ packet.seq + 1
21 return
22 if packet.seq < Next Packet then
23 if packet.seq ∈ Missing then
24 Missing ⇐ Missing − packet.seq
25 deliver (packet)
26 if packet.seq = HARU + 1 then
27 HARU ⇐ smallest(Missing)− 1
28 else DISCARD(packet)
29 lrecv (ACK) :
30
31 if ack.max > Next Packet then
32 for i ⇐ Next Packet + 1 to ack.max
33 Missing ⇐ Missing ∪ i
34 Next Packet ⇐ ack.max + 1
35 schedule timeout(SendNACK)
36 SendNACKtimeout :
37
38 for eachm in Missing
39 if NS[m] > MaxNACKS then
40 linkfailed ()
41 NS[m] ⇐ NS[m] + 1
42 send (sender, nack)

Figure 4.2: Hop Link: Receiver protocol
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does not create any restrictions on the ordering of messages so that each packet is delivered

as soon as it is received by the Hop protocol.

The Hop protocol uses rate-based flow control to limit the rate packets are sent, and a

maximum window of outstanding packets to provide termination guarantees for the reliabil-

ity protocol as described above. The rate regulator is a leaky bucket with both a maximum

burst size and an average rate limitation. All of these parameters are set per link so that

they can be tuned separately for each link in the overlay network.

4.4 Evaluation

To evaluate the utility of construting distinct multicast trees for each sender the achieved

throughput with two different routing matrices is compared.

For this experiment two different overlay networks were created between the six sites
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shown in Figure 4.3 by adjusting the weights of the links in the configuration of Spread.

A Fanout network contains a direct link between each two sites so that every source sends

directly to every other site. This was created by assigning equal weights to every link.

A shared-tree multicast network was created as labeled in Figure 4.3. This tree was con-

structed based on measurements of network latency. The experiment shown in Table 4.1

was conducted using TCP as the link protocol in Spread.

Table 4.1: Throughput using TCP and several network configurations.

Sending Site Fanout Tree

Mae East (Kbits/sec) 487.32 559.79
CNDS (Kbits/sec) 666.94 560.71
Rutgers (Kbits/sec) 184.99 568.34
UCSB (Kbits/sec) 328.81 578.84

In tests run on each of the two networks (Fanout and Tree), for every test, one of the

four sites (Mae East, CNDS, Rutgers, UCSB) was a source of a stream of 10,000 reliable

messages of 1024 bytes. The sending application on that site always made messages avail-

able to Spread. The remaining five sites were running a receiving application that computed

the running time of the test at that site. The numbers in Table 4.1 represent the throughput

of the slowest receiving site measured in kilobits per second. The difference between the

fastest and slowest receiver in most of the tests was negligible. As in any reliable multicast

system, the maximum sustained throughput is limited to the throughput of the slowest link.

Table 4.1 shows how both Fanout and multicast Tree overlay networks are each better

than the other for different source sites. When the CNDS site is the source the Fanout

network provides better throughput. This is probably because CNDS has extremely high

throughput connectivity to the Internet and thus the first few hops do not form a bottleneck.

However, when Rutgers or UCSB are multicasting, the multicast Tree network yields much

better throughput. Even though the Mae East site is located very close to a major Internet

backbone peering point, providing better connectivity then almost any typical server, the

67



multicast tree network was still 15 percent better then the fanout network.

This experiment validates the usefulness of source based routing using the overlay net-

works. For example, while messages generated by CNDS can be sent through a fanout

configuration, messages sent by UCSB will be sent using a tree configuration.

4.4.1 General Comparison

Both the TCP based multicast and Hop based multicast protocols have several advantages

over emulated multicast, where end-to-end links are used between all the application in-

stances. Not only can they utilize multicast trees to avoid sendingN copies of the data

across the network, but they can also achieve localized recovery of lost packets without

requiring the original sender to re-send the data. Localized recovery is crucial for high

latency multicast networks, not only for large[Hof96], but also for small groups where the

members are widely dispersed in the network. Each unicast link in the Spread multicast

tree has buffers on the sending side to store data until it has successfully reached the other

end of the link.

Most current reliable multicast protocols have some form of localized recovery, such as

creating virtual local subgroups along the tree[Hof96], or using nack avoidance algorithms

and expanding ring nacks[FJL+97]. All of these techniques approximate recovery of the

missing data from the closest node. Spread actually does recover the data from the closest

node on the overlay network.

4.4.2 Performance Comparison

In this section the behavior of Hop and TCP is compared on a high latency network with a

background load to simulate active working conditions. The background load also triggers

additional loss on the network that would not occur in a lightly loaded network.

All latency tests were done by an application level program which multicasts a reliable

Spread message to a group and then listens for a response message. A second application
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runs on the other site and acts as an echo-response server, sending anything it receives

immediately back to the sender through Spread. The sender application calculates round-

trip latency times by taking the difference between the time it received the echo-response

and the time it sent the original message. These latency tests are repeated 30 times back

to back and the minimum, average, and maximum are reported. All results are reported as

round-trip times, which include time transferring the message from the client to the Spread

daemon, processing time in the daemon, network transfer time, the receiving daemon’s

processing time and the transfer to the receiving application, and a similar reverse path

back to the sender. For the tables and figures reporting ’ping’ results, the standard ’ping’

program was run from between the daemons using 1024 byte packets. The ping latencies

provide an effective lower bound.

Table 4.2: Link Latency (Mae East to UCSB).

ping tcp hop

min (ms) 103.3 108.946 107.798
average (ms) 104.1 136.277 108.493
max (ms) 106.8 311.649 110.944

Table 4.2 shows the single link latency for a link between Mae East and UCSB for 1024

byte messages. Clearly the ping latency is the best, however, both the TCP link protocol

and the Hop link protocol have minimum times very close to ping. The Hop protocol also

is very stable across all the tests, with a variance of only 3 milliseconds, the same as ping,

while TCP produced a large variance of over 200 milliseconds between the minimum and

maximum latency.

To more realistically evaluate latency over a wide-area network an overlay network was

constructed of six sites in a chain. This chain is shown in Figure 4.4, as running from Mae

East to UCSB to OSU to Rutgers to CNDS to Hopkins. Note, clearly this is not a practical

setup, or even an efficient chain. However, using this chain demonstrates how the protocols

interact when packets must be forwarded many times, and how the performance of the
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Figure 4.5: Latency of Messages under Load (Comparing TCP and Hop)

protocols scales with the diameter of the multicast network.

The latency of the two protocols under load was used to evaluate them under the ex-

pected conditions on networks with variable load and higher loss rates then local area

networks. The results presented in Figure 4.5 use the chain network. In this test a load

application using Spread was flooding the network from Mae East with a controlled level

of messages per second. Concurrently, the latency test application measured reliable, 1024

byte message latency between Mae East and Hopkins. The Hop protocol has almost con-

stant latency as the background load increases from 0 to 400 kilobits per second. The

stability under load is attributed to the Hop protocol’s forwarding policy, which does not

delay packets even when there is loss or other application traffic. TCP latency shows a

steady increase as the background load increases with a jump between 300 and 400 kilobits

per second where the latency grows to almost a second and a half.
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The latency of Hop will start to increase as the buffers in the Spread routers fill up

and it takes longer to forward each packet. This behavior is unavoidable and can only be

minimized by limiting the sending throughput of the applications to below the bottleneck

link’s available bandwidth so the overload condition never occurs. This graph does not

show the increase in latency only because it does not include to a high enough load level to

trigger it on the test network.
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Chapter 5

Global Ordering and Safety

In the absence of failures or recoveries, the core services provided by a group messag-

ing system are reliable and ordered delivery of messages. A system spends most of its

execution time disseminating, ordering, and delivering messages. The types of message

ordering and reliability provided by a system, as well as the speed at which it can perform

those services, is the prime determinant of how useful the system is for a broad class of

applications.

In the previous chapter the methods by which messages are reliably disseminated were

presented. This chapter discusses how those messages may be ordered efficiently, and how

message stability can be determined.

Three types of message orderings are provided by Spread: Unordered, FIFO, and

Agreed. Unordered is useful for applications where each message can be handled inde-

pendently or for applications who need specialized orderings, because the application can

provide it’s own ordering on top of Spread. The most traditional ordering in Internet ap-

plications is FIFO order, where messages that originate at a particular source are delivered

in the same order as they were sent in. This is very useful for two party communication,

and is also useful for groups where the interleaving of messages between senders does not

matter. FIFO is also very useful for collaborative applications or control channels, where
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several programs are sending a stream of commands to a service, and want to make sure

their commands are done in order, yet they do not care about the commands sent by other

programs. Finally, Agreed order provides a global ordering across senders so that every-

one who receives the messages receives them in the same order, no matter who sent them.

The Agreed order is consistent with the FIFO order in that messages that are sent Agreed

from the same sender will be delivered in FIFO order with regards to that sender. Agreed

order simplifies the design of consistent distributed applications. In the case where no net-

work partitions are possible, sending transactions in Agreed order to a set of replicas is

sufficient to ensure that the replicas remain consistent, assuming that the transactions are

deterministic.

One subtle ordering question in group communication systems is how the order of mes-

sages sent to different groups interact. If two senders each send a message to two different

groups, the question is whether someone who joins both groups will see the messages in the

same order, or whether one of the receivers might see the message to group A prior to see-

ing the message to group B while the other one sees the opposite order. Both receivers see

the same order of messages within the group, so the traditional group ordering properties

are provided, but the ordering of messages between the groups is different.

A system that provides “inter-group ordering” guarantees all messages are globally

ordered across groups so they will be received in the same order no matter whether they

are destined for one group or many different groups. This property strengthens the system

by allowing groups to be used in a consistent way. For example, if each group represents

a shared resource and an application wants to acquire locks on three resources, the global

ordering of messages to all groups allows all replicas of the resources to know whether or

not the attempt to acquire resources succeeded in all groups. The members will all try to

acquire the resources in the same order.

One can view all of the groups managed by a Spread configuration as an “ordering do-

main” that provides agreed ordering. If a particular application has several disjoint sets of
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groups that do not require any inter-group ordering, it might be beneficial to run separate

Spread configurations for each set of groups. The performance benefit of separate config-

urations will only occur, however, if the sets of groups involve different sets of machines

participating in the groups. If all of the machines participate in all, or almost all, of the

groups there is no performance cost to the inter-group ordering, as all the machines have to

participate in the ordering anyway. Using separate configurations, in that case, will be less

efficient as each configuration will have to exchange its own control messages and so the

message overhead will be greater.

Message stability knowledge is required for two distinct purposes:

1. Memory Buffer release.When a message has successfully been disseminated to all

the daemons who need it, the memory associated with that message can be freed as

soon as the local daemon is finished.

2. SAFEmessage semantics.The properties of SAFE messages includes a guarantee

that the message will only be delivered to an application after it has reached all the

daemons. A network partition will not cause the message to be only delivered to

some of the recipients.

Memory buffer release is typical of any reliable message passing system, because it

is always necessary to know when messages have been successfully sent so the resources

associated with them can be released. In order to accomplish this goal without delaying the

system, it is only necessary to learn that resources can be released at least as fast as the aver-

age rate of new messages being inserted. Thus the resource release could be accomplished

by a background task or some occasional acknowledgment or cleanup messages. Since the

required performance is tied to the average load on the system, no absolute bounds on the

time to recover resources are needed.

When SAFE messages are added to the specification the performance requirements

change significantly. Because SAFE messages can be used as a key tool for building con-
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sistent replicated transaction-oriented or database systems, the absolute time required to

deliver a SAFE message is a critical performance characteristic of the system. For this pur-

pose, knowledge of message stability must not only keep up with the average throughput

of the system, but must also have an absolute time bound from when a message is sent to

when all daemons have knowledge of its stability so they can deliver it as a SAFE message.

5.1 Ordering Algorithm

The basic ordering algorithm uses the approach of assigning each message an identifier

and partial ordering information when the message is created. The information assigned

at creation is only that which can be determined locally by the daemon or by the set of

daemons who make up a site and only requires at most a local area delay. When a message

is received a determination is made as to whether sufficient information from the sending

daemon as well as other daemons at other sites is present to correctly order the message. If it

is, the message can be immediately delivered to the application. If not, then the message is

queued until additional information arrives from other daemons which determines the order.

This information is guaranteed to arrive within a bounded time as every daemon sends an

ARU Update message at least every X seconds, and usually will be available within a time

no more then one diameter of the network after the message originally arrived.

One of the known limitations of ordering algorithms is that supporting partitionable

operation of a consistent service requires the messages that are ordered are “born ordered.”

This means that the order in which messages will be delivered is determined at the time

of message creation and at the source of the message and that the order will not change

from what was determined at creation. For example, an ordering algorithm that sent the

messages with only a unique identifier, and had an elected “sequencer” process assign an

order to all of the messages identifiers, would be insufficient. The intuition is that if a

network partition occurs and a new sequencer is elected it may order messages differently
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then the previous sequencer, that did not crash, but is still executing in a different network

partition.

In the case of Spread, the additional information required to order a message does

not change or determine the order, but only reveals the static, source assigned order. The

revealing of the global order requires receiving messages from other sites so all of the

servers are aware of all of the messages that might be ordered earlier than the one they are

trying to deliver.

For FIFO ordering, the information to deliver the message is always present as soon as

the message arrives, because it is included on the message itself. The only reason FIFO

messages may not be delivered immediately is because prior messages from the same initi-

ating session have not yet arrived. This is possible since the network can reorder messages.

To guarantee FIFO order the earlier messages must arrive before delivering the later mes-

sages.

For Agreed order, a daemon must receive a message from every other site, not every

other daemon, indicating that no message with earlier sequence values will be sent and the

receiving daemon must verify all messages with earlier sequence values from any site have

already been delivered.

Every message is assigned an identifier, that within a membership, uniquely identifies

the message among all of the messages in the system. The identifier is made up of the client

session name, which includes which server the client initiating the message is connected to,

and a sequence number that is incremented for every message that session initiates. Since

the membership is known, mapping the sending server to the the site in which the server

resides is trivial.

The message identifier for every message includes:

seq a sequential, per site counter that is increased for every message that orig-

inates at a site.

lts a Lamport timestamp.
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sessionseq a sequential, per session counter that is increased for every message sent

by a client session.

Each server tracks several variables to compute the order and stability of messages.

These variables are:

AgreedLine = min(C[i] : i ∈ CurSites)

ARU = min(HA[i] : i ∈ CurSites)

C vector of sites. Stores the highest sequence number of which all messages

with sequence numbers less then this have been received.

HA vector of sites. Stores the highest ARU value received from each site.

Sessionseq tracks the highest sessionseq value of which all messages with lesser

sessionseq numbers have been received. Sessionseq is used to calculate

which FIFO messages are deliverable.

When a complete message is received, Spread inserts the message into an ordered list,

sorted by lts value and the originating site. Then Spread attempts to deliver any messages

now deliverable, possibly including this new message. Delivery is attempted by following

the delivery algorithm defined in Figure 5.1. This algorithm walks through the ordered list

of received, but not discarded, messages and attempts to deliver all undelivered messages

permitted. Four rules define which messages are deliverable and which can be discarded.

1. The first rule states that any message with an lts value less then the currentARU can

be both delivered and discarded.

2. The second rule states that any message, except those of type Safe, with an lts value

less then the currentAgreedLine can be delivered.

3. The third rule states that any message of type FIFO can be delivered if the sessionseq

value of the message is equal to the last sequence number delivered from that session

plus one.
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Deliver Mess
1 while entry 6= NIL andentry.lts < ARU
2 do
3 if entry.delivered = FALSE then
4 deliver (entry.msg)
5 entry.delivered ⇐ TRUE

6 UPDATE FIFO(entry.msg)
7 DISCARD(entry.msg)
8 entry ⇐ entry.next
9 while entry 6= NIL andentry.type ∈ {R,F, A}andentry.lts < AgreedLine

10 do
11 if entry.delivered = FALSE then
12 deliver (entry.msg)
13 entry.delivered ⇐ TRUE

14 UPDATE FIFO(entry.msg)
15 entry ⇐ entry.next
16 while entry 6= NIL

17 do
18 if entry.delivered = FALSEand(entry.type = R or
19 (entry.type = F and
20 entry.session seq = NEXT FIFO DELIVERABLE(entry.session))) then
21 deliver (entry.msg)
22 entry.delivered ⇐ TRUE

23 UPDATE FIFO(entry.msg)
24 entry ⇐ entry.next

Figure 5.1: DeliverMess function

4. The fourth rule states that Reliable and Unreliable messages may be delivered as

soon as they have been completely received by the server.

5.1.1 Proof of Ordering Properties

The ordering algorithm must provide the message semantics defined in Chapter 2. This

section provides a proof that messages are delivered in the correct order in all cases. Specif-

ically, the properties associated with Properties 2.11, 2.12, 2.13. The message properties

involving the interaction of membership changes and message deliveries are discussed in

Chapter 6.

We first show a lemma that ties the lts sequence assigned to all messages to the abstract
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Deliver SafeMess
1 while entry 6= NIL andentry.lts < ARU
2 do
3 if entry.delivered = FALSE then
4 deliver (entry.msg)
5 entry.delivered ⇐ TRUE

6 UPDATE FIFO(entry.msg)
7 DISCARD(entry.msg)
8 entry ⇐ entry.next
9

Figure 5.2: DeliverSafeMess function

ord function which represents the “correct” global ordering of all messages.

L EMMA 5.1 ()
The lts timestamp on messages is consistent with the ord function.

PROOF: The ord function by definition is consistent with the→ operator which defines a

causal relation. LTS timestamps are also consistent with the→ operator because the times-

tamp is always increased when a message is sent, and the timestamp is always increased

when a message is received from another sender and the received message has a higher

timestamp. The lts timestamp is transitive because only a single local timestamp clock is

maintained and it is updated by messages from all other servers. Thus, the lts timestamp is

consistent with the ord function. 2

THEOREM 5.1 (FIFO M ESSAGES)
If a server sends a FIFO message after sending a previous message then all servers who
deliver both messages deliver them in the order in which they were sent.

PROOF: When a message is sent, a sessionseq value is attached to it. The delivery rules,

as shown in Figure 5.1, only delivers FIFO messages when either they are totally ordered,

lts > AgreedLine and all messages with lessor lts have been delivered, or all messages with

sessionseq less then this message have been delivered. Thus, FIFO messages will always

be delivered in order. 2
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THEOREM 5.2 (CAUSAL M ESSAGES)
If a server sends a causal message m’ such that the send of another message m causally
precedes the send of m’, then any process that delivers both messages delivers m before m’.

PROOF: Causal messages are treated as Agreed messages. Agreed messages are delivered

in an order consistent with the causally precedes Definition 2.6 because they are delivered

only in order of increasing Lamport Time Stamps lts values, which are consistent with the

→ relation. If two messages have the same lts value, then they also do not causally precede

each other and so are not relevant to this theorem. 2

THEOREM 5.3 (AGREED M ESSAGES)
(a). Agreed messages are Causal messages.

(b). If a server s delivers an agreed message m, then after that event it will never deliver
a message that has a lower ord value.

PROOF: Theorem 5.3(b) is provided by the normal delivery algorithm in Figure 5.1 that

will only deliver an agreed message if all messages with lessor lts value have already been

delivered. By Lemma 5.1 the lts timestamp is consistent with the ord values, so a message

with a lower ord value will not be delivered, because that would require it to have a lower

lts timestamp then an already delivered message which violates the algorithm. Since ties in

lts timestamp are broken by the server identifier who originally sent the message and that

provides a deterministic order, everyone who delivers two messages with the same lts value

will break the tie the same way and deliver the two messsages in the same order.2

5.2 Performance

The evaluation of the ordering algorithms can be divided into the four types of messages:

Unordered, FIFO ordered, Agreed ordered, and SAFE.

The Unordered messages are reliable messages and the latency of their delivery and

the throughput possible is entirely determined by dissemination time and reliability costs.
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These were discussed fully in the previous chapter. In summary, the latency of an Un-

ordered message sent by a daemon at site s and it being delivered to the last group member

is approximately1/2 ∗ T s
rotation + max(Ds

i |i ∈ Sites) + Li whereT s
rotation is the time it

takes for the token at site s to rotate among all of the local daemons,Ds
i is the network

distance from site s to site i, andLi is the time for a message to be sent from one daemon

in site i to any other daemon in site i. This calculation is assuming no packets are dropped

and have to be recovered. In case of packet loss, the time to detect the loss and recover the

missing packets is added to the above latency.

FIFO ordered messages have the same basic latency as Unordered messages, but the

latency can be larger in the case of packet loss because packets lost not only from this

message will cause delay but also packets lost from any previous message will cause this

one to be delayed.

Agreed ordered messages require receiving a message or ARUUpdate from every other

site with an lts value at least as high as the message that is being delivered. If all of the sites

are initiating new messages at a similar rate, then this could, in theory, require as little time

as one diameter of the network plus a small epsilon. This best case occurs because with all

of the sites sending messages, shortly after receiving the message that needs to be ordered.

The daemon will also receive messages from all of the other sites and these messages

will have lts values close to that of the message. This is favored because the information

required to order this message is traveling the network in parallel with the message itself,

minimizing the latency by avoiding any request-reply communication pattern. If only some

of the sites are sending, however, then the sites who are not sending data messages must

send ARUUpdate messages that reach all of the other sites before the Agreed message can

be delivered. The ARUUpdate includes the current lts value that this site will use for its

next message and so it informs all sites that the site sending the ARUUpdate message will

not initiate new messages with a lower lts.

The worst case latency can be minimized to only2 ∗ Diameter if every site sends
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an ARU Update message as soon as they receive an Agreed message. Every site is then

guaranteed to get a message, the ARUUpdate, from every other site no more then two

diameters of the network after the message is initiated. The overhead cost is substantial.

Every message now adds an additional N broadcast messages if there are N sites. This is

unacceptable. The approach adopted here is to trade off bandwidth for latency in order to

achieve bounded latency at a reasonable overhead. To do this, ARUUpdates are only sent

immediately if one has not been sent in “delta” time. The definition of “delta” is not precise

but would probably be slightly larger then the diameter of network. If one has been sent

more recently, it is not sent again immediately, but rather is marked to be sent later when

the current time is at least delta after the last time the ARUUpdate was sent. The possible

latencies are shown in Table 5.1.

Table 5.1: Latency of Agreed Messages.

latency

Best Case 1*D
High Overhead 2*D
Balanced 2*D + delta
Zero Overhead infinite

SAFE messages are also Agreed messages so their latency will be at least the Agreed

latency. Gathering stability information from all of the sites can be done in a number of

ways. In order to minimize the overhead on the wide-area links cumulative acknowledge-

ments are used so each ARUUpdate only takes up 4 ints (usually 32 bytes) regardless of

the number of sites or daemons in the system. Because these are cumulative acknowledge-

ments, they only acknowledge those messages that have been received in Agreed order.

Therefore before an ARUUpdate is sent indicating a message is stable, that message must

be in Agreed order. Thus, after a message becomes Agreed, an ARUUpdate will be sent

within delta time and received by all of the other sites within delta + D time. The worst

case latency for SAFE messages is3 ∗ D + 2 ∗ delta, since it takesD + delta time after
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Figure 5.3: Wide Area Chain Network

the message becomes Agreed.

The predicted performance was validated with wide-area network experiments con-

ducted on the Emulab facility at the University of Utah. For this experiment the configu-

ration, as shown in Figure 5.3, consisted of four Pentium III 800 hosts running Linux with

the ethernet links between them passed through a FreeBSD router acting as a traffic shaper.

The router limited the bandwidth to the specified 1.5Mbps and added latency to make the

total one-way latency 30ms between each of the hosts. Each host ran one Spread server and

the two hosts at the end of the chain also ran two Spread client programs. The first program

sent a controlled stream of messages through the Spread network to a receiver at the other

end. This stream was regulated to provide a fixed background message rate. The second

program sent a single ’ping’ message from the first server to a group that an instance of

the second program running on the last server joined. The program on the last server then

sent a reply ’pong’ message back to the original sender. The round-trip latency of these

ping-pong messages was measured at the original sender.

The experiments shown in Figure 5.4 were conducted 90 times for each type of ordered

message and the background traffic was of the same message type as the ping message.

If the latency was being measured for Agreed messages, the background traffic was also

Agreed messages. The test compares the overall costs of the different message types, how-
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Figure 5.4: Wide Area Latency of Ordered Messages

ever since the background traffic of Agreed or Safe messages costs more in overhead mes-

sages then Reliable or FIFO, the effective background rate is slightly higher in the Agreed

or Safe case. The results show that the experienced latency is very similar to that predicted.

In a network with a diameter of 90ms, the Reliable and FIFO messages experienced a la-

tency around 93ms, and since the delta factor in these tests was 100ms, the average latency

of Safe messages of 270ms is right in the expected range. The slight decrease in latency as

the load increased for Agreed and Safe messages shows how as more messages are active,

the delay and overhead of ordering and gathering stability information decreases.
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Chapter 6

Daemon and Group Membership

The most sophisticated service provided by group communication systems is a view-oriented

membership service. This service provides the application with both knowledge of which

other applications are currently running and connected as well as a strong set of guaran-

tees about the inter-relationships between changes to the membership set and the messages

that are delivered. The membership service makes fault-tolerant and consistent replication

applications possible with group communication systems.

The membership algorithms presented here do rely to some degree on the other services

provided in Spread but they also have a method of bootstrapping the system when no other

services are running yet. This is required because most of the other services assume the

knowledge of a currently stable set of servers. To best use this interlocking relationship

between the membership algorithm and the other services, membership is divided into

three distinct stages, made up of a number of states and algorithms.

The first stage assumes no services besides unreliable UDP datagrams are available and

only some static information about the potential location of other services. This stage of the

daemon membership algorithm gathers the currently running and reachable set of daemons

and constructs the new server membership view that will attempt to be delivered. This

stage ends by flooding a message about this new server membership to all of the servers.
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The second stage begins when that message is received because based on it all of the

other services such as the overlay network links, reliability, ordered messages, safe deliver,

etc. can not restart with the new server configuration. Now that the services are running, the

daemon membership algorithm exchanges state messages with all of the other servers who

are also in the new membership. Finally, the messages the other servers are missing are

exchanged and the daemon membership algorithm delivers the new view and completes.

The third and final stage begins once the daemon membership is complete. This stage

is the group membership algorithm and translates the single group of servers into separate

views for each light-weight application group that exists in the system. This algorithm not

only can assume the basic services of the daemons, such as reliable and ordered messages,

but also the daemon membership algorithm correctly provides strong EVS semantics itself.

This chapter presents these three stages divided into two algorithms, daemon member-

ship in Section 6.1 containing stages one and two, and group membership in Section 6.4

containing stage three.

6.1 Daemon Membership Algorithm

The Membership component of Spread handles changes in the current set of reachable

daemons. Spread provides detection of failures, partitions, and merges and will discover

the currently reachable set of daemons. Spread forms a membership based on that set and

reconfigures the overlay network. Spread transfers state from every daemon to every other

daemon and, based on the transfered state information, recovers any missing messages so

that all the daemons are consistent. Finally, Spread delivers any stored messages, creates

a new application membership and delivers it to the Groups layer where the per-group

membership algorithm executes.

Membership is complex because it requires both preserving a sophisticated set of se-

mantic guarantees in addition to performing system level fault detection and network re-
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configuration. The membership algorithm implemented in Spread uses several stages to

simplify these operations. The membership algorithm can be expressed as a state-machine

with 6 states representing 4 major steps: Gathering, Reconfiguration, State Transfer, and

Cleanup.

6.1.1 States

The Membership system always runs in one of the following six states:

OP Active Operational state when no membership change is in progress.

SEG Initial state upon detection of membership change. During this state all

members try to find others in their segment.

REP Another daemon has taken the role of representative of this segment. Dae-

mons in this state wait for the representative to tell them the complete new

membership.

GATHER A daemon in this state is the representative of a segment. The daemon will

try to find all the reachable representatives of other segments and form a

membership with them.

STATETRANS A membership has been formed. Each daemon multicasts their current

state to the new set of daemons. Then, each daemon resends what they are

required to.

EVS Each daemon receives resent data messages. When all missing messages

have been received the membership protocol is completed by delivering

all necessary messages and creating the transitional and final membership

events. After doing this, each daemon shifts back to OP state.

6.1.2 Types of Messages

• ALIVE
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• JOIN

• REFER

• NEWMEMB

• STATETRANS

• DATA

All messages begin with a type field which identifies what kind of message it is. In the

following description and pseudo-code the message of a particular type will be represented

by the name of the type in lowercase, typeset in italics. For example, ALIVE messages

will be referenced asalive. And fields of a message will be referenced just as fields of a

structure are in C, with a ’.’, for example,alive.sender.

A message of type ALIVE also has the following fields:

• sender– identifier of whichever server sent the message.

A message of type JOIN also has the fields:

• seq– sequence number of join message.

• members– set of proposed members.

• reps– set of representatives that are known. Each representative has an id, a type,

and the segment in which the representative is located.

A message of type REFER also has the fields:

• rep– identifier of a representative.

• type– the type of representative being referred to.

A message of type NEWMEMB also has the fields:

• stid– membership id used for STATETRANS messages.

• members– set of new members.
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A message of type STATETRANS also has the fields:

• sender– identifier of whichever server sent the message.

• pviewid– proposed view id.

• lts – highest lts seen by sender.

• aru – ARU of sender.

• membid– old membership id of sender.

• H – copy of senders H array.

• committed– set of members to whom the sender is committed.

• messages– set of messages the sender knows they missed from each site.

6.1.3 Possible Events

• Locally detect a link failed.

• Process Crash.

• Process Recovery.

• Receive a DATA message.

• Receive an ALIVE message.

• Receive a JOIN message.

• Receive a NEWMEMB message.

• Receive a STATETRANS message.

• Representative Timeout.

• Segment Timeout.

• Gather Timeout.

• Statetrans Timeout.

• Join Timeout — Just for sending.

• Alive Timeout — Just for sending.
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In the pseudo-code that defines the protocols, the following conventions are followed

to ease reading. All constants and function calls display inSMALL CAPS. All events, such

as those listed above display inbold typewriter font. Variables are typeset initalic,

message types in ALL CAPITALS and comments in normal text.

Each server maintains a number of state variables. All of the code is considered to have

access to these variables. At the end of any code section, for example a function or the

handler for an event, the state variables must be consistent and correct. However, they may

be temporarily incorrect during execution of a code section.

The server state consists of:

State A value containing the current state of the protocol.

H A vector of sites storing the highest sequence and LTS values this

server has seen from each site.

C A vector of sites storing the highest contiguous sequence number

of messages this server has received that originated at each site.

ARU An integer value. All messages with LTS value less than this have

been received by all servers.

AgreedLine An integer value. This server has received all messages with a LTS

value less than this.

MesgList A list storing all messages received by the server. Messages are

removed from the list and discarded when the message’s LTS value

is less then the value of ARU.

Memb A membership set. This consists of a set of servers organized into

segments.

FMemb The future membership set that will become an actual membership

if the membership protocol completes.

Memb id The unique view identifier of the membership Memb.
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FMemb id The unique view identifier of the membership FMemb.

ST id The temporary view id used to identify STATETRANS messages.

PReps A set of potential representatives. The PReps vector only provides

an optimization by keeping track of which other servers might cur-

rently be alive and good servers to contact to reconstruct a mem-

bership.

GReps A set of representatives that represent all the members who will be

part of the new membership.

GMemb A set of members that represents each server’s best guess as to who

will be in the new membership.

Commit Commit set.

CommitTrans Commit Set transitional

FCommit Future Commit set.

FCommitTrans Future commit set transitional.

SMemb Seg members.

StableNet Stable network membership boolean

Active A boolean value that is true of the membership is alive, false if a

failure has occurred and the current membership is broken.

NumST The number of Statetrans messages collected so far.

WaitLTS A value indicating the target LTS value of the membership. When

a server has recovered all messages it needs, it sets AgreedLine

to WaitLTS. Then, when a server’s ARU reaches WaitLTS it can

install the new membership.

LH A vector of sites storing the lowest of all of the H values sent in

statetrans messages by members who were in the server’s old mem-

bership This value is only used in the Statetrans state.
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PH A vector of sites storing the highest seq and LTS values seen by any

of the members of the server’s old membership. This value is only

used in the Statetrans state.

PARU A value storing the highest ARU of any of the statetrans messages

received. This value is only used in the Statetrans state.

Cur segrep A value that tracks the identifier of the representative for the server’s

segment. This value is only used during Seg and Rep states.

MissingMessages The set of messages that servers trying to form a new membership

are missing. The received Statetrans messages establish this mes-

sage set.

All sets return their size (number of elements) when the cardinality operator|set| is

applied to them.

A set of utility functions used throughout the code are given below:

• segrep() returns the smallest member of the segment, they will act as representative.

• seg()

• smallest() member of a membership

• smallestrep() this returns the smallest rep of a set of reps. has lots of special cases.

• now() returns the current local time in seconds since Jan 1 midnight GMT 1970.

6.1.4 Start State

A process always begins execution in the start state. The only event possible in this state

is recover. A recover event consists of initializing the membership set to contain only the

local process and triggering a membership change by declaring a failure. The membership

id of a recovery membership is the process id of the process and a timestamp of−1 which

is considered older then all other possible membership ids.
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Figure 6.1: Membership State Machine

Start State

1 switch (event)
2 recover :
3 Memb ⇐ SELF

4 CommitTrans ⇐ SELF

5 SiteIDtoSeg[SELF] ⇐ 0
6 Memb id ⇐ {SELF,−1}
7 DECLAREMEMBLOSS()

Figure 6.2: Daemon Membership – Start State
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6.1.5 OP State

Spread has several ways to detect other servers that have either started up or previously

were partitioned away. First, when a server starts up it announces itself to both the local

network with broadcasts and to a subset of the potential other sites with unicast messages.

If any existing server hears these announcements they will initiate a merge with this new

server. Second, the representative of an existing set of servers will probe for other servers

every 90 seconds or so (the time is configurable) by sending unicast messages to all sites at

which the representative does not have existing members.

6.1.6 Segment State

While in Seg state an ALIVE message is sent every Alivetimeout seconds. The Seg state

performs a search for any other servers that are alive and reachable in the local site. To start

the search for other servers this daemon sends an ALIVE message every Alivetimeout

seconds and sets a timeout ofSeg timeout after which it will switch to either Gather or

Represented state.

The server will switch to Gather state in three cases. First, if the server is alone in

the site it will not receive any ALIVE messages from any other servers and will switch to

Gather. Second, even if there are other servers running on the site and they are reachable.

They will ignore the ALIVE message sent by the sender if they already belong to an active

membership. Therefore, the sender will switch to Gather. Third, if the server does receive

ALIVE messages from other servers but the other servers have larger ids, then this server

will become the representative of the set of alive servers and will switch to Gather state.

The reason servers do not join an existing segment of alive servers is because the mem-

bership protocol treats all the members of a segment as one set who came together. This

does not require that all servers on a network segment always come from the same mem-

bership. That is clearly impossible. What will happen is that the sets of servers will merge

during the Gather state through the exchange of Join messages. The Alive messages are
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OP State

1 switch (event)
2 linkfailed :
3 Commit ⇐ SELF

4 for eachseg ∈ Conf
5 if |Memb[seg]| = 0 then
6 PReps ⇐ PReps ∪ SEG REP(Conf, seg)
7 else PReps ⇐ PReps ∪ SEG REP(Memb, seg)
8 DECLAREMEMBLOSS()
9 ureceive (s, ALIVE ) :

10 if s ∈ Memb then
11 DECLAREMEMBLOSS()
12 SM ⇐ SMemb ∪ s
13 ureceive (s, JOIN) :
14 if s ∈ Memb then
15 DECLAREMEMBLOSS()
16 else if SMALLEST(Memb) = SELF then
17 PReps ⇐ NIL

18 PReps ⇐ s
19 SMemb ⇐ Memb
20 GReps ⇐ SELF

21 GReps.type = NET REP
22 GMemb ⇐ SMemb
23 State ⇐ GATHER

24 SENDJOIN()
25 else if (s 6∈ SEG(SELF) or (SEG REP(Memb, SEG(SELF)) = SELF) then
26 mcast (s, refer2)
27 ureceive (s, NEWMEMB) :
28 PROCESSNEWMEMB()
29 SENDSTATETRANS()
30 nreceive (s, DATA) :
31 Normal Data message handling
32 ureceive (s, REFER), nreceive (s, STATETRANS),
33 Rep Timeout , Segment Timeout , Gather Timeout , Statetrans Timeout ,
34 Join Timeout , Alive Timeout :
35 impossible

Figure 6.3: Daemon Membership – OP State
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ProcessNewMemb()

1 if newmemb.stid <= FMemb id then
2 ignore
3 if State = GATHER then
4 for eachm in SMemb
5 mcast (m,newmemb)
6 ST id ⇐ newmemb.stid
7 StableNet ⇐ FALSE

8 FMemb ⇐ newmemb.members
9 PrevSitesToSiteID ⇐ SitesToSiteID

10 INITIALIZE (SitesToSiteID, SiteIDToSeg, FMemb)
11 Active ⇐ TRUE

12 NumST ⇐ 0
13 WaitLTS ⇐ 0
14 PARU ⇐ 0
15 PH ⇐ {0}
16 LH ⇐ {MAXINT}
17 FCommit ⇐ NIL

18 FCommitTrans ⇐ NIL

19 State ⇐ STATETRANS

20 ninit (FMemb)
21 Force newmemb as first message on all links

Figure 6.4: Daemon Membership – ProcessNewMemb function

DeclareMembLoss()

1 SMemb ⇐ SELF

2 mcast (SEG(SELF), alive)
3 StableNet ⇐ FALSE

4 Active ⇐ FALSE

5 Memb ⇐ SELF

6 SiteIDtoSeg[SELF] ⇐ 0
7 Cur seg rep ⇐ NIL

8 State ⇐ SEG

Figure 6.5: Daemon Membership – DeclareMembLoss function
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SendJoin()

1 join.members ⇐ SMemb
2 join.reps ⇐ GReps
3 if ¬Active then
4 mcast (SEG(SELF), join)
5 for each r in PReps
6 mcast (r, join)

Figure 6.6: Daemon Membership – SendJoin function

Seg State

1 switch (event)
2 linkfailed :
3 impossible
4 ureceive (s, ALIVE ) :
5 SMemb ⇐ SMemb ∪ s
6 ureceive (s, JOIN) :
7 if SEG(s) = SEG(SELF) andjoin.reps[0].type = SEG REPthen
8 Cur seg rep ⇐ s
9 State ⇐ REP

10 if SELF 6∈ join.members then
11 mcast (SEG(SELF), alive)
12 else mcast (s, refer)
13 Segment Timeout :
14 Cur seg rep ⇐ NIL

15 if smallest(SMemb) = SELF then
16 GReps ⇐ SELF

17 GReps.type ⇐ SEG REP
18 GMemb ⇐ SMemb
19 State ⇐ GATHER

20 SENDJOIN()
21 else State ⇐ REP

22 Alive Timeout :
23 mcast ({SMemb}, alive)
24 ureceive (s, REFER), ureceive (s, NEWMEMB),
25 nreceive (s, STATETRANS), nreceive (s, DATA) :
26 ignore
27 Gather Timeout , Statetrans Timeout ,
28 Join Timeout , Rep Timeout :
29 impossible

Figure 6.7: Daemon Membership – Seg State
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meant to locally gather alive servers so to make the wide-area exchange of Join messages

more efficient.

The server transitions to Represented state if it has heard an Alive message from some

other server who has a smaller id.

6.1.7 Represented State

Servers in the Represented state do not send any messages. The purpose of the Represented

state is to increase the scalability of the membership algorithm by suppressing all servers in

a site except one from sending wide-area messages between sites. A server in Represented

state will receive JOIN messages from their representative which indicate that the repre-

sentative is still alive and running. If they fail to receive these JOIN messages for more

then Reptimeout seconds, they shift to Seg state and resend ALIVE messages to refind

who is alive. If they receive a NEWMEMB message then they process it normally and try

to construct that membership. They then shift to Statetrans state.

6.1.8 Gather State

While in Gather state a JOIN message is sent every Jointimeout seconds. The JOIN mes-

sage is sent to the local site and to all the servers listed in the PReps set.

If a daemon in the active membership exists on the same segment as the new daemon,

the any existing daemon will hear the new daemon’s join message and will respond if it

is the segment representative or the network representative. If the daemon is the network

representative it will initiate their own membership change by callingShift to Gather ,

and if they are a segment representative they will send the new daemon a REFER message

identifying the network representative. Only the network representative will actually start

a membership change in the current membership. Even if a daemon answers by sending a

referral, the daemon will continue to work in the old membership, i.e. forget that it knows

someone new has tried to join, until the network representative of the current membership
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Rep State

1 switch (event)
2 linkfailed :
3 impossible
4 ureceive (s, ALIVE ) :
5 ignore
6 ureceive (s, JOIN) :
7 if SEG(s) = SEG(SELF) andjoin.reps[0].type = SEG REPthen
8 if s 6= Cur seg rep then
9 Cur seg rep ⇐ s

10 reset Rep Timeout
11 if SELF 6∈ join.members then
12 mcast (SEG(SELF), alive)
13 else mcast (s, refer)
14 ureceive (s, NEWMEMB) :
15 PROCESSNEWMEMB()
16 SENDSTATETRANS()
17 Rep Timeout :
18 SMemb ⇐ SELF

19 mcast SEG(SELF), alive
20 Cur seg rep ⇐ NIL

21 State ⇐ SEG

22 ureceive (s, REFER), nreceive (s, STATETRANS), nreceive (s, DATA) :
23 ignore
24 Segment Timeout , Gather Timeout , Statetrans Timeout ,
25 Join Timeout , Alive Timeout :
26 impossible

Figure 6.8: Daemon Membership – Rep State
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is contacted by the new daemon.

If any of these JOIN messages reach any of the currently running daemons, the new

daemon will be informed of who the current network representative is1. Since that network

representative will also enter Gather state and send JOIN messages, the new daemon will

receive a JOIN and callMembhandle join . This function adds the representatives listed

in the join message to thePotential Reps list and the members listed in the join to the

Form Members list. The actual sender of the Join is added to theForm Reps list. If the

daemon who sent the join is the network representative then theForm or fail call is reset

to Gather timeout time in the future.

A server will leave this state afterGather timeout seconds. When the timeout ex-

pires the server will decide which of four next steps will be taken.

• If no new servers have been found and a current active membership exists, the server

shifts to OP state and continues normal execution. This is the case when the network

representative was probing for new servers and did not find any.

• If this server is the network representative and the set of GReps is larger then 1, new

servers have been found and a new membership should be formed. This server sends

a NEWMEMB message and shifts to Statetrans state.

• If this server is not the network representative, but its current membership is still

marked active. It then shifts to OP and continues normal operation.

• If this server is not the network representative, and no membership is active, then

the attempt to form a membership has failed, possibly because after sending a JOIN

message the smallest id server crashed, so restart the Gather state with a new round

of JOIN messages.

1It is possible because of message loss for the new member to not discover the existing daemons. In this
case the new daemon will form a membership by themselves and try to discover the others in its usual way
by occasional calls toLookup new members.
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Gather State

1 switch (event)
2 linkfailed :
3 impossible
4 ureceive (s, ALIVE ) :
5 if ¬Token alive then
6 GMemb ⇐ GMemb ∪ s
7 else if s ∈ Memb then
8 DECLAREMEMBLOSS()
9 GMemb ⇐ GMemb ∪ s

10 ureceive (s, JOIN) :
11 GReps ⇐ GReps ∪ join.reps[0]
12 for each r in join.reps
13 PReps ⇐ PReps ∪ r
14 for eachm in join.members
15 GMemb ⇐ GMemb ∪ m
16 if join.reps[0] = SMALLESTREP(GReps) then
17 reset gather timeout
18 ureceive (s, REFER) :
19 PReps ⇐ PReps ∪ refer.rep
20 ureceive (s, NEWMEMB) :
21 PROCESSNEWMEMB()
22 SENDSTATETRANS()
23 Gather Timeout :
24 if SMALLESTREP(GReps) = SELF then
25 if Active and |GReps| = 1 then
26 State ⇐ OP
27 DELIVER MESS()
28 else CREATE SEND NEWMEMB()
29 else if Active then
30 State ⇐ OP
31 DELIVER MESS()
32 else GMemb ⇐ SELF

33 PReps ⇐ GReps
34 State ⇐ GATHER

35 GReps ⇐ SELF

36 GReps.type = SEG REP
37 GMemb ⇐ SMemb
38 SENDJOIN()
39 nreceive (s, STATETRANS), nreceive (s, DATA) :
40 ignore

Figure 6.9: Daemon Membership – Gather State
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Gather State (Part 2)

1 switch (event)
2 Join Timeout :
3 SENDJOIN()
4 Rep Timeout , Segment Timeout , Statetrans Timeout , Alive Timeout :
5 impossible

Figure 6.10: Daemon Membership – Gather State (Part 2)

CreateSendNewMemb()

1 PReps ⇐ GReps
2 SORT(GMemb)
3 newmemb.stid ⇐ {Self, NOW()}
4 newmemb.members ⇐ GMemb
5 for each r in GReps
6 mcast (r, newmemb)
7 for eachm in SMemb
8 mcast (m,newmemb)
9 PROCESSNEWMEMB()

Figure 6.11: Daemon Membership – CreateSendNewMemb function

6.1.9 Statetrans State

The Statetrans state begins when a process receives a NEWMEMB message and creates

a new network level configuration. The Statetrans state begins by creating a new STATE-

TRANS message and sending it to all of the other servers who are in the new membership

through the new overlay network that was just established. The STATETRANS messages

are sent in the new “proposed” membership defined by FMemb. Although Spread usually

rejects messages which arrive with a membership id that is not equal to the current mem-

bership, Spread will accept STATETRANS messages that arrive with a membid equal to

the FMembid.

The Statetrans state is the first state in the membership when the overlay network op-

erates. All of the necessary point-to-point and broadcast link protocols are active. Thus, if

a ring exists then the token is circulating. If a hop exists then it is sending acks. If a TCP

link exists then it has connected. Also, Spread sends ARUUpdate messages. ARUUpdate
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SendStateTrans()

1 statetrans.lts ⇐ H[Self ]
2 statetrans.aru ⇐ ARU
3 statetrans.pviewid ⇐ {Self, NOW()}
4 statetrans.membid ⇐ Memb id
5 statetrans.H ⇐ H
6 statetrans.committed ⇐ Self ∪ Commit
7 statetrans.messages ⇐ missingmessages
8 rmcast (statetrans)

Figure 6.12: Daemon Membership – SendStateTrans function

messages play a critical role in completing the EVS state but do not play any role in the

actual transmission of the STATETRANS messages.

When a STATETRANS message arrives at a server the server verifies that the message

was sent by a member of this server’s prior membership. This can be easily checked as

each STATETRANS message has the membership id of its sender’s previous membership

stored in the message. If the message does belong to a different prior membership then

the message’s contents are ignored and only the fact that it was received is recorded by the

NumST counter. When all the STATETRANS messages expected by a server have arrived

(one per daemon in the new membership) the server uses the stored state of those messages

to calculate what messages were missed at the end of the previous membership and need to

be resent. The server also sets up the protocol counters WaitLTS, ARU, and H, and shifts

to EVS state.

6.1.10 EVS state

The EVS state consists to two distinct communication phases.

First, all the messages that need to be resent are sent by one of the servers who has

them. The resent messages use the dissemination network set up just prior to the Statetrans

state. Each server compiles a list of which messages it is responsible for resending and

sends them. During this state the servers will also receive messages resent by other servers.
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Statetrans State

1 switch (event)
2 linkfailed :
3 DECLAREMEMBLOSS()
4 ureceive (s, ALIVE ) :
5 if s ∈ FMemb then
6 DECLAREMEMBLOSS()
7 GMemb ⇐ GMemb ∪ s
8 ureceive (s, JOIN) :
9 if s ∈ FMemb then

10 mcast (s, newmemb)
11 nreceive (s, STATETRANS) :
12 if statetrans.stid 6= ST id then
13 ignore
14 if statetrans.sender = SMALLEST(FMemb) then
15 FMemb id ⇐ statetrans.pviewid
16 if statetrans.lts > WaitLTS then
17 WaitLTS ⇐ statetrans.lts;
18 if statetrans.membid = Memb id then
19 FCommitTrans ⇐ FCommitTrans ∪ s
20 if statetrans.aru > PARU then
21 PARU ⇐ statetrans.aru
22 for each l in Sites
23 PH[l] ⇐ MAX (PH[l], statetrans.H[l])
24 for each l in Sites
25 LH[l] ⇐ MIN(LH[l], statetrans.H[l])
26 FCommit ⇐ FCommit ∪ statetrans.committed
27 MissingMessages ⇐ MissingMessages ∪ statetrans.messages
28 NumST ⇐ NumST + 1
29 if NumST = |FMemb| then
30 for each l in Sites
31 if LH[l] < PH[l] andPH[l] = H[l] then
32 MissingMessages ⇐ MissingMessages ∪ {LH[l] + 1, . . . , PH[l]}
33 WaitLTS ⇐ WaitLTS + 1000
34 ARU ⇐ PARU
35 DELIVER SAFE MESS()
36 H ⇐ PH
37 for eachm in MissingMessages
38 if m.num missed = |FCommitTrans| then
39 INSERT DUMMY MESSAGE(m)
40 RESENDM ISSINGMESSAGES()
41 State ⇐ EVS
42 if C[l].seq = H[l].seq∀ l ∈ PrevSites then
43 AgreedLine ⇐ WaitLTS
44 Commit ⇐ FCommit
45 CommitTrans ⇐ FCommitTrans

Figure 6.13: Daemon Membership – Statetrans State
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Statetrans State (Part 2)

1 switch (event)
2 ureceive (s, REFER), ureceive (s, NEWMEMB), nreceive (s, DATA) :
3 ignore
4 Statetrans Timeout :
5 DECLAREMEMBLOSS()
6 Rep Timeout , Segment Timeout , Gather Timeout ,
7 Join Timeout , Alive Timeout :
8 impossible

Figure 6.14: Daemon Membership – Statetrans State (Part 2)

EVS State

1 switch (event)
2 linkfailed :
3 DECLAREMEMBLOSS()
4 ureceive (s, ALIVE ) :
5 if s ∈ FMemb then
6 DECLAREMEMBLOSS()
7 GMemb ⇐ GMemb ∪ s
8 ureceive (s, JOIN) :
9 if s ∈ FMemb then

10 DECLAREMEMBLOSS()
11 GMemb ⇐ GMemb ∪ s
12 ureceive (s, REFER), ureceive (s, NEWMEMB), nreceive (s, STATETRANS) :
13 ignore
14 nreceive (s, DATA) :
15 Normal Data message handling
16 Except – allow ARUUpdate messages from unknown memberships
17 if data.membid == FMemb id
18 anddata.type ∈ {FRAG, META, ARU UPDATE} then
19 DELIVERMEMBERSHIP()
20 if C[l].seq = H[l].seq∀l ∈ PrevSites then
21 AgreedLine ⇐ WaitLTS
22 Commit ⇐ FCommit
23 CommitTrans ⇐ FCommitTrans
24 if ARU ≥ WaitLTS then
25 DELIVERMEMBERSHIP()
26 Rep Timeout , Segment Timeout , Gather Timeout ,
27 Statetrans Timeout , Join Timeout , Alive Timeout :
28 impossible

Figure 6.15: Daemon Membership – EVS State
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DeliverMembership()

1 TransMembership ⇐ CommitTrans
2 CommitMembership ⇐ Commit
3 stranssig (Self, T ransMembership)
4 entry ⇐ MesgList
5 while entry 6= NIL andentry.lts < ARU
6 do
7 if entry.type = DUMMY then
8 hole found ⇐ TRUE

9 if hole found = FALSEor entry.sender ∈ CommitMembership then
10 if entry.delivered = FALSE then
11 sdeliver (entry.msg)
12 entry.delivered ⇐ TRUE

13 UPDATE FIFO(entry.msg)
14 DISCARD(entry.msg)
15 entry ⇐ entry.next
16 Memb ⇐ FMemb
17 Memb id ⇐ FMemb id
18 StableNet ⇐ TRUE

19 H ⇐ {0}
20 C ⇐ {0}
21 Highest ARU ⇐ 0
22 AgreedLine ⇐ 0
23 ARU ⇐ 0
24 Session Seq ⇐ 0
25 CLEAR FIFO DELIVERABLE()
26 State ⇐ OP
27 sview (Self, Memb id,Memb, TransMembership)
28 DELIVER MESS()

Figure 6.16: Daemon Membership – DeliverMembership function
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The server resends its messages with the membid of the membership they were originally

sent in. Thus, the only servers that will process the data messages when they arrive are

those servers who came from the same prior membership as the sender. These messages

are essentially the cleanup of ‘what should have happened’ in the old membership. Servers

who were never in that old membership need have no knowledge of them.

Second, when the server receives all the messages it requires, which it will know be-

cause the C vector for all sites in the old membership will reach the same values as the H

vector, the server will update AgreedLine to be equal to WaitLTS. The server will commit

to the current set of members by setting Commit equal to FCommit and CommitTrans equal

to FCommitTrans. The update of AgreedLine will allow the site wide ARU entry in HA

to be updated once all members of the site have received everything they are waiting for.

When the site wide ARU is updated the site representative will send updated ARUUpdate

messages to inform all of the sites of the new ARU for this site. When a server receives

ARU Updates from all other sites indicating that they have finished receiving messages the

ARU (at this server) will reach the WaitLTS value. At that point the server knows EVS

state is completed and it can deliver the messages and membership view.

It is possible for the server to receive data messages sent in the new membership before

installing the membership itself. This is possible if one server receives the ARUUpdates

required, installs the new membership, and begins sending before another server has re-

ceived all the ARUUpdates. This is legal because the connections between servers are

NOT FIFO and are only “eventually reliable” so a server might get messages out of order

from the links. If a server receives such a message, they can treat the message as an indica-

tion that the ARU has reached WaitLTS and can install the new membership. They can do

this because all servers have completed EVS. The servers just do not yet know that they are

all finished. Therefore, if one server tells another that they have finished, the second server

knows that all the servers have finished.

The actual delivery of a membership has several distinct steps.
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1. Deliver a transitional membership.

2. Deliver all messages the server has which meet the appropriate guarantees.

3. Deliver a regular membership.

4. Reset all protocol level counters and variables for a new membership.

5. Deliver any new messages that are ready.

As a result of the delivery of a transitional and regular membership the upper layers of

Spread, specifically the groups layer, will initiate protocols to deliver correct process level

membership events. The group membership protocol will send messages in the new server

membership to synchronize the process-level group state and then deliver actual member-

ship events to the applications. The server membership event is not directly delivered to

any process except the server itself.

During recovery from a membership change it is possible for a server to know of mes-

sages which they do not have and thus cannot insert into the main Message Lists. These

messages are dependent on other messages and can only be inserted when the messages

upon which they depend arrive. When the server receive those other messages then it can

immediately insert the dependent messages.

One of the key ideas in this membership algorithm is the CommitSet (Commit). This

set always increases during a membership process. It is only reset to the local server when

it first enters a membership change from the OP state. The set grows when Commit is set

equal to FutureCommit Set(FCommit) during the EVS state. The server sets the Commit

set to equal FCommit when we have received all the messages sent by members of the

FCommit. The idea is after that point the server is committed to delivering those members

messages in whatever membership ends up forming, even if according to the server some

of the other servers fail before the membership completes (i.e. after we commit, but before

we know everyone else is done and deliver the membership).
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If a cascading membership occurs, each server adds anyone in their Commit to their

Statetrans message. Every server who receives the statetrans message will add the members

to their FCommit.

6.2 Proof of Daemon Membership

L EMMA 6.1 ()
View ids are unique up to the granularity of the timestamp.

The granularity of timestamps in Spread is seconds. Therefore, if more then one member-

ship change occurs within a second, both membership views can have identical view ids

even though they are actually different views. This engineering limitation can be avoided

by using a finer granularity timestamp clock.

View identifiers can be compared by using the timestamp portion as a primary key and

the IP address as a secondary key.

L EMMA 6.2 ()
Every membership execution results in a transsig event prior to the corresponding view
event.

PROOF: The only place aview event is delivered is in Figure 6.16 and it always delivers a

stranssig event with the same view id first. 2

L EMMA 6.3 ()
SMemb always contains Self.

PROOF: SMemb is either initialized to Self (in several places) or initialized to Memb (which

must include Self by induction on the sequence of views. The initial case being the initial

view which always includes Self by definition, and each later view ) 2
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L EMMA 6.4 ()
The sender of a Join message is always listed in the member list of the Join.

PROOF: The member list is always identical to SMemb, as shown in Figure 6.6. By

Lemma 6.3 SMemb always contains Self, so the sender of the join is listed as a member.2

L EMMA 6.5 ()
Every server that is in GReps is also in GMemb.

PROOF: New members are added to GReps in two ways. First, when GReps is initialized

to Self, at which point GMemb is initialized to SMemb. By Lemma 6.3, SMemb always

contains Self. Second, when GReps is updated by a join message, the sender of the join is

added to GReps. At that point all of the members listed in the join message are also added

to GMemb. By Lemma 6.4, the sender of a join message is always listed in the members

list of the message. Thus, every member in GReps will also be in GMemb. 2

L EMMA 6.6 ()
For every installed view v, containingvidv and membershipMv, the server received a
newmemb message with newmemb.members =Mv and a statetrans message fromsmallest (Mv)
with statetrans.pviewid =vidv.

Essentially, every installed view corresponds exactly with the members list of a newmemb

message received previously by the server and the viewid proposed by the smallest member

of that set.

PROOF: The only place in the algorithm where the FMemb set is assigned is when

a newmemb message is received. The FMemb set is never changed again until either a

new newmemb message arrives or the membership is declared and FMemb is assigned to

Memb. Therefore, theMv set is always the set to the last newmemb members list when the

membership is declared.

The FMembid which will become thevidv of the final view is set in the algorithm,

as shown in Figure 6.13, when a statetrans message is received from the smallest member

of the FMemb set. The statetrans message will only be handled if it was sent in response
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to the same newmemb message that initiated the FMemb set because of the check at the

beginning of the hander for statetrans messages in Figure 6.13. 2

L EMMA 6.7 ()
If a server installs a view v, the transitional set of v is a subset ofMv.

PROOF: We prove that every member of the transitional set of v is also inMv. By Lemma 6.6

every view corresponds to the most recent preceeding NEWMEMB message.

The transitional set of v is equal to the FCommitTrans set when all messages that need

to be recovered in EVS state have been received (C[i] == H[i]∀i ∈ PrevSites). FCom-

mitTrans is initialized to empty when a NEWMEMB message is received and is only in-

creased when the STATETRANS messages are received. When a process p receives a

STATETRANS messages from another process q, if prevmembq == prevmembp then

q is added to FCommitTrans. Because STATETRANS messages are rejected unless they

are from someone who is in FMemb, q is also in FMemb. So q will be inMv when v is

delivered. 2

L EMMA 6.8 ()
If a server installs a view v’ in a view v, the transitional set of v’ is a subset ofMv.

PROOF: We prove that every member of the transitional set of v’ is also inMv. By

Lemma 6.6 every view corresponds to the most recent preceeding NEWMEMB message.

The transitional set of v is equal to the FCommitTrans set when all messages that need

to be recovered in EVS state have been received (C[i] == H[i]∀i ∈ PrevSites). FCom-

mitTrans is initialized to empty when a NEWMEMB message is received and is only in-

creased when the STATETRANS messages are received. When a process p receives a

STATETRANS messages from another process q, if prevmembq == prevmembp then q

is added to FCommitTrans. Therefore, the only processes that are added to FCommitTrans

are ones who have the same previous membership and so were inMv. 2
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THEOREM 6.1 (INITIAL V IEW EVENT )
In all traces of the EVS-S automaton, every send, deliver, and transsig event occurs in some
view.

PROOF: The Server Execution Structure assumption requires that a recover event is the first

event that occurs in a trace. The recover event, shown in Figure 6.2, causes an initial view

to be established containing only the process itself. All events occur after that initial view.

After a crash event, no messages are delivered. 2

THEOREM 6.2 (SELF I NCLUSION )
All view events include Self in the set of members.

PROOF: By Lemma 6.3 SMemb always includes Self. GMemb is always initialized to

SMemb and members are only added to it, never removed. Thus, GMemb always contains

Self.

From the algorithm, FMemb is determined by the set of members in the newmemb

message. The members set in the newmemb message is always a copy of the GMemb set

held by whoever sends the newmemb message. The thing to prove is that the GMemb of

that member always includes everyone who will act on the newmemb. This might require

a check upon receiving a newmemb to verify that we are in it. The installed Memb is

always a copy of the current FMemb. Nowhere in the algorithm is anyone removed from

the membership. So Self is always included in the membership. 2

THEOREM 6.3 (MEMBERSHIP AGREEMENT )
If server s installs a view with identifier id and server t installs a view with the same iden-
tifier, then the membership sets of the views are identical.

PROOF: The identifier id of a view is set when the statetrans message from the represen-

tative of the new membership is created. The id is composed of the IP address of the first

member and the current time (in seconds) at that member and is stored in the pviewid field

of the statetrans message. A process only sends a statetrans message in response to receiv-

ing a newmemb message, and the statetrans message has a stid identical to the stid received
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from the newmemb message. So a unique view id is generated in response to a particular

membership set specified in the newmemb message. Thus, any two servers who install a

view with id received the same statetrans message from server id.address and that state-

trans message stid field matched the stid field of the newmemb message with membership

setMnewmemb. FMemb is set toMnewmemb by receiving a newmemb message and is never

changed. The installed membership set is identical to FMemb at the time it is installed. So

both servers will have the same membership set in view with identifier id.

Lemma 6.6 provides that every view corresponds to a newmemb message and a state-

trans message. 2

THEOREM 6.4 (LOCAL M ONOTONICITY )
If server s installs a view with identifier id’ after installing a view with identifier id, then
id’ is greater then id.

PROOF: Under an assumption of loosely synchronized clocks, the view ids proposed by

each server in its statetrans messages will all have a greater timestamp then any previous

proposed view ids. Thus, since every installed view id is identical to one of the proposed

view ids in a statetrans message, the installed view ids will increase monotonically.

If one does not want to assume synchronized clocks, the existing algorithm can be made

monotonic by treating the timestamp field of the view id as a Lamport time stamp instead

of a real clock time. The Lamport time stamp can be initialized by the real clock time to

preserve monotonicity over restarts of the entire system (asuming the real clocks did not

run backwards). By using the Lamport virtual time stamps each server will never propose

a view id that is less then any view id it has seen before. The final view id will use the

timestamp that is greatest of all of the proposed time stamps in the statetrans messages.2

THEOREM 6.5 (TRANSITIONAL SET)
(a). The transitional set for the first view installed at a server following a recover event

consists of just the server itself.
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(b). If a server s installs a view v’ in a previous view v, then the transitional set for v’ at
s is a subset of the intersection ofMv andMv′.

(c). If servers s and t install the same view, then t is included in s’s transitional set for
that view if and only if s’s previous view was identical to t’s previous view.

(d). If servers s and t install the same view v’ in the same previous view v, then they have
the same transitional sets in v’.

PROOF:

Property a holds because the transitional set is initialized to Self when the daemon re-

covers as shown in Figure 6.2. This simplifies the semantics because groups can rely on

the fact that itself is in trans-memb.

Property b can be proved by showing that all of the members of the transitional set for

v’ are in bothMv andMv′, because by the definition of intersection, the transitional set is

a subset of the intersection ofMv andMv′.

All members of the transitional set for v’ are inMv′ is a direct result of Lemma 6.7. All

members of the transitional set for v’ are inMv is a result of Lemma 6.8.

Property c This can be proven by establishing the following two claims, the “if” case

and “only if” case.

If s’s previous view was identical to t’s previous view and s and t install the same view

v then t is included in s’s transitional set for v.

We are given thatv′ = vid(vs) = vid(vt), ∧ vs.viewid = vt.viewid ∧ Mvs = Mvt

and by Self Inclusiont ∈ Mvs and t ∈ Mv′
s
. By the algorithm CommitTrans at s contains

all servers whose previous view was the same as s’s previous view and whom s received a

STATETRANS message from. Since t is inMvs then s must have received a STATETRANS

message from it and sincevid(vs) = vid(vt) s will have added t to it’s FCommitTrans set.

Thust ∈ Tvs .

115



If s’s previous view was not identical to t’s previous view and s and t install the same

view, then t is not included in s’s transitional set.

The only way for a server t to be in the CommitTrans set of another server s is for s to

have received a STATETRANS message from t, and for the previous view id of t to equal

the previous view id of s. But because of Lemma 6.1 and the condition that s’s previous

view was not identical to t’s previous view, the previous view of s will not be the same

view id as the previous view seen by t. So s will not include t in FCommitTrans and since

CommitTrans is equal to FCommitTrans when the server leaves EVS state. The transitional

set of s for view v cannot include t.

Property d As described above, the transitional set at any server s is exactly equal to

the set of servers who sent a STATETRANS message and whose previous view was the

same as s’s previous view. Since s and t both installed v’, they both must have received

STATETRANS messages from all of the members of v’. Since every server only sends

one STATETRANS message for each FMembid they must have received the same set of

STATETRANS messages. Since s and t have the same previous view, they will have added

the same subset of STATETRANS messages senders to their FCommitTrans set. And thus

they will have the same transitional sets in v’ when it is delivered. 2

THEOREM 6.6 (NO DUPLICATION )
A server never delivers a message more then once.

PROOF: Figure 5.1 shows the process of delivering all messages. In every case a message is

marked delivered and if a message is so marked, it is not delivered again. When messages

are retransmitted during the EVS state, they maintain the unique identifiers of siteseq,

sessionseq and sessionid and no message with a lts value less then ARU is retransmitted.

A message is not discarded and removed from the list of active messages until the global

ARU has increased higher then the lts of the message. Thus, a message is never delivered

more then once. 2
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THEOREM 6.7 (DELIVERY I NTEGRITY )
A deliver event in a view is the result of a preceding send event.

PROOF: Every deliver event requires the receipt of a DATA message either from the net-

work, or from a localsend event. Every DATA message received from the network orig-

inated at some process since we assume the network does not spontaneously create mes-

sages. The only way a DATA message is created is by assend input event. 2

THEOREM 6.8 (SELF DELIVERY )
If a server s sends a message m, then s delivers m unless it crashes.

PROOF: When a server sends a message it also stores the message in the list of ordered

messages. The only situation when a server will not deliver a message that it has stored in

the message list is in theDeliverMembership function where messages that were sent by

servers not in the Commit set and which are ordered after a hole in the message sequence

are discarded without being delivered. Since the Commit set of a server always includes

the server itself, the server will never discard messages that it sent. The messages will be

eventually delivered. The only way delivery can be delayed is if necessary information

from other daemons has not been received and if the lack of messages from some other

server continues then a membership failure will be declared. When the membership is

reformed the message will be deliverable because the membership will only include those

members who are able to communicate with this server. 2

THEOREM 6.9 (SAME V IEW DELIVERY )
If servers s and t both deliver a message m, then they both deliver m in the same view.

PROOF: For all reliable messages, if the message was sent by a server and delivered in view

v, then if any other server received that message it will also deliver it in view v and not a

later view, because in the DeliverMembership function shown in Figure 6.16 all messages

that are known about are either delivered or discarded. If the message was not received

by some server then either the message will be recovered during the EVS state because at
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least one server has the message or it will not be delivered because no one has the message.

Because the only messages that are recovered and delivered during EVS are those from

other servers who were in the same previous view, the membid of the statetrans message

and recovered data messages is checked against our previous view, it is not possible to

receive a recovered message that the sending server also provided to a different server in a

different view. 2

THEOREM 6.10 (VIRTUAL SYNCHRONY )
If servers s and t are virtually synchronous in a view then any message delivered by s in
that view is also delivered by t.

PROOF: By the Transitional Set property 6.5 both s and t will have the same transitional set

since they are virtually synchronous.

Take message m that is delivered by s. Since s delivered m, it must have the message

and message m has some location in the global order of messages (even if it is only a

reliable or FIFO message it still has a global order as well, it just can be delivered earlier

then that order would require). At some point in the stream of events, a fault or join is

detected and the membership algorithm begins. At that point if t has also delivered m then

we are done. So let t not have delivered m yet. Then when t sends it’s STATETRANS

message it will either have an H[] field lower then the value for m (meaning it has not

received m or any message from that site with a higher lts) or m will be listed in the set

of missing messages. Because s and t deliver the same view, they must have received a

STATETRANS message from each other, as otherwise they would not have completed the

StateTrans state since the test for NumST would have failed. Based on the STATETRANS

message s (or someone else) will have resent m because either it was in the list of requested

messages or someone else knew of a higher LTS valued message and so resends those that

it only knows about. Since the WaitLTS will be set to the highest known by anyone, the

termination case that ARU = WaitLTS can only be reached once all of the servers in the

new view have received all of the messages. Since t will be one of the servers in the new
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view, it must also have received m. If s already delivered m prior to any failures, then t

will deliver m in the DeliverMembership function because no holes will exist in the set of

ordered messages since s was able to deliver it. If s has not delivered it before, so a hole

may exist, then either both s and t will deliver it or neither will, since they will have the

same set of recovered messages and will have the same Commit set. So in any case if s

delivered the message, then t will also deliver it. 2

THEOREM 6.11 (SANE V IEW DELIVERY )
(a). A message is not delivered in a view earlier than the one in which it was sent.

(b). If a process p sends a message m, crashes and later recovers in a view v and a process
q delivers m, then m is delivered in a view before v.

PROOF: The first part is a direct consequence of Delivery Integrity, Theorem 6.7, Self

Delivery, Theorem 6.8, Same View Delivery, and Theorem 6.9, because all servers who

deliver a message deliver it in the same view as the server who originally sent it and they

must deliver it after the preceding send event.

The second part is a consequence of the message recovery that is performed in the EVS

state. When p recovers, even if it recovers prior to the others noticing that it did crash it will

know that it crashed and has zero state. So when the server participates in a membership

instance, the other servers will exchange statetrans messages about the messages they have,

including p’s. Those messages are guaranteed to be delivered in the SAFE delivery of all

message that occurs in the DeliverMembership function in Figure 6.16. Therefore, m will

be delivered before the view v that includes the newly recovered p. 2

Proofs of the FIFO and Causal properties are provided in Chapter 5. These properties

hold across membership changes because nothing in the membership algorithm modify

the sessionseq, lts, or seq values of the messages or the delivery rules that apply to these

messages. Once the membership change begins all messages that are currently undelivered

or incomplete and are recovered during the state exchange will actually be delivered as

SAFE messages, providing the strongest possible service, including all of the properties of
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the lessor FIFO and Causal services.

THEOREM 6.12 (AGREED M ESSAGES)
(a). Agreed messages are Causal messages.

(b). If a server s delivers an agreed message m, then after that event it will never deliver
a message that has a lower ord value.

(c). If a server s delivers an agreed message m’ before a transsig event in its current view,
then s delivers every message with a lower ord value than m’ delivered in that view
by any process.

(d). If a server s delivers an agreed message m’ after a transsig event in its current view,
then s delivers every message with a lower ord value then m’ sent by any process in
s’s next transitional set that were delivered in the same view as m’.

PROOF: The first two properties are provided in the proofs of Chapter 5 because they do not

involve membership changes. Since an agreed message cannot be delivered until all previ-

ous messages have been delivered by the standard delivery algorithm, it can never deliver

an older, lower ord, message. Even when messages are skipped in the DeliverMembership

function (see Figure 6.16 ) because earlier messages are missing, once they are skipped,

the messages will never be delivered later because they will have an earlier lts value.

The messages delivered prior to astranssig event consist of all those messages

delivered before the current instance of membership protocol began as well as those that

became deliverable during the algorithm. Since the normal delivery rule for Agreed mes-

sages requires all messages ordered prior to the current message be delivered before the

current message Theorem 6.12(c) is enforced. The messages that arrive during the mem-

bership are only delivered prior to thestranssig event by the DeliverSafeMess call in

Figure 6.13 which delivers all messages that qualify as Safe (their lts< ARU) based on the

ARU values provided in the Statetrans messages. Because of Theorem 6.12(b), messages

with a lower ord value must be delivered prior to m’. Therefore, all messages with a lower

ord value must be delivered in the DeliverSafeMess call or have been already delivered

in OP state.
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Theorem 6.12(d) requires that the only holes in the agreed order of messages be holes

representing messages that originated at servers who are not in the transitional set of the

next view. By the delivery rule the only messages that will be skipped are those whose

source server is not in the Commit set and that occur after an unrecovered hole in the

agreed (LTS) message order. Since the transitional set is a subset of the Commit set, by

the algorithm the commit set consists of those members in the transitional set of the current

protocol instance as well as any members who this server completed message recovery with

in a prior instance that failed to actually deliver a view. 2

THEOREM 6.13 (SAFE M ESSAGES)
(a). Safe messages are agreed messages.

(b). If a server s delivers a safe message m before a transsig event in its current view v,
then every member of that view delivers m, unless that member crashes in v.

(c). If a server s delivers a safe message m after a transsig event in its current view v, then
every member of s’s transitional set from s’s next view delivers m, unless a member
crashes in v.

PROOF: Theorem 6.13(b) is a consequence of the delivery rule for Safe messages. If anyone

delivers the safe message, then it follows that all of the servers have the message, otherwise

they could not have acknowledged it. Finally, the fact that every safe message that was

every acknowledged by the server will be delivered. This is true because if a message was

acknowledged then the server must have the message and all message ordered earlier in the

lts order, since the acknowledgements are cumulative. Thus, when messages are delivered

in the DeliverMembership function, even if a safe message was sent by a server not in the

current servers commit set, it will still be delivered because there can not be any holes in

the lts order prior to the message.

Theorem 6.13(c) is also a consequence of the same reasoning, but with the caveat that

since the safe message was delivered after astranssig event, the delivering server did

not get acknowledgements from all other servers in the previous view prior to delivering it;

only from the current transitional set during the EVS state. Therefore, some servers who
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partitioned away may not have recevied the safe message and so may not deliver it. All

servers in the transitional set of s, however, must have received the safe message at the

latest during the EVS message exchange since the servers only proceed to deliver the view

if all of the exchanged messages during EVS become stable at all of the servers in the new

view. Thus, the members of the transitional set of s when v’ the successor view of v is

delivered will all have the safe message m and all previous messages and will thus deliver

it. 2

THEOREM 6.14 (TRANSITIONAL SIGNALS )
(a). At most one transsig event occurs at a server during a view.

(b). If two servers s and t are virtually synchronous in a view v, and s has a transsig event
occur in v, then t also has a transsig event occur in v, and they both deliver the same
sets of agreed messages before and after their transsig events in v.

PROOF: Theorem 6.14(a) results from the algorithm shown in Figure 6.16 as that is the only

place wherestranssig events are generated and they are only generated immediately

prior to delivering messages and a newsview event.

The first part of Theorem 6.14(b) is trivial, as astranssig event is always deliv-

ered in Figure 6.16. The messages delivered prior to thestranssig are those that were

delivered in the DeliverSafeMess() function call made in Figure 6.13 which were safe

based on the ARU values exchanged during the STATETRANS messsages. Since by as-

sumption s and t were virtually synchronous and so delivered the same new view, they

must have both received the same set of StateTrans messages during the exchange. So they

will have computed the same highest ARU upto which they can deliver messages. For the

messages delivered after thestranssig , since they were virtually synchronous they will

have received the same sets of recovered messages as they would have been in each other’s

Commit Set as they installed the same new view. 2
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6.3 Evaluation of Daemon Membership

The daemon membership algorithm does have the nice property of guaranteeing to finish

running the algorithm within a bounded time. The bound is provided by the part of the

algorithm that does not add any new process to the membership once it has passed the

commit stage. After that point daemons can continue to fail, forcing the algorithm to

recalculate the live membership. Once they fail they will not be allowed back into the

membership until this instance of the algorithm has completed.

The actual time to complete a membership is highly dependent on the pattern of fail-

ures and the speed at which failures are detected. Once a failure has been detected, the

algorithm requiresNa Alive message probes to detect local members,Nj Join messages to

find the global membership, 1 Newmemb message to set the new membership,Ns state-

trans messages to exchange state amoung all of the sites,Nm messages to retransmit any

missing mesages whereNm is the number of missing messages, and finally, requires the

usual ARUUpdate exchange to discover if all recovered messages are safe and can now be

delivered as part of the installing the membership.

The membership algorithm is very affected by tuning parameters, as failure detection

is a difficult problem that is highly dependant on the underlying stability and latency of

the network on which the process is running. The algorithm can be tuned by changing the

timeouts for all of the basic message types and changing timeouts on individual point-to-

point wide-area network links if special knowledge about their failure and loss probabilities

are known.

123



6.4 Process Group Membership Algorithm

The group membership algorithm delivers a set of views and data messages to each ap-

plication connected to a particular Spread daemon. The group algorithm solves two prob-

lems. First, it maps the single membership view of servers onto N group specific views

where many members may be connected through a single daemon. Second, it provides

light-weight group joins and leaves after a client connects to a daemon. These light-weight

group changes only ever add or remove one member of a group at a time and are interleved

with the heavy-weight group view changes that are triggered by changes in the underlying

set of available servers.

Some groups may not even see a group view change when a server view changes as

groups which have no members on the daemons who failed, partitioned, or merged will not

need to see that any membership change occured at all.

The semantics provided by the group membership algorithm to applications who use

the system is presented in Chapter 2 as the general EVS specification as well as a few

special cases are presented in Section 2.2.4.

6.4.1 States

The Process Group membership algorithm uses the following states:

GOP Active Operational state when no membership change is in progress.

GTRANS A transitional membership has been received. Awaiting regular member-

ship.

GGATHER A regular membership has been received. During this state the active

groups and members state is synchronized by GROUPS messages.

GGT Additional membership changes occurred before the groups synchroniza-

tion was complete.
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Figure 6.17: Group State Machine

6.4.2 Types of Messages

The group protocol handles the JOIN, LEAVE, KILL, and GROUPS messages as well

as responding to view and transsig events. The group messages (JOIN, LEAVE, KILL,

GROUPS) are treated as normal data messages by the rest of the Spread daemon. The

message type specific to the group protocol is the GROUPS message which contains the

state of all of the current groups to which the sending server has locally connected members.

The GROUPS message is sent to all of the servers during the group protocol.

• GROUPS: contains a list of known groups and all the members of those groups who

are connected locally to the sending server. All members received in a GROUPS

message are in ESTABLISHED state.

6.4.3 Possible Events

During the group membership algorithm the following events can occur:
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• Receive a transitional signal.

• Receive a view.

• Receive a GROUPS message.

• Receive a JOIN message.

• Receive a LEAVE message.

• Receive a KILL message.

• input connect(c, s), c ∈ C, s ∈ S

• inputdisconnect(c, s), c ∈ C, s ∈ S

• inputsend(c, s, m), c ∈ C, s ∈ S, m ∈ M

• input join(c, s, g), c ∈ C, g ∈ G

• input leave(c, s, g), c ∈ C, g ∈ G

• outputdeliver(c, s, g,m), c ∈ C, s ∈ S, g ∈ 2G, m ∈ M

• outputview(c, s, g, id, D, T ), c ∈ C, s ∈ S, g ∈ G, id ∈ V id, D ∈ 2P , T ∈ 2P

• outputtranssig(c, s, g, id), c ∈ C, s ∈ S, g ∈ G, id ∈ V id

The complete signature also includes the actions:

• inputsdeliver(s, m)

• inputsview(s, id,D, T )

• inputstranssig(s, T )

• outputssend(s, m)

The state of the group membership algorithm consists of:

Gstate The current state the algorithm is in.

TMemb The current transitional membership set.

RMemb The current regular membership set.
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Gathered The set of GROUPS messages received.

LC The set of local connections to this server.

G The set of active groups the server knows about.

6.4.4 GOP State

The GOP State acts as both the normal operational state and the start state for the Group

Membership state machine. In this state, single member join, leave or kill events can occur

as well as normal message delivery. If a server-level membership change occurs the first

notice that the group membership receives about it is astranssig event.

The join , leave , andkill events are light-weight events that are implemented

as regular data messages sent in AGREED order. When one of these events is received

a corresponding data message is sent through thessend event. When the message is

delivered to every process the member is acutally added or removed from the appropriate

group. Each group consists of a name, a set of members, a set of local members, and a

group identifier. The set of local members is the subset of the members who are directly

connected to this server. A group is implicitly created when the first member joins the

group and destroyed when the last member leaves the group.

Each member of a group has a name, a server it is connected to, and a status. The status

field is used to deliver the right type of view events to the client. Normally, a member

is in the ESTABLISHED state, which means it is a member of group and is connected

to a server who is still present, the server has not crashed or partitioned away. The other

possible states are PARTITIONED, which means the member’s server has partitioned away

so the member will be removed from the group, and NEW, which means the member just

joined and should be given a first view event with the transitional set T set to only itself.

In the join case, shown in Figure 6.18, after thesdeliver event for the JOIN mes-

sage occurs, the group the member is joining is created, if it does not already exist, and the

new member m is created with the joining member’s identity. Then m is added to the set
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of members of the group and the group view index is incremented. This will cause a new

view id which is ordered after any previous view id. The member m will be in the NEW

state until after theview event is generated showing it has joined the group.

Two differentview events are generated in response to the JOIN message. First, a view

is generated for any local members who were already in the group before the new member

joined. Their view will show the complete new membership and a transitional membership

of the new membership set minus the joining member. The second view is generate only

for the joining member and it shows the complete new membership and a transitional set of

only the joining member because the new member was not previously with any other group

members.

When theleave anddisconnect events take effect upon the delivery of the LEAVE

and KILL messages respectively, they are handled in a very similar way. The details are

shown in Figure 6.19. In both cases the member is removed from the group membership

set and from the local set if they are connected to the server, and if the group still exists (i.e.

it has at least one member). The index field is incremented to produce the next view id and

a new view is delivered to the remaining members with the transitional set being equal to

the membership set.

The only differences are that in the KILL case the member is removed from all of

the groups, not just one, and in the LEAVE case a Self Leave view is generated for the

departing member to notify them about where in the stream of messages their leave took

effect. A Self Leave notification is not delivered in the case of KILL messages because the

entire connection to the client has been destroyed, so it is no longer possible to deliver any

views to the client any more.

6.4.5 GTRANS State

The GTRANS state handles those messages that occur subsequent to astranssig event

from the EVS-S algorithm. These messages may be data messages; join, leave, or kill
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GOP State

1 switch (event)
2 sdeliver (s, JOIN) :
3 if join.group 6∈ G then
4 g.name ⇐ join.group
5 g.members ⇐ NIL

6 g.local ⇐ NIL

7 g.grpid.membid ⇐ Memb id
8 g.grpid.index ⇐ 0
9 G ⇐ G ∪ g

10 else
11 g ∈ G | g.name = join.group
12 m.name ⇐ join.sender
13 m.server ⇐ CLIENT2SERVER(join.sender)
14 m.status ⇐ NEW
15 g.members ⇐ g.members ∪ m
16 if join.sender ∈ LC then
17 g.local ⇐ g.local ∪ m
18 g.grpid.index ⇐ g.grpid.index + 1
19 if |g.local| > 0 then
20 view (g.local −m,Self, g.name, g.grpid, g.members, g.members−m)
21 if join.sender ∈ LC then
22 view (join.sender, Self, g.name, g.grpid, g.members, join.sender)
23 m.status ⇐ ESTABLISHED
24 sdeliver (s,m — m.type = DATA) :
25 for each c in LC | c ∈ m.group
26 deliver (c, Self, m.group,m)
27 join (c, g) :
28 ssend (c, s, JOIN)
29 leave (c, g) :
30 ssend (c, s, LEAVE)
31 disconnect (c, s) :
32 ssend (s, KILL )
33 send (c, s,m) :
34 ssend (s, DATA)
35 connect (c, s) :
36 LC ⇐ LC ∪ c

Figure 6.18: Group Membership – GOP State
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GOP State (Part 2)

1 switch (event)
2 sdeliver (s, LEAVE) :
3 g = leave.group
4 if leave.sender ∈ LC then
5 view (leave.sender, Self, g.name, NIL , NIL , NIL)
6 g.local ⇐ g.local − leave.sender
7 g.members ⇐ g.members− leave.sender
8 if |g.members| = 0 then
9 G ⇐ G− g

10 g.grpid.index ⇐ g.grpid.index + 1
11 if |g.local| > 0 then
12 view (g.local, Self, g.name, g.grpid, g.members, g.members)
13 sdeliver (s, KILL ) :
14 for eachg in G | kill.sender ∈ g
15 if kill.sender ∈ LC then
16 g.local ⇐ g.local − kill.sender
17 g.members ⇐ g.members− kill.sender
18 if |g.members| = 0 then
19 G ⇐ G− g
20 g.grpid.index ⇐ g.grpid.index + 1
21 if |g.local| > 0 then
22 view (g.local, Self, g.name, g.grpid, g.members, g.members)
23 stranssig (s, T ) :
24 TMemb ⇐ T
25 for eachg in G
26 group changed ⇐ FALSE

27 for eachm in g.members
28 if m.server /∈ TMemb then
29 m.status ⇐ PARTITIONED
30 group changed ⇐ TRUE

31 if group changed then
32 if |g.local| ≥ 0 then
33 transsig (g.local, Self, g.name, g.grpid)
34 g.grpid.index ⇐ −1
35 Gstate ⇐ GTRANS
36 sview (s, id, D, T ) :
37 impossible
38 sdeliver (s, GROUPS) :
39 impossible

Figure 6.19: Group Membership – GOP State (Part 2)
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messages; or the newsview event. Most of these events result in changes to the state of

some group. The essential difference from the GOP state is that some of the servers whose

events are received may not be synchronized with the executing server and so their events

can not be directly applied to the state, but must rather be ’tentatively’ applied and will only

take full effect after the state synchronization occurs in GGATHER state.

The receipt of asdeliver event for a JOIN message in GTRANS state causes the

joining member to be added to the group, just like in GOP state. However, the view id and

status of the joining member differs depending on which server the join originated from and

the current view id index field of the group. The details of handling a JOIN message are

shown in Figure 6.20. Since a transitional signal event has occured the join may originate

from a server who is in the TMemb set of this server or it may originate at a server who is

not in the TMemb set.

If the originating server is not in the TMemb set, then the new member is considered

to be a PARTITIONED member because the two servers are not necessarily synchronized.

Since the group now has some partitioned members the index field is made negative, if it is

not already, and the delivered view has a transitional set consisting of only those members

who are in ESTABLISHED state. This will clearly not include the new joining member as it

was joined in PARTITIONED state. Atranssig event is immediately generated as even

though a new view was delivered with the joining member. More membership changes will

immediately follow because thesview event has not occured yet. Thesview will require

the state to be synchronized and a new view delivered in the GGATHER state.

If the originating server is in the TMemb set, and if no previous view change has marked

the group as inconsistent (the index is greater then 0), the index can be incremented and a

view delivered to the group just like in GOP state. However, if the index is negative, this

group has some PARTITIONED members and so the view with the joining member can

be delivered only with the transitional set consisting of only ESTABLISHED members of

the group. Atranssig event must be immediately delivered to indicate that messages
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delivered after this are only guaranteed with respect to the transitional set and not the com-

pete membership set. A later view will be delivered when thesview event occurs just like

when the originating server is not in the TMemb set.

Figure 6.21 shows how the LEAVE and KILL messages are handled similarly to GOP

state with one exception. When the member is removed from the group aview event is sent

to the group and the view id is increased only if the index field is positive. If the index field

is negative, this group has PARTITIONED members and it’s current membership set will

be constructed by the GROUPS message exchange in GGATHER. In this case the delivery

of the view showing the departure of the leaving member is unnecessary as the subsequent

view delivered in GGATHER will show the member has left and any events subsequent to

the leave and prior to the newview will not include the member who left. This differs

from the join case because the member who joins legitimately expects to receive events

that occured subsequent to their join, while a leaving member expects nothing subsequent

to their leave.

DATA messages can occur in GTRANS state and will be delivered as normal to the

current set of group members. These messagaes may be subsequent to atranssig event

or not, depending on whether or not the group they are sent to has any PARTITIONED

members. In either case, all data messages received from the EVS-S algorithm must be

delivered to all members of the group.

In the GTRANS state, all client initiated events are disabled. This includes thejoin ,

leave , disconnect and send events. These events are disabled because until the

EVS-S membership algorithm has completed no new messages will be initiated by any of

the servers.

Finally, thesview event handling is shown in Figure 6.22. The set of servers in the

new sview is stored in the RMemb field and the view id of thesview is stored in the

RMemb id field. This will be used to construct the new view id delivered in theview

event.
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GTRANS State

1 switch (event)
2 sdeliver (s, JOIN) :
3 if join.group 6∈ G then
4 g.name ⇐ join.group
5 g.members ⇐ NIL

6 g.local ⇐ NIL

7 g.grpid.membid ⇐ Memb id
8 g.grpid.index ⇐ −1
9 G ⇐ G ∪ g

10 else
11 g ∈ G | g.name = join.group
12 m.name ⇐ join.sender
13 m.server ⇐ CLIENT2SERVER(join.sender)
14 m.status ⇐ NEW
15 g.members ⇐ g.members ∪ m
16 if join.sender ∈ LC then
17 g.local ⇐ g.local ∪ m
18 if m.server ∈ TMemb then
19 if g.grpid.index ≥ 0 then
20 g.grpid.index ⇐ g.grpid.index + 1
21 if |g.local| > 0 then
22 view (g.local −m,Self, g.name, g.grpid, g.members, g.members−m)
23 if join.sender ∈ LC then
24 view (join.sender, Self, g.name, g.grpid, g.members, join.sender)
25 else g.grpid.index ⇐ g.grpid.index− 1
26 if |g.local| > 0 then
27 view (g.local −m,Self, g.name, g.grpid, g.members,
28 {n |n ∈ g.members ∧ n.status = ESTABLISHED})
29 if join.sender ∈ LC then
30 view (join.sender, Self, g.name, g.grpid, g.members, join.sender)
31 transsig (g.local, Self, g.name, g.grpid)
32 m.status ⇐ ESTABLISHED
33 else m.status ⇐ PARTITIONED
34 if g.grpid.index > 0 then
35 g.grpid.index ⇐ −1
36 else g.grpid.index ⇐ g.grpid.index− 1
37 if |g.local| > 0 then
38 view (g.local, Self, g.name, g.grpid, g.members,
39 {n |n ∈ g.members ∧ n.status = ESTABLISHED})
40 transsig (g.local, Self, g.name, g.grpid)

Figure 6.20: Group Membership – GTRANS State
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GTRANS State (Part 2)

1 switch (event)
2 sdeliver (s, GROUPS) :
3 impossible
4 sdeliver (s, LEAVE) :
5 g = leave.group
6 if leave.sender ∈ LC then
7 view (leave.sender, Self, g.name, NIL , NIL , NIL)
8 g.local ⇐ g.local − leave.sender
9 g.members ⇐ g.members− leave.sender

10 if |g.members| = 0 then
11 G ⇐ G− g
12 if g.grpid.index ≥ 0 then
13 g.grpid.index ⇐ g.grpid.index + 1
14 if |g.local| > 0 then
15 view (g.local, Self, g.name, g.grpid, g.members, g.members)
16 sdeliver (s, KILL ) :
17 for eachg in G | kill.sender ∈ g
18 if kill.sender ∈ LC then
19 g.local ⇐ g.local − kill.sender
20 g.members ⇐ g.members− kill.sender
21 if |g.members| = 0 then
22 G ⇐ G− g
23 if g.grpid.index ≥ 0 then
24 g.grpid.index ⇐ g.grpid.index + 1
25 if |g.local| > 0 then
26 view (g.local, Self, g.name, g.grpid, g.members, g.members)
27 sdeliver (s,m — m.type = DATA) :
28 for each c in LC | c ∈ m.group
29 deliver (c, Self, m.group,m)
30 join (c, g) :
31 disabled
32 leave (c, g) :
33 disabled
34 disconnect (c, s) :
35 disabled
36 send (c, s,m) :
37 disabled
38 connect (c, s) :
39 disabled

Figure 6.21: Group Membership – GTRANS State (Part 2)
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The straightforward method of handling allsview events would be to always send

a GROUPS message and switch to GGATHER state to synchronize. However, a more

efficient approach is possible in which synchronization only occurs when required because

two servers have different state. That approach uses the transitional set of thestranssig

and the membership set of thesview events, and the EVS-S Transitional Set properties

that guarantee those members in a server’s transitional set installed the same view in the

same previous view. By the Virtual Synchrony property, they will have seen the same set of

messages in the previous view. Thus, they will have exactly the same state since the group

state is a deterministic function of the received messages. This knowledge of transitional

sets allows aview event to be immediately generanted without any synchronization when

the TMemb set equals the RMemb set.

Specifically, the first half of thesview handler provides the algorithm when this op-

timization is possible. For each group all PARTITIONED members are removed from the

group, any groups that are now empty are removed, and a new view id is constructed with

the RMembid and delivered in aview event whose membership set and transitional set

are equal. In this case the entire group membership algorithm required no additional com-

munication and local computation equal to the costs of searching and removing members

from a local datastructure.

When the transitional set is less than the member set, it is necessary to synchronize the

group state of all of the servers. To initiate this process for all of the groups who have a

negative index, the members who are in the PARTITIONED state are removed from that

group and the view id of the group is changed to be the new RMembid and an index field of

-1. The negative index field indicates that this group had members in PARTITIONED state

and so is changed from the lastview event. The server then sends a GROUPS message as

a SAFE message. The GROUPS message contains all of the groups the server knows about

and all of the current members of those groups. This list of current members is not the same

as the members who were in the group at the time of the lastview event, however. The
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current member list may have changed because of leave or disconnect events or because

members of the group were connected to servers who are not in the TMemb set and so

were marked PARTITIONED. It is true that the current member set will be a subset of the

previous view, because no members will have been added without delivering a newview .

6.4.6 GGATHER State

The GGATHER and GGT states are used to complete the transfer of all of the group state

amoung the new set of servers. These two states are only needed when servers who were

not previously reachable from the executing server become reachable. If servers only fail

then the transitional set TMemb will equal the final membership RMemb and the GTRANS

sview event handler will complete the new view and switch to GOP state. The purpose of

the GGATHER state is to collect all of the GROUPS messages and create the subsequent

view event.

During the GGATHER state the only possible events are receiving a GROUPS message

from another server and experiencing an additional server level membership change where

a newstranssig is delivered. No other messages can occur in this state for two reasons.

First, because the EVS-S algorithm guarantees that it will not accept any client messages

between detecting the failure and delivering thesview event. No data messages will

be initiated until after the EVS-C algorithm gets a chance to handle thesview event.

Secondly, when thesview event is handled, the server stops accepting new client requests

by blocking all connected clients and switching the queue. Messages will be pulled from

to a special queue only used by the EVS-C algorithm.

Because of the atomic nature of the delivery of thestranssig event, the following

data messages, and the newsview event, the server will not have accepted any client

events once the firststranssig event occurs, Therefore, the blocking of new client re-

quests can actually be viewed as beginning when the firststranssig event occurs.

When a GROUPS message is received, as shown in Figure 6.23, the message is checked
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GTRANS State (Part 3)

1 switch (event)
2 stranssig (s, T ) :
3 impossible
4 sview (s, id, D, T ) :
5 RMemb ⇐ D
6 RMemb id ⇐ id
7 if |TMemb| = |RMemb| then
8 for eachg in G
9 if g.grpid.index < 0 then

10 for eachm in g.members
11 if m.status = PARTITIONED then
12 g.members ⇐ g.members−m
13 if |g.members| = 0 then
14 G ⇐ G− g
15 else g.grpid.membid ⇐ RMemb id
16 g.grpid.index ⇐ 1
17 if |g.local| > 0 then
18 view (g.local, Self, g.name, g.grpid, g.members, g.members)
19 Gstate ⇐ GOP
20 else
21 for eachg in G
22 if g.grpid.index < 0 then
23 for eachm in g.members
24 if m.status = PARTITIONED then
25 g.members ⇐ g.members−m
26 if |g.members| = 0 then
27 G ⇐ G− g
28 else g.grpid.membid ⇐ RMemb id
29 g.grpid.index ⇐ −1
30 Blocknewclientrequests!
31 UseGroupsdownqueue!
32 ssend (c, s, GROUPS)
33 Gstate ⇐ GGATHER

Figure 6.22: Group Membership – GTRANS State (Part 3)
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GGATHER State

1 switch (event)
2 sdeliver (s, JOIN) :
3 impossible
4 sdeliver (s, LEAVE) :
5 impossible
6 sdeliver (s, KILL ) :
7 impossible
8 sdeliver (s, DATA) :
9 impossible

10 sdeliver (s, GROUPS) :
11 if groups.membid 6= RMemb id then
12 ignore
13 Gathered ⇐ Gathered ∪ groups
14 if |Gathered| = |RMemb| then
15 Set normal downqueue!
16 Enable client events!
17 COMPUTENOTIFY()
18 Gstate ⇐ GOP
19

Figure 6.23: Group Membership – GGATHER State

to make sure it was generated by the current algorithm instance, because cascaded EVS-S

view changes could cause several versions of GROUPS messages to be delivered to each

server. If the GROUPS messsage is valid, it is added to the Gathered set. When all of

the required GROUPS messages have been received, one from every server in the new

sview , the message queues are switched back because all of the special EVS-C algorithm

messages are complete. The ComputeNotify function is called which merges all of the

GROUPS messages state information and constructs the new membership state for every

group in the system. In this function thetranssig andview events are generated.

The details of the ComputeNotify function can be seen in Figure 6.24. Essentially,

during ComputeNotify each group, that at least one GROUPS message has any information

about, is created, if it does not already exist, and the membership sets reported by all of the

servers are merged. The transitional set of the new view is set to the membership sets of

those servers who had the same previous view id for the particular group as the executing
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ComputeNotify()

1 for eachg[] in Gathered | ∀i, g[i].name = SMALLEST NAME(Gathered)
2 ts ⇐ NIL

3 if g[0].name 6∈ G then
4 og.name ⇐ g[0].name
5 og.grpid ⇐ g[0].grpid
6 og.members ⇐ NIL

7 og.local ⇐ NIL

8 else og ⇐ {og ∈ G | og.name = g[0].name}
9 og.members ⇐ NIL

10 for i = 0; i < |g[]|; i ⇐ i + 1
11 if og.grpid = g[i].grpid then
12 ts ⇐ ts ∪ g[i].members
13 else changed ⇐ 1
14 og.members ⇐ og.members ∪ g[i].members
15 if og.grpid.index = −1 then
16 changed ⇐ 1
17 if changed then
18 og.grpid.membid ⇐ RMemb id
19 og.grpid.index ⇐ 1
20 if |og.local| > 0 then
21 view (og.local, Self, og.name, og.grpid, og.members, ts)
22 Gathered ⇐ NIL

Figure 6.24: Group Membership – ComputeNotify function

server. The view id of the new group view is set to the view id reported by thesview event

together with an index value of 1. The initial index of 1 for the view id establishes the new

series of views within an EVS-S view, which changes the view id but does not change the

index field of the complete view id.

When cascaded membership changes occur astranssig event will be received in

the GGATHER state. This is shown in Figure 6.25. Here any group member’s connected

server that is not in the transitional set of thestranssig event will be removed from the

local group state. The group they were removed from will have its index set to−1. This

marks the group as having changed because of servers who left the current configuration.

Because this is a cascaded change, not the firststranssig event, the state then switches

to GGT instead of GTRANS because none of the special cases handled in GTRANS apply.
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GGATHER State (Part 2)

1 switch (event)
2 stranssig (s, T ) :
3 TMemb ⇐ T
4 for eachg in G
5 group changed ⇐ FALSE

6 for eachm in g.members
7 if m.server /∈ TMemb then
8 g.members ⇐ g.members−m
9 group changed ⇐ TRUE

10 if |g.members| = 0 then
11 G ⇐ G− g
12 else if group changed then
13 if index ≥ 0 then
14 transsig (g.local, Self, g.name, g.grpid)g.grpid.index ⇐ −1
15 Gstate ⇐ GGT
16 sview (s, id, D, T ) :
17 impossible
18 join (c, g) :
19 disabled
20 leave (c, g) :
21 disabled
22 disconnect (c, s) :
23 disabled
24 send (c, s,m) :
25 disabled
26 connect (c, s) :
27 disabled

Figure 6.25: Group Membership – GGATHER State (Part 2)
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6.4.7 GGT State

The GGT state is the most straightforward of the states because only two events can occur:

thesdeliver of a GROUPS message, or receipt of ansview event.

As presented in Figure 6.27, if ansview event occurs then the current set of received

GROUPS messages is flushed. They are no longer useful because the current set of servers

will have to resynchronize not some past set. Then a new GROUPS message is sent and

the state switches to GGATHER. This essentially restarts the synchronization process at all

of the servers who are in the new membership. Since the necessary GROUPS messages

were not received prior to the newsview event, by the Same View Delivery property of

the EVS-S algorithm if the server receives them later, no other server will have received

those missing GROUPS messages prior to thesview event. The missing messages would

have been delivered in different views. If a server does not receive the GROUPS message

but some other server does, then they must be in a different network component and will

not be part of the new view, so it is acceptable that they installed the other view.

The interesting case is shown in Figure 6.26 when the required GROUPS messages

are received in the GGT state, then just as if they had been received in GGATHER. A

new view is computed and delivered by the ComputeNotify function. The difference is

that in addition to switching to GOP state, a newstranssig event is generated, just

as if a new membership change was occuring from the EVS-S algorithm. The generated

stranssig event includes the TMemb set that was delivered in the most recent ’real’

stranssig received. This handles the case where all of the required GROUPS messages

were received, but some were delivered after the transitional signal. Therefore, this server

must deliver the view because some other server may have received the GROUPS messages

prior to the transitional signal and also delivered the view.
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GGT State

1 switch (event)
2 sdeliver (s, JOIN) :
3 impossible
4 sdeliver (s, LEAVE) :
5 impossible
6 sdeliver (s, KILL ) :
7 impossible
8 sdeliver (s, DATA) :
9 impossible

10 sdeliver (s, GROUPS) :
11 if groups.membid 6= RMemb id then
12 ignore
13 Gathered ⇐ Gathered ∪ groups
14 if |Gathered| = |RMemb| then
15 Set normal downqueue!
16 Enable client events!
17 COMPUTENOTIFY()
18 Gstate ⇐ GOP
19 stranssig (s, TMemb)

Figure 6.26: Group Membership – GGT State

GGT State (Part 2)

1 switch (event)
2 stranssig (s, T ) :
3 impossible
4 sview (s, id, D, T ) :
5 RMemb ⇐ D
6 RMemb id ⇐ id
7 Gathered ⇐ NIL

8 ssend (c, s, GROUPS)
9 Gstate ⇐ GGATHER

10 join (c, g) :
11 disabled
12 leave (c, g) :
13 disabled
14 disconnect (c, s) :
15 disabled
16 send (c, s,m) :
17 disabled
18 connect (c, s) :
19 disabled

Figure 6.27: Group Membership – GGT State (Part 2)
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6.5 Proof of Group Membership

The group membership algorithm runs on top of the server-based membership algorithm

which provides EVS semantics. Thus, the entire group membership algorithm can assume

that all of the EVS properties specified in the EVS-S automaton are provided.

The structure of a view id must be defined. This structure is not necessarily visable to

applications, as they are given a function which compares view id’s for the application. The

structure and the rule for comparing ids is important for the Local Monotonicity property

because the view ids are not a simple number and the way they are compared is non-trivial.

DEFINITION 6.1 (VIEW ID C OMPARISON RULE )
The following rule is used to compare id’s gid1 and gid2:
If the gid1.membid > gid2.membid thengid1 > gid2. If gid1.membid = gid2.membid,
then two cases exist: Ifgid1.index > 0 andgid2.index < 0 (i.e. one is positive and one
is negative) thengid2 > gid1 (i.e. negative index values are greater then positive index
values). Finally if gid1.index and gid2.index have the same sign (both positive or both
negative), and if|gid1.index| > |gid2.index| thengid1 > gid2 (i.e. whichever one has
the larger absolute value is the greater gid).

One aspect of the group membership algorithm that simplifies it is that the algorithm

never changes the order of messages. All messages are delivered to the application in the

same order they were provided by the EVS-S layer. The Group membership algorithm

does have to block new messages from being sent for a period of time but it always delivers

actual user data messages immediately and does not buffer them.

L EMMA 6.9 (IDENTICAL ORDER)
All messages are delivered by the group membership algorithm in the same order they are
were delivered by the server membership algorithm.

PROOF: In the algorithm, the only two places wheredeliver events occur for data mes-

sages are on GOP and GTRANS. At those times, data messages are delivered immediately

to all of the members of the groups. Nowhere does the algorithm buffer data messages or

reorder them. 2
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The index field of the view id follows a fairly complex set of rules. Therefore several

properties of the index are isolated in the following lemmas.

L EMMA 6.10 (POSITIVE I NDEX IN GOP)
The index field of a grpid is always≥ 0 whenGState = GOP .

PROOF: Two transitions to GOP state exist: The first, at the end of handling a GROUPS

message in GGATHER or GGT state and, the second, when asview event is received

that does not include any new members. In the first case, the ComputeNotify function is

called. ComputeNotify always sets the index to 1 if it was negative prior to delivering the

new view event, so all groups will haveindex ≥ 0 when shifted to GOP state. In the

second case, every group that has a negative index value is either removed entirely if all of

its members have partitioned away, or has its index value set to 1. So again in GOP state

the index will always be positive. 2

L EMMA 6.11 (CHANGING NEGATIVE TO POSITIVE I NDEX)
The only time a negative index value on a group view id can be changed to a postive index
is immediately prior to switching to GOP state.

PROOF: The only locations where the index is assigned a postive value are in ComputeNo-

tify and in the GTRANS handler forsview events. In all other locations an index is

incremented only if it is already positive. Therefore, these are the only locations where an

index can change from negative to positive. In both places the ComputeNotify function is

called and after it completes the state is switched to GOP. In the GTRANS statesview

handler, after delivering all of the views the state is switched to GOP. 2

L EMMA 6.12 (GROUP INDEX FIELD IS EITHER -1 OR POSITIVE IN GROUPS)
Every group in a GROUPS message has an index field of either -1 or a positive value if the
group is synchronized.

PROOF: GROUPS messages are generated in two places. In GTRANS when asview

event is received and in GGT when asview event is received. In GTRANS, the algorithm
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shows that every group that has a negative index value is assigned an index of -1 before

the GROUPS message is sent. In the other case the index value is not changed when a

GROUPS is generated in GGT. However, for several reasons the index field will still be -1

or a positive value when a GROUPS is sent in GGT. First, the only way the algorithm can

enter GGT state is after entering GGATHER and the only way it can enter GGATHER is

through thesview handler of GTRANS which sets the index to -1. Second, no part of the

algorithm in GGATHER or GGT sets the index to anything besides -1 or a positive number

. 2

The state of a member of a group can be one of three states: NEW, ESTABLISHED,

or PARTITIONED. The NEW state is only used during the execution of a JOIN mes-

sage handler and separates the joining member from all of the existing members. The ES-

TABLISHED state represents the normal state of a member that is currently in the group.

The only way to leave the ESTABLISHED state is to leave the group or become PAR-

TITIONED. The PARTITIONED state represents a group member who is connected to a

server who is not synchronized with the local server. Therefore, PARTITIONED is a rela-

tive state from the point of view of the server’s local datastructures. Since servers may be

in different components, or may have different transitional sets, it is expected that a group

member will be in ESTABLISHED state at one server and in PARTITIONED state at an-

other server. The following lemmas establish some of the basic invarients of the member

state field.

L EMMA 6.13 (ESTABLISHED REQUIRES PREVIOUS V IEW M EMBERSHIP )
Every member of a group whose status is ESTABLISHED, was a member of the previous
view for that group.

PROOF: The only places where a group member is set to ESTABLISHED status is when

they join the group in thesdeliver (s, JOIN) event of either the GOP or GTRANS state.

When the member is set to ESTABLISHED state they have already been part of the group

membership of the view that showed them joining. Thus, they are in the previous view for
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the group. 2

L EMMA 6.14 (STATUS IS ESTABLISHED OR PARTITIONED)
Every group member has a status of ESTABLISHED or PARTITIONED both before starting
an event handler, and after completing an event hander.

PROOF: The only time any member has a status besides ESTABLISHED or PARTITIONED

is when the member first joins the group during which they have a status of NEW. The only

two places this occurs is thesdeliver (s, JOIN) event handler for GOP or GTRANS. At

the end of the event handler the member is set to ESTABLISHED state. 2

L EMMA 6.15 (GROUPSMEMBERS ESTABLISHED)
All members sent in a GROUPS message will be marked ESTABLISHED.

PROOF: Immediately before sending a GROUPS message, the algorithm loops over every

group and removes all members whose status is PARTITIONED. By Lemma 6.14 the only

state members can be in prior to starting an event is PARTITIONED and ESTABLISHED.

2

L EMMA 6.16 (TRANSSIG IMPLIES VIEW EVENT PRIOR TO GOP)
If a transsig event was delivered for group g, then a subsequent view event will be delivered
for group g prior to the server reentering GOP state.

PROOF: The server can reenter GOP state in only two places: First, when ansview event

is received in GTRANS state and TMemb equals RMemb. Second, in GGATHER or GGT

state after ComputeNotify is called. In the first case, as seen in Figure 6.22, for every

group with negative index if the group has any members aview is delivered to all the

local members. When atranssig event is delivered, either in GOP or GTRANS, the

index field is always made negative, either by assignment to -1 or by decrementing a value

that is already negative. Therefore, as seen in Lemma 6.11 the index will still be negative

because the only places it can become positive are the two cases we discus in this proof.

If a transsig event occurs, the index of the group will become negative and will stay

146



negative until thesview handler in GTRANS both deliveres aview event and makes the

index positive.

In the second case, the ComputeNotify function shown in Figure 6.24, a view will be

delivered for every group that either has an index field of -1, or that is the result of merging

two separate previous views of the same group (ifg[i].grpid is different fromog.grpid).

By Lemma 6.12 the index field received in a GROUPS message will be -1 or positive, and

by Lemma 6.11 if it was negative previously as a result of atranssig event, it must still

be negative (-1 actually) because the code that can set it positive has not been executed yet

since the server has not reentered GOP state. 2

THEOREM 6.15 (INITIAL V IEW EVENT )
In all traces of the EVS-C automaton, every deliver and transsig event occurs in some view.

PROOF: A deliver event is only generated when the process who receives it is a member

of the group at the server it is connected to. The only ways a server adds a process to a

group is upon receiving asdeliver event for a JOIN message. When handling a JOIN

message the member is added to the group and a view message is sent to the process prior

to any other event being handled.

When merging a group upon receiving asview event, the set of group members is

made up of all previous group members in any of the components. These members were

already group members and so had already received a view event for that group.

Before a member joins a group notranssig event is generated for that user because

they are not in the local member list for the group. 2

THEOREM 6.16 (SELF I NCLUSION )
All view events include Self in the set of members.

PROOF: A view event is only delivered to a process who is a member of the group because

the algorithm verifies that membership before delivering the event. 2
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THEOREM 6.17 (LOCAL M ONOTONICITY )
If process p installs a view with identifier id’ after installing a view with identifier id, then
id’ is greater then id.

PROOF: The identifier is created by combining thesview identifier, called grpip.membid,

with an index field represented by grpid.index in the algorithm. The index field is a signed

integer which varies between−∞ and+∞.

Definition 6.1 specifies how viewids are ordered. One must prove that the algorithm

always delivers views with viewid’s that increase according to that order.

The algorithm provides the monotonicity property by guaranteeing that whenever the

grpid is changed the change always proceeds in the following steps (possibly skiping steps):

Set membid = RMembid provided by EVS-S, set index to 1; Increase index by one; Set

membid = RMembid provided by EVS-S, set index to -1; Set index to -1; Decrease index

by one. After reaching a negative index the only way the index becomes positive again is

when the membid field is reset to a new and higher value, because EVS-S provides Local

Monotonicity. Within a series of views during which no sview events are received, the only

change to grpid is to the index value and that value can only increase or be set to -1 if

positive and can only decrease if negative.

At every view, either the membid field or the index field or both are changed. In the

algorithm, everyview event is preceeded by one of these types of changes. 2

THEOREM 6.18 (TRANSITIONAL SET)
(a). The transitional set for the first view installed at a process following a join event

consists of just the process itself.

(b). If a process p installs a view v’ in a previous view v, then the transitional set for v’ at
p is a subset of the intersection ofMv andMv′.

(c). If processes p and q install the same view, then q is included in p’s transitional set
for that view if and only if p’s previous view was identical to q’s previous view.

(d). If processes p and q install the same view v’ in the same previous view v, then they
have the same transitional sets in v’.

PROOF:
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Property a When a view is created because of a process executing ajoin event, the

algorithm always delivers a special view to only the process who joined. That special view

always sets the transitional set to be the joining process.

Property b With respect to the transitional set, all of theview events in the algorithm

can be classified as one of five types:

1. Self-Leave: The self leave view delivered to a member who leaves a group is a

NILview which is a subset of any set.

2. Leave or Kill: The transitional set delivered to the group in both of these cases is

the same as the current membership. The current membership always consists of the

previous membership minus the leaving member. Therefore, the current membership

is a subset of the intersection of the previous view and current view.

3. Single Joiner: When a member joins a group, the first view they receive contains

a transitional set of only themselves. Since this is the first view, no previous view

exists. Thus, the precondition is false.

4. Members Joined to: When a single member joins a group the other members receive

a view with a transitional set of all of the members of the current group who are in

the ESTABLISHED state. By Lemma 6.13 every member who is in ESTABLISHED

state was a member of the previous view. As a result the set of current members who

are also in ESTABLISHED state must also be members of the previous view, and so

are in the intersection of the previous and current view.

5. View generated in ComputeNotify: This view message represents the results of the

group state exchange protocol. The transitional set is constructed of all group mem-

berships sent by daemons who had the same previous view id. This is clearly a subset

of the current membership. It is also a subset of the previous membership because the
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members sent in the groups message will only be those members who had ESTAB-

LISHED state when the groups message was sent (from the algorithm all members

with PARTITIONED status will be removed from the group prior to sending the

groups message, and from Lemma 6.14 every member is either in ESTABLISHED

or PARTITIONED state when thesview event is handled, and thesview event

handler does not set any member to any state).

So in all cases the transitional set is in the intersection of the previous and current views.

Property c In the case of a join, leave, or disconnect event the only way p and q can install

the same view in the same previous view is if neither is the joining or leaving member. In

that case the transitional set delivered at both of them will be the one of

1. the current member set in the case of a leave or disconnect, which will include all

members except the one who left, so it will certainly include q.

2. the current member set except for the joining member in the case of a join. This set

clearly contains all members of the group including q as q is not the joining member

by assumption.

3. the current members who are of ESTABLISHED state. In this case by Lemma 6.13

all of the ESTABLISHED members were in the previous view

When ansview event occurs there are two possible ways the new view is generated.

First, if TMemb = RMemb, the only change to the EVS-S membership was servers leaving,

no new servers merged. Second, servers both merged and partitioned so a GROUPS mes-

sage will be sent and the GGATHER state will be entered. In either case, if ajoin event

occurs prior to thesview event the new view and transitional set will be determined as

discussed above. If a leave or disconnect event occurs the member is removed but no new

view is delivered. Since the member is removed it will not be sent as part of the GROUPS
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message as discussed below and so will not be in the new membership or new transitional

set.

If TMemb = RMemb, then the new set of servers will be a subset of the previous set, so

once the partitioned members are removed from the members set the transitional set will

equal the member set and so any q will be in the transitional set.

In the second case, where servers merged as well as partitioned, the transitional set

is computed by each server as the union of all of the member sets sent in a GROUPS

message with the same previous view id. In this case, by Lemma 6.15 all of the members

sent in a GROUP message were of the ESTABLISHED state at the sender. Therefore, the

transitional set made up of the member lists whose previous view has the same view as our

previous view will be the set of established members of our previous view. Since the only

servers who will have a member set with the same previous view id is one who was actually

with us previously, because if they did not then that would violate Theorem 6.3, this set of

members will include everyone who is being installed in the current view and was also in

the previous one.

Property d If processes p and q install the same view v’ in the same previous view v,

then they have the same transitional sets in v’

This consists of showing that no ’extra’ processes are included in the transitional sets.

The potential ’extra’ processes are those who are not required by Property 3. These extra

processes are not possible because in the algorithm only those processes who were in ES-

TABLISHED state and so were members of a previous view, are included. Servers who

install the same view in the same previous view by the Virtual Synchrony property of EVS-

S will see the same set of messages so the joins and leaves will be the same. Thus, the

transitional sets will be the same. 2

THEOREM 6.19 (NO DUPLICATION )
A process never delivers a message more then once.
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PROOF: The group membership algorithm never creates new data messages, only JOIN,

LEAVE, and KILL messages which are never delivered to an application. The data mes-

sages are delivered as soon as thesdeliver event occurs in any state. Therefore, no

duplicates are delivered because of the EVS-S No Duplication property. 2

THEOREM 6.20 (DELIVERY I NTEGRITY )
A deliver event in a view is the result of a preceding send event.

PROOF: The onlydeliver events are generated for messages for which ansdeliver

event occured with the message tagged DATA. In no other cases will messages be delivered

to the application. The only messages tagged as DATA messages are thosessend in

response to asend event. Since EVS-S also guarantees that everysdeliver event is the

result of a preceedingssend event, everydeliver event is the result of a preceeding

send event. 2

THEOREM 6.21 (SELF DELIVERY )
If a process p sends a message m, and p is a member of g and does not leave group g, then
m is delivered to p unless p crashes.

PROOF: Since m will generate assend event, we are guaranteed by the EVS-S Self De-

livery property that the server will receive asdeliver event for a DATA message with

contents m unless the server crashes. When thesdeliver event occurs, the message m

will be delivered to every local client who is a member of the group g. Since p is a member

of group g prior to sending and does not leave the group, p will still be a member of the

group as the algorithm executing at server s only removes someone connected to itself from

a group in response to aleave or disconnect event, never as a result of asview or

stransig event. In this case noleave or disconnect event occurs, so the message

will be delivered to p at the time it issdelivered . 2
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THEOREM 6.22 (SANE V IEW DELIVERY )
(a). A message m withm.type ∈ {A, S} is not delivered in a view earlier than the one in

which it was sent.

(b). If a process p sends a message m, crashes and later recovers in a view v and a process
q delivers m, then m is delivered in a view before v.

PROOF:

Property a If a message m is sent in view v with id,sdeliver (s, m) occurs with vid(m)

= id’, for a proof by contradiction assume that id’ ¡ id.

Then the view with identifier id’ can either be the result of a singlejoin , leave or

disconnect event, or it can be the result of ansview event.

In the first case, since id’ ¡ id, the agreed message m’ that is sent in response to the

join , leave , or disconnect event must have beensdelivered prior to whatever

triggered view v (an agreed message m” orsview event). Soord(m) > ord(m′′) because

ord is consistent with causality and m was sent in v, which was triggered by m”;ord(m′′) >

ord(m′) because id ¿ id’. Since the vid(m) = id’ and the view id’ was generated by message

m’, no other message that generates a view could have been ordered between m’ and m,

because then the vid(m) != id’. So, specifically, the view v generated by message m” must

either have been prior to m’ which contradicts the assumption that id’ ¡ id, or v must be

ordered after m is delivered which impliesord(m′′) > ord(m) which contradicts the above

statement thatord(m) > ord(m′′). The only other case is where view v was generated by

ansview event, but that contradicts the Sane View Deliver for EVS-S.

In the second case where ansview event was the cause, id’ ¡ id contradicts Sane View

Delivery for EVS-S as the message m would be delivered in ansview prior to thesview

in which it was sent. Soid′ ≥ id.

Property b Assume m is the last message the server receives from p before detecting the

crash. Since the goal is to prove that the message is delivered prior to an event, any earlier

message will also be delivereed before v if m is delivered. Upon receiving adisconnect
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event, the server will generate a KILL message and send it to all of the servers as an

Agreed order message. By Theorem 6.12 after an Agreed message, such as the KILL is

deliverd, no message with a lower ord value (such as m) will be delivered. Therefore, if m

is delivered at some process q, then m is delivered prior to the KILL message. When the

serversdelivers the KILL message a new view v’ will be generated

Thedisconnect event is guaranteed to be prior to anyjoin event p initiates sub-

sequent to recovering from its crash because prior to thedisconnect being processed at

s (the server p was connected to previously and to whom it is reconnecting) theconnect

event of p will be rejected as a duplicate client. So s must have processed thedisconnect

event and the view in which p will reconnect will be higher then the view generated by the

disconnect of p. 2

THEOREM 6.23 (FIFO MESSAGES)
If a process sends a FIFO message after sending a previous message then all processes
who deliver both messages deliver them in the order in which they were sent.

PROOF: This is a direct result of Lemma 6.9. 2

THEOREM 6.24 (CAUSAL M ESSAGES)
If a process sends a causal message m’ such that the send of another message m causally
precedes the send of m’, then any process that delivers both messages delivers m before m’.

PROOF: This is a direct result of Lemma 6.9. 2

THEOREM 6.25 (AGREED M ESSAGES)
(a). Agreed messages are Causal messages.

(b). If a process p delivers an agreed message m, then after that event it will never deliver
a message that has a lower ord value.

(c). If a process p delivers an agreed message m’ before a transsig event in its current
view, then p delivers every message with a lower ord value than m’ delivered in that
view by any process.
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(d). If a process p delivers an agreed message m’ after a transsig event in its current view,
then p delivers every message with a lower ord value then m’ sent by any process in
p’s next transitional set that were delivered in the same view as m’.

PROOF: Theorem 6.25(b) results directly from Lemma 6.9.

Part b of Theorem 6.25 is a consequence of the same Agreed Message property of the

EVS-S specification and the fact that atranssig event is delivered immediately to any

group who is effected by astranssig event. Therefore, any message delivered prior to

thestranssig event will also be delivered to this algorithm and this algorithm delivers

every data message it receives immediately.

To prove part c of Theorem 6.25 one observes that the transistional set of of a group

never contains any member who was not connected to a server in the TMemb delivered in

thestranssig event. By the Agreed Messages property of EVS-S, the server will receive

all of the messages sent by someone in the TMemb, and thus, someone in the transitional

set of the group. 2

THEOREM 6.26 (SAFE M ESSAGES)
(a). Safe messages are agreed messages.

(b). If a process p delivers a safe message m before a transsig event in its current view v,
then every member of that view delivers m, unless that member crashes in v.

(c). If a process p delivers a safe message m after a transsig event in its current view
v, then every member of p’s transitional set from p’s next view delivers m, unless a
member crashes in v.

PROOF: Both of these properties are a consequence of the Safe Message property of EVS-S

and the fact that once astranssig event has occured, this algorithm never delivers any

messages that are not subsequent to atranssig event for any group that experiences

changes. As shown in the handling a JOIN message, when aview event is delivered, a

transsig event is immediately generated following it. Therefore, any subsequent mes-

sages will be delivered after atranssig event.
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The algorithm never drops messages, fails to deliver them or reorders them. As a result

the safe message will be delivered to everyone in the group at the time it arrives, including

the same set of join, leave, or disconnect group changes because they are agreed messages.

2

THEOREM 6.27 (TRANSITIONAL SIGNALS )
(a). At most one transsig event occurs at a process during a view.

(b). If two processes p and q are virtually synchronous in a view v, and p has a transsig
event occur in v, then q also has a transsig event occur in v, and they both deliver the
same sets of agreed messages before and after their transsig events in v.

PROOF: The proof of Theorem 6.27(a) requires that once atranssig event is delivered,

no othertranssig event will be delivered until aview event is delivered to that process.

A transsig event can be generated in two places in the algorithm. First, in GOP state

when astranssig event is received. Second, in GTRANS state when a JOIN message

is received. In the join case, aview is delivered for the group immediately before gener-

ating thetranssig event so there is no possibility that the deliveredtranssig is the

second one in a view. Therefore, the only way a secondtranssig event is delivered to a

group prior to aview is if the server twice receives astranssig event in GOP state, or

receives astranssig event in GOP subsequent to a JOIN message in GTRANS without

an interveningview event.

Both cases are impossible because of Lemma 6.16 because the server leaves GOP state

immediately after delivering thetranssig event or because the server was not in GOP

state in the case of the JOIN, so it must deliver aview event for the group prior to enter

GOP state.

The second part of Theorem 6.27 requires that every two processes that are virtually

synchronous both deliver the transitional signal in the same view and deliver the same sets

of agreed messages prior and subsequent to the transitional signal.

By the Virtual Synchrony property of groups, both processes will deliver the same set
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of messages in the previous view.

The transitional signal can be delivered because of two different causes: first, as a result

of a stranssig event, and second, as a result of a JOIN message in GTRANS state. In

either case, since both processes install the same, next view by the EVS-S properties they

will both deliver atranssig event and they will have seen the same set of messages prior

to receiving thestransig or JOIN message. Therefore, they will deliver the same set

of messages prior to thetranssig . After the transsig they will be in each other’s

transitional set as shown in Theorem 6.18. They must have been in each others TMemb set

since otherwise they would have been removed each other during thestranssig event

handling. Theview event would not have them in each others transitional set. 2
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Chapter 7

Conclusion

This thesis presented an architecture, algorithms, and a complete implementation of a high-

performance, wide-area group communication system. The goal of this work was to de-

velop the necessary network protocols and distributed algorithms to provide practical and

usable group services on wide-area networks.

Presented in this thesis is an innovative architecture for building scalable group-oriented

services including a hierarchical network model that minimizes costs on the wide-area

networks. It also includes the developement of an overlay network approach to constructing

a group-communication system and efficient, customized network protocols to create the

overlay network and disseminate messages efficiently.

These services are useful to a wide range of applications, not only traditional fault-

tolerant applications, but also collaboration, cluster management, message-oriented mid-

dleware, and distributed application servers. The set of services provided include light-

weight messaging such as unordered reliable and FIFO reliable messages as well as strongly

ordered messages such as agreed order or safe delivery that simplify the development of

fault-tolerant applications.

The predominant characteristic of modern distributed systems is change. Whether the

change is the evolution of the software infrastructure, or changing scalability requirements,
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or a changing network environment, a distributed system must successfully adapt to change.

The Spread wide-area group communication toolkit helps distributed applications adapt to

changes both in the network and in the available resources.
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