Sequence Mining

Kevin Duh

2015-05-26
Today’s Agenda

Review of Apriori Algorithm

Sequence Mining

PrefixSpan Algorithm
Recall: Frequent Itemset Mining

- Given a finite set of items \(\{A, B, C, \ldots \} \)
Recall: Frequent Itemset Mining

- Given a finite set of items \(\{A, B, C, \ldots \} \)
- in several baskets, e.g.
 - Basket 1: \(\{A, B, D\} \)
 - Basket 2: \(\{A, B, C, E\} \)
 - Basket 3: \(\{B, E, F\} \)
 - Basket 4: \(\{A, B, E, F\} \)
Recall: Frequent Itemset Mining

- Given a finite set of items \(\{A, B, C, \ldots \} \)
- in several baskets, e.g.
 - Basket 1: \(\{A, B, D\} \)
 - Basket 2: \(\{A, B, C, E\} \)
 - Basket 3: \(\{B, E, F\} \)
 - Basket 4: \(\{A, B, E, F\} \)

- The support of itemset \(I \) is the number of baskets that contain \(I \)
Recall: Frequent Itemset Mining

- Given a finite set of **items** \(\{A, B, C, \ldots \} \)
- in several **baskets**, e.g.
 - Basket 1: \(\{A, B, D\} \)
 - Basket 2: \(\{A, B, C, E\} \)
 - Basket 3: \(\{B, E, F\} \)
 - Basket 4: \(\{A, B, E, F\} \)
- The **support** of itemset \(I \) is the number of baskets that contain \(I \)
- Goal: Find all **frequent itemsets**, i.e. sets of items with support \(\geq s \)
Example

- We are given:
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}
Example

- We are given:
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}

- 1-item Itemsets & their support:
 - \{A\}: 3, \{B\}: 4, \{C\}: 1, \{D\}: 1, \{E\}: 3, \{F\}: 2
Example

- We are given:
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}

- 1-item Itemsets & their support:
 - \{A\}: 3, \{B\}: 4, \{C\}: 1, \{D\}: 1, \{E\}: 3, \{F\}: 2

- 2-item Itemsets & their support:
 - \{A, B\}: 3, \{A, C\}: 1, \{A, D\}: 1, \{A, E\}: 2, \{A, F\}: 1, \{B, C\}: 1, \{B, D\}: 1, ...
Example

- We are given:
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}

- 1-item Itemsets & their support:
 - \{A\}: 3, \{B\}: 4, \{C\}: 1, \{D\}: 1, \{E\}: 3, \{F\}: 2

- 2-item Itemsets & their support:
 - \{A, B\}: 3, \{A, C\}: 1, \{A, D\}: 1, \{A, E\}: 2, \{A, F\}: 1, \{B, C\}: 1, \{B, D\}: 1, ...

- 3-item Itemsets & their support:
 - \{A, B, C\}: 1, \{A, B, D\}: 1, \{A, B, E\}: 1, \{A, B, F\}: 1, \{A, C, D\}: 0, ...
Monotonicity Principle

- If I is not frequent, then no superset of I can be frequent.
- Apriori Algorithm exploits this: Smart enumeration of itemset.
Apriori Algorithm

Alternate between:

- L_k: set of **truly frequent** itemsets of size k
- C_k: set of **candidate** itemsets of size k
 - constructed from L_{k-1}, avoids all possible enumerations

Figure from Rajamaran et. al., Mining of Massive Datasets, chapter 6
Apriori Algorithm (example run)

- Find frequent itemsets ($s = 3$):
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}

1 First pass (1-item itemsets)
 - C_1: \{A\}:3, \{B\}:4, \{C\}:1, \{D\}:1, \{E\}:3, \{F\}:2
 - L_1: \{A\}, \{B\}, \{E\}
Apriori Algorithm (example run)

- Find frequent itemsets \(s = 3 \):
 - Basket 1: \{A, B, D\}
 - Basket 2: \{A, B, C, E\}
 - Basket 3: \{B, E, F\}
 - Basket 4: \{A, B, E, F\}

1. First pass (1-item itemsets)
 - \(C_1 \): \{A\}:3, \{B\}:4, \{C\}:1, \{D\}:1, \{E\}:3, \{F\}:2
 - \(L_1 \): \{A\}, \{B\}, \{E\}

2. Second pass (2-item itemsets)
 - \(C_2 \): \{A, B\}: 3, \{A, E\}: 2, \{B, E\}: 3
 - \(L_2 \): \{A, B\}, \{B, E\}

3. Third pass (3-item itemsets)
 - \(C_3 \): \{A, B, E\}: 2; \(L_3 \) : \emptyset
Today’s Agenda

Review of Apriori Algorithm

Sequence Mining

PrefixSpan Algorithm
From Itemsets to Sequences

- Itemset Mining
 - Purchase 1: \{camera, US B\}
 - Purchase 3: \{printer, paper\}
 - Purchase 4: \{ink, paper\}
From Itemsets to Sequences

- **Itemset Mining**
 - Purchase 1: \{camera, US B\}
 - Purchase 3: \{printer, paper\}
 - Purchase 4: \{ink, paper\}

- **Sequence Mining:**
 - Customer 1: \langle\{camera, US B\}, \{printer\}\rangle
 - Customer 2: \langle\{camera\}, \{printer\}, \{ink\}\rangle
From Itemsets to Sequences

- Itemset Mining
 - Purchase 1: \{\textit{camera}, \textit{US B}\}
 - Purchase 3: \{\textit{printer}, \textit{paper}\}
 - Purchase 4: \{\textit{ink}, \textit{paper}\}

- Sequence Mining:
 - Customer 1: \langle\{\textit{camera}, \textit{US B}\}, \{\textit{printer}\}\rangle
 - Customer 2: \langle\{\textit{camera}\}, \{\textit{printer}\}, \{\textit{ink}\}\rangle

- Customers who bought camera are likely to buy printer later
Problem Definition

- A Sequence is an **ordered list** of itemsets:
 - Customer 1: \(<\{\text{camera, USB}\}, \{\text{printer}\}\>\)
 - Customer 2: \(<\{\text{camera}\}, \{\text{printer}\}, \{\text{ink}\}\}>\)
 - Customer \(n\): \(<I_1, I_2, I_3, ...>\)

- Goal: Find frequent sub-sequences with support \(\geq s\)
 - i.e. more than \(s\) customers exhibit this buying behavior
This has 5 itemsets (aka “events”)
\langle \{A\}, \{A, B, C\}, \{A, C\}, \{D\}, \{C, F\}\rangle

- This has 5 itemsets (aka “events”)
- This has 9 items total, so is called a length-9 sequence
\langle \{A\}, \{A, B, C\}, \{A, C\}, \{D\}, \{C, F\}\rangle

- This has 5 itemsets (aka “events”)
- This has 9 items total, so is called a length-9 sequence
- Item A occurs 3 times. It contributes 3 to the length but only 1 to the support
\[\{\{A\}, \{A, B, C\}, \{A, C\}, \{D\}, \{C, F\}\} \]

- This has 5 itemsets (aka “events”)
- This has 9 items total, so is called a length-9 sequence
- Item A occurs 3 times. It contributes 3 to the length but only 1 to the support
- Sub-sequences include:
 - \(\{\{A, B, C\}, \{D\}\} \)
 - \(\{\{A\}, \{B, C\}, \{C\}, \{D\}, \{C, F\}\} \)
 - \(\{\{A\}, \{B, C\}, \{D\}, \{F\}\} \)
\{\{A\}, \{A, B, C\}, \{A, C\}, \{D\}, \{C, F\}\}

- This has 5 itemsets (aka “events”)
- This has 9 items total, so is called a length-9 sequence
- Item A occurs 3 times. It contributes 3 to the length but only 1 to the support
- Sub-sequences include:
 - \{\{A, B, C\}, \{D\}\}
 - \{\{A\}, \{B, C\}, \{C\}, \{D\}, \{C, F\}\}
 - \{\{A\}, \{B, C\}, \{D\}, \{F\}\}
- But not: \{\{D\}, \{A, B, C\}\}, etc.
From here on, for simplicity...

- We only consider sequences with 1-item events
- e.g. \(\langle\{A\}, \{A\}, \{C\}, \{D\}, \{F\}\rangle \)
 written as: \(\langle A, A, C, D, F\rangle \)
From here on, for simplicity...

- We only consider sequences with 1-item events
- e.g. \(\langle\{A\}, \{A\}, \{C\}, \{D\}, \{F\}\rangle\)
 written as: \(\langle A, A, C, D, F\rangle\)
- Suitable for sequence data such as text, DNA, browsing history
Example

- Extract frequent sub-sequence ($s = 3$)

1. $\langle A, A, A, C, C \rangle$
2. $\langle B, C, B, C, B \rangle$
3. $\langle A, D, C, A, A, B \rangle$
4. $\langle A, C, B, C, A, A \rangle$
Example

- Extract frequent sub-sequence \((s = 3)\)
 1. \(\langle A, A, A, C, C \rangle\)
 2. \(\langle B, C, B, C, B \rangle\)
 3. \(\langle A, D, C, A, A, B \rangle\)
 4. \(\langle A, C, B, C, A, A \rangle\)

- Frequent sub-sequences include:
 - \(\langle A \rangle\)
 - \(\langle A, A \rangle\)
 - \(\langle A, A, A \rangle\)
 - \(\langle A, C \rangle\)
Applying the Apriori Algorithm

- Extract frequent sub-sequence \(s = 3 \)

1. \(\langle A, A, A, C, C \rangle \)
2. \(\langle B, C, B, C, B \rangle \)
3. \(\langle A, D, C, A, A, B \rangle \)
4. \(\langle A, C, B, C, A, A \rangle \)
Applying the Apriori Algorithm

- Extract frequent sub-sequence \(s = 3 \)
 1. \(\langle A, A, A, C, C \rangle \)
 2. \(\langle B, C, B, C, B \rangle \)
 3. \(\langle A, D, C, A, A, B \rangle \)
 4. \(\langle A, C, B, C, A, A \rangle \)

- 1st Pass:
 - \(C_1 : \langle A \rangle, \langle B \rangle, \langle C \rangle, \langle D \rangle \)
Applying the Apriori Algorithm

- Extract frequent sub-sequence \((s = 3)\)
 1. \(\langle A, A, A, C, C \rangle\)
 2. \(\langle B, C, B, C, B \rangle\)
 3. \(\langle A, D, C, A, A, B \rangle\)
 4. \(\langle A, C, B, C, A, A \rangle\)

- 1st Pass:
 - \(C_1 : \langle A \rangle, \langle B \rangle, \langle C \rangle, \langle D \rangle\)
 - \(L_1 : \langle A \rangle, \langle B \rangle, \langle C \rangle\)
Applying the Apriori Algorithm

- Extract frequent sub-sequence ($s = 3$)
 1. $\langle A, A, A, C, C \rangle$
 2. $\langle B, C, B, C, B \rangle$
 3. $\langle A, D, C, A, A, B \rangle$
 4. $\langle A, C, B, C, A, A \rangle$

- 1st Pass:
 - $C_1 : \langle A \rangle, \langle B \rangle, \langle C \rangle, \langle D \rangle$
 - $L_1 : \langle A \rangle, \langle B \rangle, \langle C \rangle$

- 2nd Pass:
 - $C_2 : 3 \times 3$ candidates,
 $\langle A, A \rangle, \langle A, B \rangle, \langle A, C \rangle,$
 $\langle B, A \rangle, \langle B, B \rangle, \langle B, C \rangle, \langle C, A \rangle, \langle C, B \rangle, \langle C, C \rangle$
Applying the Apriori Algorithm

- Extract frequent sub-sequence \((s = 3)\)
 1. \(\langle A, A, A, C, C \rangle\)
 2. \(\langle B, C, B, C, B \rangle\)
 3. \(\langle A, D, C, A, A, B \rangle\)
 4. \(\langle A, C, B, C, A, A \rangle\)

- 1st Pass:
 - \(C_1 : \langle A \rangle, \langle B \rangle, \langle C \rangle, \langle D \rangle\)
 - \(L_1 : \langle A \rangle, \langle B \rangle, \langle C \rangle\)

- 2nd Pass:
 - \(C_2 : 3 \times 3\) candidates,
 - \(\langle A, A \rangle, \langle A, B \rangle, \langle A, C \rangle, \langle B, A \rangle, \langle B, B \rangle, \langle B, C \rangle, \langle C, A \rangle, \langle C, B \rangle, \langle C, C \rangle\)
 - \(L_2 : ?\)
Issues with the Apriori Algorithm

- We still need to generate many candidates
- For each candidate, we need to scan the entire dataset
Issues with the Apriori Algorithm

- We still need to generate many candidates
- For each candidate, we need to scan the entire dataset

Next, we present the PrefixSpan algorithm.

- An instance of a family of algorithms called Frequent-Pattern (FP) Growth that addresses the above issues.
Today’s Agenda

Review of Apriori Algorithm

Sequence Mining

PrefixSpan Algorithm
Prefix & Suffix

\[\langle A, A, A, C, C \rangle \]

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>\langle A \rangle</td>
<td>\langle A, A, C, C \rangle</td>
</tr>
<tr>
<td>\langle A, A \rangle</td>
<td>\langle A, C, C \rangle</td>
</tr>
<tr>
<td>\langle A, A, A \rangle</td>
<td>\langle C, C \rangle</td>
</tr>
<tr>
<td>\langle A, A, A, C \rangle</td>
<td>\langle C \rangle</td>
</tr>
</tbody>
</table>
PrefixSpan Algorithm (main idea)

- Divide & Conquer:
 1. First find length-1 frequent sequences. Suppose there are m such cases.
PrefixSpan Algorithm (main idea)

- Divide & Conquer:
 1. First find length-1 frequent sequences. Suppose there are m such cases.
 2. The complete set of frequent patterns can be partitioned into m subsets, each subset having the same prefix.
PrefixSpan Algorithm (main idea)

- Divide & Conquer:
 1. First find length-1 frequent sequences. Suppose there are m such cases.
 2. The complete set of frequent patterns can be partitioned into m subsets, each subset having the same prefix.
 3. Each partition is mined separately. This process is done recursively.
PrefixSpan Algorithm (main idea)

- Divide & Conquer:
 1. First find length-1 frequent sequences. Suppose there are \(m \) such cases.
 2. The complete set of frequent patterns can be partitioned into \(m \) subsets, each subset having the same prefix.
 3. Each partition is mined separately. This process is done recursively.
PrefixSpan Algorithm (main idea)

- Divide & Conquer:
 1. First find length-1 frequent sequences. Suppose there are \(m \) such cases.
 2. The complete set of frequent patterns can be partitioned into \(m \) subsets, each subset having the same prefix.
 3. Each partition is mined separately. This process is done recursively.

- Each partition is a (smaller) "projected" database
Projected database

- **Original database:**
 1. \(\langle A, A, A, C, C \rangle\)
 2. \(\langle B, C, B, C, B \rangle\)
 3. \(\langle A, D, C, A, A, B \rangle\)
 4. \(\langle A, C, B, C, A, A \rangle\)

- **Projected database of Prefix \(\langle A \rangle\):**
 1. \(\langle A, A, C, C \rangle\)
 2. \(\emptyset\)
 3. \(\langle D, C, A, A, B \rangle\)
 4. \(\langle C, B, C, A, A \rangle\)
- Original database:
 1. \(\langle A, A, A, C, C \rangle \)
 2. \(\langle B, C, B, C, B \rangle \)
 3. \(\langle A, D, C, A, A, B \rangle \)
 4. \(\langle A, C, B, C, A, A \rangle \)

- Projected database of Prefix \(\langle C \rangle \):
Original database:

1. \langle A, A, A, C, C \rangle
2. \langle B, C, B, C, B \rangle
3. \langle A, D, C, A, A, B \rangle
4. \langle A, C, B, C, A, A \rangle

Projected database of Prefix \langle C \rangle:

1. \langle C \rangle
- Original database:
 1 \langle A, A, A, C, C \rangle
 2 \langle B, C, B, C, B \rangle
 3 \langle A, D, C, A, A, B \rangle
 4 \langle A, C, B, C, A, A \rangle

- Projected database of Prefix \langle C \rangle:
 1 \langle C \rangle
 2 \langle B, C, B \rangle
- Original database:
 1. \langle A, A, A, C, C \rangle
 2. \langle B, C, B, C, B \rangle
 3. \langle A, D, C, A, A, B \rangle
 4. \langle A, C, B, C, A, A \rangle

- Projected database of Prefix \langle C \rangle:
 1. \langle C \rangle
 2. \langle B, C, B \rangle
 3. \langle A, A, B \rangle
- Original database:
 1. \langle A, A, A, C, C \rangle
 2. \langle B, C, B, C, B \rangle
 3. \langle A, D, C, A, A, B \rangle
 4. \langle A, C, B, C, A, A \rangle

- Projected database of Prefix \langle C \rangle:
 1. \langle C \rangle
 2. \langle B, C, B \rangle
 3. \langle A, A, B \rangle
 4. \langle B, C, A, A \rangle
Original database:

1. \langle A, A, A, C, C \rangle
2. \langle B, C, B, C, B \rangle
3. \langle A, D, C, A, A, B \rangle
4. \langle A, C, B, C, A, A \rangle

Projected database of Prefix \langle C \rangle:

1. \langle C \rangle
2. \langle B, C, B \rangle
3. \langle A, A, B \rangle
4. \langle B, C, A, A \rangle

Trick: Frequent items in projected database combines with Prefix \langle C \rangle to form frequent length-2 sequence!

- If B is frequent, then so is \langle C, B \rangle
- If C is frequent, then so is \langle C, C \rangle
PrefixSpan Algorithm (example run)

- Extract frequent sub-sequence \(s = 3 \)

1. \(\langle A, A, A, C, C \rangle \)
2. \(\langle B, C, B, C, B \rangle \)
3. \(\langle A, D, C, A, A, B \rangle \)
4. \(\langle A, C, B, C, A, A \rangle \)
PrefixSpan Algorithm (example run)

- Extract frequent sub-sequence \(s = 3 \)
 1. \(\langle A, A, A, C, C \rangle \)
 2. \(\langle B, C, B, C, B \rangle \)
 3. \(\langle A, D, C, A, A, B \rangle \)
 4. \(\langle A, C, B, C, A, A \rangle \)

- 1st pass: \(A : 3, B : 3, C : 4, D : 1 \)
PrefixSpan Algorithm (example run)

- Extract frequent sub-sequence ($s = 3$)
 1. $\langle A, A, A, C, C \rangle$
 2. $\langle B, C, B, C, B \rangle$
 3. $\langle A, D, C, A, A, B \rangle$
 4. $\langle A, C, B, C, A, A \rangle$

- 1st pass: $A : 3$, $B : 3$, $C : 4$, $D : 1$
 - Frequent length-1 seq: $\langle A \rangle, \langle B \rangle, \langle C \rangle$
PrefixSpan Algorithm (example run)

- Extract frequent sub-sequence ($s = 3$)

 1. $\langle A, A, A, C, C \rangle$
 2. $\langle B, C, B, C, B \rangle$
 3. $\langle A, D, C, A, A, B \rangle$
 4. $\langle A, C, B, C, A, A \rangle$

- 1st pass: $A : 3, B : 3, C : 4, D : 1$

 - Frequent length-1 seq: $\langle A \rangle, \langle B \rangle, \langle C \rangle$
 - No frequent seq (any length) w/ prefix D
PrefixSpan Algorithm (example run)

- Extract frequent sub-sequence ($s = 3$)
 1. $\langle A, A, A, C, C \rangle$
 2. $\langle B, C, B, C, B \rangle$
 3. $\langle A, D, C, A, A, B \rangle$
 4. $\langle A, C, B, C, A, A \rangle$

- 1st pass: $A : 3, B : 3, C : 4, D : 1$
 - Frequent length-1 seq: $\langle A \rangle, \langle B \rangle, \langle C \rangle$
 - No frequent seq (any length) w/ prefix D

- Projected database with Prefix $\langle A \rangle$:
 1. $\langle A, A, C, C \rangle$
 2. \emptyset
 3. $\langle D, C, A, A, B \rangle$
 4. $\langle C, B, C, A, A \rangle$
Projected database with Prefix \(\langle A \rangle \):

1. \(\langle A, A, C, C \rangle \)
2. \(\emptyset \)
3. \(\langle D, C, A, A, B \rangle \)
4. \(\langle C, B, C, A, A \rangle \)
- Projected database with Prefix $\langle A \rangle$:
 1. $\langle A, A, C, C \rangle$
 2. \emptyset
 3. $\langle D, C, A, A, B \rangle$
 4. $\langle C, B, C, A, A \rangle$

- Frequent items ($s = 3$): $A: 3$, $B: 2$, $C: 3$
 - Frequent length-2 seq: $\langle A, A \rangle, \langle A, C \rangle$
- Projected database with Prefix $\langle A \rangle$:

1. $\langle A, A, C, C \rangle$
2. \emptyset
3. $\langle D, C, A, A, B \rangle$
4. $\langle C, B, C, A, A \rangle$

- Frequent items ($s = 3$): A: 3, B: 2, C: 3
 - Frequent length-2 seq: $\langle A, A \rangle, \langle A, C \rangle$

- Projected database with Prefix $\langle A, A \rangle$:

1. $\langle A, C, C \rangle$
2. \emptyset
3. $\langle A, B \rangle$
4. $\langle A \rangle$
Projected database with Prefix $\langle A \rangle$:

1. $\langle A, A, C, C \rangle$
2. \emptyset
3. $\langle D, C, A, A, B \rangle$
4. $\langle C, B, C, A, A \rangle$

Frequent items ($s = 3$): A: 3, B: 2, C: 3

- Frequent length-2 seq: $\langle A, A \rangle, \langle A, C \rangle$

Projected database with Prefix $\langle A, A \rangle$:

1. $\langle A, C, C \rangle$
2. \emptyset
3. $\langle A, B \rangle$
4. $\langle A \rangle$

Frequent items ($s = 3$): A: 3, B: 1, C: 1

- Frequent length-3 seq: $\langle A, A, A \rangle$
Projected database w/ Prefix \(\langle A, A, A \rangle\):

1. \(\langle C, C \rangle\)
2. \(\emptyset\)
3. \(\langle B \rangle\)
4. \(\emptyset\)
- Projected database w/ Prefix $\langle A, A, A \rangle$:
 1. $\langle C, C \rangle$
 2. \emptyset
 3. $\langle B \rangle$
 4. \emptyset

- Frequent items ($s = 3$): B: 1, C: 1
 - No Frequent length-4 seq with prefix $\langle A, A, A \rangle$
- Projected database w/ Prefix \(\langle A, A, A \rangle \):
 - 1 \(\langle C, C \rangle \)
 - 2 \(\emptyset \)
 - 3 \(\langle B \rangle \)
 - 4 \(\emptyset \)

- Frequent items \((s = 3)\): B: 1, C: 1
 - No Frequent length-4 seq with prefix \(\langle A, A, A \rangle \)

- Repeat recursively for Projected databases with Prefix \(\langle A, C \rangle \)
- Repeat recursively for Projected databases with Prefix \(\langle B \rangle \)
- Repeat recursively for Projected databases with Prefix \(\langle C \rangle \)
PrefixSpan vs. Apriori Algorithm

<table>
<thead>
<tr>
<th>PrefixSpan</th>
<th>Apriori</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate 1-item only, then combine with prefix</td>
<td>Generates candidate sequences</td>
</tr>
<tr>
<td>Scan projected database</td>
<td>Scan whole database per candidate</td>
</tr>
<tr>
<td>Depth-first search</td>
<td>Breadth-first search</td>
</tr>
</tbody>
</table>

Main cost of PrefixSpan is construction of projected database. Can be implemented by pointers.
Summary

- Sequence Mining problem:
 - Customer 1: ⟨{camera, US B}, {printer}⟩
 - Customer 2: ⟨{camera}, {printer}, {ink}⟩
 - Customers who bought camera are likely to buy printer later
Summary

- Sequence Mining problem:
 - Customer 1: $\langle \{\text{camera}, \text{USB}\}, \{\text{printer}\} \rangle$
 - Customer 2: $\langle \{\text{camera}\}, \{\text{printer}\}, \{\text{ink}\} \rangle$
 - Customers who bought camera are likely to buy printer later

- Apriori Algorithm: works ok but costly
Summary

- Sequence Mining problem:
 - Customer 1: ⟨{camera, US B}, {printer}⟩
 - Customer 2: ⟨{camera}, {printer}, {ink}⟩
 - Customers who bought camera are likely to buy printer later

- Apriori Algorithm: works ok but costly

- PrefixSpan: Divide & Conquer
 - Partition data by prefix.
 - Mine frequent item on smaller database then combine with prefix
Summary

- Sequence Mining problem:
 - Customer 1: \langle \{camera, US B\}, \{printer\} \rangle
 - Customer 2: \langle \{camera\}, \{printer\}, \{ink\} \rangle
 - Customers who bought camera are likely to buy printer later

- Apriori Algorithm: works ok but costly
- PrefixSpan: Divide & Conquer
 - Partition data by prefix.
 - Mine frequent item on smaller database then combine with prefix

- Both still exploit Monotonicity
Next Week

- Graph Mining
- Homework posted online