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Abstract

This paper proposes a new error-driven HMM-
based text chunk tagger with context-dependent
lexicon. Compared with standard HMM-based
tagger, this tagger uses a new Hidden Markov
Modelling approach which incorporates more
contextual information into a lexical entry.
Moreover, an error-driven learning approach is
adopted to decrease the memory requirement by
keeping only positive lexical entries and makes
it possible to further incorporate more context-
dependent lexical entries. Experiments show
that this technique achieves overall precision
and recall rates of 93.40% and 93.95% for all
chunk types, 93.60% and 94.64% for noun
phrases, and 94.64% and 94.75% for verb
phrases when trained on PENN WSJ TreeBank
section 00-19 and tested on section 20-24, while
25-fold validation experiments of PENN WSJ
TreeBank show overall precision and recall
rates of 96.40% and 96.47% for all chunk types,
96.49% and 96.99% for noun phrases, and
97.13% and 97.36% for verb phrases.

Introduction

Text chunking is to divide sentences into non-
overlapping segments on the basis of fairly
superficial analysis. Abney(1991) proposed this
as a useful and relatively tractable precursor to
full parsing, since it provides a foundation for
further levels of analysis, while still allowing
more complex attachment decisions to be
postponed to a later phase.

Text chunking typically relies on fairly
simple and efficient processing algorithms.
Recently, many researchers have looked at text
chunking in two different ways: Some

researchers have applied rule-based methods,
combining lexical data with finite state or other
rule constraints, while others have worked on
inducing statistical models either directly from
the words and/or from automatically assigned
part-of-speech classes. On the statistics-based
approaches, Skut and Brants(1998) proposed a
HMM-based approach to recognise the syntactic
structures of limited length. Buchholz, Veenstra
and Daelemans(1999), and Veenstra(1999)
explored memory-based learning method to find
labelled chunks. Ratnaparkhi(1998) used
maximum entropy to recognise arbitrary chunk
as part of a tagging task. On the rule-based
approaches, Bourigaut(1992) used some
heuristics and a grammar to extract
“ terminology noun phrases” from French text.
Voutilainen(1993) used similar method to detect
English noun phrases. Kupiec(1993) applied
finite state transducer in his noun phrases
recogniser for both English and French.
Ramshaw and Marcus(1995) used
transformation-based learning, an error-driven
learning technique introduced by Eric
Brill(1993), to locate chunks in the tagged
corpus. Grefenstette(1996) applied finite state
transducers to find noun phrases and verb
phrases.

In this paper, we will focus on statistics-
based methods. The structure of this paper is as
follows : In section 1, we will briefly describe
the new error-driven HMM-based chunk tagger
with context-dependent lexicon in principle. In
section 2, a baseline system which only includes
the current part-of-speech in the lexicon is
given. In section 3, several extended systems
with different context-dependent lexicons are
described. In section 4, an error-driven learning
method is used to decrease memory requirement
of the lexicon by keeping only positive lexical



entries and make it possible to further improve
the accuracy by merging different context-
dependent lexicons into one after automatic
analysis of the chunking errors. Finally, the
conclusion is given.

The data used for all our experiments is
extracted from the PENN WSJ Treebank
(Marcus et al. 1993) by the program provided
by Sabine Buchholz from Tilbug University.
We use sections 00-19 as the training data and
20-24 as test data. Therefore, the performance is
on large scale task instead of small scale task on
CoNLL-2000 with the same evaluation
program.

 For evaluation of our results, we use the
precision and recall measures. Precision is the
percentage of predicted chunks that are actually
correct while the recall is the percentage of
correct chunks that are actually found. For
convenient comparisons of only one value, we
also list the 1=βF  value(Rijsbergen 1979) :
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1 HMM-based Chunk Tagger

The idea of using statistics for chunking goes
back to Church(1988), who used corpus
frequencies to determine the boundaries of
simple non-recursive noun phrases. Skut and
Brants(1998) modified Church’s approach in a
way permitting efficient and reliable recognition
of structures of limited depth and encoded the
structure in such a way that it can be recognised
by a Viterbi tagger. This makes the process run
in time linear to the length of the input string.

Our approach follows Skut and Brants’ way
by employing HMM-based tagging method to
model the chunking process.

Given a token sequence n
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The second item in the above equation is the
mutual information between the tag sequence

nT1  and the given token sequence nG1 . By
assuming that the mutual information between

nG1  and nT1  is equal to the summation of mutual

information between nG1  and the individual tag
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The first item of above equation can be
solved by using chain rules. Normally, each tag
is assumed to be probabilistic dependent on the
N-1 previous tags. Here, backoff bigram(N=2)
model is used. The second item is the
summation of log probabili ties of all the tags.
Both the first item and second item correspond
to the language model component of the tagger
while the third item corresponds to the lexicon
component of the tagger. Ideally the third item
can be estimated by using the forward-backward
algorithm(Rabiner 1989) recursively for the
first-order(Rabiner 1989) or second-order
HMMs(Watson and Chunk 1992). However,
several approximations on it will be attempted
later in this paper instead. The stochastic
optimal tag sequence can be found by
maxmizing the above equation over all the
possible tag sequences. This is implemented by
the Viterbi algorithm.

The main difference between our tagger and
other standard taggers lies in our tagger has a
context-dependent lexicon while others use a
context-independent lexicon.

For chunk tagger, we have ii wpg =1  where

n
n wwwW �

211 =  is the word sequence and

n
n pppp �

211 =  is the part-of-speech



sequence. Here, we use structural tags to
representing chunking(bracketing and labelling)
structure. The basic idea of representing the
structural tags is similar to Skut and
Brants(1998) and the structural tag consists of
three parts:

1) Structural relation. The basic idea is simple:
structures of limited depth are encoded using a
finite number of f lags. Given a sequence of
input tokens(here, the word and part-of-speech
pairs), we consider the structural relation
between the previous input token and the
current one. For the recognition of chunks, it is
sufficient to distinguish the following four
different structural relations which uniquely
identify the sub-structures of depth 1(Skut and
Brants used seven different structural relations
to identify the sub-structures of depth 2).

00 the current input token and the previous one
have the same parent

90 one ancestor of the current input token and
the previous input token have the same parent

09 the current input token and one ancestor of
the previous input token have the same parent

99 one ancestor of the current input token and
one ancestor of the previous input token have
the same parent

For example, in the following chunk tagged
sentence(NULL represents the beginning and
end of the sentence):

NULL [NP He/PRP] [VP reckons/VBZ] [ NP
the/DT current/JJ account/NN deficit/NN] [VP
wil l/MD narrow/VB] [PP to/TO] [NP only/RB
#/# 1.8/CD billion/CD] [PP in/IN] [NP
September/NNP] [O ./.] NULL

the corresponding structural relations between
two adjacent input tokens are:

90(NULL He/PRP)
99(He/PRP reckons/VBZ)
99(reckons/VBZ the/DT)
00(the/DT current/JJ)
00(current/JJ account/NN)
00(account/NN deficit/NN)
99(deficit/NN will/MD)
00(will/MD narrow/VB)
99(narrow/VB to/TO)
99(to/TO only/RB)
00(only/RB #/#)

00(#/# 1.8/CD)
00(1.8/CD billion/CD)
99(bil lion/CD in/IN)
99(in/IN september/NNP)
99(september/NNP ./.)
09(./. NULL)

Compared with the B-Chunk and I-Chunk
used in Ramshaw and Marcus(1995), structural
relations 99 and 90 correspond to B-Chunk
which represents the first word of the chunk,
and structural relations 00 and 09 correspond to
I-Chunk which represnts each other in the chunk
while 90 also means the beginning of the
sentence and 09 means the end of the sentence.

2)Phrase category. This is used to identify the
phrase categories of input tokens.

3)Part-of-speech. Because of the limited
number of structural relations and phrase
categories, the part-of-speech is added into the
structural tag to represent more accurate models.

For the above chunk tagged sentence, the
structural tags for all the corresponding input
tokens are:

90_PRP_NP(He/PRP)
99_VBZ_VP(reckons/VBZ)
99_DT_NP(the/DT)
00_JJ_NP(current/JJ)
00_NN_NP(account/NN)
00_NN_NP(deficit/NN)
99_MD_VP(will/MD)
00_VB_VP(narrow/VB)
99_TO_PP(to/TO)
99_RB_NP(only/RB)
00_#_NP(#/#)
00_CD_NP(1.8/CD)
00_CD_NP(billion/CD)
99_IN_PP(in/IN)
99_NNP_NP(september/NNP)
99_._O(./.)

2 The Baseline System

As the baseline system, we assume

)/()/( 1 ii
n

i ptPGtP = . That is to say, only the
current part-of-speech is used as a lexical entry
to determine the current structural chunk tag.
Here, we define:

•  Φ  is the li st of lexical entries in the
chunking lexicon,



•  ||Φ  is the number of lexical entries(the size
of the chunking lexicon)

•  C  is the training data.

For the baseline system, we have :

•  Φ = },{ Cpp ii ∃ , where ip  is a part-of-

speech existing in the training data C

•  ||Φ =48 (the number of part-of-speech tags
in the training data).

Table 1 gives an overview of the results of
the chunking experiments. For convenience,
precision, recall and 1=βF  values are given

seperately for the chunk types NP, VP, ADJP,
ADVP and PP.

Type Precision Recall 1=βF

Overall 87.01 89.68 88.32
NP 90.02 90.50 90.26
VP 89.86 93.14 91.47
ADJP 70.94 63.84 67.20
ADVP 57.98 80.33 67.35
PP 85.95 96.62 90.97
Table 1 : Results of chunking experiments with
the lexical entry list : Φ= },{ Cpp ii ∃

3 Context-dependent Lexicons

In the last section, we only use current part-of-
speech as a lexical entry. In this section, we will
attempt to add more contextual information to
approximate )/( 1

n
i GtP . This can be done by

adding lexical entries with more contextual
information into the lexicon Φ . In the
following, we will discuss five context-
dependent lexicons which consider different
contextual information.

3.1 Context of current part-of-speech and
current word

Here, we assume:
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where

Φ= },{ Cwpwp iiii ∃ + },{ Cpp ii ∃  and ii wp  is a
part-of-speech and word pair existing in the
training data C .

In this case, the current part-of-speech and
word pair is also used as a lexical entry to
determine the current structural chunk tag and
we have a total of about 49563 lexical
entries( ||Φ =49563). Actually, the lexicon used
here can be regarded as context-independent.
The reason we discuss it in this section is to
distinguish it from the context-independent
lexicon used in the baseline system. Table 2
give an overview of the results of the chunking
experiments on the test data.

Type Precision Recall 1=βF

Overall 90.32 92.18 91.24
NP 90.75 92.14 91.44
VP 90.88 92.78 91.82
ADJP 76.01 70.00 72.88
ADVP 72.67 88.33 79.74
PP 94.96 96.48 95.71
Table 2 : Results of chunking experiments with
the lexical entry list :
Φ= },{ Cwpwp iiii ∃ + },{ Cpp ii ∃

Table 2 shows that incorporation of current
word information improves the overall 1=βF

value by 2.9%(especially for the ADJP, ADVP
and PP chunks), compared with Table 1 of the
baseline system which only uses current part-of-
speech information. This result suggests that
current word information plays a very important
role in determining the current chunk tag.

3.2 Context of previous part-of-speech and
current part-of-speech

Here, we assume :
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where

Φ= },{ 11 Cpppp iiii ∃−− + },{ Cpp ii ∃  and ii pp 1−

is a pair of previous part-of-speech and current
part-of-speech existing in the training data C .

In this case, the previous part-of-speech and
current part-of-speech pair is also used as a
lexical entry to determine the current structural
chunk tag and we have a total of about 1411
lexical entries( || Φ =1411). Table 3 give an
overview of the results of the chunking
experiments.



Type Precision Recall 1=βF

Overall 88.63 89.00 88.82
NP 90.77 91.18 90.97
VP 92.46 92.98 92.72
ADJP 74.93 60.13 66.72
ADVP 71.65 73.21 72.42
PP 87.28 91.80 89.49
Table 3: Results of chunking experiments with
the lexical entry list : Φ=

},{ 11 Cpppp iiii ∃−− + },{ Cpp ii ∃

Compared with Table 1 of the baseline
system, Table 3 shows that additional contextual
information of previous part-of-speech improves
the overall 1=βF  value by 0.5%. Especially,

1=βF  value for VP improves by 1.25%, which

indicates that previous part-of-speech
information has a important role in determining
the chunk type VP. Table 3 also shows that the
recall rate for chunk type ADJP decrease by
3.7%. It indicates that additional previous part-
of-speech information makes ADJP chunks
easier to merge with neibghbouring chunks.

3.3 Context of previous part-of-speech,
previous word and current part-of-speech

Here, we assume :
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where
Φ = },{ 1111 Cpwppwp iiiiii ∃−−−− + },{ Cpp ii ∃ ,

where iii pwp 11 −−  is a triple pattern existing in

the training corpus.
 In this case, the previous part-of-speech,

previous word and current part-of-speech triple
is also used as a lexical entry to determine the
current structural chunk tag and ||Φ =136164.

Table 4 gives the results of the chunking
experiments. Compared with Table 1 of the
baseline system, Table 4 shows that additional
136116 new lexical entries of format

iii pwp 11 −−  improves the overall 1=βF  value by

3.3%. Compared with Table 3 of the extended
system 2.2 which uses previous part-of-speech
and current part-of-speech as a lexical entry,
Table 4 shows that additional contextual
information of previous word improves the
overall 1=βF  value by 2.8%.

Type Precision Recall
1=βF

Overall 91.23 92.03 91.63
NP 92.89 93.85 93.37
VP 94.10 94.23 94.16
ADJP 79.83 69.01 74.03
ADVP 76.91 80.53 78.68
PP 90.41 94.77 92.53
Table 4 : Results of chunking experiments with
the lexical entry list :
Φ = },{ 1111 Cpwppwp iiiiii ∃−−−− + },{ Cpp ii ∃

3.4 Context of previous part-of-speech, current
part-of-speech and current word

Here, we assume :
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where
Φ = },{ 11 Cwppwpp iiiiii ∃−− + },{ Cpp ii ∃ ,

where iii wpp 1−  is a triple pattern existing in

the training and || Φ =131416.

Table 5 gives the results of the chunking
experiments.

Type Precision Recall
1=βF

Overall 92.67 93.43 93.05
NP 93.35 94.10 93.73
VP 93.05 94.30 93.67
ADJP 80.65 72.27 76.23
ADVP 78.92 84.48 81.60
PP 95.30 96.67 95.98
Table 5: Results of chunking experiments with
the lexical entry list :
Φ = },{ 11 Cwppwpp iiiiii ∃−− + },{ Cpp ii ∃

Compared with Table 2 of the extended
system which uses current part-of-speech and
current word as a lexical entry, Table 5 shows
that additional contextual information of
previous part-of-speech improves the overall

1=βF  value by 1.8%.

3.5 Context of previous part-of-speech,
previous word, current part-of-speech and
current word

Here, the context of previous part-of-speech,
current part-of-speech and current word is used
as a lexical entry to determine the current



structural chunk tag and Φ =
},{ 1111 Cwpwpwpwp iiiiiiii ∃−−−− + },{ Cpp ii ∃ ,

where iiii wpwp 11 −−  is a pattern existing in the

training corpus. Due to memory limitation, only
lexical entries which occurs more than 1 times
are kept. Out of 364365 possible lexical entries
existing in the training data, 98489 are kept(

||Φ =98489).
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Table 6 gives the results of the chunking
experiments.

Type Precision Recall
1=βF

Overall 92.28 93.04 92.66
NP 93.50 93.53 93.52
VP 92.62 94.07 93.35
ADJP 81.39 72.17 76.50
ADVP 75.09 86.23 80.27
PP 94.12 97.12 95.59
Table 6: Results of chunking experiments with
the lexical entry list : Φ =

},{ 1111 Cwpwpwpwp iiiiiiii ∃−−−− + },{ Cpp ii ∃

Compared with Table 2 of the extended
system which uses current part-of-speech and
current word as a lexical entry, Table 6 shows
that additional contextual information of
previous part-of-speech improves the overall

1=βF  value by 1.8%.

3.6 Conclusion

Above experiments shows that adding more
contextual information into lexicon significantly
improves the chunking accuracy. However, this
improvement is gained at the expense of a very
large lexicon and we find it difficult to merge all
the above context-dependent lexicons in a single
lexicon to further improve the chunking
accurracy because of memory limitation. In
order to reduce the size of lexicon effectively,
an error-driven learning approach is adopted to
examine the effectiveness of lexical entries and
make it possible to further improve the
chunking accuracy by merging all the above
context-dependent lexicons in a single lexicon.
This will be discussed in the next section.

4 Error-driven Learning

In section 2, we implement a baseline system
which only considers current part-of-speech as a
lexical entry to deterrmine the current chunk tag
while in section 3, we implement several
extended systems which take more contextual
information into consideration.

Here, we will examine the effectiveness of
lexical entries to reduce the size of lexicon and
make it possible to further improve the
chunking accuracy by merging several context-
dependent lexicons in a single lexicon.

For a new lexical entry ie , the effectiveness

)( ieFΦ  is measured by the reduction in error

which results from adding the lexical entry to
the lexicon : )()()( i

Error
i

Error
i eFeFeF ∆Φ+ΦΦΦ −= .

Here, )( i
Error eFΦ  is the chunking error number

of the lexical entry ie  for the old lexicon Φ
and )( i

Error eF ∆Φ+Φ  is the chunking error number of

the lexical entry ie  for the new lexicon

∆Φ+Φ  where ∆Φ∈ie ( ∆Φ  is the list of

new lexical entries added to the old lexicon Φ ).
If 0)( >Φ ieF , we define the lexical entry ie  as

positive for lexicon Φ . Otherwise, the lexical
entry ie  is negative for lexicon Φ .

Tables 7 and 8 give an overview of the
effectiveness distributions for different lexicons
applied in the extended systems, compared with
the lexicon applied in the baseline system, on
the test data and the training data, respectively.

Tables 7 and 8 show that only a minority of
lexical entries are positive. This indicates that
discarding non-positive lexical entries will
largely decrease the lexicon memory
requirement while keeping the chunking
accurracy.

Context Positive Negative Total

iiWPOS
1800 314 49515

iii POSPOS 1−
209 136 1363

iiii POSWPOS 11 −−
2876 229 136116

iiii WPOSPOS 1−
2895 193 131368

iiiii WPOSWPOS 11 −−
4083 155 98441

Table 7 : The effectiveness of lexical entries on
the test data



Context Positive Negative Total
iiWPOS 6724 719 49515

iii POSPOS 1− 357 196 1363
iiii POSWPOS 11 −− 13205 582 136116

iiii WPOSPOS 1− 14186 325 131368
iiiii WPOSWPOS 11 −− 15516 144 98441

Table 8 : The effectiveness of lexical entries on
the training data

Tables 9-13 give the performances of the
five error-driven systems which discard all the
non-positive lexical enrties on the training data.
Here, 'Φ  is the lexicon used in the baseline
system. 'Φ = },{ Cpp ii ∃  and ∆Φ =Φ - 'Φ . It

is found that 1=βF  values of error driven

systems for context of current part-of-speech
and word pair and for context of previous part-
of-speech and current part-of-speech increase by
1.2% and 0.6%. Although 1=βF  values for other

three cases slightly decrease by 0.02%, 0.02%
and 0.19%, the sizes of lexicons have been
greatly reduced by 85% to 97%.

Type Precision Recall
1=βF

Overall 91.69 93.28 92.48
NP 92.64 93.48 93.06
VP 92.16 93.66 92.90
ADJP 78.39 71.69 74.89
ADVP 73.66 87.80 80.11
PP 95.18 97.38 96.27
Table 9 : Results of chunking experiments with
error-driven lexicon : Φ =

}0)(&,{ ' >∃ Φ iiiiii wpFCwpwp + },{ Cpp ii ∃

Type Precision Recall
1=βF

Overall 88.68 90.28 89.47
NP 90.61 91.57 91.08
VP 91.80 94.08 92.90
ADJP 72.20 62.72 67.13
ADVP 70.53 78.90 74.48
PP 86.55 96.34 91.19
Table 10: Results of chunking experiments
with error-driven lexicon : Φ =

}0)(&,{ 1'11 >∃ −Φ−− iiiiii ppFCpppp

+ },{ Cpp ii ∃

Type Precision Recall
1=βF

Overall 91.02 92.21 91.61
NP 92.36 93.69 93.02
VP 93.68 94.94 94.30
ADJP 78.28 71.46 74.71
ADVP 76.77 81.79 79.20
PP 90.67 95.37 92.96
Table 11 : Results of chunking experiments
with error-driven lexicon : Φ =

}0)(&,{ 11'1111 >∃ −−Φ−−−− iiiiiiiii pwpFCpwppwp

+ },{ Cpp ii ∃

Type Precision Recall
1=βF

Overall 92.84 93.21 93.03
NP 93.35 93.65 93.50
VP 93.97 94.67 94.32
ADJP 79.49 72.94 76.07
ADVP 79.47 85.91 82.57
PP 95.19 96.29 95.74
Table 12: Results of chunking experiments
with error-driven lexicon : Φ =

}0)(&,{ 1'11 >∃ −Φ−− iiiiiiiii wppFCwppwpp

+ },{ Cpp ii ∃

Type Precision Recall
1=βF

Overall 91.99 92.95 92.47
NP 93.35 93.39 93.37
VP 92.89 94.36 93.62
ADJP 80.01 71.70 75.63
ADVP 73.40 87.32 79.76
PP 93.42 97.33 95.33
Table 13: Results of chunking experiments
with error-driven lexicon : Φ =

}0)(&
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After discussing the five context-dependent
lexicons separately, now we explore the
merging of context-dependent lexicons by
assuming :

Φ =
}0)(&

,{

11'

1111

>
∃

−−Φ

−−−−

iiii

iiiiiiii

wpwpF

Cwpwpwpwp

+ }0)(&,{ 1'11 >∃ −Φ−− iiiiiiiii wppFCwppwpp

+ }0)(&,{ 11'1111 >∃ −−Φ−−−− iiiiiiiii pwpFCpwppwp

+ }0)(&,{ 1'11 >∃ −Φ−− iiiiiii ppFCpppp

+ }0)(&,{ ' >∃ Φ iiiiii wpFCwpwp + },{ Cpp ii ∃



and )/( 1
n

i GtP  is approximated by the following
order :
1. if iiii wpwp 11 −− ∈ Φ ,

)/()/( 111 iiiii
n

i wpwptPGtP −−=
2. if iii wpp 1− ∈ Φ ,

)/()/( 111 iiiii
n

i wpwptPGtP −−=
3. if iii pwp 11 −− ∈ Φ ,

)/()/( 111 iiii
n

i pwptPGtP −−=
4. if ii wp ∈ Φ , )/()/( 1 iii

n
i wptPGtP =

5. if ii pp 1− ∈ Φ , )/()/( 11 iii
n

i pptPGtP −=

6. )/()/( 11 iii
n

i pptPGtP −=

Table 14 gives an overview of the chunking
experiments using the above assumption. It
shows that the 1=βF  value for the merged

context-dependent lexicon inreases to 93.68%.
For a comparison, the 1=βF  value is 93.30%

when all the possible lexical entries are included
in Φ (Due to memory limitation, only the top
150000 mostly occurred lexical entries are
included).

Type Precision Recall
1=βF

Overall 93.40 93.95 93.68
NP 93.60 94.64 94.12
VP 94.64 94.75 94.70
ADJP 77.12 74.55 75.81
ADVP 82.39 83.80 83.09
PP 96.61 96.63 96.62
Table 14: Results of chunking experiments
with the merged context-dependent lexicon

For the relationship between the training
corpus size and error driven learning
performance, Table 15 shows that the
performance of error-driven learning improves
stably when the training corpus size increases.
Training Sections ||Φ Accuracy FB1

0-1 14384 94.78% 91.95
0-3 24507 95.19% 92.51
0-5 32316 95.28% 92.77
0-7 38286 95.41% 93.00
0-9 39876 95.53% 93.12
0-11 43372 95.65% 93.31
0-13 46029 95.62% 93.29
0-15 47901 95.66% 93.34
0-17 48813 95.74% 93.41
0-19 49988 95.92% 93.68

Table 15: The performance of error-driven
learning with different training corpus size

For comparison with other chunk taggers,
we also evaluate our chunk tagger with the
merged context-dependent lexicon by cross-
validation on all 25 partitions of the PENN WSJ
TreeBank. Table 16 gives an overview of such
chunking experiments.

Type Precision Recall
1=βF

Overall 96.40 96.47 96.44
NP 96.49 96.99 96.74
VP 97.13 97.36 97.25
ADJP 89.92 88.15 89.03
ADVP 91.52 87.57 89.50
PP 97.13 97.36 97.25
Table 16: Results of 25-fold cross-validation
chunking experiments with the merged
context-dependent lexicon

Tables 14 and 16 shows that our new chunk
tagger greatly outperforms other reported chunk
taggers on the same training data and test data
by 2%~3%.(Buchholz S., Veenstra J. and
Daelmans W.(1999), Ramshaw L.A. and
Marcus M.P.(1995), Daelemans W., Buchholz
S. and Veenstra J.(1999), and Veenstra
J.(1999)).

Conclusion

This paper proposes a new error-driven HMM-
based chunk tagger with context-dependent
lexicon. Compared with standard HMM-based
tagger, this new tagger uses a new Hidden
Markov Modell ing approach which incorporates
more contextual information into a lexical entry
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Moreover, an error-driven learning approach is
adopted to drease the memeory requirement and
further improve the accuracy by including more
context-dependent information into lexicon.

It is found that our new chunk tagger
singnificantly outperforms other reported chunk
taggers on the same training data and test data.

For future work, we will explore the
effectivessness of considering even more
contextual information on approximation of

)|( 11
nn GTP  by using the forward-backward

algorithm(Rabiner 1989) while currently we
only consider the contextual information of
current location and previous location.
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