From Pixel to Cancer: Cellular Automata in Computed Tomography
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Al In cancer detection faces challenges like data scarcity From Pixel Tumor Development To Cancer
and annotation difficulties, especially _for early-stage quanifid population
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Figure 1— Pipeline
B2 |3 g— B>3 | We begin by quantifying the organ from CT Intensity and selecting a starting
IXel. Next, we a ree rules—growth, interaction, and death—to simulate
. o pixel. Next pply th | growth, int t d death—t lat
B — Death (Rl — [ | tumor development and record the results in a tumor population map. Finally,
] tumors are generated in CT scans using a mapping function based on the

population map and CT intensity.

Contributions

R1. Growth

R3. Death

R2. Invasion

 Requiring no manual annotation.
 Simulating tumor development.
 Synthesizing tumors across organs.

Experiment and Setting
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* Visual Turing Test involved three experts, each
evaluating 150 CT images, with 50 images per organ.
They were tasked with categorizing each CT image as oy
either real or synthetic. -

_ Organ Boundary
 Tumor Segmentation Performance: We benchmark
Pixel2Cancer against the state-of-the-art modeling-
based method (Hu et al., 2023) and the real-tumor
method.

* Ablation Studies: We evaluated the impact of various
tumor conditions on the performance of the model. We
evaluated the effectiveness of generic rules on liver
tumor segmentation.

Organ

Vessel

Figure 2—Rules of Simulation

R1.Growth: Tumor cells proliferate themselves (self-state +1) with probabillity.
R2.Invasion: Tumor cells can invade neighboring cells (neighbor-state +1).
we simulate interactions among tumors, organ tissues, vessels, and
boundaries. At the bottom line, we present cases where tumors are
compressed by organ boundaries and vessels.

R3.Death: Tumor cells surrounded by a full population of neighboring cells
(state = 10) will undergo cell death (self-state «— -1).

Results
Visual Turing Test Ablation Study
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