List of Tables

3.1 Value of $g(w_{i-1}, w_i)$ and $g(w_{i-2}, w_{i-1}, w_i)$ 40
3.2 Value of $g(w_{i-1}, w_i)$ and $g(t, w_i)$... 54
3.3 All 2^M intersections of M subsets. .. 57
3.4 The mapping between intersections and binary numbers. I_k is the intersection of subsets with value 1 under them. k is a binary with value 1 in corresponding bits. ... 58
3.5 Comparison of Switchboard and Broadcast News. ... 79
3.6 Number of operations and nominal speed-up of trigram models 81
3.7 Number of operations and nominal speed-up of four-gram models 81
3.8 Running time (in CPU-Hours) for ME trigram models 82
3.9 Number of operations and nominal speed-up for syntactic models 82
3.10 Training time (in CPU-hours) for syntactic models 83
3.11 Number of operations and nominal speed-up for topic models 83
3.12 Running time (in CPU-Hours) for topic models 84
3.13 Training time for composite model in Switchboard 85

4.1 Sensitive words for the topic “CLOTHES” ... 89
4.2 Perplexity and WER of back-off trigram models and an ME model with the same constraints ... 95
4.3 Topic assignment based on erroneous recognizer hypotheses causes little degradation in performance. ... 96
4.4 Topic assignments of test conversations using different methods. 97
4.5 Topic assignments of test conversations using different methods (Cont). 98
4.6 Dynamic topic assignment for individual utterances based on the current and four preceding utterances. ... 101
4.7 Topic dynamics viewed through (dis)agreement of utterance-level and conversation-level topic assignment. ... 101
4.8 Analysis of performance gains from the topic-dependent model. 102
4.9 Performance improvement on content-bearing words. 102
4.10 Comparison with 70 interpolated topic N-gram models. 104
4.11 Perplexity and WER of a cache-based model and a maximum entropy model with topic constraints. ... 105
4.12 Repeated errors vs. non-repeated errors. 105
4.13 Perplexity and WER of language models for the BN corpus 107
4.14 Comparison with 100 interpolated topic N-gram models. 108

5.1 The effect of dropping head-word constraints when they coincide with the two preceding words. ... 118
5.2 Dependence on non-terminals (NT). ... 119
5.3 Dependence on components of the syntactic heads: non-terminals (NT), head-words (HW) and both. ... 119
5.4 Splitting results: \(h_{i-2}, h_{i-1} = w_{i-2}, w_{i-1} \) vs \(h_{i-2}, h_{i-1} \neq w_{i-2}, w_{i-1} \) .. 121
5.5 Conditioning on non-terminal (NT) vs part-of-speech (POS) tags: effect of syntactic analysis. ... 123
5.6 Trigram coverage: \(h_{i-2}, h_{i-1} = w_{i-2}, w_{i-1} \) vs \(h_{i-2}, h_{i-1} \neq w_{i-2}, w_{i-1} \) .. 123
5.7 ME v/s interpolated syntactic models (cf. Chelba & Jelinek (1999)). 124
5.8 Baseline perplexities and WERs for BN. .. 126
5.9 Performance of syntactic models for BN. .. 126
5.10 Memory requirement and training time per iteration for SWBD and BN. The data in the last row are estimated numbers. 128

6.1 Performance of ME language models with N-gram, head-word (HW), non-terminal label (NT) and topic dependencies. 133
6.2 Perplexity and WER for content words and stop words. 135
6.3 Percentage of content/stopwords with syntactic constraints. 135
6.4 Performance improvement on different history classes. 136
6.5 Proportion of test data of different word classes and/or history classes. 137
6.6 WER based on different history classes and word classes. 137
6.7 Coverage of trigrams of different word classes and/or history classes. 138
6.8 Performance of ME language models with N-gram, syntactic and topic dependencies. ... 139

7.1 ARPA format for back-off models. ... 143
7.2 Speed-up of the pre-nominalized model. 147
7.3 Perplexity and WER of using the BO and ME models in the first pass recognition. ... 148
7.4 Influence of approximation on topic models. 150
7.5 Hit rate for different models. ... 156

8.1 Nominal speed-up in training Charniak parser. 161
8.2 Summary of experimental results (SWBD and 14M BN). 162
A.1 Significance of WER difference between language models (SWBD). Negative values in Diff. WER indicate that Model B is better than Model A. .. 167
A.2 Significance of WER difference between language models (BN). Negative values in Diff. WER indicate that Model B is better than Model A. .. 168
C.1 Memory requirement for ME models. .. 182
C.2 Content of Directories. .. 184