Artificial Intelligence: Search & Mining

Introduction to Data Mining

Kevin Duh

2015-05-19
Today’s Agenda

Introduction to Data Mining

Frequent Itemset Mining

Apriori Algorithm
What is Data Mining?

- Data is all around us:
 - Your photo/video collection
 - Text and multimedia from the Web
 - Credit card transactions
 - DNA sequencing database
 - Facebook social graph
What is Data Mining?

- Data is all around us:
 - Your photo/video collection
 - Text and multimedia from the Web
 - Credit card transactions
 - DNA sequencing database
 - Facebook social graph

- Data Mining = a set of methods for acquiring useful knowledge from data
Topics in Data Mining

1. Discovering Frequent Patterns
2. Cluster & Outlier Analysis
3. Classification/Prediction
Topics in Data Mining

1. Discovering Frequent Patterns
2. Cluster & Outlier Analysis
3. Classification/Prediction

Is Data Mining part of Artificial Intelligence? Depends on who you ask.
Example: Supermarket

Suppose you’re a supermarket owner, and you have data on what customers bought
Example: Supermarket

Suppose you’re a supermarket owner, and you have data on what customers bought

1 Discovering Frequent Patterns:
 ▶ What items are frequently bought together? Put them on nearby shelves.
Example: Supermarket

Suppose you’re a supermarket owner, and you have data on what customers bought

1. Discovering Frequent Patterns:
 - What items are frequently bought together? Put them on nearby shelves.

2. Cluster & Outlier Analysis
 - What kinds of customer types exist?
Example: Supermarket

Suppose you’re a supermarket owner, and you have data on what customers bought

1. Discovering Frequent Patterns:
 - What items are frequently bought together? Put them on nearby shelves.

2. Cluster & Outlier Analysis
 - What kinds of customer types exist?

3. Classification/Prediction
 - Given a particular customer profile, predict if ad campaign will be effective.
We’ll focus on Discovering Patterns

1 Discovering Frequent Patterns
 - We’ll discuss how to discover frequent and interesting patterns from various data: sets, sequences, and graphs
 - Emphasis on efficient algorithms

2 Cluster & Outlier Analysis

3 Classification/Prediction
 - See Prof. Nakamura’s Big Data Analysis & Prof. Ukita’s Pattern Recognition course
 - Emphasis on statistical methods
Simple way to discover frequent patterns: Enumerate and count all possible patterns
Emphasis on Efficient Algorithms

- Simple way to discover frequent patterns: Enumerate and count all possible patterns
- But too many patterns!
- Similar to Search, we need efficient algorithms to solve the problem
Today’s Agenda

Introduction to Data Mining

Frequent Itemset Mining

Apriori Algorithm
Problem Definition

- Given a finite set of items \(\{A, B, C, \ldots\} \)
Problem Definition

- Given a finite set of **items** \(\{A, B, C, \ldots \} \)
- in several **baskets**, e.g.
 - Basket 1: \(\{A, B, D\} \)
 - Basket 2: \(\{A, B, C, E\} \)
 - Basket 3: \(\{B, E, F\} \)
 - Basket 4: \(\{A, B, E, F\} \)
Problem Definition

- Given a finite set of items \(\{A, B, C, \ldots\} \)
- in several baskets, e.g.
 - Basket 1: \(\{A, B, D\} \)
 - Basket 2: \(\{A, B, C, E\} \)
 - Basket 3: \(\{B, E, F\} \)
 - Basket 4: \(\{A, B, E, F\} \)
- Find the frequent itemsets, i.e. sets of items appearing in \(s \) baskets or more
Example

- Find itemsets that appear in $s = 3$ or more baskets:
 - Basket 1: $\{A, B, D\}$
 - Basket 2: $\{A, B, C, E\}$
 - Basket 3: $\{B, E, F\}$
 - Basket 4: $\{A, B, E, F\}$

- Answer:
Example

- Find itemsets that appear in $s = 3$ or more baskets:
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}

- Answer:
 - \{A\}: 3
Example

- Find itemsets that appear in \(s = 3 \) or more baskets:
 - Basket 1: \(\{A, B, D\} \)
 - Basket 2: \(\{A, B, C, E\} \)
 - Basket 3: \(\{B, E, F\} \)
 - Basket 4: \(\{A, B, E, F\} \)

- Answer:
 - \(\{A\} \): 3
 - \(\{B\} \): 4
Example

- Find itemsets that appear in $s = 3$ or more baskets:
 - Basket 1: $\{A, B, D\}$
 - Basket 2: $\{A, B, C, E\}$
 - Basket 3: $\{B, E, F\}$
 - Basket 4: $\{A, B, E, F\}$

- Answer:
 - $\{A\}$: 3
 - $\{B\}$: 4
 - $\{E\}$: 3
Example

- Find itemsets that appear in $s = 3$ or more baskets:
 - Basket 1: $\{A, B, D\}$
 - Basket 2: $\{A, B, C, E\}$
 - Basket 3: $\{B, E, F\}$
 - Basket 4: $\{A, B, E, F\}$

- Answer:
 - $\{A\}$: 3
 - $\{B\}$: 4
 - $\{E\}$: 3
 - $\{A, B\}$: 3
Example

- Find itemsets that appear in $s = 3$ or more baskets:
 - Basket 1: $\{A, B, D\}$
 - Basket 2: $\{A, B, C, E\}$
 - Basket 3: $\{B, E, F\}$
 - Basket 4: $\{A, B, E, F\}$

- Answer:
 - $\{A\}$: 3
 - $\{B\}$: 4
 - $\{E\}$: 3
 - $\{A, B\}$: 3
 - $\{B, E\}$: 3
Example

- Find itemsets that appear in \(s = 3 \) or more baskets:
 - Basket 1: \(\{A, B, D\} \)
 - Basket 2: \(\{A, B, C, E\} \)
 - Basket 3: \(\{B, E, F\} \)
 - Basket 4: \(\{A, B, E, F\} \)

- Answer:
 - \(\{A\} \): 3
 - \(\{B\} \): 4
 - \(\{E\} \): 3
 - \(\{A, B\} \): 3
 - \(\{B, E\} \): 3
Problem Definition (rigorous version)

- We are given several baskets, each containing several items.
Problem Definition (rigorous version)

- We are given several baskets, each containing several items.
- Let I be an itemset. The \textbf{support} of I is the number of baskets that contain I
Problem Definition (rigorous version)

- We are given several baskets, each containing several items.
- Let I be an itemset. The support of I is the number of baskets that contain I.
- We specify a number s as threshold, and say I is a frequent itemset if its support is s or more.
Problem Definition (rigorous version)

- We are given several baskets, each containing several items.
- Let I be an itemset. The support of I is the number of baskets that contain I.
- We specify a number s as threshold, and say I is a frequent itemset if its support is s or more.
- Goal: find all such frequent itemsets.
Example (again)

- We are given:
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}
Example (again)

- We are given:
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}

- 1-item Itemsets & their support:
 - \{A\}: 3, \{B\}: 4, \{C\}: 1, \{D\}: 1, \{E\}: 3, \{F\}: 2
Example (again)

- We are given:
 - Basket 1: \(\{A, B, D\}\)
 - Basket 2: \(\{A, B, C, E\}\)
 - Basket 3: \(\{B, E, F\}\)
 - Basket 4: \(\{A, B, E, F\}\)

- 1-item Itemsets & their support:
 - \(\{A\}\): 3, \(\{B\}\): 4, \(\{C\}\): 1, \(\{D\}\): 1, \(\{E\}\): 3, \(\{F\}\): 2

- 2-item Itemsets & their support:
 - \(\{A, B\}\): 3, \(\{A, C\}\): 1, \(\{A, D\}\): 1, \(\{A, E\}\): 2, \(\{A, F\}\): 1, \(\{B, C\}\): 1, \(\{B, D\}\): 1, ...
Example (again)

- We are given:
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}

- 1-item Itemsets & their support:
 - \{A\}: 3, \{B\}: 4, \{C\}: 1, \{D\}: 1, \{E\}: 3, \{F\}: 2

- 2-item Itemsets & their support:
 - \{A, B\}: 3, \{A, C\}: 1, \{A, D\}: 1, \{A, E\}: 2, \{A, F\}: 1, \{B, C\}: 1, \{B, D\}: 1, ...

- 3-item Itemsets & their support:
 - \{A, B, C\}: 1, \{A, B, D\}: 1, \{A, B, E\}: 2, \{A, B, F\}: 1, \{A, C, D\}: 0, ...
Brute-force Solution

For each possible Itemset I:
Brute-force Solution

For each possible Itemset I:

1. Count the support of I
Brute-force Solution

For each possible Itemset I:

1. Count the support of I
2. If support is larger than δ, report I as frequent
How many Itemsets are possible?

- If we have n items
 1. Number of 1-item Itemsets: n
 2. Number of 2-item Itemsets: $\binom{n}{2}$
 3. Number of 3-item Itemsets: $\binom{n}{3}$
 4. Number of k-item Itemsets: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

It's impossible to enumerate! e.g.

- $\binom{10}{3} = 120$
- $\binom{20}{3} = 140$
- $\binom{40}{3} = 980$
- $\binom{80}{3} = 820$
- $\binom{160}{3} = 669$
How many Itemsets are possible?

- If we have \(n \) items
 1. Number of 1-item Itemsets: \(n \)
 2. Number of 2-item Itemsets: \(\binom{n}{2} \)
 3. Number of 3-item Itemsets: \(\binom{n}{3} \)
 4. Number of \(k \)-item Itemsets: \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \)

- It’s impossible to enumerate! e.g.
 - \(\binom{10}{3} = 120 \)
 - \(\binom{20}{3} = 1,140 \)
 - \(\binom{40}{3} = 9,980 \)
 - \(\binom{80}{3} = 82,160 \)
 - \(\binom{160}{3} = 669,920 \)
Brute-force Solution doesn’t work!

For each possible Itemset \(I \): ← TOO MANY!

1. Count the support of \(I \)
2. If support is larger than \(s \), report \(I \) as frequent
Today’s Agenda

Introduction to Data Mining

Frequent Itemset Mining

Apriori Algorithm
Monotonicity Principle

- If a set I is frequent, then every subset of I is also frequent.
Monotonicity Principle

- If a set I is frequent, then every subset of I is also frequent.

- Why?
 1. Let $J \subseteq I$. e.g. $I = \{A, B, C\}$, $J = \{A, C\}$
 2. Every basket that contains I must contain J. So support of $J \geq$ support of I.
 3. If I is frequent (support $\geq s$), then so is J.
Monotonicity Principle (Contrapositive version)

- If a set I is frequent, then every subset of I is also frequent.
- If I is not frequent, then no superset of I can be frequent.
 - e.g. if $\text{support}([A, B]) < s$, then:
 - $\text{support}([A, B, C]) < s$
 - $\text{support}([A, B, D]) < s$
 - $\text{support}([A, B, X]) < s$ for any X
 - $\text{support}([A, B, X, Y]) < s$ for any X, Y
Apriori Algorithm (main idea)

- Exploits the Monotonicity Principle.
- Don’t enumerate every itemset.
- If an itemset I is not frequent, don’t enumerate any superset of I.

Reference:
Apriori Algorithm (example run)

- Find frequent itemsets \(s = 3 \):
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}

1 First pass (enumerate all 1-item)
 - \{A\}: 3, \{B\}: 4, \{C\}: 1, \{D\}: 1, \{E\}: 3, \{F\}: 2
Apriori Algorithm (example run)

- Find frequent itemsets ($s = 3$):
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}

1. First pass (enumerate all 1-item)
 - $\{A\}$: 3, $\{B\}$: 4, $\{C\}$: 1, $\{D\}$: 1, $\{E\}$: 3, $\{F\}$: 2

2. Second pass (enumerate only 2-item sets where both items are frequent)
Apriori Algorithm (example run)

- Find frequent itemsets ($s = 3$):
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}

1. First pass (enumerate all 1-item)
 - \{A\}: 3, \{B\}: 4, \{C\}: 1, \{D\}: 1, \{E\}: 3, \{F\}: 2

2. Second pass (enumerate only 2-item sets where both items are frequent)
 - $\binom{3}{2} = 3$ vs. $\binom{6}{2} = 15$
Apriori Algorithm (example run)

- Find frequent itemsets ($s = 3$):
 - Basket 1: $\{A, B, D\}$
 - Basket 2: $\{A, B, C, E\}$
 - Basket 3: $\{B, E, F\}$
 - Basket 4: $\{A, B, E, F\}$

1. First pass (enumerate all 1-item)
 - $\{A\}: 3$, $\{B\}: 4$, $\{C\}: 1$, $\{D\}: 1$, $\{E\}: 3$, $\{F\}: 2$

2. Second pass (enumerate only 2-item sets where both items are frequent)
 - $\binom{3}{2} = 3$ vs. $\binom{6}{2} = 15$
 - $\{A, B\}: 3$, $\{A, E\}: 2$, $\{B, E\}: 3$
Apriori Algorithm (example run)

- Find frequent itemsets ($s = 3$):
 - Basket 1: $\{A, B, D\}$
 - Basket 2: $\{A, B, C, E\}$
 - Basket 3: $\{B, E, F\}$
 - Basket 4: $\{A, B, E, F\}$

1. First pass (1-item itemsets)
 - $\{A\}: 3$, $\{B\}: 4$, $\{C\}: 1$, $\{D\}: 1$, $\{E\}: 3$, $\{F\}: 2$

2. Second pass (2-item itemsets)
 - $\{A, B\}: 3$, $\{A, E\}: 2$, $\{B, E\}: 3$
Apriori Algorithm (example run)

- Find frequent itemsets ($s = 3$):
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}

1. First pass (1-item itemsets)
 - \{A\}: 3, \{B\}: 4, \{C\}: 1, \{D\}: 1, \{E\}: 3, \{F\}: 2

2. Second pass (2-item itemsets)
 - \{A, B\}: 3, \{A, E\}: 2, \{B, E\}: 3

3. Third pass (3-item itemsets)
 - only enumerate \{A, B, E\}: 2
 - No more frequent itemsets, so stop.
Apriori Algorithm (general flow)

Alternate between:

- L_k: set of **truly frequent** itemsets of size k

- C_k: set of **candidate** itemsets of size k
 - constructed from L_{k-1}, avoids all possible enumerations

Figure from Rajamaran et. al., Mining of Massive Datasets, chapter 6
Applications of Frequent Itemset Mining

Supermarket example: What items are frequently bought together?

- cereal and milk
Applications of Frequent Itemset Mining

Supermarket example: What items are frequently bought together?

- cereal and milk
- pasta and tomato sauce and salad
Applications of Frequent Itemset Mining

Supermarket example: What items are frequently bought together?

- cereal and milk
- pasta and tomato sauce and salad
- diaper and beer?
Applications of Frequent Itemset Mining

Supermarket example: What items are frequently bought together?

- cereal and milk
- pasta and tomato sauce and salad
- diaper and beer?
 - Parents who buy diaper likely drink at home rather than outside
Summary

1. What’s **Data Mining**? Methods for acquiring useful knowledge from data
Summary

1. What’s **Data Mining**? Methods for acquiring useful knowledge from data

2. **Frequent Itemset Mining**: Given many baskets of items, find itemsets that appear in more than σ baskets
Summary

1. What’s **Data Mining**? Methods for acquiring useful knowledge from data

2. **Frequent Itemset Mining**: Given many baskets of items, find itemsets that appear in more than \(s \) baskets

3. **Monotonicity Principle**: If itemset \(I \) is not frequent, no superset of \(I \) can be.
Summary

1. What’s **Data Mining**? Methods for acquiring useful knowledge from data.

2. **Frequent Itemset Mining**: Given many baskets of items, find itemsets that appear in more than \(s \) baskets.

3. **Monotonicity Principle**: If itemset \(I \) is not frequent, no superset of \(I \) can be.

4. **Apriori Algorithm**: construct candidates \(C_k \) from truly frequent itemsets of smaller size \(L_{k-1} \).
Next Week

Sequence Mining

- Extending Frequent Itemset Mining to Sequence data (e.g. DNA, text strings)
- Other methods that can be even more efficient than the Apriori Algorithm