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Abstract. Recent cancer survival prediction approaches have made great
strides in analyzing H&E-stained gigapixel whole-slide images. However,
methods targeting the immunohistochemistry (IHC) modality remain
largely unexplored. We remedy this methodological gap and propose
IHCSurv, a new framework that leverages IHC-specific priors to im-
prove downstream survival prediction. We use these priors to guide our
model to the most prognostic tissue regions and simultaneously enrich
local features. To address drawbacks in recent approaches related to lim-
ited spatial context and cross-regional relation modeling, we propose a
spatially-constrained spectral clustering algorithm that preserves spatial
context alongside an efficient tissue region encoder that facilitates infor-
mation transfer across tissue regions both within and between images.
We evaluate our framework on a multi-stain IHC dataset of pancreatic
cancer patients, where IHCSurv markedly outperforms existing state-of-
the-art survival prediction methods. Our code is available on Github.

Keywords: Computational Pathology · Cancer Survival Analysis · Multi-
stain Immunohistochemistry · Transformers · Clustering

1 Introduction

Survival prediction in cancer patients is a central task in computational pathol-
ogy that facilitates effective treatment planning and clinical decision-making.
This task aims to accurately predict a patient’s overall survival probability given
one or multiple whole-slide images (WSIs) containing stained tumor tissues.

⋆ Contributed equally to this work.

https://github.com/charzharr/miccai24-ihcsurv
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Recent studies have demonstrated promising results by adopting deep learning
techniques [19,10,15,9] to mine prognostic features from publicly-available H&E-
stained WSI datasets. However, clinical pathology is increasingly recognizing the
advantages of multi-stain immunohistochemistry (IHC) images. Like H&E stain-
ing, IHC staining also employs the hematoxylin stain to delineate cell, tissue, and
tumor structures from dyed cell nuclei. However, IHC can uniquely uncover spe-
cific biomarkers that enable cell and cancer sub-type identification which H&E
cannot. For instance, IHC can reveal the infiltration rate of CD8-positive T-
cells [8] which is correlated with improved outcomes in many solid tumors [8,12].
Despite these promising prospects, modern frameworks for IHC-based survival
prediction remain unexplored. Our work seeks to fill this gap by presenting the
first general survival prediction framework for multi-stain IHC images.

Our framework aims to maximally leverage prognostic information and demon-
strates its effectiveness on pancreatic cancer patients from IHC-stained WSIs
targeting the CD4 and CD8 immune receptors. The design tackles two primary
research questions. First, we address the challenge of effectively extracting dis-
criminative and spatially-preserved information from multiple gigapixel WSIs
using weakly supervised patient-level labels, where each WSI commonly exceeds
100,000 × 100,000 pixels. Second, we investigate how to effectively extract and
integrate prognostic priors inherent in IHC-stained images to enhance survival
prediction accuracy.

Recent survival prediction works [1] address the challenge of large images
and sparse learning signals by employing a multi-instance learning (MIL) for-
mulation where a patient-level bag is populated with image patches that are
either randomly sampled [9,6], selected from clusters [19,13], or manually chosen
by clinicians [21]. This sub-sampling approach, however, discards the contextual
and spatial information around sampled patches. To better preserve these re-
lations, some studies adopted Graph Neural Networks (GNNs) where vertices
are vector representations of image patches and edges sparsely connect vertices
based on spatial proximity [5] or semantic similarity [10]. Nevertheless, GNNs re-
main limited to local information passing, failing to aggregate information from
distant patches both within and across WSIs. Other methods adopted Trans-
formers [9,16,18] which enable global relation modeling and can preserve spatial
information via modified positional embeddings. However, due to the quadratic
compute scaling with respect to input lengths, these methods are forced to adopt
random patch sub-sampling which incurs the drawbacks mentioned above. More-
over, effective modeling of prognostic information across patches and WSIs re-
mains an open question.

In this work, we introduce IHCSurv, a new survival prediction framework
that integrates multi-stain features via a tissue-level Transformer encoder and
a patient-level aggregator. Our approach begins with the extraction of vector
representations for image patches, followed by the application of a new spectral
clustering algorithm designed to organize patches into coherent tissue regions
(i.e., clusters) while preserving spatial context. Distinct from H&E-stained im-
ages, IHC enables precise detection and categorization of cells as immune, can-
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Fig. 1. An overview of our proposed method, IHCSurv. The top portion illustrates
the pre-processing steps where we obtain patch embeddings and cluster them with our
spatially-preserving spectral clustering algorithm. The bottom portion describes how
prognostic clusters are selected and processed via the layers, Li, of the tissue-level
encoder ft. Patch features are augmented with additional priors such as the cell and
position embeddings via a feature enrichment step. Cross-region self-attention modules
are also employed to facilitate global information passing. Finally the patient-level
encoder fp regresses risk by aggregating the summary [cls] tokens from each tissue
region. The figure is best viewed in color and in digital form.

cerous, or unspecified types without additional annotation. We leverage these
priors to select prognostically significant tissue regions and enrich the vector
representation of patches. The tissue-level Transformer batches these prognostic
regions to compute descriptive tissue region embeddings in parallel and adopts a
cross-region attention module for information integration across regions and im-
ages. Finally, a patient-level encoder aggregates region embeddings and regresses
the final survival prediction. Due to a lack of publicly available multi-stain data,
we evaluate IHCSurv on a challenging in-house IHC-stained dataset with 564
pancreatic cancer patients, which notably outperforms recent survival analysis
approaches. Our main contributions are as follows.

1. To our best knowledge, we are the first to propose a general survival pre-
diction framework for multi-stain IHC analysis. We judiciously design a hi-
erarchical architecture with cross-region attention that effectively captures
prognostic features from intra-regional and inter-regional scopes.

2. We leverage accessible IHC-focused priors via cell categorization without
incurring large computational burdens and without additional annotation.

3. A spectral clustering algorithm is introduced that preserves local spatial
context and synergistically enables information passing between regions.

4. IHCSurv and its components are thoroughly evaluated and they outperform
state-of-the-art methods in both single-stain and multi-stain settings.
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2 Methodology

The task of predicting the overall survival involves analyzing a dataset D consist-
ing of N patients Pi = (Ii, ti, δi), i = 1, . . . , N , where Ii = {Iji } for j = 1, . . . ,Mi

denotes a set ofMi whole-slide images (WSIs) for patient Pi (Mi may vary across
patients), ti denotes the observation or right-censored time, and δi is a binary
indicator of censorship status. In line with previous studies [5,16], we adopt the
discrete-time survival model—detailed in [20]—and stratify uncensored patients
into n time intervals written as [t0, t1), . . . , [tn−1, tn), where t1, . . . , tn−1 describe
interval bounds and t0 = 0, tn = ∞. Our model f regresses logits τ ∈ Rn for each
patient, τi = f(Ii), and maximizes the conditional hazard probability h(k|Ii),
where k indexes the time interval Ti in which the target event occurs, Ti = k
iff ti ∈ [tk, tk + 1). From the logits, this can be computed by h(k|Ii) = σ(τi[k]),
where σ() is the sigmoid function and k indexes τi.

Given the intractability of processing multiple whole-slide images directly, our
approach first extracts patch embeddings from each WSI and groups these em-
beddings into tissue regions (i.e., clusters) using the proposed spacially-constrained
spectral clustering method (see §2.1). Enabled by IHC-specific priors, we local-
ize and categorize cells from each patch to later select highly prognostic tissue
regions and enrich the extracted patch embeddings. A tissue-level encoder ft
processes the enriched patch embeddings from the selected tissue regions in par-
allel, employing cross-region attention (see §2.2) to facilitate global information
passing. These embeddings are then aggregated via a patient-level encoder fp to
generate the final patient survival prediction, where τi = fp(ft(Ii)) (see §2.3).

2.1 Patch Extraction and Clustering

For each WSI, Iji , we apply color normalization [14] with a pre-selected template
and segment the foreground using [3]. Foreground patches of size 256×256 each
are then extracted at 20x magnification and 0.5 microns per pixel (see the top
of Figure 1). Similar to CLAM [11], we obtain 1024-dimensional patch embed-
dings by global average pooling the third stage feature outputs of an ImageNet-
pretrained ResNet50, followed by Z-normalization. Features pre-trained on pathol-
ogy datasets (e.g., HIPT [4]) were also evaluated but ImageNet-based features
consistently outperformed them. This is likely due to the lack of IHC stain colors
in the H&E pretraining data while ImageNet includes these color variations.

After extracting patch embeddings, clustering is a common step (see [19,1])
to reduce a WSI into manageable segments for tractable feature encoding. Tra-
ditional methods like K-means [19,13] and SLIC [17] are typical in survival anal-
ysis but introduce notable drawbacks. K-means focuses on semantic features but
overlooks spatial continuity, leading to clusters containing scattered patches that
lack surrounding spatial context. SLIC, on the other hand, maintains spatial con-
tiguity but falls short in capturing similar semantics due to its reliance on simple
color descriptors, struggling with staining noise and dense tissue regions.

Our clustering aims to organize patches into semantically coherent tissue re-
gions where spatial context is preserved. This strategy not only retains more
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patch information, avoiding excessive sub-sampling, but also mirrors the holistic
manner in which pathologists evaluate WSIs which often focuses at the tissue
region level with adequate contiguous sections to gauge broader tissue organiza-
tions. To this end, we adopt a spatially-constrained spectral clustering (SCSC)
algorithm that modifies the affinity matrix to prioritize patches that are close
both semantically and spatially. For patch embeddings xi ∈ RNp×1024 and their
corresponding spatial coordinates ci ∈ RNp×2, where Np is the number of fore-
ground patches, we define the affinity matrix Ai = wsϕ(xi) + (1 − ws)ψ(ci).
Here, ws balances semantic versus spatial weighting, with ϕ(x) quantifying vi-
sual similarity and ψ(c) quantifying spatial proximity. The semantic affinity
ϕ(x) = 1 − ⟨x,xT ⟩/(||x||2) uses the negative cosine distance between pairs of
extracted vectors, where xT indicates the transpose operation and ||x|| is the

L2-norm. The spatial affinity can be described as ψ(c)ij = e−
D(ci,cj)

std(ψ(c)) , where
the value at row i and column j is the exponential of the negative Euclidean
distance D() between points ci and cj , normalized by the overall standard de-
viation. From Ai, the Laplacian is computed and K clusters are obtained via
eigen-decomposition. K is dynamically determined for each WSI based on the
image foreground size and a hyperparameter for the number of patches per
cluster Nk. From clinical motivation, we set the target region size to be approx-
imately 2.5x2.5mm (or Nk=400 patches per cluster) which adequately captures
both regional topology and broader cell community interactions. We’d also like
to highlight that although other works have utilized coordinates to inform clus-
tering [7], our novel formulation enables more fine-grained and flexible control
over semantic and distance weighting.

2.2 Tissue Region Encoding

Before processing image regions with the tissue-level encoder ft, we first leverage
the priors available in IHC images to extract useful patch-level cell counts. We
utilize the scripting environment in QuPath [2], an open-source pathology image
analyzer, to segment cell nuclei using their Watershed implementation via local
optical densities and categorize cells by thresholding the average nucleic color
value in the DAB color channel. To separate immune cells (dyed brown) with
cancer cells (dyed red), we classify a cell as cancer if the average red to green
ratio is greater than 1.5.

To select prognostic tissue regions for a patient, we choose the top Nt tissue
regions across all patient images Ii sorted in decreasing order by cancer cell
count. When there are fewer than Nt tissue regions with cancer cells, we then
prioritize the selection of cancer-adjacent regions. Although simple, we found
this policy to outperform uniform sampling across all three types, policies that
bias toward immune cells, and uniform sampling between stains.

To further enrich input patch features for the prognostic regions (see the
bottom-left of Figure 1), we augment each patch embedding with positional,
cell count, and stain information. Given patch embeddings ek ∈ Rnk×1024 from
region k, where nk is the number of patches in the region, we obtain the cell
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counts embedding eck ∈ Rnk×dc and spatial embedding esk ∈ Rnk×ds as a lin-
ear projection of their original values. Concretely, eck = MLPc((xc − µc)/stdc),
where MLP is a linear layer followed by layer normalization, xc ∈ Rnk×2 is the
raw cell count vector, µc is the average across all patches in the patient, and
stdc is the patient-wise standard deviation of cell counts. Similarly, the spatial
embedding esk = MLPs((xs −mins)/(maxs −mins)), where xs ∈ Rns×2 is the
raw center coordinate for the patch, and mins and maxs are the minimum and
maximum x and y coordinates, respectively, in the foreground image where the
patch originates. The enriched patch embedding concatenates the original, cell,
and spatial embeddings ėk = concat(ek, e

c
k, e

s
k).

To process the prognostic regions, we adopt a shared ViT backbone ft =
{Li|i ∈ [1, nt]} with nt Transformer layers, dt token dimensionality, and ht
heads. Each layer Li contains a self-attention model SAi and feed-forward mod-
ule FFi. Processing patches in contiguous regions ensures spatial context of that
semantically-coherent region and also reduces Transformer computational com-
plexity from O((Nk ·nk)2) to O(Nk ·n2k). The encoder inputs patch embeddings
from all selected regions {ėk|k ∈ Nt} where embeddings of different regions are
appended in the batch dimension. To address the different input lengths across
regions, we first pad shorter sequences with a learnable empty token. Addition-
ally, we drop the vanilla ViT positional embeddings due to already present spatial
information and add a learnable stain embedding to inform the model whether
the patch is from a CD4 or CD8 image. The tissue-level Transformer outputs
the embedding associated with the input [cls] token that is concatenated with
the enriched embeddings. Thus, the input of ft is concat([cls], ėk).

Finally, after each self-attention layer SAi, the class tokens are separated
and processed through a light self-attention module SAcls

i and replaced with
the output [cls] token before FFi. This is visualized in Figure 1 with the self-
attention component in ft.

2.3 Patient Survival Prediction

The tissue-level encoder outputs Nt tokens representing the embedding for the
region. We implement the patient-level aggregation module as a light self-attention
module fp = MLPp(SAp) that takes as input the region embeddings (see the
bottom-right of Figure 1). In practice, this is similar to appending another SAcls

i

module to the model outputs, but with one clear distinction: there is a summa-
rizing patient-level [cls] token. A final linear layer MLPp maps the patient-level
prognostic features to the hazard logits τi.

From the definition of h(k|I) above, we train f using the negative partial
log-likelihood loss [20].

L = −
∑

(I,t,δ)∈D

δ · log(S(t|I))− (1− δ)(logS(k − 1|I + log h(t|I)), (1)

S(k|I) =
k∏

a=1

(1− h(a|I)). (2)
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3 Experiments and Results

3.1 Data, Evaluation, and Implementation

To evaluate our proposed framework, we collect a multi-stain pancreatic cancer
dataset comprising of 564 patients and 1185 WSIs. Each patient includes at least
one CD4 and one CD8 IHC-stained slide, prepared with DAB on paraffin-fixed
assays obtained through serial sectioning. Although less common, a patient’s
CD4 and CD8 WSIs may originate from different tissue samples, presenting high
tumor appearance heterogeneity. The dataset is divided into training, validation,
and testing sets with a ratio of 7:1:2, respectively.

Our evaluation employs the concordance index (CI) for rank-based prediction
in our main results (presented in §3.2) and the log-ranked test’s p-value for risk
stratification analysis (see § 3.3). We report the test metrics corresponding to
the epoch with the lowest validation loss and each reported value is averaged
across multiple experimental runs with different random seeds. For baselines, we
selected four recent methods covering the prominent survival analysis approaches
including multi-instance learning, graph neural networks, and Transformers. We
do not incorporate public datasets since there exists no open IHC survival data
and the use of popular H&E datasets (e.g., TCGA) may prevent fair direct
comparisons since our work targets the IHC modality.

In our clustering approach, we segment each WSI into Nk = 400 patches
for each cluster (see the end of §2.1 for the clinical justification of Nk = 400),
applying a weight of ws = 0.8 to balance between semantic and spatial distances.
For patch selection, we prioritize Nt = 24 regions with the most cancer cells.
The framework’s architecture integrates a tissue-level encoder ft (nt = 2, ht =
6, dt = 96) with a cross-region self-attention layer with a single head and hidden
dimensionality dt. Similarly, the patient-level aggregation module uses a single
head and has hidden dimensionality dp = 64. Spatial embeddings are es ∈ R60

and cell embeddings are ec ∈ R48. For the survival loss, we binned patients into
n = 4 intervals. All our experiments run with a batch size of 1 and use the
AdamW optimizer with a 4e− 5 learning rate and 0.1 weight decay.

Table 1. Main comparisons against state-of-the-art survival analysis works.
The CI column reports concordance index scores.

Multi-Stain (CD4+CD8) Single-Stain (CD8)

Method Params (M) FLOPs (G) CI Method Params (M) FLOPs (G) CI

Recent Approaches

DeepAttnMISL20 [19] 0.07 1.1 0.5310±0.0054 DeepAttnMISL20 [19] 0.07 0.6 0.5456±0.0056

PatchGCN21 [5] 1.19 18.3 0.5461±0.0150 PatchGCN21 [5] 1.19 9.4 0.5279±0.0193

TransMIL21 [15] 2.67 53.2 0.5300±0.0247 TransMIL21 [15] 2.67 48.4 0.5575±0.0090

HVTSurv23 [16] 3.25 65.5 0.5645±0.0082 HVTSurv23 [16] 3.25 33.9 0.5363±0.0242

Ours

IHCSurv (ours) 0.68 23.3 0.6373±0.0142 IHCSurv (ours) 0.68 23.3 0.6005±0.0117
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Fig. 2. Kaplan–Meier curve comparisons.
Fig. 3. Ablation studies.

Method CI

Clustering

1 K-means (Nk=100) 0.5913

2 K-means (Nk=400) 0.6149

3 SCSC (Nk=100) 0.6025

4 SCSC (Nk=400) 0.6373

Region Selection

5 Random (Nt = 24) 0.5945

6 Immune Count (Nt = 24) 0.5887

7 Cancer Count (Nt = 12) 0.5764

8 Cancer Count (Nt = 24) 0.6373

9 Cancer Count (Nt = 30) 0.6187

Components

10 No Enrichment 0.6016

11 + Stain Embedding 0.6025

12 + Spatial Embedding 0.6260

13 + Cell Embedding 0.6273

14 + Cross Attention 0.6373

3.2 Study 1: Overall Performance

Our main performance comparisons are summarized in Table 1, where we study
the results for single-stain (CD8 only) and multi-stain (CD4 and CD8) settings.
We select CD8 for our single stain experiments for two reasons: 1) CD8 is em-
pirically a stronger baseline compared to CD4, and 2) CD8 has more published
evidence to be a potent prognostic predictor while CD4’s prognostic value is
weaker and often originates from its interaction with other immune-targeted
stains.

In the single-stain scenario, our approach surpasses the leading competitor by
0.04 CI, showcasing the efficacy of our clustering and patch enrichment strategies
even without leveraging cross-stain context. When incorporating both stains, our
model’s performance exceeds the next best by nearly 0.08 CI, highlighting the
critical role of integrating IHC-based priors.

Compared to DeepAttnMISL [19] and PatchGCN [5], our approach has the
additional advantage of modeling global relations with spatial awareness. More-
over, our success against other Transformer-based models [15,16], known for their
substantial data requirements, underscores the value of incorporating meaningful
priors for improved data efficiency.

3.3 Study 2: Survival Stratification

In Fig. 2, we visualize the Kaplan-Meier curves after stratifying patients to
low and high risks via their median predicted risk scores. Our method incurs
much better separation between risk groups and results in the only statistically
significant predictions across all competitors.
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3.4 Study 3: Ablations

Fig. 3 presents ablation studies of our model’s main components. The first four
rows compare various tissue region sizes between our clustering method and K-
means, demonstrating the advantages of contiguous context from our clustering
method and larger cluster sizes. Rows 5 to 9 validate the intuition that priori-
tizing cancerous regions enhances model performance. Lastly in rows 10 to 14,
we incrementally study the contribution of each model component.

4 Conclusions

In this work, we proposed a new cancer survival prediction framework that lever-
ages priors in IHC whole-slide images to significantly improve survival prediction
accuracy, and designed new approaches to address the drawbacks of patch sub-
sampling. Specifically, we introduced a new spatially-constrained spectral clus-
tering algorithm that improves on K-means clustering to preserve spatial con-
text and patch semantics. By extracting cell counts enabled by IHC staining—a
process that incurs no additional annotation and minimal overhead costs—we
improved model performance by selecting the most prognostic regions and en-
hancing the descriptiveness of individual and aggregated patch features. Our
results significantly surpassed recent state-of-the-art survival analysis methods,
highlighting the benefits of incorporating accessible IHC-based priors. With the
promising advantages of the IHC imaging modality, we hope to motivate more
studies that explore this avenue and ultimately lead to improved patient care.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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Fig. 1. Visualization of extracted cell masks and types. To retrieve patch-wise cell
counts, cells are first detected and segmented using QuPath’s Watershed algorithm
with the computed optical densities from the image’s Hematoxylin channel. Next, RGB
statistics are extracted from cell nuclei pixels and categorized by thresholding their
mean color values. These categories include cancer cells (dyed red), immune cells (dyed
brown), uncertain cells (ambiguous cancer or immune cells), and other cells (stromal
and other cells without immunohistochemistry stains).
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K-Means Proposed

Fig. 2. Comparisons between results from k-means clustering (left column) and from
our proposed spatially-constrained spectral clustering method (right column). Both
approaches are clustered on 1024-dimensional features from an ImageNet-pretrained
ResNet-50 with settings of K = 6 for k-means (motivated by previous work such
as DeepAttnMISL) and K = 19 for our proposed clustering method (using Nk = 400
patches per cluster). In the top row, we observe segregated intra-cluster patches around
an important tertiary lymphoid structure for k-means while ours not only captures
the spatial context around the main structures but also preserves contiguous patches
around cancerous ducts. The bottom row demonstrates similar patchiness from k-means
while ours not only preserves spatial coherence across cancer cells and stroma but also
remains faithful to tissue boundaries.
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