
This presentation was given at the Hebrew University of Jerusalem in partial
fulfillment of the requirements for the degree “Doctor of Philosophy”.
This presentation is given six months prior to thesis submission.

More information about the Transis project can be found using the www in
http://www.cs.huji.ac.il/papers/transis/transis.html.
Information about Yair Amir can be found in
http://www.cs.huji.ac.il/papers/transis/yairamir/yairamir.html
An ftp site for Transis exists in cs.huji.ac.il under directory pub/misc/transis. It
accepts anonymous login. Information about Yair Amir can be found under
directory pub/misc/transis/yairamir

Comments are very welcome and can be mailed to yairamir@cs.huji.ac.il

Yair Amir 121 Nov 94

The Transis Project
The Hebrew University of Jerusalem

yairamir@cs.huji.ac.il
http://www.cs.huji.ac.il/papers/transis/yairamir/yairamir.html

Yair Amir

Ph.D. Presentation

Replication over a Partitioned
Network

Abstract

We present a new architecture and algorithm for distributed replication. The
replication algorithm operates in the presence of message omission faults,
processor crashes and recoveries, and network partition and re-merges. The
architecture exploits the Transis group communication sub-system to
minimize communication costs and to eliminate forced disk writes in the
critical path, while preserving complete and consistent operation.

End-to-end agreement is required only after a change in the membership of the
connected servers, rather than on a per action basis. Hence, the latency and
throughput of updates in the system is determined by the latency and
throughput of Transis. In contrast, the latency and throughput of existing
database systems is determined by the end-to-end acknowledgments
mechanisms, such as two-phase commit, and by forced disk writes. Refer to
slide 19 for Transis performance figures.

The updates are globally ordered, and if the system has partitioned, they are
applied to the database when they become known to the primary component of
the partitioned system. An application may, however, read data and initiate
updates at any time, even in a component that is not the primary component.

Yair Amir 221 Nov 94

Table of Contents
Introduction 3 - 4
The failure model 5
Motivation 6 - 9
The Client-Server model 10 - 12
Existing replication methods 13 - 15
The Architecture 16
Transis: A group communication layer 17 - 19
Extended virtual synchrony 20 - 23
Replication layer concepts 24
Propagation by eventual path 25 - 28
Amortizing end-to-end acknowledgments 29 - 33
Summary 34 - 35

My Ph.D. research is conducted at the Institute of Computer Science, The
Hebrew University of Jerusalem under the warm supervision of Prof. Danny
Dolev. Together with Dalia Malki and Shlomo Kramer we initiated and
developed the Transis project, an advanced group communication transport
service (and much more than that). Ofir Amir, in his lab project, helped me
prove the feasibility of the replication concept. Discussions with Idit Keidar
and others from the Transis group helped refine ideas in this research.

A substantial part of my research was done at Prof. Melliar-Smith’s and Prof.
Moser’s lab at the Electrical and Computer Engineering Dept. University of
California, Santa Barbara. During two summers and several mutual visits, Prof.
Moser and Prof. Melliar-Smith were involved in almost every aspect of my
research. The work with Deb Agarwal and Paul Ciarfella on the Totem
protocol contributed a lot to my understanding of high speed group
communication. The ring version of Transis is based on the Totem protocol.

Prof. Birman and Dr. van Renesse from the Computer Science Dept. at Cornell
University, were always willing to contribute their valuable advice to the
Transis research. They integrated Transis ideas into their new Horus system,
and vastly helped to expose them. Spending last summer with them at Cornell
gave me many ideas for future research.

Yair Amir 321 Nov 94

Replication over a Partitioned
Network

Contributors:

Hebrew University UCSB
Prof. Danny Dolev Prof. Michael Melliar-Smith
Dr. Dalia Malki Prof. Louise Moser
Shlomo Kramer Dr. Deb Agarwal
Ofir Amir Paul Ciarfella

Cornell
Prof. Ken Birman
Dr. Robbert van Renesse

The technology presented here is most effective in systems composed of
several local area networks, each of which contains several workstations. The
local area networks are connected via some wide area network. These
networks can be geographically scattered.

Examples for such systems are:
* Stock exchange systems.
* Flight reservation systems.
* Control systems.
* Military systems.

Yair Amir 421 Nov 94

A Distributed System

Our fault model contains the following possible faults:
• Message omission and delay - messages (or packets) can be lost or delayed
when sent over the network. Message omissions occur mainly due to buffer
overflow at the receiver. Standard reliable point-to-point protocols such as
TCP/IP overcome these problems.
• Processor crashes and recoveries - A process can manage data on disks. If
this process is killed or abnormally terminates, or if the computer is shut down
or incurs a power failure, data on disk still survives. When the process is re-run
(i.e. recovers) the data is available again. This model is more general than the
Fail-Stop model because we cannot assume that a failed process never
recovers. Therefore, we cannot ignore possible decisions a process makes just
before it crashes. This fault models reality better than the Fail-stop model.
• Network partitions and re-merges - in systems such as the above, network
partitioning is likely to happen.
The Transis project was the first group communication system to provide a
complete solution for this elaborated and realistic fault model. Practically, if a
system is designed according to a specific fault model, and a fault which does
not belong to the fault model occurs, the system behavior can be unpredictable.
We assume that packet corruption is detected by CRC (or similar) methods and
we do not handle Byzantine failures.

Yair Amir 521 Nov 94

The Failure Model

• Message omissions and delays
• Processor crashes and recoveries
• Network partitions and re-merges

• Message corruption is detected
• There are no malicious faults

The architecture overcomes:

It is assumed that:

Where to store and manage the data is a major issue when designing a
distributed system. A centralized approach keeps the data at one server. This
approach is simple. There can be no inconsistencies or contradicting views of
the data because it is kept only once.

However, this approach suffers from two major drawbacks:

• Performance problems:
 - The server has to satisfy many clients and therefore can be highly loaded.
 - Communication latency can be high for remote clients.

• Availability problems:
 - When the server is down there is no service.
 - Clients that reside in portions of the network that are temporarily
 disconnected from the server can get no service.

Yair Amir 621 Nov 94

Centralized Server

The centralized server can be duplicated in order to create a hot backup. The
hot backup usually resides in the same room (or box) as the primary server.
The backup takes over when it detects that the primary server fails.

As can be seen, such solutions do not attempt to answer the performance
problem. Moreover, they cannot answer the availability problem inherent to
the network.

If a “disaster” that destroys the server site occurs, recovery can be
problematic.

Yair Amir 721 Nov 94

Highly Available Server

When the server (and the data) is replicated, each server serves fewer clients.
The clients are more local to their server. This saves time and communication
for queries. It also makes the service highly available.

The main problems of this approach are the cost of updates, and assuring
system consistency.

This work presents a new method for replication. We will show that consistent
updates can be done efficiently using new techniques in both group
communication and replication.

Yair Amir 821 Nov 94

Replicated Server

The replication approach may appear expensive due to the cost of many
servers. Today each PC is potentially a strong server. We define a server to be
an autonomous computer that manages data.

In today’s world, each laptop has to contain at least part of the data needed by
its owner. Allowing a laptop to connect to either one of several main servers
that are geographically scattered can be valuable for nomadic systems.

Yair Amir 921 Nov 94

Replicated Server !

Each laptop is a (weaker?) server

The Client-Server model is a valuable paradigm for designing distributed
systems. According to this paradigm, a service is provided by a server process.
This server manages the data and service needed by client processes.

Clients communicate with the server according to a pre-defined interface. Data
structures and methods that are internal to the server are hidden from the
clients.

Client processes can reside either in the same machine as the server or in a
different machine connected by a network. The method of communication can
be any communication protocol interface. Remote Procedure Call and Unix
sockets are good examples.

Yair Amir 1021 Nov 94

S

C

CC

C

C

C

The Client - Server Model

Centralized

S : Server
C : Client

This work conforms with the Client-Server model. We show how a replicated
server can be designed to work efficiently. We focus on the protocol between
the servers that creates the replicated service.

Yair Amir 1121 Nov 94

The Client - Server Model

Replicated

S : Server
C : Client

C

S

SS

S

C C

C

C

C

C

C

When one server crashes, its clients can connect to a different server and
continue the work. When the server recovers, it exchanges information with
other connected servers and continues to service clients. Group communication
is used for the interaction among servers.

Usually, a point to point protocol is used for the client-server interaction.
However, group communication can be useful for the client to locate and pick
a server to connect with. This allows for optimizations regarding which server
serves which clients, load balancing, locality, and other criteria.
Alternatively, the servers can decide which server answers which client, and
which server takes over a failed or disconnected server. This server connects to
the clients of the failed server.

Yair Amir 1221 Nov 94

Replicated

S : Server
C : Client

C

S

SS

S

C C

C

C

C

C

C

The Client - Server Model

• Single server with read copies - updates are made to the master and queries
can be made to the master or to each of the copies.
The master updates the copies using either a time interval strategy or on a per
action basis. The master holds the consistent view of the data. If the client is
not connected to the master it can not initiate updates.

• Weaker update semantics - if all updates are commutative, it is sufficient to
apply the same set of updates to each of the replicas in order to achieve an
identical state. i.e. the order with which the updates are applied is not
important. This greatly simplifies the maintenance of consistent replication.

• Weaker failure model - If we assume no network partitions, then an
unconnected replica can be considered as crashed. The ISIS system assumes
“no partitions”. This greatly simplifies the problem. However, assuming no
partitions when more than one local area segment is involved, is not realistic.
Assuming partitions means that a disconnected server is potentially partitioned.

• Two phase commit and Three phase commit - are protocols that are used
to coordinate transactions in distributed databases. They can be used also for
consistent replication.

Yair Amir 1321 Nov 94

Existing Replication Methods

• Single server with read copies
• Weaker semantics of updates

– timestamps
– commutative updates

• Weaker failure model
• Two phase commit, Three phase commit

Two Phase Commit is useful for coordinating transactions that span several
sites in a distributed system. As a special case, it can be used to maintain
consistency of a replicated database. Here, we refer to it only in this sense.
Upon an update request from a client to its server, the following steps take
place:
1. The (one) server that received this update from a client lazily writes it to its
disk, initiates an update action and sends it to the other servers using some
form of a point-to-point communication (typically TCP/IP). The initiating
server is called the “coordinator” of this action.
2. Each server that receives the message, forces it to disk. Only after it is
physically written, can that server send an acknowledgment message (again,
using TCP/IP) to the coordinator.
3. After the coordinator receives an acknowledgment from each of the servers,
it forces a commit decision to disk. After the decision is physically written, the
coordinator sends a commit to the other servers, again, using TCP/IP.
4. Each of the servers lazily applies the update to its copy of the database.
If even one of the servers fails to answer, the coordinator aborts the update.
To overcome this drawback, a more expensive protocol, Three Phase Commit,
usually requires an acknowledgment from only a majority of the servers in
order to commit. However, it requires an additional round of communication.

Yair Amir 1421 Nov 94

Two Phase Commit
Server Tcp/ip Tcp/ip Server

Forced disk write

Lazy disk write

Send decision

• Using TCP/IP, Decnet, and OSI reliable point-to-point communication for
replication is not scaleable and does not utilize existing hardware capabilities
for (non-reliable) multicasting. For example, Two Phase Commit (serially)
sends each update n times for n replicas each round.
• When forced disk writes are used on a per action basis, the disk is bound to
tens of writes per second. This results in high latency for disk writes. The need
for n replicas to wait for their disk magnifies the problem.
• In the previous slide, If the coordinator detaches or crashes at step 3, the
replicas can not commit or abort the action. We have to remember that at this
stage they hold locks on data. These locks were acquired at step 2, before
sending the first acknowledgment. Theoretically, they may not release these
locks until they communicate with the coordinator. This leads to possible
blocking of the whole system.
• Most practical implementations of database replication can not afford to
block the system at situations similar to the above. Therefore, they presume
either abort or commit of the action, thereby loosing full consistency.

For these reasons, replication is seldom used. Even when it is used, it is mainly
used to increase the availability of a service, rather than to boost performance.

Yair Amir 1521 Nov 94

Traditional Replication Methods

• Utilize point-to-point communication
• High level agreement per action

– Inefficient use of disk
– High latency

• Vulnerable to faults at critical points
• (Therefore, practically) not fully consistent

Problems:

Yair Amir 1621 Nov 94

New Architecture

Group
Communication

Replication
Server

Application

Send Receive

Generate Deliver

Request

Apply

Reply

Medium

DB

Group
Communication

Replication
Server

Application

Packets

Messages

Actions

DB

We present a different architecture for active replication, which drastically
lowers the cost of replication, making it an appealing tool to boost
performance, as well as to improve the service availability. This architecture
carefully tailors advanced group communication techniques to a new
replication algorithm.
The application requests an action to be performed on the database. The action
can be a query, an update, or a combination of both. The replication layer
generates a message containing this action and uses the group communication
layer to send the message (which might be broken into several packets) across
the network. The group communication layer delivers the message to all
currently connected servers. The replication layer guarantees that the same set
of actions, at the same order, will be applied to each of the replicas even in
face of network partitions and merges, and process crashes and recoveries. The
group communication layer overcomes message omissions.

The following slides give a short overview of the Transis system.

We developed Transis, a group communication sub-system, and use it to
develop several tools that address fundamental problems in distributed
systems. In particular, we use Transis in our replication architecture.

We focus here on the Transis services, performance, and service semantics.
The algorithms and internal protocols used in Transis deserve a presentation of
their own and are not part of this presentation.

Yair Amir 1721 Nov 94

Transis : A Group
Communication Layer

• Group communication services
• Partitionable membership
• Flow control
• Consistent service semantics according to the

Extended Virtual Synchrony model

Transis provides:

Each processor that may have processes participating in the group
communication has one Transis daemon running. All the physical
communication is handled by the Transis daemon. Each Transis daemon keeps
track of the processes residing in its processor. The Transis daemons keep
track of the processors’ membership. This structure is in contrast to other
group communication mechanisms, where the basic participant is the process
rather than a daemon per processor.

The benefits of this structure are huge:
• Flow control is maintained globally, rather than on a per group basis.
• The membership protocol is invoked only if there is a change in the
processors’ membership. When a process crashes or joins, the daemon sends a
notification message. When this message is ordered, the daemons deliver a
membership change message containing the new group membership to the
other members of the group.
• Order is maintained globally and not on a per group basis. Therefore,
message ordering across groups is trivial. Moreover, it is easy to implement
“open” group semantics (i.e. processes that are not members of a group can
send messages to this group).

Yair Amir 1821 Nov 94

Process groups in Transis

• One Transis daemon in each machine
• Multiple destination groups per message
• Message ordering across groups
• Open group semantics

P

T

P P P

T

P P P

T

P
a a a ab bc c d a

The measurements were taken on an unloaded system when Transis flow-
control was tuned for best throughput.

Another important factor is latency. We measure latency starting from the time
a message is generated (given to Transis at the sending processor), until the
time it is delivered by Transis. Using the ring version of Transis, the latency
for Safe delivery is about two rounds time, and the latency for Agreed delivery
is about half a round time. In the above measurements, a round took about
92,96,106 milliseconds for a segment of 6,10,18 processors respectively.

If the focus is on latency, we can achieve a round time of 2*n milliseconds for
n processors, when the desired throughput is around 400 messages per second.
In this case, the latency is about 6,10,18 milliseconds for Agreed delivery and
about 24,40,72 milliseconds for Safe delivery, for a segment of 6,10,18
processors respectively. Note that even 400 messages of 1Kbytes each, per
second, is more than what most other group communication sub-systems
achieve for reliable delivery.

When the desired throughput is around 100 messages per second, the latency is
about 4,6,10 milliseconds for Agreed delivery and about 16,24,40 milliseconds
for Safe delivery, for a segment of 6,10,18 processors respectively.

Refer to the next slide for the definitions of Agreed and Safe delivery.

Yair Amir 1921 Nov 94

Performance Figures

2 4 6 8 10 12 14 16 18
0

100
200
300
400
500
600
700
800
900

2 4 6 8 10 12 14 16 18

Group Comm.
Tcp/ip

Messages per second
Mess = 1K bytes

Silicon Graphics computers
1 Ethernet segment

Ring version

The word “Process” in the Extended Virtual Synchrony slides refers to a
Transis daemon.
Safe delivery guarantees that when Transis delivers a message (that contains an
action) to the replication server, all the other Transis daemons in the current
configuration already have this message and will deliver it to the upper layer
unless they crash (even if at this point the network is partitioned). In our
architecture, Transis delivers messages to the replication server.

When the configuration of connected processes shrinks, one cannot tell
whether the disconnected processes crashed, or they are only partitioned away.
However, Safe delivery guarantees process p that delivers message m that all
the other processes in its configuration have m.

Yair Amir 2021 Nov 94

Extended Virtual Synchrony

• Agreed Delivery - Processes deliver
messages in the same total order. {No Holes}

• Safe Delivery - In addition, delivering after
determining that every process in the current
configuration will deliver the message unless
it crashes.

• Failure Atomicity - Processes that belong to
consecutive configurations deliver the same
set of messages.

(partial non-formal description)

In an asynchronous system that is prone to partitions and crashes, we can not
guarantee that a message meets the safe delivery criterion in the configuration
in which it was sent (refer to the example).
In order to meet the requirement for safe delivery, we introduce the notion of
transitional configuration. The transitional configuration contains processes
(i.e. Transis daemons) that belong both to the (regular) configuration that
precedes this Transitional configuration and to the one that follows this
Transitional configuration. For these processes that are transitioning together
from a (regular) configuration to the next (regular) configuration, the safe
delivery criterion is guaranteed.

The slide presents an example for a network partition. Processes p,q,r, and s
belong to a (regular) configuration. All four processes know that m1 was
received by each of them. Therefore, They all deliver m1 in the regular
configuration. p and q know m2 and also got r’s and s’s acknowledgment for
m2. Therefore p and q deliver m2 in the regular configuration. However, r and
s can not tell whether p and q have m2 or not. They can only guarantee safe
delivery for the Transitional configuration, therefore they deliver m2 in that
configuration. m3, sent by p, is not known by p and q to be received at r or s,
and, as it appears, that message was lost (remember message omission?).
More details can be found in the next two slides.

Yair Amir 2121 Nov 94

Extended Virtual Synchrony
(Continue)

• Transitional Configuration - Each regular
configuration is preceded by a transitional,
perhaps smaller configuration, to guarantee
Safe Delivery

{ p, q, r, s}

{ r, s }{ p, q }

m1
m2

m4
m3

m4

m2

time

Regular Conf.

Transitional Conf.

It is well known that the consensus problem is not solvable in an asynchronous
system that is prone to faults.
The safe delivery together with the transitional configuration provide a
valuable tool to deal with faults and still be consistent in such a system.
Instead of having to decide on one of two possible values (0 or 1), we have
three possible values: (0, ?, or 1).
Case 1 reflects a case where a message is received in the regular configuration.
Case ? reflects a case where a message is received just before a partition
occurs and we cannot tell whether other components of the configuration (that
splits) have that message. In this case it is delivered in the Transitional
configuration.
Case 0 reflects a case where a message is sent in the regular configuration just
before a partition was detected but it was not received by members of a
detached component. These members are Case 0 processes.
The key here is that Case 0 and Case 1 can never coexist.
If later on a Case ? process meets a Case 1 process - it can “commit” and
decide on 1. On the other hand, if it meets a Case 0 process it decides 0.

Yair Amir 2221 Nov 94

Consensus is not possible but...

• Case 0 and Case 1 can not both have processes.
• Case 1 process “commits” knowing that all the

partitioned processes have m.
• Case 0 process knows that no process “commits”.
• Even Case ? process knows valuable information

time

m

 Case 1

m

 Case ? Case 0

In this scenario, r and s split from q and p, and immediately merge with t.
The scenario for messages m1, m2, m3, and m4 is identical to the previous
example.
It is worth noting that:
• The Transitional configuration at t is equal to the former regular
configuration. In the case of a merge, the Transitional configuration will
always be empty because any message from the former regular configuration
meets the safe criterion.
• The Transitional configuration in s and r is {s, r}.
• The relative order of messages that originated in a regular configuration is
similar at all the processes that deliver them.
• Processes that belong to two consecutive regular configurations, deliver the
same set of messages at the transitional configuration in between.

Yair Amir 2321 Nov 94

A Complex Example

{ p, q, r, s }

{ r, s }

{ p, q }

m1

{ r, s, t }

{ t }

m2m2
m3

m’’’

m4m4

m’’

m’

empty

time

Yair Amir 2421 Nov 94

Replication Layer Concepts
• Knowledge propagation: Eventual path
• Problem decomposition

– Action dissemination
– Action ordering
– Action discarding

• Amortizing end-to-end acknowledgments
– Low level ack derived from Safe Delivery.
– End-to-end ack when membership changes.

• Primary component selection
– Dynamic Linear Voting.

The replication layer is based on four main ideas:
1. We developed an efficient method, called “Propagation by Eventual Path”,
to propagate knowledge among the replication servers.
2. We decomposed the problem of maintaining consistent replicas to three
disjoint problems: a) how to propagate the actions, b) how to consistently order
the actions subject to the failure model, and c) how to know that all the servers
already ordered and applied certain actions, so the messages that contain these
actions can be discarded. Traditional replication protocols initiate, commit, and
discard actions, only while in a primary component of the network. i.e. they
gather all the acks in Two Phase Commit, or they gather a majority in Three
Phase Commit, or they are connected with the primary site in a Primary-
Backup approach. Otherwise updates can not be initiated and sometimes
queries can not be consistently answered. In our method, actions are initiated
anytime, and are ordered when they reach a primary component.
3. Our ordering algorithm guarantees consistency subject to the failure model.
It avoids the need for end-to-end ack on a per action basis. Therefore, the
latency for an update to be committed while in a primary component is equal
to the latency for Safe delivery in this network! i.e. no need to wait for
synchronous disk writes.
4. We use Dynamic Linear Voting to select the primary component of the
network. DLV is considered to be the best method is this research area today.

Yair Amir 2521 Nov 94

Propagation by Eventual Path

mx

mx

mx

my

my

my

Partitioned system

In most systems, processes exchange information only as long as they have a
direct and continuous connection. In contrast, we propagate knowledge by
means of eventual path.
An Eventual Path from server p to server q up to and including action a is a
communication path from p to q such that there exist pairs of servers along the
path and intervals during which they are connected so the the message
containing action a, and all prior messages received by p are eventually
received by q.

Here we give a scenario to explain the eventual path. We show how using
eventual path propagation affect the progress of the system.

In the example the network is partitioned to two components.
In each of the components, the stared processor initiates an action in a message
(message mx in the left component and message my in the right component).
Each processor knows about the action initiated in its component and knows
that the other processors in its component know the action. However, each
processor can not know about the action which was initiated in the other
component.

The network further partitioned. Now we have four components.
No new knowledge is gained by any of the processors.

Yair Amir 2621 Nov 94

Propagation by Eventual Path

mx

mx

mx

my

my

my

Further partitioning

Here, two components merge. The three processors in the upper component
exchange messages so that they all have mx and my. Moreover, the fact that the
two lower component processors know mx is also shared.

Yair Amir 2721 Nov 94

Propagation by Eventual Path

mx

mx

my

Merging

mx my mx my

mx my

Finally, the bottom right processor merges with the upper component.
Again, after exchanging the necessary messages, all the processors belonging
to the upper component have mx and my.
Notice that mx was initiated by a processor which was never connected to
processors that have mx. Moreover, some of the processors even know that all
the processes in the system have mx.

Propagation by means of eventual path is a generalization of gossip methods.
Instead of sharing information pair-wise, we use the group communication
mechanisms and do it group-wise.
Propagation by means of eventual path, although superior to gossip methods, is
not popular in systems today. I believe that this is due to the expensive
bookkeeping needed when point to point communication is used. Group
communication simplifies this bookkeeping and makes it an appealing tool for
knowledge dissemination and sharing.

We use the eventual path propagation to disseminate actions and to learn that
actions were already ordered (and applied) by all processors, and therefore can
be discarded.

Yair Amir 2821 Nov 94

Propagation by Eventual Path

mx

mx

Further merging

mx my

mx my

mx my

mx my

The replication servers implement a symmetric distributed algorithm to
determine the order of actions to be applied to the database. Each server builds
its own knowledge about the order of actions in the system. Each server marks
the actions delivered to it with one of the following colors:
• Red Action: An action that has been ordered within the local component by
the group communication layer but for which the server cannot, as yet,
determine the global order.
• Green Action: An action for which the server has determined the global
order and which, therefore, can be applied to the database.
• White Action: An action for which the server knows that all of the servers
have already marked as green. Thus, the server can discard a white action
because no other server will need that action subsequently.

The replication layer identifies at most a single component of the server group
as a primary component; The other components of a partitioned group are non-
primary components. We use a Dynamic Linear Voting technique to determine
the primary component.

In the primary component, actions are marked green on delivery by the group
communication and, hence, are immediately applied to the database. In a non-
primary component, actions are marked red.

Yair Amir 2921 Nov 94

Action Ordering

Order is unknown

Order is known

(I know that)
Order is known to all

(Red)

(Green)

(White)

A simple state machine describes the concept of the replication server :
• Prim - The server currently belongs to the primary component. When a
message containing an action is delivered by the group communication layer,
the action is immediately marked green and is applied to the database.
• Non Prim - The server belongs to a non-primary component. When a
message containing an action is delivered by the group communication layer,
the action is marked red.
• Exchange - The server shifts to Exchange when a new (regular)
configuration is formed. The servers belonging to the new configuration
exchange information to define the set of actions that are known to some, but
not to all, of them. After these actions have been exchanged and the green
actions have been applied to the database, the servers checks if this
configuration can become the primary component. If so, they shift to
Construct; otherwise, they shift to Non Prim and form a non-primary
component. This check is done locally at each server without the need for
additional messages.
• Construct - In this state, all of the servers in the component have identical
knowledge about the configurations. After writing the data to stable storage,
each of the servers multicasts a Create Primary Component (CPC) message.
On receiving a CPC message from each of the servers, the server shifts to the
Prim state. If a configuration change occurs before all the CPC messages have
been received, the server shifts to Exchange.

Yair Amir 3021 Nov 94

Conceptual State Diagram

Construct

Prim Exchange Non
Prim

Message (Green) Message (Red)

No Prim

Reg Conf

Reg Conf

Reg Conf

Possible
PrimLast CPC

Recover

Due to the asynchronous nature of the system model, we cannot reach
complete knowledge about which messages were received by which processes
just before a network partition or a process crash occurs. Instead we rely on the
semantics of extended virtual synchrony for safe delivery. The lack of
complete knowledge is evident when:
a) A server is in the Prim state and a partition occurs. In this case, the server
cannot always tell whether the last messages were received by all the members
of the primary component (including itself).
b) A server is in the Construct state and a partition occurs. In this case, the
server cannot always tell whether all the servers initiated the CPC message, or
whether some of them delivered all the CPC messages in the previous regular
configuration, and therefore, installed a new primary component.
Extended virtual synchrony provides the notion of transitional configuration. to
handle these cases. We add an intermediate color to our colors model:
• Yellow Action: An action that was received in a transitional configuration of
a primary component.
This action could have been marked green by another server of the primary
component, or, alternatively, could have been missed by another server, but
both cases cannot simultaneously exist. Yellow actions cannot be applied to
the database. However, They will be the first actions to be marked green when
a new primary component is formed.

Yair Amir 3121 Nov 94

Action Ordering

Order is unknown

Order is known

(I know that)
Order is known to all

Transitional Configuration

(Red)

(Green)

(White)

(Yellow)

This slide presents the full state diagram that solves the consistency problem
subject to our failure model. There are 3 refinements compared to the
conceptual state diagram:
1. The Exchange state is broken into Exchange States and Exchange Messages.
This is done for clarification reasons.
2. The Prim state is broken into Reg Prim and Trans Prim states. This is done
to address the lack of knowledge explained in the previous slide regarding
yellow actions. Extended virtual synchrony guarantees that if a safe message
(containing an action) is delivered to the replication server in a primary
component, this message will be delivered to all other members of that
component, unless they crash. Some may receive it in a transitional
configuration and mark it yellow, if a configuration change has just occurred.
3. The Construct state is broken into Construct, Un, and No states. It is
guaranteed that if a server receives all the CPC messages and goes to Reg Prim
or Trans Prim (case 1a or 1b), then no other server goes to Exchange States
through the No state (case 0). This way we guarantee that if even one server
installs the new primary component, all the others, that do not crash, receive all
the CPC messages, and therefore, either install (if they go through case 1a or
1b) or protect this installation (if they go through case ?).
For a more detailed explanation and correctness of this slide, please refer to the
paper “Robust and Efficient Replication Using Group Communication”.

Yair Amir 3221 Nov 94

State Diagram

Reg
Prim

Trans
Prim

Exchange
States

Non
Prim

Construct

Trans Conf

Exchange
MessagesUn No

Last
CPCLast

CPC

Last
State

Possible
Prim

No Prim
or

Trans Conf

Recover

Trans Conf

Reg ConfReg ConfTrans Conf

Reg Conf

Reg ConfCut mess

Message (Red)Message (Yellow)Message (Green)

1a 1b ? 0

In a primary component the latency of actions is determined by the safe
delivery latency of the group communication layer plus the processing time
within the replication layer. In contrast, the latency for existing database
systems is determined by end-to-end acknowledgment mechanisms such as
two-phase commit, and by forced disk writes. The approach presented here
can, therefore, provide lower latency than existing replication methods, while
preserving strict consistency.
Furthermore, using our group communication techniques, performance can go
up to several hundreds of actions per second. The fact that forced disk writes
are not used on a per action basis allows the operating system to optimize disk
operations. Hence, performance is not limited by the disk seek time as in other
replication methods.

A question which is not considered in this talk, but is addressed in the paper, is
what happens to clients that belong to a non-primary component. Traditional
replication methods either block non-primary components or do not allow to
update the database while in a non-primary component.
Our method allows clients to always initiate new updates. Furthermore, dirty
and weak queries are answered immediately while in a non-primary
component. Consistent queries can be answered only when the action
containing this query is marked green. For exact definitions of these services
and query semantics, please refer to the paper.

Yair Amir 3321 Nov 94

Latency Comparison

Server Transis Transis Server

Forced disk write

Lazy disk write

Further information about the group communication results described in this
talk can be found in the Transis www and ftp sites (see first slide), and were
published in:

• Y. Amir, D. Dolev, S. Kramer, D. Malki
 “Transis: A Communication Sub-System for High Availability”.
 In the proceedings of the 22nd Fault-Tolerant Computing Symposium,
 Boston MA. (July 1992) 76-84

• Y. Amir, L. E. Moser, P.M. Melliar-Smith, D. A. Agarwal and P. Ciarfella
 “Fast message ordering using a logical token-passing ring”.
 In the proceedings of the 13th International Conference on Distributed
 Computing Systems, Pittsburgh PA. (May 1993). 551-560. IEEE.

• L. E. Moser, Y. Amir, P. M. Melliar-Smith and D. A. Agarwal
 “Extended Virtual Synchrony”
 In the proceedings of the 14th International Conference on Distributed
 Computing Systems, Poznan Poland. (June 1994). 56-65. IEEE.

Yair Amir 3421 Nov 94

Summary

• Provides fast and reliable multicast services
• Guarantees consistent message ordering and

failure detection according to Extended
Virtual Synchrony

• Utilizes hardware multicast wherever possible

The architecture is composed of two layers:

A Group communication layer that:

Further information about the replication layer described in this talk can be
found in the Transis www and ftp sites (see first slide), and were published in:

• O. Amir, Y. Amir and D. Dolev
 “A Highly Available Application in the Transis Environment”
 In the Proceedings of the Hardware and Software Architectures for Fault
 Tolerant Workshop, Le Mont Saint-Michel, France (June 1993). LNCS 774.

• Y. Amir, D. Dolev, P. M. Melliar-Smith and L. E. Moser
 “Robust and Efficient Replication Using Group Communication”
 Technical Report CS94-20, Institute of Computer Science,
 The Hebrew University of Jerusalem, Israel.

Yair Amir 3521 Nov 94

Summary (continue)

• Automatically recovers from crashes
• Consistently orders Actions
• Optimally disseminates Actions
• Utilizes low level acknowledgments
• Needs end-to-end acknowledgment only

upon membership change

A Replication layer that:

