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Abstract

This paper proposes a new error-driven HMM-
based text chunk tagger with context-dependent
lexicon. Compared with standard HMM-based
tagger, this tagger uses a new Hidden Markov
Modelling approadh which incorporates more
contextual information into a lexica entry.
Moreover, an error-driven learning approach is
adopted to decrease the memory requirement by
keguing mly positive lexica entries and makes
it possible to further incorporate more wntext-
dependent lexical entries. Experiments dhow
that this tedhnique ahieves overall precision
and recall rates of 93.40% and 9395% for all
chunk types, 93.80% and 9464% for noun
phrases, and 9464% and A.75% for verb
phrases when trained on PENN WSJ TreeBank
sedion 0019 and tested on sedion 20-24, while
25-fold validation experiments of PENN WSJ
TreeBank show overall predsion and recall
rates of 96.40% and 9647% for al chunk types,
96.490 and 9%6.99% for nown phrases, and
97.13% and 97.36% for verb phrases.

I ntroduction

Text churking is to dvide sentences into nan-
overlapping segments on the basis of fairly
superficial analysis. Abney(1991) proposed this
as a useful and relatively tractable precursor to
full parsing, since it provides a foundation for
further levels of anaysis, while till allowing
more @mplex attachment decisions to be
postponed to alater phase.

Text churking typicdly relies on fairly
simple and efficient processing agorithms.
Recently, many researchers have looked at text
chunkng in two different ways. Some
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researchers have agplied rule-based methods,
combining lexical data with finite state or other
rule constraints, while others have worked on
induwcing statistical models either directly from
the words and/or from automatically assigned
part-of-speech classes. On the statistics-based
approadhes, Skut and Brants(1998) proposed a
HMM -based approach to recognise the syntactic
structures of limited length. Buchholz, Veenstra
and Dademans(1999), and Veestra(19®)
explored memory-based learning methodto find
labelled chunks. Ratnaparkhi(1998) used
maximum entropy to recognise arbitrary chunk
as part of a tagging task. On the rule-based
approadies, Bourigaut(199) used some
heuristics and a grammar to extract
“terminology noun phrases’ from French text.
Voutilainen(199) used similar methodto detect
Engish naun phrases. Kupieq1993) applied
finite state transducer in his noun phases
remgniser for both English and French.
Ramshaw and Marcus(199%) used
transformation-based learning, an error-driven
learning technique introduced by Eric
Brill(1993, to locate chunks in the tagged
corpus. Grefenstette(1996) applied finite state
transducers to find nouwn phrases and werb
phrases.

In this paper, we will focus on statistics-
based methods. The structure of this paper is as
follows: In section 1, we will briefly describe
the new error-driven HMM -based chunk tagger
with context-dependent lexicon in principle. In
sedion 2,a basdline system which only includes
the current part-of-speech in the lexicon is
given. In section 3, several extended systems
with different context-dependent lexicons are
described. In section 4,an error-driven learning
methodis used to decrease memory requirement
of the lexicon by kegping anly positive lexica



entries and make it possible to further improve
the accuracy by merging dfferent context-
dependent lexicons into one after automatic
analysis of the dcurking errors. Findly, the
conclusionis given.

The data used for al our experiments is
extracted from the PENN WSJ Treebank
(Marcus et a. 199) by the program provided
by Sabine Buchhdz from Tilbug University.
We use sections 00-19 as the training data and
20-24 as test data. Therefore, the performanceis
onlarge scale task instead of small scae task on
CoNLL-2000 with the same evauation
program.

For evaluation of our results, we use the
precision and recall measures. Precision is the
percentage of predicted chunks that are actualy
correct while the recl is the percentage of
correct chunks that are &tually found. For
convenient comparisons of only one value, we

dso list the Fp., value(Rijsbergen 1979 :
(B? +1) Cprecisiontecall
B? [hrecision+ recall

,with g =1.

1 HMM-based Chunk Tagger

The idea of using gtatistics for churking gaes
bak to Church(1988, who wed corpus
frequencies to determine the boundaries of
simple non-recursive noun phrases. Skut and
Brants(1998) modified Church’'s approad in a
way permitting efficient and reliable recognition
of structures of limited depth and encoded the
structure in such away that it can be recognised
by a Viterbi tagger. This makes the processrun
in time linear to the length of the input string.

Our approach follows Skut and Brants' way
by employing HMM-based tagging method to
modd the chunking process

Given a token sequence G; =g,0,++0,,
the goal is to find a stochastic optimal tag
sequence T =tjt,-t, which maximizes

logP(T," | GY) :

n n n P(T1n1Gln)
logP G)=logP +log———————
gP(T," 1G;) gP(T") gP(Tln)EP(Gln)

The seconditem in the aove equationisthe
mutual information between the tag sequence

T" and the given token sequence G;'. By
asauming that the mutual information between
G/ and T," isequal to the summation of mutual

information between G;' and the individual tag
t(l<i<n):
P™T", G/ L P(t;,G/
g (nrl1 l)n :Zlog (|1 l)n
PMH)IPG) &  P)PG)

or
MI(T,G)= Y MI(t,,G])
i=1

we have:

logP(T," | G/')

=logP(y) + 3 log o Mt

=logP(T) - 3 logP(t) + Y logP(t, 1GI)

The firg item of above euation can be
solved by using chain rules. Normally, each tag
is asaumed to be probabilistic dependent on the
N-1 previous tags. Here, badkoff bigram(N=2)
model is used. The second item is the
summation of log probabilities of all the tags.
Both the first item and second item correspond
to the language model component of the tagger
while the third item corresponds to the lexicon
component of the tagger. Ideally the third item
can be estimated by using the forward-badkward
algorithm(Rabiner 1989) reaursively for the
first-order(Rabiner 1989) or second-order
HMMs(Watson and Chunk 192). However,
several approximations on it will be dtempted
later in this paper instead. The stochastic
optimal tag sequence can be found by
maxmizing the &ove euation over al the
possible tag sequences. This is implemented by
the Viterbi algorithm.

The main difference between ou tagger and
other standard taggers lies in our tagger has a
context-dependent lexicon while others use a
context-independent lexicon.

For chunk tagger, we haveg, = p;w, where
W" =w,w, ««w,, is the word sequence ad

Pl = PP,==P, is the part-of-speech



sequence. Here, we use structural tags to
representing chunking(bradeting and labelling)
structure. The basic idea of representing the
structural  tags is Smilar to Skut and
Brants(1998) and the structural tag consists of
three parts:

1) Srructural relation. The basic ideais smple:
structures of limited depth are encoded using a
finite number of flags. Given a sequence of
input tokens(here, the word and part-of-speech
pairs), we nsider the structural relation
between the previous input token and the
current one. For the recognition of churks, it is
sufficient to dstinguish the following four
different structural relations which uwniquely
identify the sub-structures of depth 1(Skut and
Brants used seven different structural relations
to identify the sub-structures of depth 2).

00 the aurrent input token and the previous one
have the same parent

90 ore ancestor of the current input token and
the previous input token have the same parent

09 the aurrent input token and ore ancestor of
the previous input token have the same parent

99 ore ancestor of the current input token and
one ancestor of the previous input token have
the same parent

For example, in the following chunk tagged
sentence(NULL represents the beginning and
end d the sentence):

NULL [NP He/PRP] [VP reckonsVBZ] [ NP
the/DT current/JJ account/NN deficit/NN] [VP
will/MD narrow/VB] [PP to/TO] [NP only/RB
## 18/CD hillion/CD] [PP in/IN] [NP
September/NNP] [O ./.] NULL

the corresponding structural relations between
two adjacent input tokens are:

90(NULL He/PRP)
99(He/PRP reckons/'VBZ)
99 (reckons/VBZ the/DT)
00(the/DT current/JJ)
00(current/JJaccourt/NN)
00(account/NN deficit/NN)
9X(deficit/NN will/MD)
0O(will/MD narrow/VB)
99(narrow/VB ta/TO)
99(to/TO only/RB)
00(only/RB #/#)

00(#/# 18/CD)
00(1.8/CD hillion/CD)
99Y(billion/CD in/IN)
99(in/IN september/NNP)
99(september/NNP ./.)
09(./. NULL)

Compared with the B-Chunk and I-Chunk
used in Ramshaw and Marcus(199%), structural
relations 99 and 90 correspond to B-Chunk
which represents the first word of the dcunk
and structural relations 00 and 09correspondto
I-Churk which represnts each other in the chunk
while 90 aso means the beginning of the
sentence and M means the end of the sentence

2)Phrase ategory. This is used to identify the
phrase ctegories of input tokens.

3)Part-of-speech. Because of the limited
number of structural rdations and plrase
caegories, the part-of-speech is added into the
structural tag to represent more acurate models.

For the @ove dunk tagged sentence the
structura tags for al the arresponding input
tokens are:

90_PRP_NP(He/PRP)

99 VBZ_ VP(reckons/\VVBZ)
99 DT_NP(the/DT)
00_JJ NP(current/JJ)
00_NN_NP(accourt/NN)
00_NN_NP(deficit/NN)
99 MD_VP(will/MD)
00 _VB_VP(narrow/VB)

99 TO_PRto/TO)

99 RB_NP(only/RB)
00_# NP(#/#)

00 _CD_NP(1.8/CD)
00_CD_NP(hillion/CD)
99 IN_PRin/IN)

99 _NNP_NP(september/NNP)
99_.. O(./.)

2 TheBasdine System

As the basdine system, we asume
P(t, /G)=P(t;/ p;). That is to say, only the
current part-of-speech is used as a lexical entry

to determine the arrent structural chunk tag.
Here, we define:

e @ is the list of lexicd entries in the
chunking lexicon,



e |®| isthe number of lexicd entries(the size
of the chunking lexicon)

e C isthetraining cata
For the baseline system, we have :

« ®={p,pC}, where p, is a part-of-
speech existingin the training data C

e | |=48 (the number of part-of-speech tags
in the training deta).

In this case, the aurrent part-of-speech and
word pair is also used as a lexicd entry to
determine the current structura chunk tag and
we have a tota of about 4953 lexical
entries(| @ |=49563). Actualy, the lexicon used

here can be regarded as context-independent.
The reason we discuss it in this ction is to
distinguish it from the ntext-independent
lexicon used in the basdline system. Table 2
give an owerview of the results of the chunking
experiments onthe test data.

Table 1 gves an overview of the results of | TYPe Precision | Recdl Fpa

the churking experiments. For convenience, | Qverall 90.32 92.18 91.24
precison, recl and F, values are given NP 90.75 92.14 91.44
seperately for the dhunk types NP, VP, ADJP, VP 90.88 92.78 91.82
ADVP and PP. ADJP 76.01 70.00 72.88
T Precison | Recdl ADVP 72.67 88.33 79.74

ype easion | Rec Fpa1 PP 94.96 | 96.48 | 9571
Overall 87.01 89.68 88.32 Table 2 : Results of chunking experiments with
NP 90.02 90.50 90.26 the lexica entry list:
VP 89.86 93.14 91.47 ®={pw, pwC}+{p;, p,[C}
ADJP 70.94 63.84 67.20
ADVP | 57.98 80.33 67.35 Table 2 shows that incorporation of current
PP 85.95 9_6-62 | 90.97 i word information improves the overdl Fﬂ:l
Table 1 : Results of chunking experiments with ,
the lexical entry list : ®={p,, p,[IC} value by 29%(espedally for _the ADJP, ADVP

o and PP chunks), compared with Table 1 of the

3  Context-dependent L exicons

In the last section, we only use current part-of-
speech as alexicd entry. In this section, we will
attempt to add more mntextual information to

approximate P(t, /G['). This can be dore by

adding lexical entries with more ntextua
information into the lexicon ®. In the
following, we will discuss five context-
dependent lexicons which consider different
contextual information.

3.1 Context of current part-of-speech and
current word

Here, we ssume:

t./ pw w0 P
P(ti/Gln)ng(. Pw)  PW
OoPt/p) pwO®d

where

®={pw, pwC}+{p;, pC} and pw isa
part-of-speech and word pair existing in the
training ceta C .

baseli ne system which only uses current part-of-
speech information. This result suggests that
current word information gays a very important
rolein determining the aurrent chunk tag.

3.2 Context of previous part-of-speech and
current part-of-speech

Here, we asaume:

P(t, /G])

_ [Pt/ piap) Pap O
0O Pt /p) PP U®

where

®={p,p,., PP CH+{p;, p[C} and p4p,
is a pair of previous part-of-speech and current
part-of-speech existingin the training data C .

In this case, the previous part-of-speech and
current part-of-speech pair is aso used as a
lexical entry to determine the aurrent structural
chunk tag and we have atotal of abou 1411
lexical entries(| ® |=1411). Table 3 give an

overview of the results of the dwurking
experiments.



Type Precision | Recdl Fpa
Overal 88.63 89.00 88.82
NP 90.77 91.18 90.97
VP 92.46 92.98 92.72
ADJP 74.93 60.13 66.72
ADVP 71.65 73.21 72.42
PP 87.28 91.80 89.49
Table 3: Results of chunking experiments with
the lexical entry list: o=
{Pi-1Pi. Py P} +{Pi, P EC)

Compared with Table 1 o the basdline
system, Table 3 shows that additional contextual
information of previous part-of-speech improves
the overal F,_, value by 0.5%. Espedaly,

Fs.. value for VP improves by 125%, which

indicates that  previous  part-of-speech
information has a important role in determining
the chunktype VP. Table 3 also shows that the
recl rate for chunk type ADJP decrease by
3.™0. It indicates that additional previous part-
of-speech information makes ADJP chunks
easier to merge with neibghbauring churks.

3.3 Context of previous part-of-speech,
previous word and current part-of-speech

Here, we ssume:

Pt /G,)

_ gb(ti I PiaWiy ) PigWi, p O®
O Pt/p) P Wi, p U

where

O ={p WP, oW, P OCHH{ P, P ICY
where p,_w_ p, is atriple pattern existing in
the training corpus.

In this case, the previous part-of-speech,
previous word and current part-of-speech triple
is aso used as a lexical entry to determine the
current structural chunktag and | ® |=136164.

Table 4 gves the results of the dunking
experiments. Compared with Table 1 of the
baseline system, Table 4 shows that additional
136116 new lexical entries of format
P,_;W,_; P, improves the overall FB:l value by

3.3%. Compared with Table 3 of the extended
system 2.2 which uses previous part-of-speech
and current part-of-speech as a lexical entry,
Table 4 shows that additional contextual
information of previous word improves the

overall Fle value by 2.8%.

Type Precision | Recdl Fﬂ:l
Overdl 91.23 92.03 91.63
NP 92.89 93.85 93.37
VP 94.10 94.23 94.16
ADJP 79.83 69.01 74.03
ADVP 76.91 80.53 78.68
PP 90.41 94.77 92.53
Table 4 : Results of chunking experiments with
the lexical entry list:
D ={p_ W p,PpW_pCH+{p;, pC}

3.4 Context of previous part-of-speech, current
part-of-speech and current word

Here, we ssume:

Pt /Gy)

_ Pt/ Py W) piypw, OP
o P /p) P Pyw, U

where

®={p_,pW, p,pwWCH+{p;, pLC},
where p,_,p;W, is a triple pattern existing in
thetrainingand | P |=131416.

Table 5 gves the results of the dunking
experiments.

Type Precision | Recdl Foa
Overdl 92.67 93.43 93.05
NP 93.35 94.10 93.73
VP 93.05 94.30 93.67
ADJP 80.65 72.27 76.23
ADVP 78.92 84.48 81.60
PP 95.30 96.67 95.98
Table 5: Results of chunking experiments with
the lexical entry list:
P={p,_, P, P, pwC}H+{p;, B}

Compared with Table 2 of the extended
system which uses current part-of-speech and
current word as a lexical entry, Table 5 shows
that additiona contextual information d
previous part-of-speech improves the overal

F;., valueby 18%.

35 Context of previous part-of-speech,
previous word, current part-of-speech and
current word

Here, the context of previous part-of-speech,
current part-of-speech and current word is used
as a lexicd entry to determine the arrent



structural chunk tag and o=
{PWo, pW, pW, W ECH+{ Py, p CCY
where p,_,w._, p,w, is a pattern existing in the
training corpus. Due to memory limitation, aly
lexical entries which occurs more than 1 times
are kept. Out of 364365 passible lexical entries
exigting in the training cata, 98489 are kept(
| P |=9843).

P(,/GY)
- P/ pWoPW,)  PoW_,pw P
0 PG/P)  pwLpw OO

Table 6 gves the results of the dunking
experiments.

Type Precision | Recdl Foa
Overal 92.28 93.04 92.66
NP 93.50 93.53 93.52
VP 92.62 94.07 93.35
ADJP 81.39 72.17 76.50
ADVP 75.09 86.23 80.27
PP 94.12 97.12 95.59
Table 6: Results of chunking experiments with
the lexica entry list: o=
{P W, PW, PW, W ECH+H{ P, P CY

Compared with Table 2 o the extended
system which uses current part-of-speech and
current word as a lexical entry, Table 6 shows
that additional contextual information d
previous part-of-speech improves the overal

F;, valueby 18%.

3.6 Conclusion

Above eperiments dhows that adding more
contextual information into lexicon significantly
improves the dunking accuracy. However, this
improvement is gained at the expense of a very
large lexicon and we find it difficult to merge all
the above mntext-dependent lexiconsin asingle
lexicon to further improve the churking
acaurracy because of memory limitation. In
order to reduce the size of lexicon effectively,
an error-driven leaning approach is adopted to
examine the effectivenessof lexicd entries and
make it possible to further improve the
chunkng accuracy by merging al the aove
context-dependent lexicons in a single lexicon.
Thiswill be discussed in the next section.

4 Error-driven Learning

In section 2, we implement a basdline system
which only considers current part-of-speech as a
lexical entry to deterrmine the current chunk tag
while in section 3, we implement severa
extended systems which take more cntextual
informationinto consideration.

Here, we will examine the effectiveness of
lexical entries to reduce the size of lexicon and
make it possible to further improve the
chunking accuracy by merging severa context-
dependent lexiconsin asingle lexicon.

For anew lexical entry €, the effediveness
F,(e) is measured by the reduction in error
which results from adding the lexical entry to
the lexicon: Fy (€) = Fo™ (€) ~ Forpo (6)
Here, F."™ () is the churking error number

of the lexicd entry € for the old lexicon ®

and F..i% (8) isthe chunking error number of

the lexica entry € for the new lexicon

®+AP where € UAD (AP is the list of

new lexical entries added to the old lexicon @).
If F,(e)>0,wedefinethelexica entry € as

pasitive for lexicon @ . Otherwise, the lexicd
entry € isnegativefor lexicon @.

Tables 7 and 8 give an owrview of the
effediveness distributions for diff erent lexicons
applied in the extended systems, compared with
the lexicon applied in the baseline system, on
the test data and the training ceta, respectively.

Tables 7 and 8 show that only a minority of
lexical entries are paositive. This indicates that
discarding non-positive lexicd entries will

largely decrease the lexicon memory
requirement while keeing the dwurking
acairracy.

Context Positive | Negative | Total
noo 1800 314 | 49515
nnnnnnn 209 136| 1363
e at Do 2876 229 136116
nnnnnnnnnn 2895 193] 131368
e bt Dcns 4083 155| 98441
Table 7 : The dfectivenessof lexica entries on
the test data




Context Positive | Negative | Total
POSW, 6724 719| 49515
POS_,POS, 357 196 1363
POS_W_,POS, 13205 582 | 136116
POS_,POSW, 14186 325| 131368
POS_W,_,POSW, 15516 144 98441
Table 8 : The dfectivenessof lexica entries on
thetraining dcita

Tables 9-13 gve the performances of the
five error-driven systems which discard al the
nortpositive lexicd enrties on the training data.
Here, @' is the lexicon used in the basdine

system. ®'={p,, p,[C} and AP =P -P". It
is found that F,, values of error driven

systems for context of current part-of-speech
and word pair and for context of previous part-
of-gpeech and current part-of-speech increase by

1.2% and 06%. Although Foa values for other
three ases dightly decrease by 0.(2%, 0.(2%

and 0.19%, the sizes of lexicons have bee
greatly reduced by 85% to 97%.

Type Precision | Recdl Foa
Overal 91.02 92.21 91.61
NP 92.36 93.69 93.02
VP 93.68 94.94 94.30
ADJP 78.28 71.46 74.71
ADVP 76.77 81.79 79.20
PP 90.67 95.37 92.96

Table 11: Results of churking experiments
with error-driven lexicon: b=

{pPaW P, PaW P LC & Fo. (p4Wo ;) > 0}

+{ p;, p;[C}

Type Precision | Recdl Foa
Overdl 92.84 93.21 93.03
NP 93.35 93.65 93.50
VP 93.97 94.67 94.32
ADJP 79.49 72.94 76.07
ADVP 79.47 85.91 82.57
PP 95.19 96.29 95.74

Table 12 Results of churking experiments

Type Precision | Recdl Foa with error-driven lexicon : b=
Overa” 9169 9328 9248 {pi—lpi\Ni’ pi—lpiWiEC& F<D'(pi—lpiwi)>o}
NP 92.64 | 93.48 | 93.06 +{p, pC}
VP 92.16 93.66 92.90
ADJP 78.39 71.69 74.89 Type Precison | Recdl =
ADVP 73.66 87.80 80.11 p=1
PP 95.18 | 97.38 | 96.27 (ND‘F’)efa” gé-gg gg-gg gg-g
Table 9 : Results of chunking experiments with VP 92-89 94.36 93.62
error-driven lexicon: ®= ADJP 80.01 71.70 75.63
{pw,, pw,C& F,.(pw) >0 +{ p;, p,[C} ADVP | 73.40 87.32 79.76
PP 93.42 97.33 95.33

Type Precision | Recdl Foa

Overall 88.68 90.28 89.47
NP 90.61 91.57 91.08
VP 91.80 94.08 92.90
ADJP 72.20 62.72 67.13
ADVP 70.53 78.90 74.48
PP 86.55 96.34 91.19

Table 10: Results of churking experiments
with error-driven lexicon : b=

{pap,pPupC&Fu(p,p)>0
+{ P B [c}

Table 13 Results of churking experiments
with error-driven lexicon : b=

{PaW P W, P Wiy PW, m_,.{ p., p.CC}
& Fo. (p4Wi pw,) >0} o

After discussing the five antext-dependent
lexicons separately, nov we eplore the
merging of context-dependent lexicons by
asaming :

0 _{PiaWio W, Py Wiy W, LC

& Fo (oW piw; ) > 0}

HpiaPWi, P W EC & Fo (P piW;) > 0
HPiaWi P PaWio B TC & Fo (Wi ) > O
H{ PPy PP LC & Fo (piy pi) > 6

Hpw, pwC& Fo (pw) >0 +{p;, p,IC}



and P(t, /G]') isapproximated by the following
order :
1. if pyw,pw U ®,

Pt, /G )=P(t; / p;_1W;_;p;W;)
2. if popw OP,

Pt, /G )=P(t; / p;_ W;_;p;W;)
3. if pw_,p 0P,
Pt /Gy) =P(t; / p_yWi1p;)
if pw O®, Pt /G)=P(t; / pw;)
if p,p0®, Pt /G') =Pt /p.p;)
Pt /G)=P(t / p,1p;)

o

Table 14 gves an owerview of the dhunking
experiments using the @owve assumption. It

shows that the F,, value for the merged

context-dependent lexicon inreases to 93.@%.
For a comparison, the Fﬁ:1 value is 93.30%

when all the possible lexical entries are included
in ® (Due to memory limitation, orly the top
150000 mostly occurred lexical entries are
included).

Type Precision | Recdl Foa
Overal 93.40 93.95 93.68
NP 93.60 94.64 94.12
VP 94.64 94.75 94.70
ADJP 77.12 74.55 75.81
ADVP 82.39 83.80 83.09
PP 96.61 96.63 96.62
Table 14: Results of churking experiments
with the merged context-dependent Iexicon

For the relationship between the training
corpus size ad eror driven leaning
performance, Table 15 shows that the
performance of error-driven leaning improves
stably when the training corpus Sze increases.

For comparison with other chunk taggers,
we dso evauate our chunk tagger with the
merged context-dependent lexicon by cross-
validation onall 25 partitions of the PENN WSJ
TreeBank. Table 16 gves an overview of such
chunking experiments.

Type Precision | Recdl Foa
Overal 96.40 96.47 96.44
NP 96.49 96.99 96.74
VP 97.13 97.36 97.25
ADJP 89.92 88.15 89.03
ADVP 91.52 87.57 89.50
PP 97.13 97.36 97.25
Table 16: Results of 25-fold crossvalidation
chunking experiments with the merged
context-dependent lexicon

Training Sections |®| | Acauracy | FB1
0-1 14384 94.786 | 91.95
0-3 24507| 95.1%9% | 92.51
0-5 32316| 95.2846 | 92.77
0-7 38286 95.4%246 | 93.00
0-9 39876 95.530 | 93.12

0-11 43372 95.680 | 93.31
0-13 46029| 95.620 | 93.29
0-15 47901| 95.680 | 93.34
0-17 48813| 95.74%6 | 93.41
0-19 49988| 95.920 | 93.68

Table 15: The performance of error-driven
learning with different training corpus size

Tables 14 and 16shows that our new chunk
tagger greatly outperforms other reported chunk
taggers on the same training data and test data
by 20~3%.(Buchhdz S., Veenstra J. and
Dadmans W.(199), Ramshaw L.A. and
Marcus M.P.(1995), Dadlemans W., Buchhdz
S. and Veestra J.(1999), and Veenstra
J.(1999)).

Conclusion

This paper proposes a new error-driven HMM-
based chunk tagger with context-dependent
lexicon. Compared with standard HMM-based
tagger, this new tagger uses a new Hidden
Markov Modelling approach which incorporates
more antextua information into a lexical entry

by assuming MI(T",G') = MI(,,G/).
Moreover, an error-driven learni r;g approac is
adopted to drease the memeory requirement and
further improve the acaragy by including more
context-dependent information into lexicon.

It is found that our new chunk tagger
singnificantly outperforms other reported chunk
taggers on the sametraining dita andtest data.

For future work, we will explore the
effedivessess of considering even more
contextual information on approximation of

P(T,"|G;') by uwsing the forward-backward
algorithm(Rabiner 1989) while aurrently we

only consider the ntextual information of
current location and previous location.
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