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Abstract. Pulmonary embolism (PE) is a life-threatening condition
where rapid and accurate diagnosis is imperative yet difficult due to
predominantly atypical symptomatology. Computed tomography pul-
monary angiography (CTPA) is acknowledged as the gold standard imag-
ing tool in clinics, yet it can be contraindicated for emergency department
(ED) patients and represents an onerous procedure, thus necessitating
PE identification through non-contrast CT (NCT) scans. In this work, we
explore the feasibility of applying a deep-learning approach to NCT scans
for PE identification. We propose a novel Cross-Phase Mutual learNing
framework (CPMN) that fosters knowledge transfer from CTPA to NCT,
while concurrently conducting embolism segmentation and abnormality
classification in a multi-task manner. The proposed CPMN leverages the
Inter-Feature Alignment (IFA) strategy that enhances spatial contiguity
and mutual learning between the dual-pathway network, while the Intra-
Feature Discrepancy (IFD) strategy can facilitate precise segmentation
of PE against complex backgrounds for single-pathway networks. For a
comprehensive assessment of the proposed approach, a large-scale dual-
phase dataset containing 334 PE patients and 1,105 normal subjects has
been established. Experimental results demonstrate that CPMN achieves
the leading identification performance, which is 95.4% and 99.6% in
patient-level sensitivity and specificity on NCT scans, indicating the po-
tential of our approach as an economical, accessible, and precise tool for
PE identification in clinical practice.
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task learning · Non-contrast CT
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1 Introduction

Pulmonary embolism (PE) is a critical and potentially lethal pulmonary con-
dition, which occupies the third position in severity, trailing only behind my-
ocardial infarction and sudden cardiac death [18]. It typically arises from a
thrombotic event within the deep venous network of the lower limbs, which sub-
sequently embarks on a path through the bloodstream, advances to the cardiac
region, and culminates in an obstruction within the pulmonary arterial network
[8]. The predominant factor contributing to preventable mortality in PE cases
is not a therapeutic shortfall, but rather the omission of accurate diagnosis [4].

Within the realm of PE diagnostic modalities, computed tomographic pul-
monary angiography (CTPA) has emerged as the gold standard imaging tool,
facilitating visualization of pulmonary filling defects through the utilization of
contrast agents [1]. Unfortunately, certain patient populations within emergency
departments (ED) are unable to easily undergo intravenous contrast-enhanced
computed tomography scans, predominantly attributable to renal impairment
or hypersensitivity to iodine-based contrast agents [17]. On the contrary, non-
contrast computed tomography (NCT) can be performed within seconds and is
an economical and accessible tool. Nevertheless, the assessment of NCT scans
by radiologists lacks the requisite sensitivity and specificity to dependably diag-
nose PE [15]. Therefore, developing an automatic and accurate PE identification
framework on NCT scans is of paramount importance.

With recent advances in deep learning, an increasing number of researchers
have devoted efforts to developing automated algorithms for PE identification
on CTPA scans [5, 23, 2]. Huang et al. [5] presented a 3D convolutional neural
network (CNN) for PE identification by decoupling the issue as a classification
task, yet it lacks the capability to furnish precise localization. Recently, Yuan et
al. [23] proposed a ResD-UNet framework for pulmonary artery segmentation,
which enhances accuracy and efficiency through the integration of the U-Net ar-
chitecture with innovative residual-dense blocks and a composite loss function,
thereby tackling the challenge in assessing the severity of PE. Chen et al. [2]
introduced an automated segmentation approach for PE, termed SCUNet++,
which integrates the strengths of UNet++, multiple fusion dense skip connec-
tions, the Swin-Transformer attention mechanism, and the Swin-UNet architec-
ture. Conversely, the realm of PE identification on NCT scans remains com-
paratively underexplored [19]. Previous research [22] targeting the pancreas has
demonstrated that deep learning methodologies are capable of discerning nu-
anced textural and morphological alterations in NCT scans, which may elude
even the observation of human experts. However, the feasibility of PE identifi-
cation through NCT scans is still an open question, primarily due to the low
contrast differentiation between the embolism and surrounding pulmonary ves-
sels on NCT scans, compounded by the diverse morphological presentations of
embolisms, which intensify this identification challenge.

To tackle the aforementioned issues and leverage dual-phase knowledge, we
propose a novel Cross-Phase Mutual learNing framework (CPMN) for PE iden-
tification on NCT scans. In this work, the identification task is decoupled into
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classification and segmentation to improve the interpretability of identification
with more supporting information. Our primary contributions can be articulated
as follows: (1) The developed novel mutual learning framework CPMN unifies
PE classification and segmentation tasks across dual-phase (CTPA and NCT
scans), which can foster knowledge transferring from CTPA to NCT, thereby
enhancing the performance of the model on NCT scans. (2) The presented Inter-
Feature Alignment (IFA) strategy through an affinity graph captures pair-wise
spatial feature similarities, guided by connection range and granularity parame-
ters to enhance spatial contiguity and facilitate mutual learning transfer from the
CTPA- to the NCT-pathway network. (3) The Intra-Feature Discrepancy (IFD)
strategy realized through the designed dense center loss engenders a sharper
demarcation within the feature space, facilitating precise segmentation of PE
against complex backgrounds for each single-pathway network. (4) A large-scale
dual-phase dataset containing 334 PE patients and 1,105 normal subjects has
been established. The proposed CPMN achieves the leading identification perfor-
mance, which is 95.4%, 99.6%, and 78.5% in patient-level sensitivity, specificity,
and segmentation dice on NCT scans, indicating the potential of our approach
as a robust and precise tool for PE identification in clinical practice.

2 Methodology

Problem Formulation. In the training stage, given a set of pair-wise data,
namely NCT and CTPA volume, the entire dataset is denoted by S = {(Xn

i , X
c
i ,

Yi,Mi)|i = 1, 2, ..., N}, where Xn
i and Xc

i are the i-th NCT and CTPA volume,
with Yi being the voxel-wise segmentation label map of the same size as Xi and
K channels. Here, K = 2 represents the background and embolism. Mi ∈ {0, 1}
is the classification label of the image, where 0 stands for “normal” and 1 for
“PE”. In the testing stage, solely the NCT volume Xn

i is provided, and the
objective is to predict abnormality probability and generate an embolism mask.

Mutual Learning Framework. In this section, we present our mutual learning
framework designed for dual-phase medical image analysis, leveraging CTPA and
NCT volumes. Our approach enhances the performance and generalization of the
NCT-pathway network through a novel mutual learning strategy (MLS).

As shown in Fig 1, our proposed mutual learning framework is designed
to simultaneously train two CNNs with distinct tasks, classification, and seg-
mentation. The CTPA-pathway network, denoted as Ω1, is tasked with classi-
fication and segmenting PE in CTPA volumes. Conversely, the NCT-pathway
network, Ω2, operates on NCT volumes. We choose U-Net [14] 3D version with
EfficientNet-B0 [16] 3D version as the encoder for segmentation task and add an
auxiliary classifier Θi,i∈{1,2} with architecture avg pool → FC layer → Relu →
FC layer, after encoder. The architecture is the same for both pathways.

Both networks are trained in parallel, as well as leveraging the MLS that
fosters knowledge transfer from Ω1 to Ω2. This is achieved by minimizing a
divergence loss that aligns the predictive distributions of the two networks. We
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Fig. 1: Overview of our proposed Cross-Phase Mutual learNing framework
(CPMN) that contains the CTPA-pathway network (Ω1) and the NCT-pathway
network (Ω2). Each pathway network comprises an encoder-decoder pair (Φ1/Ψ1,
Φ2/Ψ2) that extracts features from the corresponding volume. The presented
Inter-Feature Alignment (IFA) strategy through an affinity graph captures pair-
wise spatial feature similarities in the encoder. The predicted PE probabilities
(p1, p2) are harmonized using KL divergence to align feature distributions with-
out altering the CTPA-pathway network. The dense center loss is designed to
refine the segmentation feature space (Σ1, Σ2).

follow [26] employ the Kullback-Leibler (KL) divergence as a measure of the
discrepancy between the output logits of p1 and p2, formulated as:

DKL (p2∥p1) =

N∑
i=1

1∑
m=0

pm2 (xi) log
pm2 (xi)

pm1 (xi)
,LKL = DKL (p2 ||p1) (1)

where p1 and p2 represent softmax probabilities from two classification heads
(Θ1, Θ2) given inputXn

i andXc
i , respectively. By minimizing LKL, we encourage

Ω2 to adapt its predicted classification distribution towards that of Ω1.

Inter-Feature Alignment (IFA). In our mutual learning framework, akin to
the pair-wise Markov random field approach for enhancing spatial labeling con-
tiguity, we focus on similarity among spatial features from the CTPA-pathway
network Ω2 to the NCT-pathway network Ω1. Inspired by [10], an affinity graph
is built to encapsulate this relationship. This graph is parameterized by con-
nection range α and granularity β, optimizing the graph’s resolution and the
fidelity of spatial relations captured. The affinity graph, with W ′×H′

β nodes and
W ′×H′

β ×α connections, serve as a dynamic representation of spatial correlations,
enhancing the mutual learning process between the networks Ω1 and Ω2.

To quantify the knowledge transfer between them and foster the mutual
learning process, we introduce a pair-wise similarity distillation loss, integrating
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the squared differences of pair-wise similarities with a similarity term to measure
the alignment between the networks’ feature map:

Lalig =
1

Z

∑
i∈R′

∑
j∈α

(aΩ1
ij − aΩ2

ij )2,R′ ∈ {1, 2, 3, ..., W
′ ×H ′

β
} (2)

where Z = W ′ × H ′ × α serves as a normalization factor and aΩ1
ij and aΩ2

ij

denote the similarity between the i-th and j-th nodes computed by networks Ω1

and Ω2, respectively. And similarity between two nodes is computed from the

aggregated features fi and fj as aij =
f⊤i fj

∥fi∥2∥fj∥2
. In our implementation, we use

average pooling to aggregate β × C features in one node to be 1 × C. In the
training process, since we only want the features of NCT-pathway network Ω2

getting closer to the CTPA-pathway network Ω1, only the parameters of the Ω2

is updated through Lalig.

Intra-Feature Discrepancy (IFD). To enhance our segmentation model’s
capability to distinguish discriminative features between the background and
the pulmonary embolism, we propose an IFD strategy that is based on designed
dense center loss derived from center loss [21], traditionally used in classification
tasks. In each training iteration, the centers are computed as the centroid features
of the pixels belonging to the corresponding class in our segmentation mask. This
modification to the center loss method, denoted as Ldisc, is defined as follows:

Ldisc =
1

2

k=1∑
k=0

∥xk − ck∥22 ,
∂Ldisc

∂xk
= xk − ck (3)

where I is the indicator function, xk is the feature of the k-th pixel belonging
to class k, and ck denotes the k-th class center of deep features. The update
function for centers ck is depicted as:

∆ck =

∑j=1
j=0 I (j = k) · (ck − xj)

1 +
∑j=1

j=0 I (k = j)
(4)

This approach enables our networks to effectively learn compact and separate
clusters in the feature space for each class, a critical aspect of segmentation.

Learning and Optimization. The total loss LTotal of CPMN is defined as:

LTotal = Lclas + Lseg + λ1LKL + λ2Lalig + λ3Ldisc (5)

where λ1, λ2, and λ3 are set to 0.25, 10, and 0.1, making these loss value ranges
comparable. The classification loss Lclas is binary cross-entropy loss, and the
segmentation loss Lseg is optimized through focal loss [9] to address the class
imbalance ratio between the pulmonary embolism area and the background.
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3 Experiment

3.1 Datasets

In-House Dataset: We establish a large-scale dual-phase dataset (ALD-PE)
containing 334 PE patients and 1,105 normal subjects from a cooperative hos-
pital between the years 2019 and 2022. Each case encompasses a CTPA scan in
conjunction with the corresponding NCT phase. We use the latest patients in
2022 as a hold-out test set, resulting in a training set of 269 PE patients and 881
normal subjects, and a test set of 65 PE patients and 224 normal subjects. We
randomly selected 20% of the training data as an internal validation set. LapIRN
[13] is employed to register the CTPA phase to the NCT phase, and then invite an
experienced radiologist to annotate labels on the CTPA phase using CTLabeler
[20]. The segmentation mask and the class label are annotated based on radi-
ology reports and clinical records. Public Benchmark: The FUMPE dataset
[12] is one of the largest publicly available datasets in this field containing 8,792
CTPA images obtained from 35 patients. The partitioning of the training and
test datasets aligns with the methodology delineated in prior research [2].

3.2 Implementation Details

We developed our segmentation models using PyTorch, with experiments con-
ducted on two NVIDIA A100 GPUs. We set the training batch size to 6, with
transformations including random flips and rotations with 10% probabilities,
spatial padding, and random cropping to a uniform size of 224×224×96. During
the inference stage, we use sliding-window inference with patch size 224×224×96,
and the center patch is cropped with the same size as the input for the classifica-
tion head. The Adam [7] optimizer, with a learning rate of 0.001, is paired with
a Cosine Annealing learning [11] rate scheduler that strategically modulates the
learning rate over the training epochs, with the minimum rate set at 1× 10−5.

3.3 Evaluation Metrics and Reader Study

For the binary classification task, model performance is evaluated using the area
under the Receiver Operating Characteristic curve (AUC), sensitivity (Sens.),
and specificity (Spec.). For the segmentation task, the dice coefficient is uti-
lized to assess model performance. A reader study was carried out involving
three radiologists in cardiopulmonary imaging: an expert radiologist (12 years
experience), a senior radiologist (8 years experience), and a junior radiologist (3
years experience). The readers were given 289 non-contrast CT scans from the
test set and asked to provide a binary decision for each scan, determining the
presence or absence of PE. They conducted their evaluations without access to
any patient information or medical records. Additionally, readers were apprised
that the dataset could exhibit a higher incidence of PE cases compared to the
typical prevalence encountered in routine screenings, but the exact distribution
of case types was not revealed to them. Utilizing the ITK-SNAP software [25],
the radiologists interpreted the CT scans, free from any time limitations.
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Table 1: Ablation study on the test set of ALD-PE dataset. MLS: mutual learn-
ing strategy. IFA: inter-feature alignment. IFD: Intra-feature discrepancy. Sens.:
Sensitivity. Spec.: Specificity. †: p < 0.05 for permutation test ((3) vs. NCT
model and (2)). ‡: p < 0.05 for DeLong test ((3) vs. NCT model). △: For the
dual-phase, only the performance of the model on NCT scans is reported here.

Phase Method
Classification Segmentation

Sens. (%) Spec. (%) AUC Dice (%)

Single
CTPA model 96.9 99.6 0.996 79.9
NCT model 84.6 97.8 0.973 68.8

Dual△
+ MLS(1) 92.3 99.1 0.989 70.1

+ MLS + IFA(2) 92.3 99.1 0.988 75.7

+ MLS + IFA + IFD(3) 95.4† 99.6† 0.990‡ 78.5

3.4 Results

Ablation Study. To verify the contribution of each component, the ablation
study is carried out, and the results are reported in Table 1. As for single-phase,
our baseline model achieves 96.9%, 99.6%, 0.996, and 79.9% in patient-level sen-
sitivity, specificity, AUC, and segmentation dice on CTPA scans, while realizing
84.6%, 97.8%, 0.973, and 68.8% on NCT scans. In the context of dual-phase
analysis, our attention is exclusively dedicated to quantifying the performance
enhancement conferred by each component on NCT scans. (1) MLS: The results
demonstrate that the introduced MLS yields 7.7% and 1.3% improvement in sen-
sitivity and specificity, which proves that MLS can synergy the strengths of both
phases to enhance predictive performance on NCT scans. (2) IFA: Quantitative
results show that the presented IFA strategy increases the segmentation dice
from 70.1% to 75.7% while maintaining the classification performance, which
indicates the effectiveness of the IFA strategy by constraint of pair-wise spatial
feature similarities. (3) IFD: The results show that the designed IFD strategy
can further improve the segmentation dice to 78.5%. Concurrently, there is a
notable enhancement in patient-level sensitivity by 3.1%, culminating at 95.4%.
It proves the importance of the designed IFD strategy.

Comparison with Literature. To evaluate the effectiveness of our proposed
CPMN, we conduct a comparison with various state-of-the-art methods on two
different datasets. (1) ALD-PE: Table 2 presents a comparative analysis of
our proposed CPMN with four baselines. The first baseline is DML [26] based
on mutual learning. The other three baselines (denoted as “-Joint”) integrate
a CNN classification head into each network and are trained in an end-to-end
manner. Quantitative results show that our proposed CPMN achieves the lead-
ing classification and segmentation performance, particularly in sensitivity and
segmentation dice. Qualitative results, as shown in Fig. 2(b), demonstrate that
CPMN achieves more robust segmentation results. (2) FUMPE: We assess the
efficacy of our training framework for segmentation tasks on single-phase data
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Table 2: Comparison with radiologists and literature on the test set of ALD-
PE dataset for NCT scans. Sens.: Sensitivity. Spec.: Specificity. †: p < 0.05
for permutation test (CPMN vs. nnFormer-Joint and radiologist experts). ∗:
p < 0.05 for the DeLong test (CPMN vs. nnFormer-Joint).

Method
Classification Segmentation

Sens. (%) Spec. (%) AUC Dice (%)

Mean of radiologists 38.5 78.6 - -

DML [26] 89.2 97.8 0.986 -
nnU-Net-Joint [6] 87.7 98.2 0.969 72.4

Mask2Former-Joint [3] 86.2 98.7 0.955 70.6
nnFormer-Joint [28] 89.2 98.7 0.976 73.2

CPMN 95.4† 99.6† 0.990∗ 78.5

streams. To conduct this evaluation, we modify the CTPA-pathway network by
removing the auxiliary classification head and using the 2D-EfficientNet-B0 and
2D-U-Net architecture. All other components of the CTPA-pathway network
remain unchanged. This approach achieves a dice coefficient of 77.4%, surpass-
ing the performance of a recent dedicated model (ResD-UNet [24]) tailored for
PE identification, which achieves 76.5%. The results demonstrate that our in-
troduced single-pathway network is robust and effective. More importantly, the
comparison results further substantiate that the advancements in identification
on NCT scans are not solely due to the choice of a powerful backbone but rather
the effectiveness of the proposed CPMN itself.

Comparison with Radiologists. As shown in Fig. 2(a), our proposed CPMN’s
ROC curve is superior to the performance of three radiologists. The model
achieves a patient-level sensitivity of 95.4% in PE identification, which signifi-
cantly exceeds that of radiologists (18.5%, 43.1%, and 53.8%) while maintaining
a high specificity of 99.6%. A visual example is presented in Fig. 2(b), which
is miss-detected by three radiologists, whereas classified and localized precisely
by CPMN. More importantly, the extra information about predicted embolism
masks and CAM [27] generated from the classification head improve the inter-
pretability of identification.

4 Conclusion

In this work, a novel Cross-Phase Mutual learNing framework (CPMN) has
been proposed to facilitate knowledge transfer from CTPA to NCT, thereby
enhancing performance for PE identification on NCT scans. Additionally, the
framework provides outputs of CAM and embolism masks for improved clinical
interpretability. The comprehensive evaluation demonstrates that our approach
outperforms strong baselines and experienced radiologists, highlighting the po-
tential of our approach as a robust and precise tool for PE identification in real
clinical environments.
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CTPA ScanNCT Scan

Ground truthnnU-Net

Ground Truth: PE
Radiologists: Normal (3/3)

Our Classification Output: Normal 0.1%, PE 99.9%

Ours

(a) ROC curve (b) Visualization example

CAM

Fig. 2: (a) ROC curve for our model versus three radiologists on the hold-out
test set (n = 289) for binary classification. (b) Visualization example in the test
set. This PE case is miss-detected by three radiologists but our model succeeds
in locating the embolism by CAM [27] and predicted mask. Green contours
represent the regions of embolism (best viewed in color).
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