
An Open-Source Event-Based SCADA
System for the Power Grid

Trevor Aron

A project report submitted to the Johns Hopkins University in
conformity with the requirements for the degree of Master of

Science in Engineering

Advisors: Dr. Yair Amir, Thomas Tantillo

May 2017

Acknowledgements

I would like to thank Marco Platania. Marco Platania really introduced me to what SCADA

actually is. We came up with the scenario that I would end up building together after scouring

the internet for youtube videos of HMI demos. Marco was also the first person to realize the

limitations of pvbrowser and split the HMI and Data Acquisition portions, leading to the creation

of the new SCADA architecture I am now presenting.

I would like to thank Tom Tantillo for his contributions and his constant support. He worked

with me tirelessly to get this made. Tom has an amazing ability to get things done, and done well,

no matter how impossible it seems. He has served as one of my main mentors, helping me with

everything from writing posters to drafting emails. I am appreciative for the time we have been

able to chat in the DSN lab.

I must also thank Yair Amir. He was my professor in Intermediate Programming, Distributed

Systems, and Advanced Distributed System. It was he who made me interested in systems. It

was also he who had the vision for intrusion-tolerant SCADA and fortunately invited me to help.

I truly admire his desire to protect the nations infrastructure for the good of society.

I would also like to thank Amy Babay. Amy Babay has helped me in countless ways and

is always there to answer my questions or clue me in as to what is happening. She has made

significant contributions and helped me edit this report .

Additionally, I would like to thank Thiago Alves. He is the creator of OpenPLC, and really

taught me a lot about PLCs themselves and his software, as well as how to program PLCs in

ladder logic.

This work was supported in part through a Pistritto Fellowship Grant.

2

Contents

1 Abstract 4

2 Introduction 5
2.1 Facilitating SCADA Master Replication . 8

2.2 SCADA Scalability . 8

2.3 SCADA Security Concerns . 9

2.4 Adoption . 10

3 Event-Based Architecture 11
3.1 Overview . 11

3.2 pvbrowser HMI . 12

3.3 SCADA Master . 13

3.4 PLC/RTU Proxy . 14

3.5 OpenPLC . 16

4 Case Study: Power Distribution Scenario 17
4.1 Overview . 17

4.2 HMI . 17

4.3 SCADA Master . 18

4.4 RTU/PLC Proxy . 19

4.5 PLC Emulation . 20

5 Conclusion 22

3

Abstract

We present the design and construction of an open-source event-based SCADA system. There

are four main motivations for this work: making it easier to replicate the SCADA Master, making

the system more scalable, increasing security, and facilitating adoption through open-source.

A key component of our architecture is the use of a PLC/RTU proxy that facilitates scalability

and increases the security, while maintaining backward compatibility with existing SCADA

equipment. Our system architecture and software components are used as part of the Spire

intrusion-tolerant SCADA system for the power grid [1].

4

Introduction

SCADA stands for Supervisory Control and Data Acquisition. SCADA systems are used to

monitor and control physical devices in critical infrastructure applications. Such applications

include railways, electrical grids, power generation, waste management, water supply, and facto-

ries [2].

Figure 2.1: Architecture of a SCADA System

SCADA systems vary depending on the specific application being monitored and controlled.

These differences can influence the topology of the network and the protocols being used to

communicate between the SCADA Master and PLC [3]. SCADA devices and equipment are also

mainly vendor locked, which means the specific protocols and components change from system

5

to system. However, SCADA systems generally share the basic architecture described in Figure

2.1. This shows the three main portions of any SCADA system: the Human Machine Interface

(HMI), the SCADA Master, and the Programmable Logic Controller (PLC) or Remote Terminal

Unit (RTU).

The Human Machine Interface is a program that visualizes the data to a human operator and

allows said operator to issue commands that make changes to the system. The visual display of an

HMI are specific to the critical infrastructure system or scenario being monitored and controlled.

Each HMI typically presents a user interface that visually shows a representation of the physical

equipment. For example, an HMI monitoring water levels may have an image of a tank with a

variable amount of water in it. An HMI monitoring a power grid may have dials with voltage

outputs and buttons that correspond to switches.

Programmable Logic Controllers and Remote Terminal Units are the devices that communi-

cate directly with the physical equipment in the field that needs to be monitored and controlled.

RTUs are a little more intelligent than PLCs and are usually outfitted with alternative commu-

nication systems such as radio. They may also perform some small automated control tasks.

They are specifically used by industrial control systems. PLCs are a bit more generic, and most

hobbyist boards (such as Arduino’s) can be considered as a PLC. RTUs and PLCs in SCADA

systems are usually vendor created, closed-source devices. They also communicate with legacy

communication protocols, which have been around since the 1970s and 1980s. The American

Gas Association’s AGA-12 standard states that there are between 150-200 different SCADA

communication protocols [3]. Some popular protocols include Modbus, DNP3, and Siemens S7.

The SCADA Master is the brain of the system. All monitoring and state messages from the

PLCs are collected by the SCADA Master, giving it a global view of the state of the system.

All commands from the HMI first go to the SCADA Master for processing before they are

sent to a PLC. The SCADA Master communicates with the PLCs and RTUs using the SCADA

communication protocol that each RTU or PLC supports. The SCADA Master typically has

automated control and alerting capabilities. SCADA Masters also contain a historian which keeps

an audit trail of operational data [2].

There are two different SCADA protocol architectures. The first is a polling model, and

the second is an event-based model. The polling model consists of the SCADA Master sending

requests for updates to the devices at different polling intervals. Modbus is a polling protocol. An

event-based model consists of the device only sending updates to the SCADA Master whenever

6

there is a change of state. DNP3 is an event-based protocol.

SCADA systems were designed in the earlier days of computing before cyber security was

a real consideration. Traditionally, they have relied on two main factors for security: obscurity

and private networks. Since most SCADA devices are proprietary, there is little information of

how they operate available to the public. Additionally, many SCADA systems were designed to

operate on private networks. However, this is not a real solution: air gaps can be breached, and

obscurity is not a good form of security when the attackers are nation states. Additionally, the air

gaps are going away as using IP networks is cheaper and easier.

Stuxnet is a virus, first identified in 2010, that was discovered to target Siemens SCADA

systems. Specifically, it was aimed at the Siemens SCADA systems that controlled nuclear

enrichment facilities in Iran. The system it attacked was air gapped, but the virus entered via a

USB stick and then spread by copying itself on remote drives and attacking other computers on

the same local area network through a zero day vulnerability. It infected computers that were

used to modify and program PLCs and used this to insert malicious code into a PLC that would

make it function incorrectly [4].

With the onset of Stuxnet, SCADA system security became prominent. The test in [5] shows

the extent of the threat. They set up a honey pot of PLCs connected to the internet. In a month

time frame there were over 39 attacks from 14 different countries. Many PLCs and RTUs are

configured incorrectly or connected to the internet such that employees can access and modify

them from home. One can find PLCs on the internet with a basic search. The website Shodan is a

search engine designed to discover Internet of Things (IOT) devices on the internet. They have an

entire section devoted to finding industrial control equipment by looking for IP connected devices

with common SCADA protocol ports open, which helps illustrate how poor current SCADA

security is [6].

There are four main motivations for building this open-source event-based system. The

first is facilitating replication of the SCADA Master: because current SCADA Masters are very

complex and use polling-based protocols, they do not lend themselves to replication. The second

is scalability: an event-based system pushes less data over the network. The third is security: the

PLC/RTU Proxy component in the event-based SCADA architecture provides a powerful layer of

security that existing RTUs and PLCs lack. The final motivation is facilitating adoption of this

system through open-source. Below we describe each motivation.

7

2.1 Facilitating SCADA Master Replication

Replicating the SCADA Master opens the door for making SCADA systems more available:

a system could be replicated to be fault tolerant, or, by using a byzantine fault tolerant algorithm,

replicated to make the system intrusion tolerant - allowing it to work even if components have

been compromised by an intruder. Specifically, the system presented here was used to make

Spire, an intrusion tolerant SCADA system [1].

In [7], Kirsch et al. describe an intrusion-tolerant prototype based on a Siemens SCADA

product for the power grid. They note that intrusion tolerant replication systems, such as Prime

[8], assume that updates are client driven (event-based), while most SCADA systems process

requests that are server driven (polling). This mismatch caused them to create an intrusion tolerant

timeout protocol. This protocol is used to synchronize the SCADA Masters so that they poll

the devices at the same logical time. Not only is this protocol challenging to implement, it also

negatively impacts the system by increasing overhead.

By making an event-based system, the intrusion tolerant timeout protocol is no longer needed,

as SCADA Masters no longer need to coordinate their polling with each other. This makes

replication of the system much simpler and considerably decreases overhead.

2.2 SCADA Scalability

Besides making it harder to replicate the SCADA Master, one of the issues with the polling

model is that it does not scale. Each device takes a constant amount of bandwidth. This is

expensive. Some devices may transmit a lot of data on each polling interval. There are some

SCADA systems, like smart grids, that are very large. There are an estimated 150,000,000 meters

installed in Europe [9]. If the devices only speak a protocol like Modbus, then there would be a

massive amount of bandwidth used. In addition the historian would have to store much more data.

Event-based models are more efficient because messages are sent only when the device state has

changed.

The need for SCADA scalability has been recognized by others in the field. SAP and Schnei-

der Electric have laid out their vision for the future of SCADA in [10]. They address that it

is impossible to perform polling in large-scale SCADA systems, and suggest the transition to

event-driven architectures in the future. However, they stress that future SCADA systems must

8

stay backward compatible to work with existing devices. The authors of [9] were running a

smart grid monitoring system. In order to scale this monitoring, they created a new protocol and

communication pattern. The drawback with this approach is that it breaks backward compatibility.

The solution we propose includes a device, the PLC/RTU proxy, ideally colocated with RTU

and PLC devices. The RTU proxy speaks multiple SCADA protocols (currently Modbus and

DNP3, but it can be extended to other protocols) and translates this information to a generic IP

format the SCADA Master understands. The Proxy can be designed such that it only pushes

information when there is a change in state. This solution makes all SCADA systems have more

homogenous communication patterns despite the devices that may need to be used.

2.3 SCADA Security Concerns

One of the weakest parts of a SCADA system are the devices. They are difficult to harden:

PLCs may have very limited computational abilities. They also often run on real-time operating

systems which are lighter weight, but provide less security. Thus, many PLCs cannot support

running a firewall [3]. In addition, because they run on real time operating systems, PLCs are

more susceptible to disruption from denial of service attacks.

Beyond the PLC itself, SCADA communication protocols are not secure. Most protocols

typically do not support cryptographic primitives. This is also due to the limited computing

power of the devices. As a result, communication between the SCADA Master and device is

unencrypted and most commands are unauthenticated. For instance, Modbus messages are sent

over the wire completely unencrypted, with no integrity checks, and no authentication. If an

adversary is on the same network as a device that speaks Modbus, the adversary can send the

PLC arbitrary commands and alter contents of messages that the PLC and Master exchange [11].

In addition, because the world of SCADA is vendor locked, many of these protocols have been

programmed from scratch for a particular device. Many of these implementations are not robust

and have bugs. In our own experiments with the ASE Test Set 2000 RTU emulation device, we

found that it had bugs in its implementation of DNP3. These bugs are often an entry way for

intruders.

There have been many efforts to harden PLCs. For instance, the efforts in Fovino et al. pro-

pose a new Modbus protocol that is translated by a middle gateway device into regular Modbus

for backwards compatibility with devices [11]. However, this breaks backwards compatibility

with SCADA Masters. A broader approach has also been to attach machines at both ends, one

9

at the SCADA Master, and the other at the RTU or PLC [3]. This acts as a bump in the wire in

which data is encrypted. To solve the firewall issue, there have also been efforts to place small

devices running firewalls in front of each PLC in a network [3].

The solution that we propose, the RTU/PLC proxy, solves these issues. The RTU Proxy is a

machine that is placed in front of RTUs or PLCs on the network. It translates commands from the

SCADA Master into the specific PLC or RTU communication protocol for the corresponding

device. This proxy runs a firewall for the devices that it speaks to, removing them from direct

access from the wide area network. Since the PLC/RTU proxy is a modern machine, and not a

device board, it can also perform cryptographic operations. Thus, the information it gets from the

SCADA Master has authentication, integrity, and confidentiality. It currently can speak DNP3

and Modbus, the two most popular protocols used for power distribution SCADA systems, but

can easily be extended to speak any SCADA protocols, allowing the system to remain compatible

with any device.

2.4 Adoption

Finally, the motivation to build this system entirely with open-source components is to en-

courage usage and adoption in the SCADA community and help foster an open source SCADA

ecosystem. The efforts of Kirsch et al. in [7] are unfortunately unavailable as Siemens decided

not to release this product. By building an open-source SCADA system, this work can be used as

a base for SCADA security research. The Spire system is able to leverage our work thanks to all

of the components being released as open-source.

In addition, using open-source components enables the system to benefit as different parts are

improved with future research. OpenDNP3 [12] is currently maintained by a group that performs

vulnerability research on SCADA protocols. We use this for our DNP3 implementation, and the

security of our system will be improved from their work. We use OpenPLC [13] to emulate PLCs

in this system. This integration benefits our system as OpenPLC is being designed to be used as

a vehicle for PLC security research, and when the security of OpenPLC improves, so will our

system. In addition OpenPLC supports a wide variety of real PLC boards to deploy on, which

may encourage others to adopt this solution.

10

Event-Based Architecture

3.1 Overview

Figure 3.1: Event-Based Architecture

The architecture of the system is presented in figure 3.1. The arrows describe the di-

rection of message flow, with the labels being the type of messages. The system supports any

configuration of PLC/RTU Proxies as well as PLCs and RTUs. PLC/RTU Proxies are able to

support multiple PLCs of different protocol communication types. This configuration is described

11

in a json config file. Information such as the IP address of the PLCs, the communication protocols

they use, the registers to poll (if Modbus), which PLCs correspond to which PLC/RTU Proxy, and

the ports all the PLCs listening on are all described in this configuration file. The system currently

supports DNP3 and Modbus, but it is extendable to allow easy extension to future protocols. The

cJSON library is used to parse the JSON [14].

The packet types HMI_Command, HMI_Update, RTU_Feedback, and RTU_Data are

used to route different types of messages around the system. The PLC Proxy gets data from its

PLCs or RTUs speaking either Modbus or DNP3, and sends this up to the SCADA Master in an

RTU_Data message whenever there is a change of state. This message is not in any SCADA

protocol, but contains bundled information about the PLCs that the SCADA Master needs in

an IP packet. The SCADA Master processes this message, updates its state, and then sends the

HMI a HMI_Command message that has all the information the HMI needs to visualize the

scenario. The HMI processes this message to present the viewer with the monitoring information.

If the operator clicks a button, the HMI recognizes this event and sends an HMI_Command

message to the SCADA Master. The SCADA Master receives this command, uses the information

in the configuration file to determine which PLC/RTU Proxy to forward this message to, and

sends a RTU_Feedback message to that PLC/RTU Proxy. That PLC/RTU Proxy then uses the

configuration information to determine which PLC to route this message to, and translates the

feedback message into a command message in the given PLC’s communication protocol.

The code for this project is released as a part of the Spire 1.0. All of the file names used

to describe where code is located are the file names used in the Spire 1.0 release. The config

file previously mentioned is located in config/config.json, and the packet definitions are

located in common/scada_packets.h.

3.2 pvbrowser HMI

We base our HMI on pvbrowser [16]. pvbrowser is an open-source SCADA software suite.

It has been used to manage a real SCADA system deployment in Romania spanning 10,000

square kilometers with 50 power switches [16]. It is a full SCADA solution - it provides an

HMI and a SCADA Master with Modbus data acquisition daemons that can communicate with

RTUs. Its architecture is pictured in 3.2. Early work made it clear that replicating pvbrowser has

some of the same difficulties Kirsch et al. described in [7] , but the software includes several

useful components, such as the HMI and Modbus communication. We rearchitected the HMI

12

Figure 3.2: pvbrowser Stock Architecture [15]

to remove the shared memory and data acquisition daemons, and replaced them with a thread

that communicates with our SCADA Master and supplies the pvbrowser thread with the most up

to date information of how to visualize the system. When there is a button click, the pvbrowser

thread sends a message to the SCADA Master.

This code is located in the hmi folder. hmi/master_exec.cpp contains the thread that

reads from the SCADA Master and updates the pvbrowser data structures. hmi/mask1_slots.h

contains the code both to visualize the HMI based on the current data structures, as well as the

code to send HMI_Command messages when buttons are clicked.

3.3 SCADA Master

The SCADA Master maintains the global view of the system. It has all the monitoring

data from the PLC/RTU Proxy, and sends the HMI all the data it needs to display. It is also

13

the program that forwards operator commands from the HMI to the proxies. The SCADA

Master server runs a switch statement waiting for different message types. When it receives

an HMI_Command message, it calls the read_from_hmi method which discovers what the

corresponding RTU_Feedback message should be doing (what field of an RTU it will be

modifying) and where to route it (using the config file), and then sends it to the PLC/RTU Proxy.

When it receives an RTU_Data message, it updates its data structures, then calls the process

method. This method is unique to each individual scenario. After processing the latest update

from the HMI it will craft an HMI_Update message and send it to the HMI.

The SCADA Master is built from scratch in C. It is located in master/scada_master.c

and its data structures are in master/structs.h.

3.4 PLC/RTU Proxy

Figure 3.3: PLC/RTU Proxy Architecture

14

The PLC/RTU Proxy communicates with PLCs directly, forwarding their updates to the

SCADA Master and forwarding command messages from the SCADA Master to the specific PLC.

The architecture of the PLC/RTU Proxy is shown in figure 3.3. The Proxy process is located

in proxy/proxy.c. When it runs, it checks its configuration to determine PLCs or RTUs it

is responsible for, and what processes they run. If there are any PLCs that speak Modbus, it

spawns the process modbus/modbus_master. If it is responsible for any PLCs that speak

DNP3 it spawns the process dnp3/dnp3_master. It is set up that if there are any more

protocols implemented, it would spawn their daemon as well. The daemon processes are designed

such that they can handle multiple PLCs of the same protocol. For example, if the proxy is

responsible for three PLCs that speak Modbus, it will only spawn one Modbus daemon process.

An IPC channel is created for each of the child data acquisition daemons such that the proxy

can communicate to the child and the child can communicate with the proxy. When the proxy

gets an RTU_Feedback message, it checks to see what protocol the destination PLC speaks

and forwards the RTU_Feedback message to the designated daemon. When the proxy receives

RTU_Datamessages from its children, the proxy forwards those messages to the SCADA Master.

The Modbus daemon is based on pvbrowser’s Modbus data acquisition daemon from pvbad-

dons [16]. The code is located at modbus/modbus_master.cpp. It reads the configuration

file to determine the PLCs that it needs to connect with. It then creates TCP connections with

them and starts the Modbus polling protocol. Every timeout it polls the PLCs at the location

specified in the config file, and then forwards an RTU_Data message with the corresponding

information to the proxy over IPC. If the Modbus daemon recieves an RTU_Feedback message,

it will translate this into the proper Modbus control message and forward this to the corresponding

PLC.

The DNP3 daemon process uses the OpenDNP3 library ([12]) to implement DNP3 commu-

nication with its devices. DNP3 is a more advanced event-based communication protocol that

is common in power grid networks. OpenDNP3 provides a modern, C++11 programming API

for implementing DNP3 communication. We have even contributed to the OpenDNP3 project

through a bug fix. The code for the DNP3 daemon is in dnp3/. The file dnp3/main.cpp

is responsible for reading the configuration file to determine what PLCs it has to communicate

with, and starting a DNP3 session with those PLCs. It sets up callback functions for these

PLCs, such that when they send an event update, the code in dnp3/callback.cpp runs, and

creates an RTU_Data message to be sent to the proxy process. The main thread also sets up IPC

communication with the proxy such that when it gets an RTU_Feedback message it translates

this into a DNP3 control message and sends it along to the corresponding PLC.

15

3.5 OpenPLC

We use OpenPLC [13] to emulate PLCs and RTUs. It is very useful, as it allows us to emulate

realistic PLCs that a SCADA system would have to control and monitor. In addition to emulation,

the OpenPLC software can be deployed to many hardware platforms to create a physical PLC.

OpenPLC is configured by creating a Ladder Logic (LD) or Structured Text (ST) description

of the PLC. Variables can be mapped to register positions on the PLC, and manipulated with the

Ladder Logic or Structured Text. These same registers map to Modbus registers. Devices can

then communicate with the OpenPLC via Modbus by polling for the desired registers.

We extended OpenPLC to also map the registers to DNP3 addresses and communicate with

SCADA Masters via DNP3. This is done with OpenDNP3, and allows us to emulate a wider

variety of devices. Now, when OpenPLC runs, it listens for both Modbus or DNP3 communication,

and can actually communicate with both at the same time.

16

Case Study: Power Distribution Scenario

4.1 Overview

To demonstrate our system in a realistic SCADA environment, we built a power distribution

case study. The case study is designed with ten PLCs providing the system with power switching

information according to the topology in Figure 4.1. An operator can monitor and control this

emulated topology, and use it to route power around different substations. The scenario models

what a real operator would see, it is modeled after the Lucy Electric Scada System [17].

In the scenario, power is in the primary substation. All of the auxiliary substations (Port,

Johns Hopkins, Rural Community, The Metropolitan Area) need to be powered. For substations

to distribute power, their transformers must be on. For power lines to cary power, the switches

at both ends must be closed. There are spare links in operation if power lines go down. Their

switches at both ends are open, so power can’t flow. If a power line goes down, both the switches

at both ends will trip. The operator will see this, and react by using the lines that aren’t in use to

route power to the substations that now do not have it.

4.2 HMI

The HMI is presented in Figure 4.1. The boxes are substations - if they are blue there is

power at the substation. If a substation is black then that substation has no power. The ’X’ in the

middle of a substation is a transformer. If it is red, then it is off. If it is green, it is on. If switches

are green they are closed, if they are black they are open, and if they are red they are tripped.

When switches are open or tripped, power cannot flow through a line and thus it is black. When

switches are both closed, and one of the substations has power, then power will flow through the

line and it will be green.

17

Figure 4.1: A pvbrowser-based HMI

An operator can change the state of the system by pointing and clicking. If the operator clicks

a transformer, that transformer will turn on or off (whichever is the opposite of it’s current state).

When an operator clicks on a switch, that switch will close if it is open or open if it is closed. An

operator cannot effect the status of a tripped switch because it requires maintenance by a crew

in the real world. An example of the HMI when a switch is tripped and there is a blackout is in

Figure 4.2.

4.3 SCADA Master

The SCADA Master for this scenario runs a version of breadth first search to determine what

substations are powered, and what lines are carrying electricity. It does this because it knows

from the PLCs only which switches are open or closed, and which transformers are on or off.

Only the primary substation is known to be powered, and the rest of the information for the

operator has to be extrapolated from the data the PLCs are providing. It takes the result of this

18

Figure 4.2: The HMI When A Power Link Dies

process and sends it to the HMI in an HMI_Update message.

The SCADA Master is able to translate HMI_Command messages, which come from the

HMI and specify what item has been pressed, into RTU_Feedback messages, that are tagged to

a specific PLC and Proxy, and, if the item pressed is a switch, contain the specific register number

the switch should correspond to.

4.4 RTU/PLC Proxy

In this system setup, there is a proxy for each PLC, so a total of 10 proxies are run. This is

because each PLC is supposed to be located at a different location.

The PLC/RTU proxy’s protocol daemons know how to translate a RTU_Feedback message

into a corresponding Modbus or DNP3 message to send to the PLC or RTU. For DNP3, switch

19

controls are Analog Output Commands and the transformers are CROB instructions. For Modbus,

the switch controls send a set register command and the transformers are force coil commands.

These are different types of commands used to modify different types of registers.

4.5 PLC Emulation

Figure 4.3: Ladder Logic for RTU 0 in OpenPLC

To run this scenario, we emulated 10 PLCs - one for each substation. The first three PLCs are

emulated with OpenPLC using DNP3. The next two PLCs are emulated with OpenPLC using

Modbus. To demonstrate our system’s backwards compatibility, we also emulate five PLCs with

the ASE Test Set 2000 Device [18]. It can emulate Modbus or DNP3 RTUs. The next three PLCs

are emulated with the ASE device through DNP3, and the last two are emulated with the ASE

device through Modbus.

The PLCs contain data for the transformers and switches. A switch value of 0 is open, 1 is

closed, and 2 is tripped. A transformer value of 1 is on and 0 is off. This data is represented in

20

two different ways depending on if the device is Modbus or DNP3. If the device is Modbus, the

transformer is a coil status at register zero, and the switches are holding registers at the register

its switch number should be (if a substation has three switches it will have holding registers at 0,

1, 2 to store that switch’s data). For DNP3, the registers for the transformers and switches are at

the same location, but instead of Coil Status and Holding Registers it is Binary Output Status and

Analog Output Status.

In this scenario, PLC 0 (the primary substation) has been written with Ladder Logic in

OpenPLC. The associated LD program is shown in figure 4.3. This program trips the first switch

every 20 seconds, and then un-trips it and sets the status to open every other 20 seconds.

21

Conclusion

We have introduced an open-source event-based architecture for SCADA systems. This new

architecture allows for easier replication of the SCADA Master, is more scalable than many

current SCADA architectures, is more secure with the PLC / RTU Proxy component, and should

have an easier path to adoption thanks to being open-source and backward compatible with

devices. This architecture is used by the Spire Intrusion-Tolerant SCADA System for the Power

Grid [1].

22

Bibliography

[1] Y. Amir, T. Aron, A. Babay, and T. Tantillo. Spire: Intrusion-tolerant SCADA for the power

grid. Johns Hopkins Distributed System And Networks Lab. http://www.dsn.jhu.

edu/spire/. Retrieved May 16, 2017.

[2] A. Nicholson, S. Webber, S. Dyer, T. Patel, and H. Janicke. SCADA security in the light of

cyber-warfare. Computers & Security, 31(4):418 – 436, 2012.

[3] Vinay M. Igure, Sean A. Laughter, and Ronald D. Williams. Security issues in SCADA

networks. Computers & Security, 25(7):498 – 506, 2006.

[4] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32.Stuxnet dossier. Symantec Security

Response, February 2011.

[5] Kyle Wilhoit. Who’s really attacking your ics equipment? Trend Micro, 2013.

[6] Shodan. Map of industrial control systems on the internet. https://icsmap.shodan.

io/. Retrieved May 16, 2017.

[7] J. Kirsch, S. Goose, Y. Amir, D. Wei, and P. Skare. Survivable scada via intrusion-tolerant

replication. IEEE Transactions on Smart Grid, 5(1):60–70, Jan 2014.

[8] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzantine replication under attack. IEEE

Transactions on Dependable and Secure Computing, 8(4):564–577, July 2011.

[9] M. Simonov and G. Zanetto. Event-based hybrid metering feeding ami and scada. In 2015

International Conference on Event-based Control, Communication, and Signal Processing

(EBCCSP), pages 1–8, June 2015.

[10] S. Karnouskos and A. W. Colombo. Architecting the next generation of service-based

scada/dcs system of systems. In IECON 2011 - 37th Annual Conference of the IEEE

Industrial Electronics Society, pages 359–364, Nov 2011.

23

http://www.dsn.jhu.edu/spire/
http://www.dsn.jhu.edu/spire/
https://icsmap.shodan.io/
https://icsmap.shodan.io/

[11] Igor Nai Fovino, Andrea Carcano, Marcelo Masera, and Alberto Trombetta. Design and

implementation of a secure modbus protocol. In International Conference on Critical

Infrastructure Protection, pages 83–96. Springer, 2009.

[12] Automatak. Opendnp3. https://www.automatak.com/opendnp3/. Retrieved

May 16, 2017.

[13] T. R. Alves, M. Buratto, F. M. de Souza, and T. V. Rodrigues. Openplc: An open source

alternative to automation. In IEEE Global Humanitarian Technology Conference (GHTC

2014), pages 585–589, Oct 2014.

[14] DaveGamble. cJSON. http://github.com/DaveGamble/cJSON. Retrieved May

16, 2017.

[15] Thomas Tantillo. Toward survivable intrusion-tolerant open-source scada. IEEE Transac-

tions on Dependable Systems and Networks (DSN) Student Forum, June 2015.

[16] Lehrig Software Engineering. The process visualiation browser. https://pvbrowser.

de/pvbrowser/index.php. Retrieved May 16, 2017.

[17] Lucy Electric. Scada system & networks. http://www.lucyelectric.com/en/

press-news/videos/scada/. Retrieved May 16, 2017.

[18] Applied Systems Engineering Inc. Ase2000 version 2. http://www.ase-systems.

com/ase2000-version-2/. Retrieved May 16, 2017.

24

https://www.automatak.com/opendnp3/
http://github.com/DaveGamble/cJSON
https://pvbrowser.de/pvbrowser/index.php
https://pvbrowser.de/pvbrowser/index.php
http://www.lucyelectric.com/en/press-news/videos/scada/
http://www.lucyelectric.com/en/press-news/videos/scada/
http://www.ase-systems.com/ase2000-version-2/
http://www.ase-systems.com/ase2000-version-2/

	Abstract
	Introduction
	Facilitating SCADA Master Replication
	SCADA Scalability
	SCADA Security Concerns
	Adoption

	Event-Based Architecture
	Overview
	pvbrowser HMI
	SCADA Master
	PLC/RTU Proxy
	OpenPLC

	Case Study: Power Distribution Scenario
	Overview
	HMI
	SCADA Master
	RTU/PLC Proxy
	PLC Emulation

	Conclusion

