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Abstract
Lymph node (LN) metastasis status is one of the most critical prognostic and cancer staging clinical factors for patients
with resectable pancreatic ductal adenocarcinoma (PDAC, generally for any types of solid malignant tumors). Pre-operative
prediction of LN metastasis from non-invasive CT imaging is highly desired, as it might be directly and conveniently used
to guide the follow-up neoadjuvant treatment decision and surgical planning. Most previous studies only use the tumor
characteristics in CT imaging alone to implicitly infer LN metastasis. To the best of our knowledge, this is the first work to
propose a fully-automated LN segmentation and identification network to directly facilitate the LNmetastasis status prediction
task for patients with PDAC. Specially, (1) we explore the anatomical spatial context priors of pancreatic LN locations by
generating a guiding attention map from related organs and vessels to assist segmentation and infer LN status. As such,
LN segmentation is impelled to focus on regions that are anatomically adjacent or plausible with respect to the specific
organs and vessels. (2) The metastasized LN identification network is trained to classify the segmented LN instances into
positives or negatives by reusing the segmentation network as a pre-trained backbone and padding a new classification head.
(3) Importantly, we develop a LN metastasis status prediction network that combines and aggregates the holistic patient-wise
diagnosis information of both LN segmentation/identification and deep imaging characteristics by the PDAC tumor region.
Extensive quantitative nested five-fold cross-validation is conducted on a discovery dataset of 749 patients with PDAC.
External multi-center clinical evaluation is further performed on two other hospitals of 191 total patients. Our multi-staged
LN metastasis status prediction network statistically significantly outperforms strong baselines of nnUNet and several other
compared methods, including CT-reported LN status, radiomics, and deep learning models.

Keywords Pancreatic ductal adenocarcinoma (PDAC) · Lymph node metastasis · Lymph node segmentation · Contrast-
enhanced computed tomography
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1 Introduction

Pancreatic cancer is the third leading cause of overall can-
cer death in the United States (Siegel et al., 2021), of
which approximately 95% is pancreatic ductal adenocarci-
noma (PDAC) (Grossberg et al., 2020). With the poorest
prognosis (i.e., 5-year overall survival (OS) of 10% approx-
imately) among all types of solid cancerous malignancies,
surgical resection is the most effective way to achieve long-
term survival for patients with PDAC (Grossberg et al.,
2020). However, not all patients can benefit from the margin-
negative (R0) resection. Comprehensive treatment protocols
are established for pancreatic cancer. For example, selecting
the proper cancer treatment for each patient must consider
the condition whether peripancreatic lymph nodes (LNs)
have been metastasized so that the options of adjuvant radio-
therapy (RT) or chemotherapy become first applicable. It is
found that neoadjuvant therapybefore surgerywas associated
with improved survival and time-to-recurrence in patients
with LN metastasis, since neoadjuvant therapy can not only
treat lymphovascular invasion but also benefit tumor down-
staging (Roland et al., 2015; Kanda et al., 2011). Accurate
pre-operative localization and prediction of LN metastasis
becomes vital and would aid critically in the treatment plan-
ning and management.

Contrast-enhanced CT is used as the typical imaging pro-
tocol for identifying the presence of peripancreaticmetastatic
disease to LNs, but it is a very challenging task for radiolo-
gists to determine whether a patient has LN metastasis when
using only CT scans. To this end, low diagnostic accuracy
of CT with a pooled sensitivity of 25% and positive pre-
dictive value (PPV) of 28% was reported in a meta-analysis
(Tseng et al., 2014) on assessing extra-regional LN metas-
tasis in pancreatic and peri-ampullary cancer. On the other
hand, recently several radiomics based approaches have been
proposed to tackle the LNmetastasis differentiation problem
from various cancer types (Ji et al., 2019; Wang et al., 2020;
Li et al., 2020; Bian et al., 2019; Yang et al., 2020; Gao
et al., 2020; Meng et al., 2020). However, these methods
require hand-crafted feature design which can bring con-
cerns of reproducibility and human bias is often introduced
since manual selection of 2D representative tumor slices
and regions of interest is a prerequisite by radiomics meth-
ods. Additionally, there are several previous deep learning
work that report promising performance on predicting LN
metastasis status in gastric cancer (Jin et al., 2021; Dong
et al., 2020). Those models assume that the risk estimate of
metastases is fundamentally driven by the primary tumor.
They rely on LN CT report information for the integration
model without exploiting any explicit process of LNs detec-
tion or segmentation. Thus if both tumor morphology and
lymphatic anatomy can be taken into account simultane-
ously, it could be of great clinical utility. This information

processing pipeline is actually more similar with the diag-
nostic processes performed by human radiologist readers.
Last, PET/CT is another imaging modality worth exploring.
PET/CT based approaches (Kim et al., 2019; Asagi et al.,
2013; Dahmarde et al., 2020) generally use the maximum
standardized uptake value (SUVmax ) of manually-drawn LN
RoIs as the prediction element, but it comes with challenges
of numerous false positives from inflammatory LNs and
false negatives from small-sized metastatic LNs (Tseng et
al., 2021; Jung et al., 2017). Also, PET/CT is not as common
as CT, more expensive, less affordable and accessible. Hence
we opt for multiphase CT imaging to tackle this problem.

In this paper, we tackle the LN metastasis status predic-
tion problem for patients with PDAC by first segmenting and
identifying instances of LNs and then holistically classifying
the patients into metastasis-positive or -negative group. LNs
are tiny anatomical structures surrounding organs and ves-
sels. Their locations are mapped into 18 stations with respect
to the primary pancreatic cancer tumor by their relative posi-
tions against adjacent anatomical structures, as defined by
Japan Pancreas Society (JPS) (Kanehara, 2017) (see Table
6 in the Appendix A for details). Examples of their spa-
tial distribution are shown in Fig. 1. Response Evaluation
Criteria in Solid Tumors (RECIST) criteria (Eisenhauer et
al., 2009) defines the criteria for LN metastasis suspicion,
i.e., nodes with short axis greater than 10mm, heterogeneity
and central necrosis. However, these criteria are not pathog-
nomonic since there exist false negatives associated with
small node micrometastases and false positives with inflam-
matory nodes larger than 10mm in short axis. Finding LNs in
CT images is quite time-consuming and can be inconsistent
based on radiologists’ subjective experiences. It is usually
ambiguous for radiologists to identify nodal positivity from
CT alone without referring to pathology reports. The cur-
rent gold standard for determination of metastasis is based
on post-operative pathological evaluation of pancreatectomy
specimens. Automated and reliable pre-operative LN seg-
mentation and identification are highly desirable and still
considered as a critical unmet clinical need.

LN segmentation is especially challenging due to two
reasons: (1) tiny to small sizes of LNs cause extreme
foreground-background class imbalance problem; (2) LNs
have CT attenuation values that are very similar to that
of vessels and other soft-tissue structures. Existing work
(Oda et al., 2018; Bouget et al., 2019; Guo et al., 2021)
mainly adopt U-Net based segmentation networks (Ron-
neberger et al., 2015; Çiçek et al., 2016; Isensee et al., 2021)
as strong backbones. The spatial relationship between lym-
phatic anatomy and adjacent anatomical structures is not
well explored. To exploit inter-object relationships, previ-
ous methods either apply attention mechanism to highlight
probable object cues (Sang et al., 2022; Min et al., 2022),
or incorporate topological constraints (Gupta et al., 2022).
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Fig. 1 Avisualizationof pancreatic tumor (in dark red) andLNs (in pink
red for positives or green for negatives) in multi-phase CT images and
their spatial distributions corresponding to key anatomical structures

as follows. SMA: superior mesenteric artery. TC&SA: truncus coelia-
cus and splenic artery. LGA: left gastric artery; CHA&PHA: common
hepatic artery and proper hepatic artery (Color figure online)

Sang et al. (2022) quantifies the relationship between small
and large objects using attention on different feature levels.
Min et al. (2022) associates foreground-related contexts by
generating an attentionmap defining the relation between the
foreground and scene. While these work implicitly encode
object relationships, they are limited in their capacity to
deal with explicit topological interactions that naturally arise
in anatomical structures. Gupta et al. (2022) considers two
common types of object interactions (i.e. containment and
exclusion) and enforces topological constraints by directly
identifying locations where the constraints are violated. We
address this issue by introducing a distance-guided attention
map to fully utilize the anatomically-constrained spatial pri-
ors. In our work, distancemaps of relevant organs/vessels are
generated using distance transform (Rosenfeld and Pfaltz,
1968), a powerful tool widely used in medical image seg-
mentation (e.g., Sironi et al. (2014); Wang et al. (2020)).
LN attention map is obtained via a pre-defined mapping
from distance maps and then integrated into the segmenta-
tion network to control its spatial focus. It improves sample
selection strategy that filters out non-informative negative
image samples (“informative negative selection") to tackle
the class imbalance problem. For training, the segmented
LNs are annotated as positive/negative using radiologist’s

judgment that combines information from both pathologi-
cal reports and CT intensities. A LN classification network
is trained by using the LN segmentation network as a pre-
trained backbone where the classification task benefits from
the dense structure prediction in the segmentation loss for-
mulation. To predict LN metastasis in patients with PDAC,
we employ a modified ResNet classification model He et al.
(2016). Tumor characteristics are proven to be complemen-
tary yet important cues (Li et al., 2020; Bian et al., 2019;
Gao et al., 2020), so we integrate both tumor and LN deep
imaging characteristics by taking as inputs the image patches
of tumor and the patient-wise aggregated LNs.

Our main contribution is summarized as follows. (1) To
the best of our knowledge, this work is the first to directly
exploit and incorporate LN segmentation and identifica-
tion for explicitly assisting the patient-level pre-operative
LN metastasis status prediction. (2) An attention-based
LN segmentation network is proposed by enforcing the
constraints of distances to surrounding anatomical struc-
tures (as exploiting the spatial priors) and addressing the
foreground-background imbalance issue. (3) We design a
holistic patient-level LNmetastasis status prediction network
by combining both tumor and positive LN imaging char-
acteristics, revealing the promising performance effects of
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joint tumor-LNguided cues. (4)Extensive quantitative exper-
iments are conducted to evidently validate the effectiveness
of our proposed deep local attention integration framework
in both tasks of instance-level LN segmentation and patient-
level LN metastasis status prediction. External multi-center
clinical evaluations are performed to further demonstrate
our method’s generalization ability. Without loss of gen-
erality, our proposed method is applicable on calculating
the pre-operative LN metastasis status of other solid can-
cer malignancies, such as liver or gastric cancers. (5) Last
but not least, comparing with the current literature in pre-
operative lymph node metastasis status assessment, which is
one of core unsolved problems in cancer imaging to support
more precision clinical decision making, the new ideas we
proposed in this paper should inspire others to consider and
address this problem from a new technical perspective.

2 RelatedWork

2.1 Lymph Node Segmentation

Automated LN segmentation in CT images is an essential
yet very challenging task in medical image analysis. Tra-
ditional methods tackle this problem by the means of atlas
based search space restriction (Feuerstein et al., 2012), spatial
prior features combination (Liu et al., 2016, 2014), super-
voxel clustering (Oda et al., 2017), etc.Recently,U-Net based
deep networks have shown remarkable performance in var-
ious organ or tumor segmentation tasks (Seo et al., 2019;
Huang et al., 2019; Kazemifar et al., 2018; Oktay et al., 2018;
Gerard and Reinhardt, 2019). nnUNet (Isensee et al., 2021)
is a self-configuring approach, with automatic configurations
including preprocessing, network architecture, training and
post-processing, and achieves robust performance and appli-
cability. To address the strong class imbalance issues in LN
segmentation, four other anatomical structures are included
as training targets (Oda et al., 2018) using 3D U-Net (Çiçek
et al., 2016) framework. Bouget et al. (2019) utilizes par-
allel networks of 2D U-Net (Ronneberger et al., 2015) and
Mask R-CNN (He et al., 2017) with the supervision of all
considered anatomical structures and LNs. Another strategy
to incorporate anatomical context is to take organ segmenta-
tion masks as additional channels of the input. Bouget et al.
(2021) proposes an ensemble approach for a slab-wise and
a downsampled full volume based LN segmentation, taking
the concatenation of CT image and segmented anatomical
structure masks as input. DeepStationing (Guo et al., 2021)
presents a key referencing organ auto-search strategy and
combines selected organs into the network via input concate-
nation for LN station parsing. All above methods implicitly
exploit spatial priors of LNs by injecting the anatomical
structuremasks either as inputs or supervisions. Furthermore,

there are no studies on how LN segmentation could be used
for predicting the patient-level LN metastasis.

2.2 Lymph NodeMetastasis Prediction

Radiomics Methods. Radiomics is a powerful technique
for extracting quantitative image features with the purpose
of clinical decision support, being widely used in cancer
research (Kumar et al., 2012; Gillies et al., 2016; Lambin et
al., 2012;Gaoet al., 2020;Menget al., 2020;Wei et al., 2023).
It converts imaging data into different types of hand-crafted
features, including shape, intensity, texture and filter-based
(e.g., wavelet, Laplacian of Gaussian) features. Applications
of radiomics onpredictingLNmetastasis fromprimary tumor
have been explored in many previous work (Ji et al., 2019;
Wang et al., 2020; Li et al., 2020; Bian et al., 2019; Yang
et al., 2020). Radiomics features are first extracted from
manually delineated tumor regions in any contrast-enhanced
CT images. Feature selection and classification model con-
struction using logistic regression, random forest are then
performed to give LN metastasis prediction for various can-
cers, such as gastric cancer (Wang et al., 2020; Meng et al.,
2020), biliary tract cancer (Ji et al., 2019) and PDAC (Li et
al., 2020; Bian et al., 2019; Gao et al., 2020). Relying on the
primary tumor imaging radiomics without considering LNs
may limit the prediction accuracy, thus (Yang et al., 2020)
uses manual annotations of the largest LN visible in the gas-
tric region and combines LN radiomics into the prediction
model for gastric cancer.However, themain problem remains
since it only involves the largest depicted LN without iden-
tifying the nodal positivity.

DeepLearning basedMethods.Recent advances in deep
learning have made it a mainstream approach of formulating
the entire workflow of cancer diagnosis and treatment on
medical imaging, such as oropharyngeal cancer (Cheng et
al., 2021), lung cancer (Xu et al., 2019), as well as pancre-
atic cancer (Xia et al., 2021; Zhao et al., 2021; Yao et al.,
2020). Deep neural networks are applied to solve the prob-
lem of LN metastasis in Zheng et al. (2020); Dong et al.
(2020); Harmon et al. (2020); Jin et al. (2021). In Zheng
et al. (2020), deep features are extracted from tumor ROIs
in bimodal image (i.e., US and SWE) using ResNet (He et
al., 2016), and then fed into a SVM model for predicting
axillary LN status in breast cancer. For gastric cancer, Dong
et al. (2020) combines DenseNet Huang et al. (2017) fea-
tures with some hand-crafted features, extracted from the 2D
tumor ROI with the largest area in multi-phase CT images.
To estimate themetastasis status of individual LN stations for
gastric cancer, Jin et al. (2021) develops a system of multiple
independent ResNets with tumor ROIs and corresponding
annotation masks as inputs where each ResNet is responsi-
ble to predict metastasis at one specific nodal station. Most
existing studies capture only tumor characteristics for LN
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metastasis prediction, while (Yang et al., 2020) leverages LN
radiomics by requiring manual delineation and simply only
the LN with the largest size is considered. Automated and
accurate LN segmentation and nodal positivity identification
is hence of high importance for assisting the patient-level
metastasis prediction.

3 Method

The overall framework is illustrated in Fig. 2, which is com-
posed of a distance-guided attention-based LN segmentation
and identification network (a), and a tumor and LN combined
metastasis status prediction network (b).

3.1 Distance-guided Attention Lymph Node
Segmentation and Identification Network

We perform LN detection from any input CT scan by a two-
stage strategy: segmenting the image into two classes of LN
and background voxels, followed by identifying segmented
LN instances as positive or negative.

3.1.1 Class-agnostic Lymph Node Segmentation

Based on the spatial prior that LN stations are geometri-
cally distributed or constrained around certain anatomical
structures, we propose an attention based LN segmentation
network by taking the distances to nearby organs/vessels
into account. Our LN segmentation network differs from
the strong baseline (i.e., nnUNet (Isensee et al., 2021)) in
that attention mechanism is applied to guide possible LN
locations, with the advantage of reducing false positive pre-
dictions outside those locations. The intuition behind the
attention module is that the attention map can cover regions
adjacently constrained to those organs and vessels.

Attention Map Generation. To explicitly capture and
model the lymphatic anatomy, attention computation is
implemented as a pre-defined geometric mapping function
from organ&vessel distance maps. An example of atten-
tion map generation process is shown in Fig. 3. Specifically,
given a multi-phase input CT volume X ∈ R

N×W×H×D , we
first obtain organ&vessel segmentation mask using nnUNet
(Isensee et al., 2021)model trainedwith 19 classes of annota-
tions. Ten classes among them involved with 17 LN stations
are used (see Table 6 in the Appendix A for the definition
of LN stations), i.e., spleen, esophagus, stomach, aorta, pan-
creas, duodenum, superior mesenteric artery (SMA), truncus
coeliacus and splenic artery (TC&SA), left gastric artery
(LGA), common hepatic artery and proper hepatic artery
(CHA&PHA). Note that station 15# (LNs along middle
colic artery) is left aside here since it is related to distant
metastasis that rarely happens in our patient population. A

signed distance transform (SDT) is applied to each class of
the segmentation mask M ∈ {0, 1, 2, ..., 10}W×H×D , gen-
erating a total of 10 organ/vessel distance maps Di where
i ∈ {1, 2, ..., 10} is the index of organ/vessel class. Di has
positive values at the voxels outside the i-th organ/vessel and
negative scores inside it. Intuitively, LNs are likely to appear
within a certain range of distance to each organ/vessel, which
requires paying attention to. To obtain the distance-guided
attentionmaps, Di is passed to an isosceles trapezium-shaped
non-linear mapping function (see Fig. 3), formulated as

f i (d) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, dimin ≤ d ≤ dimax

− (d − dimax − 3)

3
, dimax < d < dimax + 3

(d − dimin + 3)

3
, dimin − 3 < d < dimin

0, Otherwise

.

(1)

where d is the individual element in Di ; dimin and d
i
max deter-

mine the distance range in mm; the smooth border 3mm is
chosen empirically. This mapping function converts the dis-
tance maps to the attention scores ranging from 0 to 1, with 1
indicating possible locations of LNs, 0 indicating impossible
locations, and decimals lying in between. The i-th attention
map Ai is obtained by Ai = f i (Di ).

The final attention map Aall is produced by integrating
all of the organ/vessel-specific attention maps, thus Aall can
cover the whole areas that need attending to. In specific, Aall

takes the element-wise maximum of all Ai except for the
voxels inside an organ/vessel, illustrated as

aallv =
⎧
⎨

⎩

max
i=1,2,...,10

aiv, mv = 0

aiv, mv = i
. (2)

where a∗
v and mv are the values of A∗ and M at the voxel v.

Attention based Lymph Node Segmentation. After
obtaining the distance-guided attention map, we incorpo-
rate it to the segmentation network with 3D nnUNet (Isensee
et al., 2021) as the backbone. Specifically, given the multi-
phase input images X ∈ R

N×W×H×D , the feature map at
the penultimate layer of the network is extracted (denoted
as Z ∈ R

C×W×H×D , where C is the channel number of the
feature). This feature is then spatially scaled (or multiplied)
element-wisely with the attention map Aall ∈ R

W×H×D .
The multiplication operation emphasizes the regions that are
likely to contain LNs based on the spatial priors from the
attention map. The formula for scaling the features can be
written as:

ZS = Z � Aall (3)
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where � represents element-wise multiplication. The scaled
feature ZS ∈ R

C×W×H×D is finally passed through a convo-
lution blockwith a softmax layer to produce the segmentation
output P ∈ R

2×W×H×D .
Due to GPU memory limitation, patch-based training

strategy is employed. nnUNet randomly samples 3D image
patches from the whole CT scan and enforces that more
than a third of samples in a batch contain at least one fore-
ground class to control the foreground-to-background ratio.
Considering the extreme class imbalance problem caused by
the small LN targets, we improve it with the “informative
negative selection (INS)" scheme. Note that our proposed
attention mechanism helps block out features at the voxels
with a certain distance to or inside all organs and vessels,
resulting in lots of non-informative negative patches filled
with 0 by applying zero attention scores. Thus we can nat-
urally throw out those non-informative patches, and select
patches containing at least one attention score > 0 (called
informative patches) for training. This sampling strategy fur-
ther boosts the network’s concentration on targeted regions
of interest (ROIs) surrounding organs/vessels.

For training objectives to better balance precision and
recall, we modify the Dice loss in nnUNet with Tversky loss
(Salehi et al., 2017):

LT = − 2

|V |
×

∑
v p1,vy1,v

2
∑

v p1,vy1,v + α
∑

v p1,vy0,v + β
∑

v p0,vy1,v
(4)

where |V | is the number of voxels. p1,v is the probability
of voxel v being a LN, and p0,v is the probability being a
non-LN. Also, y1,v is 1 for a LN voxel and 0 for a non-LN
voxel, and vice versa for the y0,v. In practice, we set α = 0.5
and β = 1.5 to emphasis on false negatives and boost recall.
The whole network is trained by the combination of cross
entropy loss LCE and Tversky loss LT with equal weights as
in nnUNet.

LCE = − 1

|V |
∑

v

∑

k=0,1

yk,v log(pk,v) (5)

LSEG = LCE + LT (6)

Following nnUNet, the network is trained with deep supervi-
sion, i.e., losses are calculated over multi-resolution outputs
given by final and intermediate layers of the decoder, and
the corresponding downsampled ground-truth (GT) masks
are used as targets. Here attention mechanism is applied
in a multi-scale manner. That is, the attention map, after
downsampled to match the resolution, is injected to the inter-
mediate decoder feature for each deep supervision output.

3.1.2 Instance-wise Lymph Node Identification

After segmentingLN instances from thewholeCT image,we
then classify them into either positive or negative class. In this
context, a positive LN refers to a lymph node that is consid-
ered to bemalignant,meaning it containsmetastasized cancer
cells. Conversely, a negative LN refers to a lymph node that
is considered to be benign, which does not contain metasta-
sized cancer cells. To benefit from the already trained dense
segmentation network of stage 1, the task of LN instance
identification reuses 3D nnUNet backbone and is initialized
using the trained segmentation parameters, with a new clas-
sification head added upon it. Cross entropy loss is adopted
to finetune the whole network for classifying the instance as
positive/negative. To generate LN instances, we crop patches
centered at the connected components of the segmentation
mask. GT LN instances are cropped and employed in the
training phase. While at inference time, we can apply the
classification network to identify each segmentedLNof stage
1, and obtain a class-aware LN segmentation mask.

3.2 Patient-wise LNMetastasis Status Prediction
Network via Aggregating Tumor and Lymph
Node Information

Besides LNs, imaging characteristics in the primary tumor
may also play an important role in predicting the LN metas-
tasis status. To further boost the diagnosis performance, we
propose a combined classification network, integrating the
imaging information from both PDAC and LNs. In contrast
to previous work that only consider tumor characteristics (Li
et al., 2020; Bian et al., 2019; Gao et al., 2020), our method
benefits from directly observing LN instances using auto-
mated LN segmentation and identification.

Given a CT image and the corresponding PDACmask, 2D
slices with the top three largest PDAC areas in each of axial,
sagittal, and coronal planes are cropped, resulting in nine
image patches in total. Each image patch is fed into a ResNet
(He et al., 2016) pre-trained on ImageNet (Deng et al., 2009)
for metastasis prediction. Inspired by Eppel (2018), a side
branch with the PDACmask as input is added and integrated
into the backbone by element-wise multiplication to encour-
age the network to concentrate on the PDAC region. Our
initial experiment empirically shows that such incorporation
produces better performance than direct input-level fusion,
as the convolution in the side branch learns which region to
focus on in each channel of the feature (e.g., regions inside
the mask, around the mask border or outside the mask; see
Appendix F for feature map visualization). Before classi-
fication, we additionally employ a Texture Encoding Layer
(TEL) (Zhang et al., 2017) on top of the “Layer4" featureFL4

to extract respective texture representation. The original deep
feature after global average pooling (GAP) is concatenated
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with the texture feature to form an enhanced representation
F .

The LN-related cues are further integrated into the net-
work given the LN segmentation and identification results
described in Sect. 3.1. A patient is considered as metastasis-
positive if there exists at least one positive LN, thus it is very
sensitive to the false positives in LN identification. There-
fore, we employ the volume of positive LN as the feature
instead of its binary status of presence/absence, based on the
fact that positive LNs tend to have larger volume than neg-
ative ones. The volume of the largest positive LN in each
patient Vmax

pLN = max
ln∈{posi tive LNs}Vln (in mm3) is mapped to

a vector-shaped feature, and fused with F by element-wise
addition, formulated as follows:

Fcomb = FC(BN(Vmax
pLN)) + F (7)

where FC and BN denote the full-connected layer and batch
normalization layer, respectively. Other LN features, such as
the average or total volume of positive LNs, are also evalu-
ated, with the current setting giving the best result. Finally,
the classification probabilities generated from nine image
patches are averaged to given an ensembled prediction for a
patient.

4 Experiments

In this section, we first describe the multi-center training
and evaluation datasets (i.e., the discovery dataset and two
external datasets) and implementation details, and elaborate
the strategy we use to generate PDAC segmentation masks.
All patient LNmetastasis status ground truth annotations are
curated and created by confirming against their pathology
reports. Then we present results on the discovery dataset per
each step of our method, including 1) organ&vessel segmen-
tation, 2) attention map generation, 3) LN segmentation and
identification, and 4) patient-level LN metastasis status pre-
diction. Last, external validations are conducted to evaluate
the generalization performance of our LN metastasis status
prediction model.

4.1 Experimental Settings

4.1.1 Datasets

We conduct a multi-center study on three independent
datasets with a total of 940 patients collected from Chang-
hai Hospital in Shanghai, Shengjing Hospital in Liaoning
Province, and Tianjin Cancer Hospital in Tianjin, China.
All patients had a pathologically confirmed diagnosis of
PDAC. For each patient, contrast-enhanced CT scans of arte-

rial (A) and venous (V) phases acquired before treatment
were included in this study. We treated the dataset from
Changhai Hospital as Discovery dataset, and developed our
models using nested cross-validation (CV). The rest two
datasets from Shengjing Hospital and Tianjin Cancer Hos-
pital (denoted as Ext-validation dataset 1 and Ext-validation
dataset 2, respectively) were used as external validation sets
where pathologically diagnosed LN metastasis status are
provided. This study was reviewed and approved by the
Biomedical Research Ethics Committee of the institution
(No. CHEC2021164), andwas performed in accordancewith
the ethical standards of the 1964Declaration ofHelsinki. The
requirement for patient informed consent was waived by the
Institutional Review Board due to the retrospective nature of
the study and because all procedures performed were part of
routine care.

Discovery dataset contains CT scans of 749 patients,
among which there are 351 positive (patients with LN
metastasis) and 398 negative samples (patients without LN
metastasis). The annotation of LNs was performed by two
board-certified radiologists (XF with 7 and MZ with 5 years
of experiences specialized in pancreatic imaging) with refer-
ring to pathology reports andunder the supervision of a senior
radiologist (YB) with 17 years of experiences in pancre-
atic imaging. There are total 2,467 labeled LNs, of which
476 are positive and the rest are negative. Specifically, 351
metastasis-positive patients contain 476 positively and 322
negatively labeled LNs; and 398metastasis-negative patients
have the rest 1,669 negative LNs. This dataset was split using
nested five-fold CV,with 64%, 16% and 20% as training, val-
idation and testing sets in each CV round. As for the primary
tumor, 163 patients among the whole dataset were annotated
with 3D tumor masks by two radiologists (XF and MZ) (see
Appendix C for tumor annotation details.). We use these 163
patients as the testing set and the remaining unlabeled 586
patients as the training set for an annotation-efficient PDAC
segmentation. While for LN metastasis status prediction, the
evaluation was conducted on all 749 cases from the discov-
ery dataset, using the predicted PDAC masks. Additionally,
we generate pseudo annotations of 17 classes of organs and
vessels using the self-learning segmentationmodel described
in our previous work (Yao et al., 2021), and manually anno-
tate two additional classes of vessels (LGA,CHA&PHA) and
extendother twovessels (SMAandTC&SA)under the super-
vision of a radiologist (XF) for 50 patients randomly sampled
from our dataset. 40/10 split of these patients are used as
training and validation sets respectively for organ&vessel
segmentation evaluation.

Ext-validation dataset 1 contains CT scans of 132
patients with 39 positive and 93 negative patients; Ext-
validation dataset 2 obtains CT scans of 59 patients with
37 positive and 22 negative patients. More detailed informa-
tion on three datasets can be seen in Table 1.
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Table 1 Demographic distributions and tumor characteristics in the three datasets (Discovery dataset,Ext-validation dataset 1 andExt-validation
dataset 2). Median [interquartile range, 25th-75th percentile] values are reported for continuous variables

Characteristics Discovery dataset Ext-validation dataset 1 Ext-validation dataset 2
(n=749) (n=132) (n=59)

Gender, n (%)

Female 282 (38%) 60 (45%) 28 (47%)

Male 467 (62%) 72 (55 %) 31 (53%)

Age at Diagnosis, yrs 63 [56–69] 60 [53–65] 58 [51–62]

pT Stage, n (%)

pT1 / pT2 92 (12%) / 314 (42%) 24 (18%)/ 80 (61%) 10 (17%) / 31 (53%)

pT3 / pT4 316 (42%) / 13 (2%) 15 (11%)/ 13 (10%) 5 (8%)/ 13 (22%)

Missing 14 (2%) 0 (0 %) 0 (0 %)

pN Stage, n (%)

pN0 398 (53%) 93 (70%) 22 (37%)

pN1 242 (32%) 32 (24%) 22 (37%)

pN2 109 (15%) 7 (5%) 15 (25%)

Tumor Size, cm 3.0 [2.5−4.1] 2.7 [2.2−3.0] 2.9 [2.2−3.4]

Tumor Location, n (%)

Head / Uncinate 475 (63%) 56 (42%)/ 52 (39%) 35 (59%)/ 22 (37%)

Body / Tail 274 (37%) 2 (2%)/ 22 (17%) 2 (3%)/ 0 (0%)

Positive LN Volume, mm3 665[210–804] – –

Negative LN Volume, mm3 300[106–377] – –

4.1.2 Implementation Details

In our experiments, CT images of arterial phase are regis-
tered to venous phase using DEEDS (Heinrich et al., 2013),
all being resampled to a median spacing of 0.68 × 0.68
× 0.80 mm. For LN segmentation and organ&vessel seg-
mentation, sub-volumes of 160 × 192 × 80 voxels are
randomly cropped as training patches. In calculating the
non-linear mapping from distance maps to attention maps
for LN segmentation, the parameters of this mapping func-
tion are determined by grouping GT LN voxels according
to which organ/vessel is closest to, and calculating the
minimumandmaximumdistances to the organ/vessel bound-
aries in each group. Parameters are listed in Table 7 in the
Appendix B.

For instance-wise LN identification, 3D image train-
ing samples are generated by cropping a 96 × 96 ×
80 sub-volume centered per each GT LN. SGD opti-
mizer with Nesterov momentum (μ = 0.95) is adopted
to train the network; the initial learning rate and weight
decay are 5 × 10−4 and 1 × 10−4, respectively. Further-
more, the final LN metastasis status prediction model takes
2D inputs of 224 × 224 voxels centered at PDAC as
well, and is trained using the same optimizer as above.
Details of the network architectures are presented in the
Appendix D.

4.2 Main Results on Tumor and Lymph Node
Segmentation and Identification

PDAC Segmentation Mask Acquisition and Evaluation.
We employ an annotation-efficient strategy to generate 3D
masks of tumors for the labor cost reduction purpose. Specif-
ically, we start with the PDAC segmentation model trained
with arterial-late phase described in our previous work (Zhao
et al., 2021) to generate pseudo annotations. Note that the
patients used in Zhao et al. (2021) have no overlap with the
patients used in this study, and they are two independent
cohorts.. Next, this model is fine-tuned under the supervision
of pseudo annotations and then applied to produce segmenta-
tion masks on our dataset. To obtain the PDAC segmentation
model on venous phase, those segmentation masks are reg-
istered to venous phase and are then used to train a nnUNet
model from scratch to generate the final 3Dmasks of tumors.
We evaluate the obtained PDAC segmentation model on the
labeled testing set. Median Dice score, average surface dis-
tance (ASD, mm), and Hausdorff distance (HD, mm) are
0.683, 2.186, and 12.805 respectively.

Evaluation of Organ&Vessel Segmentation andAtten-
tion Maps. To evaluate the performance of organ&vessel
segmentation, a testing set of 19 randomly selected CT vol-
umes with ten classes of organ/vessel is manually annotated
by a radiologist (XF). Dice scores of spleen, esophagus,
stomach, aorta, pancreas, duodenum, SMA, TC&SA, LGA,
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Table 2 Average instance-wise LN classification performance across
5 folds. The results are reported on GT instances

Metric Performance

AUC 0.854

Accuracy 0.789

Balanced accuracy 0.771

Sensitivity 0.742

Specificity 0.800

and CHA&PHA are 0.959, 0.745, 0.905, 0.920, 0.847,
0.764, 0.746, 0.734, 0.651, and 0.715, respectively (see
Appendix E for evaluation details). Qualitative evaluation of
organ&vessel segmentation examples and their correspond-
ing attention maps are visualized in Fig. 4b.

Evaluation ofLymphNode Instance Segmentation and
Identification LNs are first detected by the class-agnostic
segmentation model, and identified as positive/negative by
applying the classification model on the cropped instances.
For positive/negative LN identification, our classification
model is trained with Ground-Truth (GT) LNs, yielding
an average AUC of 0.854 across 5 folds (in Table 2). For
inference, the automatically segmented LNs are cropped
and identified by the classification model. To evaluate the
segmentation performance before and after identification,
we compare our method with three baseline models: (1) a
strong baseline, vanilla nnUNet (Isensee et al., 2021), (2)
nnUNet with a postprocessing step that keeps only seg-
mented LNs where the attention map is nonzero, denoted as
nnUNetpp, and (3) nnUNet with the organ/vessel mask con-
catenated to the input, denoted as nnUNetconcat. To evaluate
the independent effectiveness of the proposed informative
negative selection (INS) scheme, we perform an ablation
study that omits INS, referred to as ours w/o INS. The
segmentation accuracy is measured by voxel-wise metrics
(i.e., Dice, Recall, Precision) and instance-wise metrics (F-
measure, Recall, Precision). For statistical analysis, we apply
1,000 iterations of Wilcoxon signed rank test to voxel-wise
Dice and instance-wise F-measure. Results are provided in
Table 3. An instance is considered successfully detected if its
(intersect-over-union) IoU score between the segmentation
mask and GT mask is ≥ 30 %.

Before identification, our segmentation model signifi-
cantly outperforms nnUNet, nnUNetpp and nnUNetconcat on
both voxel-wise and instance-wise metrics, with the voxel-
wise Dice increases of 1.8, 0.4 and 0.5% and the instance-
wise F-measure increases of 4.5, 3.0 and 3.3% respectively,
as shown in Table 3. Our model also yields superior perfor-
mance after identification compared to nnUNet, nnUNetpp
and nnUNetconcat, achieving 1.8, 1.7 and 1.3% higher voxel-
wise Dice, and 1.8, 1.6 and 1.5% higher instance-wise
F-measure in terms of positive LNs. For negative LNs, our

model shows improvements of 0.2, 0.0% (comparable perfor-
mance) and 0.5% in voxel-wiseDice, and 1.2, 1.0 and 6.6% in
instance-wise F-measure. In total five out of six comparisons,
our method is statistically significantly better or more accu-
rate (i.e., with p-value < 0.05) in LN segmentation than the
vanilla nnUNet baseline (without the attention maps) as well
as nnUNetpp (with postprocessing) and nnUNetconcat (with
the organ/vessel mask concatenation). Compared with the
variant without INS, our model demonstrates a comparable
voxel-wise Dice score while improving the instance-wise F-
measure by 1.7% before identification. After identification,
ourmodel outperforms ours w/o INS in both voxel-wise Dice
and instance-wise F-measure for positive LNs. For negative
LNs, it shows a superior instance-wise F-measure, despite a
lower voxel-wise Dice.

Qualitative Evaluation. Examples of LN segmentation
and identification results are shown in Fig. 4a for qualitative
comparison. Our segmentation model leverages prior knowl-
edge on LNs’ spatial position distribution via incorporating
the attention mechanism to remove false positives that are
far from anatomically plausible LN areas. In Fig. 4a, we can
observe that nnUNet tends to falsely detect an instance inside
some organs or located very far, while our method provides
noticeably less false positives.

4.3 Evaluation of Patient-wise Lymph Node
Metastasis Status Prediction

Metrics. In this section, we evaluate various performance
metrics of patient-level LN metastasis status prediction. For
this binary classification problem, AUC, accuracy, balanced
accuracy, sensitivity and specificity are adopted as evalu-
ation metrics and the average results across 5 folds are
reported. Statistical analysis is also carried out to verify the
significance of performance improvement or comparison.We
collect the predictions of all 5 folds, repeat 1,000 times of
bootstrapping for calculating balanced accuracy, and apply
Wilcoxon signed rank test to balanced accuracy distributions
to compare ourmethodwith several other configurations. For
comparing ROC curves, DeLong test is performed. P-values
< 0.05 are considered as statistically significant. To com-
pute 95% CI, the 2.5th percentile and 97.5th percentile are
estimated after 1,000 times of bootstrapping.

Ablation Study. We first investigate the impact of each
component in our framework. To evaluate the metastasis pre-
diction performance of LN segmentation and identification,
the results can be aggregated into patient-level prediction,
based on the definition that a patient with at least one positive
LN is metastasis-positive. However, due to a large number of
false positives produced by segmentation (LN segmentation
in CT images is challenging after all), it will lead to a poor
performance if predicting metastasis simply based on the
presence of any positive LN in the segmentation results. We
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Table 3 Performance comparison on LN segmentation before and after
instance-wise identification (denoted as Class-agnostic Seg and Class-
aware Seg). Pos and Neg denote positive and negative LNs. Results
are averaged across 5 folds. Wilcoxon signed rank test is conducted

on voxel-wise Dice and instance-wise F-measure. * indicates p-value
< 0.05. NS indicates no significance. INS indicates the informative
negative selection scheme

Stage Class Method Voxel-wise metrics (%) Instance-wise metrics (%)
Dice Recall Precision F-measure Recall Precision

– nnUNet 45.9∗ 75.4 36.2 36.1∗ 81.0 25.3

Class-agnostic Seg nnUNetpp 47.3∗ 75.4 37.8 37.6∗ 81.0 26.7

(before identification) nnUNetconcat 47.2∗ 73.1 37.8 37.3∗ 78.6 26.4

Ours w/o INS 47.7NS 77.0 38.2 38.9∗ 82.7 27.9

Ours 47.7re f 77.7 37.5 40.6re f 80.9 29.9

Pos nnUNet 10.2∗ 32.3 11.3 11.7∗ 36.1 12.0

nnUNetpp 10.3∗ 32.3 11.5 11.9∗ 36.1 12.3

nnUNetconcat 10.7∗ 38.0 10.8 12.0∗ 44.5 10.7

Ours w/o INS 11.0∗ 33.8 12.6 12.8∗ 39.3 13.3

Class-aware Seg Ours 12.0re f 38.9 11.7 13.5re f 41.5 13.3

(after identification) Neg nnUNet 27.5NS 51.1 25.4 27.7∗ 60.0 22.9

nnUNetpp 27.7NS 51.1 25.9 27.9∗ 60.0 23.0

nnUNetconcat 27.2NS 44.5 27.7 22.3∗ 53.5 16.9

Ours w/o INS 28.4∗ 53.0 26.3 28.2∗ 60.3 23.5

Ours 27.7re f 49.0 27.0 28.9re f 56.2 25.8

Bold values represent the best results
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(a) Lymph Node Segmentation and Identification Results (b) Organ&Vessel Segmentation and  Attention Map Results

Spleen

RightKidney

LeftKidney

Gallbladder

Esophagus

Liver

Stomach

Aorta

IVC

PV&SV

Pancreas

RAG

LAG

Duodenum

SMV

SMA

TC

LGA

CHA&PHA

PDAC

Fig. 4 Examples of a LN segmentation and identification results,
and b Organ&Vessel segmentation and attention map results. PDAC:
pancreatic ductal adenocarcinoma; IVC: inferior vena cava; PV&SV:
portal vein and splenic vein; RAG: right adrenal gland; LAG: left

adrenal gland; SMV: superior mesenteric vein; SMA: superior mesen-
teric artery;TC: truncus coeliacus;LGA: left gastric artery;CHA&PHA:
common hepatic artery and proper hepatic artery
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Table 4 Performance comparison and ablation study on Patient-level LN metastasis status prediction of Discovery dataset. Results are averaged
across 5 folds. Wilcoxon signed rank test is conducted on balanced accuracy. * indicates p-value < 0.05. NS indicates no significance

Method Balanced Accuracy AUC Accuracy Sensitivity Specificity
[95% CI] [95% CI] [95% CI] [95% CI] [95% CI]

CT-reported LN status 0.599∗ - 0.599 0.588 0.609

[0.564−0.634] [0.565−0.634] [0.538−0.635] [0.558−0.657]

Radiomics 0.597∗ 0.648 0.603 0.508 0.686

[0.563−0.633] [0.598−0.681] [0.569−0.637] [0.456−0.561] [0.638−0.734]

Radiomics + 0.604∗ 0.654 0.610 0.524 0.684

CT-reported LN status [0.572−0.641] [0.612−0.692] [0.575−0.644] [0.470−0.581] [0.641−0.731]

ResNet3D 0.562∗ 0.609 0.554 0.599 0.524

[0.521−0.593] [0.550−0.631] [0.519−0.587] [0.538−0.644] [0.475−0.568]

ResNet2D 0.571∗ 0.631 0.574 0.568 0.574

[0.540−0.609] [0.590−0.667] [0.537−0.607] [0.519−0.624] [0.530−0.628]

DeepTEN 0.588∗ 0.634 0.593 0.609 0.566

[0.560−0.628] [0.599−0.679] [0.559−0.628] [0.564−0.667] [0.520−0.621]

ClsfromPDAC 0.599∗ 0.654 0.597 0.600 0.597

[0.558−0.634] [0.608−0.685] [0.561−0.633] [0.547−0.647] [0.550−0.646]

ClsbyLNSeg w/o Attn 0.545∗ 0.590 0.566 0.433 0.657

[0.525−0.593] [0.548−0.625] [0.534−0.601] [0.393−0.499] [0.623−0.716]

ClsbyLNSeg w/ Attn 0.563∗ 0.603 0.572 0.351 0.775

[0.530−0.594] [0.564−0.642] [0.539−0.605] [0.299−0.396] [0.731−0.814]

LNSegRadiomics 0.544* 0.547 0.547 0.535 0.554

[0.509−0.584] [0.504−0.590] [0.509−0.583] [0.483−0.589] [0.504−0.604]

ClsfromPDAC + 0.603∗ 0.662 0.601 0.638 0.568

LNSegRadiomics [0.557−0.650] [0.602−0.709] [0.553−0.649] [0.571−0.712] [0.504−0.631]

ClsfromPDAC + 0.616∗ 0.666 0.619 0.555 0.678

ClsbyLNSeg w/o Attn [0.585−0.653] [0.624−0.707] [0.584−0.650] [0.502−0.609] [0.638−0.726]

Ours (ClsfromPDAC + 0.633re f 0.682 0.635 0.618 0.649

ClsbyLNSeg w/ Attn) [0.599−0.669] [0.640−0.717] [0.601−0.669] [0.567−0.664] [0.603–696]

Bold values represent the best results

Fig. 5 ROC curve comparison of a ablation study and b baseline models and our method using nested five-fold cross-validation in Discovery
dataset

123



International Journal of Computer Vision

instead conduct ROC analysis on the volume of the largest
positive LN in each case, and find an optimal threshold with
the best balanced accuracy in the validation set. Then this
threshold is applied to the testing set. A patient with positive
LNs larger than the threshold is classified into metastasis-
positive; otherwise, it is classified asmetastasis-negative. The
five ablation models for comparison are listed below:

• ClsfromPDAC (1): The straightforward strategy combin-
ing ResNet2D (He et al., 2016) feature and DeepTEN
(Zhang et al., 2017) feature, extracted from PDAC slices,
in the input of the classification layer.

• ClsbyLNSegw/oAttn (2): Patient-levelmetastasis aggre-
gation from the results of LN segmentation without
attention (i.e. nnUNet).

• ClsbyLNSeg w/ Attn (3): Patient-level metastasis aggre-
gation from the results of our proposed LN segmentation
with attention.

• LNSegRadiomics (4): Radiomics model using radiomics
features of the largest positive LN generated by our pro-
posed LN segmentation with attention.

• ClsfromPDAC+LNSegRadiomics (5): Combinedmodel
incorporating radiomics features of the largest segmented
positiveLN into the classification layer ofClsfromPDAC.

• ClsfromPDAC + ClsbyLNSeg w/o Attn (6): Combined
model incorporating the volume of the largest positive
LN given by ClsbyLNSegw/o Attn into the classification
layer of ClsfromPDAC.

• ClsfromPDAC + ClsbyLNSeg w/ Attn (7): Combined
model incorporating the volume of the largest positive
LN given by ClsbyLNSeg w/ Attn into the classification
layer of ClsfromPDAC.

The results of the ablation experiments are summarized in
Table 4, and ROC analysis is illustrated in Fig. 5a. By using
only information about LNs, ClsbyLNSeg w/ Attn gives bet-
ter aggregation results compared with ClsbyLNSeg w/o Attn
andLNSegRadiomics (balanced accuracy 0.563 versus 0.545
and 0.544). Integrating tumor characteristicswith LN-related
information consistently improves the performance, with the
tumor-combined models of LNSegRadiomics, ClsbyLNSeg
w/o Attn and ClsbyLNSeg w/ Attn outperforming their stan-
dalone counterparts by margins of 0.059, 0.071, and 0.070
respectively Notably, our final model (ClsfromPDAC + Cls-
byLNSeg w/ Attn) significantly outperforms the other two
tumor-combined models (ClsfromPDAC + LNSegRadiomics
and ClsfromPDAC + ClsbyLNSeg w/o Attn) with a balanced
accuracy of 0.633 (p-value < 0.05) versus 0.603 and 0.616.
These findings highlight the efficacy of integrating both tumor
and LNs imaging information for patient-level metastasis
status prediction.

Comparison with Baselines. To validate the effective-
ness of our method, radiomics model (Li et al., 2020) and

2D/3D deep classification models are taken for comparison.
To build the radiomics model, 1688 radiomics features of
PDAC for each CT phase are extracted using Pyradiomics
package (Van Griethuysen et al., 2017),1 and shrunk using
the least absolute shrinkage and selection operator (LASSO)
method. Then a logistic regression model is applied to the
selected features. The combined model of radiomics and CT-
reported LN status is implemented with a logistic regression
model on radiomics signature and radiologists’ diagnosis.
For 2D deep networks, ResNet2D (He et al., 2016) and
DeepTEN (Zhang et al., 2017), we use ResNet-18 backbone
pre-trained on ImageNet (Deng et al., 2009); while for 3D
deep networks, we adopt 3D-ResNet-18 (Hara et al., 2018)
backbone pre-trained on Kinetics-700 (Kay et al., 2017) and
Moments in Time (Monfort et al., 2019). In all 2D/3D deep
networks, a side branch with the PDAC mask as input is
added to the backbone, as we implemented in our method,
for fair comparison. Table 4 and Fig. 5b present the quanti-
tative results of different baseline models. Importantly, our
method (ClsfromPDAC+ClsbyLNSegw/Attn) yields the best
balanced accuracy (0.633) and AUC (0.682) among all com-
pared models, and is significantly better than the radiomics
method (0.597, or 0.648) and all of 2D/3D deep networks
(0.562∼0.588, or 0.609∼0.634).

4.4 External Validation

In this section, we demonstrate the generalization ability of
our LN metastasis status prediction in two external multi-
center datasets (Ext-validation dataset 1 and Ext-validation
dataset 2). After training the model on Discovery dataset
using nested 5-fold cross validation, we apply the obtained
models to external datasets for inference. For each patient, the
ensemble prediction of fivemodels is generated by averaging
the model predictions from five folds. We first evaluate the
performance of ablation variants, then compare our method
with baseline models. Metrics are used the same as Sect. 4.3.

Ablation Study.We conduct ablation study on two exter-
nal datasets, and results are shown in Table 5. With respect
to LN metastasis status prediction using only LN-related
information, our method (ClsbyLNSeg w/ Attn) outperforms
ClsbyLNSeg w/o Attn and LNSegRadiomic on both two
datasets: balanced accuracy 0.589 versus 0.579 and 0.564
on Ext-validation dataset 1, 0.639 versus 0.607 and 0.596
on Ext-validation dataset 2. By integrating PDAC charac-
teristics, our final model (ClsfromPDAC + ClsbyLNSeg w/
Attn) gives the best results among all ablation models: bal-
anced accuracy 0.620 on Ext-validation dataset 1 and 0.684
on Ext-validation dataset 2.

Comparison with Baselines. Table 5 validates the gen-
eralization performance of our method compared with

1 https://pyradiomics.readthedocs.io/
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Table 5 Performance comparison and ablation study on Patient-level LN metastasis status prediction of two external datasets. Predictions are
averaged across 5 folds. Wilcoxon signed rank test is conducted on balanced accuracy. * indicates p-value < 0.05. NS indicates no significance

Dataset Method Balanced AUC Accuracy Sensitivity Specificity
Accuracy
[95% CI] [95% CI] [95% CI] [95% CI] [95% CI]

Radiomics 0.493∗ 0.511 0.672 0.051 0.935

[0.451−0.537] [0.400−0.620] [0.626−0.710] [0.000−0.128] [0.880−0.978]

ResNet3D 0.508∗ 0.509 0.527 0.462 0.554

[0.415−0.612] [0.409−0.617] [0.450−0.611] [0.308−0.615] [0.457−0.663]

ResNet2D 0.563∗ 0.564 0.542 0.615 0.511

[0.470−0.656] [0.460−0.676] [0.466−0.626] [0.462−0.769] [0.413−0.609]

Ext- DeepTEN 0.556∗ 0.557 0.511 0.667 0.446

validation [0.467−0.647] [0.454−0.666] [0.427−0.595] [0.513−0.795] [0.348−0.544]

dataset 1 ClsfromPDAC 0.515∗ 0.554 0.485 0.590 0.441

[0.423−0.609] [0.450−0.661] [0.402−0.568] [0.436−0.744] [0.344−0.548]

ClsbyLNSeg w/o Attn 0.579∗ 0.555 0.689 0.308 0.849

[0.498−0.662] [0.454−0.641] [0.621−0.750] [0.179−0.462] [0.774−0.914]

ClsbyLNSeg w/ Attn 0.589∗ 0.580 0.705 0.308 0.871

[0.511−0.672] [0.474−0.694] [0.644−0.765] [0.154−0.462] [0.796−0.935]

LNSegRadiomics 0.564∗ 0.542 0.598 0.475 0.652

[0.478−0.659] [0.442−0.654] [0.515−0.682] [0.325−0.625] [0.554−0.750]

ClsfromPDAC + 0.581∗ 0.566 0.583 0.575 0.587

LNSegRadiomics [0.486−0.671] [0.455−0.675] [0.500−0.659] [0.425−0.725] [0.489−0.674]

ClsfromPDAC + 0.607∗ 0.599 0.659 0.475 0.739

ClsbyLNSeg w/o Attn [0.523−0.695] [0.497−0.701] [0.583−0.735] [0.325−0.625] [0.652−0.826]

Ours (ClsfromPDAC + 0.620re f 0.603 0.674 0.487 0.753

ClsbyLNSeg w/ Attn) [0.538−0.713] [0.498−0.712] [0.598−0.742] [0.333−0.641] [0.667−0.839]

Radiomics 0.508∗ 0.609 0.441 0.243 0.773

[0.391−0.626] [0.452−0.757] [0.339−0.542] [0.108−0.378] [0.591−0.909]

ResNet3D 0.461∗ 0.442 0.475 0.514 0.409

[0.334−0.584] [0.300−0.593] [0.356−0.594] [0.351−0.676] [0.182−0.591]

ResNet2D 0.681∗ 0.687 0.650 0.577 0.786

[0.536−0.810] [0.508−0.849] [0.500−0.800] [0.385−0.731] [0.571−0.930]

Ext- DeepTEN 0.613∗ 0.647 0.640 0.697 0.529

validation [0.465−0.747] [0.474−0.806] [0.520−0.760] [0.545−0.848] [0.294−0.765]

dataset 2 ClsfromPDAC 0.620∗ 0.639 0.593 0.514 0.727

[0.493−0.734] [0.490−0.781] [0.475−0.712] [0.378−0.676] [0.545−0.909]

ClsbyLNSeg w/o Attn 0.607∗ 0.690 0.542 0.351 0.864

[0.503−0.716] [0.554−0.818] [0.441−0.661] [0.216−0.487] [0.682−1.000]

ClsbyLNSeg w/ Attn 0.639∗ 0.695 0.593 0.459 0.818

[0.525−0.752] [0.552−0.833] [0.475−0.695] [0.297−0.622] [0.636−0.955]

LNSegRadiomics 0.596∗ 0.625 0.576 0.526 0.667

[0.464−0.712] [0.457−0.778] [0.457−0.695] [0.368−0.684] [0.476−0.857]

ClsfromPDAC + 0.647∗ 0.647 0.627 0.579 0.714

LNSegRadiomics [0.514−0.763] [0.494−0.782] [0.508−0.746] [0.421−0.737] [0.524−0.905]

ClsfromPDAC + 0.654∗ 0.700 0.610 0.500 0.810

ClsbyLNSeg w/o Attn [0.530−0.755] [0.558−0.818] [0.491−0.729] [0.342−0.658] [0.619−0.952]

Ours (ClsfromPDAC + 0.684re f 0.703 0.661 0.595 0.773

ClsbyLNSeg w/ Attn) [0.570−0.797] [0.554−0.846] [0.542−0.780] [0.432−0.757] [0.591−0.909]

Bold values represent the best results
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radiomics and 2D/3D deep learning models. Note that we
skip methods involved with CT-reported LN status since
there is no CT report available in two external datasets.
The radiomics model shows poor generalization ability with
large drops in performance as compared with that in Table 4
where the balanced accuracy value decreases from 0.597 in
discovery, to only 0.493 in Ext-validation 1 and 0.508 in Ext-
validation 2 dataset, respectively. Deep learning methods are
comparably more robust. Notably, our method demonstrates
reduced sensitivity when applied to the external datasets as
compared to the discovery dataset. This discrepancy can be
attributed to variations in the distribution of tumor size, tumor
stage, and tumor location between the internal and external
datasets (refer to Table 1). Specifically, the external datasets
contains patients with smaller median tumor sizes, a higher
proportion of patients with early-stage tumors (T1/T2) and a
greater prevalence of tumors located in the head and uncinate
regions of the pancreas.Despite this, ourmethod significantly
surpasses all of 2D/2D deep learning models (with p-value
< 0.05) on both external datasets, achieving the best bal-
anced accuracy of 0.620 and 0.684; and the best AUC score
of 0.603 and 0.703 for Ext-validation 1 and Ext-validation
2 dataset, respectively. This demonstrates the power of our
model to generalize well across patient populations of differ-
ent clinical sites.

5 Discussion

Pre-operative LN metastasis status prediction is of vital sig-
nificance for patients with PDAC for three main reasons. (1)
If diagnosed with LN metastasis, patients with resectable
PDAC are recommended to receive neoadjuvant therapy first
before surgery, according to NCCN guidelines (Tempero et
al., 2021). (2) Pancreatectomy could be guided by whether
andwhere their LNs havemetastasized, that is,whether or not
a standard or an extended lymphadenectomy should be per-
formed. This could make the surgical procedure being more
targeted beforehand which could lead to better patient out-
come and avoid over-treatment. (3) LN metastasis is highly
associated with patients’ overall survival, which can signif-
icantly assist with good prognosis prediction value (Yao et
al., 2021). Note that it is very time consuming and highly
dependent on (board-certified radiologist) human observer’s
experience to manually determine whether a patient has LN
metastasis primarily from CT scans (even it is indeed a very
desirable task to perform for the benefits of patient care). CT-
reported LN status in this study shows limited performance
with an accuracy of 0.599, thus accurate computerized LN
metastasis status prediction is highly needed.

In the literature, LN metastasis status prediction is pre-
dominantly studied using tumor feature extraction, combined
with CT report information, under radiomics (Ji et al., 2019;

Wang et al., 2020; Li et al., 2020;Bian et al., 2019;Yang et al.,
2020; Gao et al., 2020; Meng et al., 2020) or deep learning
approaches (Jin et al., 2021; Dong et al., 2020). Leverag-
ing LN radiomics requires manual delineation and only the
LN with the largest size is considered (Yang et al., 2020).
An automated accurate process of LN segmentation and
nodal positivity identification is hence of high importance
for assisting metastasis prediction. Predicting the metasta-
sis status from segmented LNs is formulated by detecting
metastatic LNs with Faster R-CNN (Lu et al., 2018), where
the spatial context priors towards LNs are not exploited.
Our work proposes an automated geometric attention mech-
anism using LN segmentation and identification to further
predict the patient-level status of LNmetastasis.Note that our
method is fully automated for the purpose of LN metastasis
status prediction during inference, relying solely on auto-
matically generated PDAC masks and CT images without
requiring any manual input.

To demonstrate the effectiveness of our method, we
provide extensive quantitative experiments on LN segmenta-
tion/identification andLNmetastasis status prediction. 1)For
instance-level positive/negative LN identification, our clas-
sification model (Fig. 2a) yields an average AUC of 0.854
in 5-fold nested Cross Validation (in Table 2). The metas-
tasized LN instances can be flagged or identified at the
Sensitivity of 0.742 and Specificity of 0.800 which should
be very helpful to assist radiologists. Human readers tend
to have significantly lower detection sensitivity on this
task if performed alone.Our LN segmentationmodel statis-
tically significantly outperforms the strong baseline nnUNet
in voxel-wise and instance-wise metrics. For LN instance-
wise detection, our model achieves considerable quantitative
improvements (4.6%) in precision (with respect to a simi-
lar recall level) as compared to nnUNet (see Table 3). This
observation clearly validates that the proposed distance-
guided attention mechanism is beneficial to remove LN
false positive detections as we expect. The effectiveness of
our model can be attributed to its attention map design
and the informative negative selection scheme. The for-
mer confines LN-plausible regions that deserve the network’s
focus and the latter helps to throw out non-informative neg-
ative training patches out of training. 2) To verify the effect
of LN detection improvements on patient-level metastasis
status prediction, we perform instance-wise positivity identi-
fication and holistic patient-wise aggregation on detected LN
instances to classify each patients into metastasis-positive
or -negative. Our model presents better prediction perfor-
mance than nnUNet w/o Attn (balanced accuracy 0.563
versus 0.545, in Table 4). We draw the following observa-
tions.

(i) Combining both tumor andLNCT imaging charac-
teristics into our final predictionmodel achieves sta-

123



International Journal of Computer Vision

tistically significant performance gains compared to
radiomics methods and other deep 2D/3D model
variants (see Table 4),showing the effectiveness
of integrating tumor morphology and lymphatic
anatomy.

(ii) It is worth noting that our method obtains statistically
significantly better performance (balanced accuracy
0.633 versus 0.604) than the approach where even
radiologists are involved (“Radiomics + CT-reported
LN status" in Table 4). Using our method, the time-
consuming, and highly subjective manual process of
CT-reported LN statusmay be alleviated and improved.

(iii) External multi-center clinical validation is conducted
on patient datasets from two other hospitals. The results
evidently exhibit our superior performance accuracy
and generalization with the best results (balanced accu-
racy 0.620 and 0.684 on the two external datasets,
respectively) reported among several comparedmodels
(see Table 5). With all experiments, our model reports
better generalized prediction performance (0.633 in
training and 0.620–0.684 in external validation) on
multi-center datasets and robust improvements over
radiomics (0.493–0.508 in validation) and deep learn-
ing models.

Recent progress in gastric cancer (Meng et al., 2020)
enrolls over 500 patients from multiple hospitals, and yields
AUC scores of 0.615–0.712 in validation using 2D/2.5D/3D
radiomics features and under different patient splits, which is
probably suitable to serve as reference baseline for our work.
We employ 940 patients in total in this study, in which 749
patients are from a high-volume pancreatic cancer clinical
center and 191 are from two external centers (AUC scores of
0.682 in cross-validation, and 0.603–0.793 in external val-
idation). The studied patient population is arguably much
closer and more realistic to the real-world patient data distri-
butions. Additionally, we present a very promising approach
that explicitly explores the role of automated LN segmenta-
tion in promoting LNmetastasis status prediction to facilitate
future clinical adoption as a fully-automated and generaliz-
able clinical tool.

The limitations of our method are as follows: (1) The
empirical dmin and dmax determined for attention map gen-
eration might possibly limit the adaptability of our method
across different patient populations. One potential direction
to address this issue would be to explore methods for auto-
matically estimating patient-specific anatomical scales based
on imaging data, and then using these scales to normalize the
dmin and dmax values; (2)We extract tumor and LNs imaging
information separately and then integrates them by feature
concatenation. Our framework can be further improved by
designing an enriched deep learning geometric network rep-
resentation to encode the tumor-LN topology information

and spatial anatomical interactions, by modeling the clinical
pathways of nodal metastasis explicitly. Last, without loss of
generality, our proposedmethod should be applicable on pre-
dicting the pre-operative LN metastasis status of other solid
tumors or cancers, such as liver or gastric cancers.

6 Conclusion

We present an attention based LN segmentation network
and utilize it on predicting the LN metastasis status in
patientswith PDAC.The proposedLNsegmentation network
involves an attention mechanism that encourages the net-
work to focus on regions geometrically confined by certain
anatomical organs/vessels. It outperforms the strong baseline
nnUNet by leveraging the context information of surrounding
anatomical structures. Our segmentation model, followed by
a nodal positivity identification model, can serve as a single
predictor for LN metastasis. Combined with tumor imag-
ing characteristics, we further build a holistic patient-level
LN metastasis status prediction model that is validated to
surpass the performance of CT-reported results, radiomics
based method, and other 2D/3D deep learning models. Fur-
ther investigations include conceiving a more sophisticated
way to determine the parameters for attention map genera-
tion and encode the tumor-LN interaction relationship, and
exploring its applications to prognosis and treatment plan-
ning in cancer patient management.

Appendix A LN station Definition

The definition of 18 LN stations is shown in Table 6.

Table 6 The definition of 18 LN stations according to JPS (Kanehara,
2017)

Station No. Name

1 # Right cardial LNs

2 # Left cardial LNs

3 # LNs along the lesser curvature of the stomach

4 # LNs along the greater curvature of the stomach

5 # Suprapyloric LNs

6 # Infrapyloric LNs

7 # LNs along left gastric artery

8 # a. LNs in the anterosuperior group along common
hepatic artery

p. LNs in the posterior group along common hepatic
artery
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Table 6 continued

Station No. Name

9 # LNs around celiac artery

10 # LNs at the splenic hilum

11 # p. LNs along the proximal splenic artery

d. LNs along the distal splenic artery

12 # a. LNs along the hepatic artery

p. LNs along portal vein

b. LNs along the bile duct

13 # a. LNs on the posterior aspect of the superior portion
of the head of the pancreas

b. LNs on the posterior aspect of the inferior portion
of the head of the pancreas

14 # p. LNs along the proximal superior mesenteric artery

d. LNs along the distal superior mesenteric artery

15 # LNs along middle colic artery

16 # a1. LNs around the aortic hiatus of the diaphragm

a2 & b1 & b2. LNs around the abdominal aorta

17 # a. LNs on the anterior surface of the superior portion
of the head of the pancreas

b. LNs on the anterior surface of the inferior portion
of the head of the pancreas

18 # LNs along the inferior margin of the pancreas

Appendix B Non-linear Mapping Parameters

To determine the non-linear mapping parameters for atten-
tion map generation, we visualize the distance distribution
of GT LN voxels to the closest organs/vessels, as shown in
Fig. 6 These histograms show a right-skewed distribution,
indicating that most LNs are located near their associated
organs or vessels. Nonetheless, the tail in each histogram
suggests substantial variability in distances, making it nec-
essary to define specific ranges for each organ/vessel (from
dmin to dmax) to ensure comprehensive coverage. Parameters
(i.e. dmin and dmax) of non-linear mapping function for each
organ or vessel are shown in Table 7.

Table 7 Parameters of non-linear mapping function for each organ or
vessel. Negative valuesmay indicate that voxels are inside organ/vessel.
SMA: superior mesenteric artery. TC&SA: truncus coeliacus and
splenic artery. LGA: left gastric artery; CHA&PHA: common hepatic
artery and proper hepatic artery

Organ/Vessel dmin (mm) dmax (mm)

Spleen 0 16

Esophagus 0 25

Stomach -2 18

Aorta 0 28

Pancreas -5 20

Duodenum -5 22

SMA -1 20

TC&SA -2 18

LGA 0 21

CHA&PHA 0 20
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Fig. 6 Distance distribution of GT LN voxels to the closest organs/vessels

Appendix C Tumor Annotation Details

For the annotation of 3D tumor masks in the 163 patients,
both radiologists (XF andMZ)were involved in labeling each
patient’s tumor mask. The annotation and review process
comprised three key steps:

(i) Independent Annotation: Both radiologists indepen-
dently annotated the tumor masks without consulting

each other’s annotations. This allowed us to capture the
individual interpretations and judgments of each radi-
ologist.

(ii) ConsensusReview:After the initial independent anno-
tation, a consensus review was performed under the
supervision of a senior radiologist (YB) with 17 years
of experience in pancreatic imaging.During this review,
any discrepancies between the two radiologists’ anno-
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tations were resolved through discussion, with the
senior radiologist providing guidance where needed.

(iii) Final Annotation: The final tumor masks used in our
study were obtained based on this consensus review,
ensuring that any inter-rater variability was minimized
and that the annotations reflected the most accurate and
clinically meaningful interpretations.

Appendix D Network Architecture

The LN segmentation network consists of an encoder with
six convolution blocks and a decoder with five convolution
blocks. Each convolution blocks is composed of two 3×3×3
convolution layers followed by instance normalization and
leaky ReLU activation. In the encoder, the first block uses
convolution with stride of 1 and channel number of 32, and
the rest five blocks down-samples the feature map by using
stride of 2 in the first convolution of the block and the channel
number is doubled in the subsequent blocks. In the decoder,
each feature map is first up-sampled by deconvolution with
stride of 2 and kernel size of 2, and then passed to the convo-
lution block with stride of 1 and the halved channel number.
Finally, themulti-resolution outputs are generated by add two
1 × 1×1 convolution layers to the outputs of every decoder
blocks.

The instance-wise LN identification network shares the
same backbone as LN segmentation, and a classification head
on the output of final decoder block. The head consists of a
GAP layer followed by a fully-connected layer with 32 units,
a leaky ReLU layer and a fully-connected layer with 2 units.

The LN metastasis status prediction status model adopts
ImageNet-pre-trained ResNet18 (He et al., 2016) backbone.
The side branch is composed of a 3 × 3 convolution layer
followed by a ReLU layer, and maps the input mask to a
feature map with the same shape as the output of “Conv1"
layer in ResNet. It is then integrated into the backbone by
element-wise multiplication with the “Conv1" feature. To be
better aligned with the pre-trained backbone and eliminate
the initial effect of the side branch, the weights and biases in

the convolution layer are initialized to 0 and 1 respectively.
Texture Encoding Layer (TEL) serves as an orderless feature
pooling layer that encodes spatially invariant representation
describing the feature distributions, which benefits texture
recognition of the PDAC region. The dimension and number
of codewords in TEL are set to 64 and 8 respectively, giving
a texture feature of 512 units. It is concatenated with the
original ResNet18 feature after the GAP layer to form the
enhanced feature of 1024 units.

Appendix E Evaluation of Organ&Vessel
Segmentation and Attention
Maps

To evaluate the performance of organ&vessel segmentation,
a testing set of 19 randomly selected CT volumes with ten
classes of organ/vessel ismanually annotated by a radiologist
(XF). To reduce the annotation burden, all CT volumes are
downsampled to 5mm in the slice thickness dimension. We
compare our self-learning model with the pseudo annotation
generator (Yao et al., 2021), which is able to segment eight
of ten classes (except for LGA and CHA&PHA) on single-
phase CT. Dice score, ASD (mm), and HD (mm) are adopted
as the evaluationmetrics and the results are provided in Table
8. Our model that is trained on two phases outperforms the
results of Yao et al. (2021) on seven of eight organs/vessels.
Note that SMA and TC&SA masks segmented by Yao et al.
(2021) contain shorter parts compared with those segmented
by our model, which resulting in significantly lower perfor-
mance than ours (e.g., 0.331 lower Dice score in SMA, and
0.171 lower in TC&SA).
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Table 8 Quantitative
Performance of Organ&Vessel
Segmentation. A: arterial. V:
venous. SMA: superior
mesenteric artery. TC&SA:
truncus coeliacus and splenic
artery. LGA: left gastric artery;
CHA&PHA: common hepatic
artery and proper hepatic artery

Organ/vessel Methods CT Phases Dice ASD (mm) HD (mm)

Spleen (Yao et al., 2021) A 0.938 0.643 14.252

(Yao et al., 2021) V 0.954 0.422 11.107

Ours A+V 0.959 0.384 8.129

Esophagus (Yao et al., 2021) A 0.557 0.936 13.897

(Yao et al., 2021) V 0.598 0.854 11.003

Ours A+V 0.745 0.641 8.125

Stomach (Yao et al., 2021) A 0.846 2.223 35.338

(Yao et al., 2021) V 0.813 3.765 43.114

Ours A+V 0.905 1.519 19.183

Aorta (Yao et al., 2021) A 0.893 0.519 8.130

(Yao et al., 2021) V 0.924 0.417 6.158

Ours A+V 0.920 0.359 5.863

Pancreas (Yao et al., 2021) A 0.712 2.905 25.880

(Yao et al., 2021) V 0.756 1.897 19.258

Ours A+V 0.847 0.975 12.859

Duodenum (Yao et al., 2021) A 0.613 2.976 34.187

(Yao et al., 2021) V 0.665 3.366 32.174

Ours A+V 0.764 1.892 29.131

SMA (Yao et al., 2021) A 0.387 0.663 68.869

(Yao et al., 2021) V 0.415 0.710 68.098

Ours A+V 0.746 0.860 28.840

TC&SA (Yao et al., 2021) A 0.563 0.780 43.974

(Yao et al., 2021) V 0.407 1.245 51.432

Ours A+V 0.734 0.305 22.224

LGA (Yao et al., 2021) A – – –

(Yao et al., 2021) V – – –

Ours A+V 0.651 0.371 10.420

CHA&PHA (Yao et al., 2021) A – – –

(Yao et al., 2021) V – – –

Ours A+V 0.715 1.424 24.239

Bold values represent the best results

Appendix F Visualization of the Side Branch
in LNMetastasis Status
Prediction Network

In the LN metastasis status prediction network, the convolu-
tion in the side branch learns to focus on specific regions of
the PDAC mask when integrated into the backbone network
by element-wise multiplication. To illustrate the convolution
learning process, we provide visual results in Fig. 7 to show

the feature map of each channel learned by the convolution
layer in the side branch. Each feature map is first normalized
to a range of 0 to 1 and then overlaid on the original image
for better visualization. These visualizations confirm that the
convolution layer effectively learns and highlights specific
regions inside the mask, around the mask border, or outside
the mask in each channel.
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Fig. 7 Visualization of the feature map of each channel learned by the convolution layer in the side branch of LN metastasis status prediction
network
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