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ABSTRACT

The response of a tactile sensor system (consisting of the sensors
themselves and the material covering them) was characterized via
robotic experiments. A point spread function model of this re-
sponse was developed for typical interaction forces, allowing the
use of graphics and imaging techniques respectively for simulat-
ing and interpreting tactile sensor readings. This model was imple-
mented in software as a generic artificial tactile sensor simulator,
and its accuracy at approximating the output of our test system is
demonstrated.

Index Terms: I.2.9 [Computing Methodologies]: Artificial
Intelligence—Robotics; I.6.5 [Computing Methodologies]: Simu-
lation and Modeling—Model Development

1 INTRODUCTION

Recognition of objects and/or control of object manipulation
through tactile sensing has been a long-sought goal [1, 3, 9]. Tac-
tile sensation is generally defined as any sensation associated with
the skin, as opposed to force sensing, which instead originates in
muscles and joints. For humans, this may include sensation of such
phenomena as temperature, vibration, and surface roughness, due
to the variety of sensors embedded in our skin. In this work (as in
most of the prior work in robotics), we will focus on tactile sensa-
tion measured with array of force sensors, most closely resembling
Merkel receptors [10] in the human system.

In the early work on haptic object recognition, tactile sensors
were deemed inadequate for much more than determining contact
vs. no contact [2], and were generally used only to localize contact
point(s) on a fingertip [4]. Only recently have such tactile sensors
become available at the level of precision and resolution one would
want for recognition and manipulation tasks. Recent optically-
based sensors, such as those presented in [11], boast impressive
spatial resolutions, but are not yet widely available. They would
also be difficult to incorporate into, say, a robot hand at present.
Capacitive sensors, such as the ones used in this work, have made
great strides in force resolution, but still have relatively low spatial
resolution. Nonetheless, in [16], Yanagida et al. showed 87% accu-
racy for character recognition using a 3x3 grid of “tactile” displays,
presented to a human subject’s back via a chair, demonstrating the
potential descriptiveness of even very low resolution tactile infor-
mation.

A common theme to much of the prior work on tactile sensing
has been to attempt to infer physical characteristics of the external
world (i.e. location of contact or surface shape) from the sensor
output.

For example, in [8], Fearing and Binford analyzed the sensitivity
of a hemispherical tactile sensor for discriminating simple shaped
indenters. Based on careful physical measurements, they modeled
the effect of a compliant sensor covering using an impulse response
function taking the form of a truncated quadratic. They then suggest
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Figure 1: (a) Diagram of our sensing system consists of a 1-by-2
arrangement of sensors, each of which comprises a 6-by-4 array of
1.8mm square sensing elements. 0.2mm of (non-sensing) spacing
is necessary between the individual sensors, except for the middle
column of each sensor, where this gap is doubled. (b) The actual
sensors mounted in the workspace of the robot with indenter.

the use of inverse filtering techniques to infer the actual surface
contact structure. Others propose the use of SVD [7], neural nets
[6], or radial basis functions [5] to the same end. However, any such
approach is inherently ill-posed, as the associated deconvolution
problem does not have a unique solution.

In this paper, we instead take the view that a high resolution tac-
tile sensor can be simply characterized as a device for producing
tactile images, with no attempt to infer the physical causes of im-
ages. We first describe a general methodology for modeling the re-
sponse characteristics of tactile sensors from empirical sensor data.
As in [8], one of the key ideas is to develop and optimize a point
spread function (PSF) model for tactile sensors from empirical sen-
sor data. More specifically, tactile sensors are typically covered
with a layer of a relatively soft, elastic material, such as rubber, both
to protect the sensors and to increase the range of displacements that
can be distinguished by the sensors. Since this covering will tend
to spread the response of the sensor to an input stimulus, it offers
an interesting trade-off between spatial resolution and force resolu-
tion. The current state of the art for modeling force-displacement
characteristics of such systems is finite element analysis, which has
been shown to be very accurate, but which is also computationally
expensive. Since the deformation in our system is relatively simple,
the vast majority of the motion restricted to one degree of freedom
of a uniform, isotropic material, we show that PSF models suffice
to capture the effects of deformation. These results then support the
optimization of the PSF to have specific spatial and force resolution
characteristics.

The use of PSF-based models allows us to re-cast the task of
simulating tactile sensors as one of graphics rendering. We de-
scribe a simulation environment we have developed that supports
rapid rendering of large-scale models, and show that this simula-
tion produces images that are qualitatively similar to those obtained
from the physical sensor. This in turn opens the door to a wealth



of techniques from computer vision and image processing, includ-
ing image-based representations of surface “appearance”, texture
classification and description, and “tactile mosaicking.”
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Figure 2: (a) Measured responses to displacements of different
depths. (b) Re-calibration of the same values to a consistent linear
fit. In both cases, dotted black lines give the response of individual
sensor elements to a point load at varying indentation levels. The
solid red line shows a linear fit to these values. The dashed blue line
shows a quadratic fit.

2 SENSOR SYSTEM FORCE CHARACTERIZATION

The tactile sensor studies in this paper is a custom DigiTacts sys-
tem from Pressure Profile Systems [12], consisting of two small
sensors, each of which is 12mm-by-8.5mm and contains sensing
elements with a spatial resolution of 1.8mm, for a total of 48 sensor
elements making up an 8-x-6 “tactile image”, as shown in Figure 1.
The total sensor system footprint is 12mm-by-16.7mm, with 81%
of the area being sensed, and the remaining 19% consisting of mate-
rial between the individual sensing elements. The sensing modality
was capacitive, with a sample rate of 30 Hz, sensitivity of 0.1 psi
and a sensing range of 0-20 psi, though our interaction forces were
restricted to the bottom of this range.

2.1 Force Response Testing

We first performed a set of tests to determine the linearity and uni-
formity of response across the sensors’ surfaces. A robotic arm
was programmed to press a cylindrical indentor (1mm diameter)
into the center of each sensing element of the tactile sensor. The
arm used was a custom-made platen-forcer system with a resolu-
tion of 3µm in the horizontal directions and 1µm in the vertical
direction. To avoid damaging the sensors, a thin covering was used,
consisting of 0.04” of polyurethane with a durometer rating of 40
OO (McMaster-Carr Part 8824T112).

The sensors were fixed to a flat surface within the robot arm’s
workspace. The arm’s position was calibrated by pressing down
on individual sensing elements to obtain a response which only ex-
cited a single element at a time (and no adjacent elements). The
location of the elements was established in a calibration step where
two points close to opposing corners of the sensor were measured
to establish the sensor’s orientation in the robot frame. The height
of the surface of the covering in the vertical direction was measured
at a single point and assumed to be uniform across the sensor. The
robot then indented the rubber covering over each sensor element
at the estimated center of the element, starting at the surface, and
depressing incrementally by displacements of 0.2, 0.3, 0.4, 0.5, and
0.6 mm. For each indentation, the sensor readings over the 250 ms
period of contact for each sensor element were averaged to get a
single reading that was used for further processing.

2.2 Response Function

The overall response of the sensors was determined to be nearly
linear in the range tested, though responses of individual sensing
elements displayed some variation, as shown in Figure 2. This fig-
ure shows both a linear and a quadratic fit of response vs. inden-
tation. We chose to use a linear model for interactions at the low
end of this force range, but a quadratic model appears more appro-
priate for larger interaction forces. Two elements (one each located
in the same corresponding position on each sensor) were omitted
from this fit due to observed systematic errors. They responded to
a stimulus of one adjacent element, but not to the element itself.

In all that follows, the force outputs were corrected by the per-
pixel linear response model to obtain a more uniform response.

3 POINT SPREAD FUNCTION

The layers of polyurethane covering the sensor tend to spread ap-
plied forces across the surface of the sensor, potentially exciting
adjacent sensing elements even when a point force is applied. In
this section, we model this process as a linear operator that is char-
acterized by a point spread function.

Shimojo analyzed the low-pass filtering effects of tactile sen-
sor coverings in [13], and fit models by finite element analysis
that strongly resemble Gaussians. We also analyzed the interaction
mechanics of the sensor covering by constructing a finite element
model (FEM) to verify the accuracy of a Gaussian approximation.
Since our primary interest was the output that would result on the
sensor, we considered the FEM as a transfer function, taking an ap-
plied force on the top of the covering as input and producing forces
at the bottom of the covering that are then measured by the sens-
ing element. We investigated the covering’s impulse response by
applying a point load at the center of the top of the covering, while
varying the covering thicknesses. As shown in Figure 3, the re-
sponse predicted by the FEM closely resembles an exponential, and
the width of that exponential appears to increase with the thickness
of the covering. After the discretization inherent in array sensors,
the FEM output and that of a Gaussian PSF are nearly identical, as
illustrated in Figure 4. For this reason, we make use of Gaussian
point spread functions in the remainder of this section. It should be
noted that the FEM used a simple linear elastic deformation model,
which can not be considered accurate for large deformations of such
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Figure 3: (a) Finite element model prediction of impulse response of coverings of different thicknesses. The node forces at the center of the
bottom layer of a 100x100 linear elastic FEM are shown when a point force is applied to the top center node. The number of vertical layers of
elements in the model is varied from 5 to 10, giving the differently-shaped responses shown. (b) Convolution of the same input with a Gaussian
with σ = 0.5t +0.9

Figure 4: Different imaging models for tactile sensing. Nearly iden-
tical outputs can be obtained from a finite element model (FEM) or
point spread function (PSF) model as from the actual sensor.

a material, but it nonetheless provided motivation to collect experi-
mental data to verify this behavior.

3.1 Tests

The tests for characterizing the sensors’ point spread function were
designed to estimate the sensor’s impulse response with different
coverings, and to thereby identify the point spread function which
best fit it. Since the sensor’s resolution is relatively low, however,
only a highly discretized version of the impulse response can be
obtained from a single reading. This image does not have sufficient
detail for an accurate fit. We overcame this limitation by acquiring
multiple measurements with small translations between them.

The resulting set of tests was similar to that for the general
response function. The same robot and indentation device were
used as in the previous section. The indentations were spaced in a
uniform 15-x-15 grid with a spacing of 0.1 mm between adjacent
points. The grid was centered on one sensing element, so the result-
ing indentations fell at regular intervals across that element’s entire
extent, above the gaps between elements, and partially overlapped
with each adjacent sensing element. The element used was cho-
sen as one whose neighborhood exhibited low noise characteristics
and seemed representative of the sensors’ general response. This
procedure was repeated for 4 different covering thicknesses, 0.04”,
0.1”, 0.14”, and 0.2”, built from 0.04” and 0.1” layers of the same

polyurethane used in the force response tests. At each thickness,
3 indentation depths were tested, to determine whether the general
response characteristics observed above still held as the covering
thickness was increased. These depths were 30%, 50%, and 65%
of each covering thickness.

3.2 Results

The sensors’ impulse response was estimated from the data col-
lected in Section 3 by fitting a rotationally symmetric Gaussian
function to the data, varying its “spread” parameter, σ :

r =

√

x2 + y2 (1)

Gσ (r) = exp

(

− r2

2σ2

)

(2)

Simulated input profiles, Ii, i = 1,2, . . . ,225 were defined at high
resolution, matching the shape and location of the robot indentation
device used to collect sensor data. A candidate point spread func-
tion, Gσ , corresponding to a particular choice of σ , was applied to
this profile. The result was then normalized and down-sampled by
a function, S , to match the resolution of the actual sensor output,
Di, accounting for gaps between sensing elements. The resulting
simulated sensor reading is thus Ei,σ = S (Ii ∗Gσ ), where ∗ de-
notes convolution in the spatial domain. The correlation between
measured and simulated images, qi,σ =< Ei,Di >, was used as the
quality of fit metric for each image, and an overall quality of fit was
computed as

Q(σ) = ∑
i

qi,σ . (3)

The best-fit value, σ+ was found by maximizing Q(σ) over all val-
ues of σ .

σ+ values for each thickness and indentation depth are shown in
Figure 5a. A linear fit was applied to these points to derive an es-
timate of σ+ as a function of covering thickness, t, both expressed
in sensor element widths. The result is:

σ+ ≈ 1.11+0.497t (4)

Exemplar PSFs with σ values from this equation for each covering
thickness are shown in Figure 5b. The large value of the intercept
of Equation 4 is likely due to the fact that the sensor has an inherent
point spread function itself, even without a covering applied.
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Figure 5: (a) Point spread function spread parameter vs covering thickness, with polynomial fits, linear in red and quadratic in green. (b) Exemplar
point spread functions with the parameters of the data 30% indentation level at each covering thickness.

4 OPTIMIZING FOR SPATIAL ACUITY

A simple model of the sensor’s discretization processes was devel-
oped to analyze the optimal covering thickness to use to maximize
spatial acuity. A discretizing sensor was considered to be defined
by a function, Sw,f(X) of spatial resolution (sensor element width
w) and force resolution (f) given by

Swi
=

∫

i
X (5)

Swi,f = ⌊Swi
+0.5f⌋ (6)

This function takes the continuous input function, X, representing
force over the area of the sensor, and outputs a discretized version
akin to the digital output of our sensors. Spatial discretization is ac-
complished by integrating the force profile, X, over the area of each
sensing element, representing the computation of the total resolved
force acting in the measured direction. Force discretization consists
of rounding the result to the nearest multiple of f. For simplicity,
the input and output of S were defined to be one-dimensional. The
output range was chosen to comprise a number of sensor elements
sufficient to describe the response to an impulse applied at any point
on one sensing element, which for our purposes was 5.

The impulse response was modeled, as determined above, as a
Gaussian function (centered at the point of application of the im-
pulse, µ) with standard deviation, σ , increasing with the thickness
of the covering:

Gµ,σ (x) =
1

σ
√

2π
exp

(

− (x−µ)2

2σ2

)

(7)

We considered the performance on two tasks as criteria for mea-
suring spatial acuity: spatial localization of a point force, and two
point discrimination. In both cases, we searched for the optimum σ
value with respect to sensor elements of width 1 unit, over different
levels of force discretization.

For the spatial localization task, the goal is to identify the point
at which a force was applied as closely as possible. Rather than
choosing a particular estimation procedure, we instead consider an
upper bound on feasible estimation accuracy. Let rσ ,f be the num-
ber of distinct representations produced by a point force applied at

every possible location within a single sensor element, that is the
number of different sensor readings which would result from mov-
ing G from one end of an element to the other. This is an upper
bound on performance in the following sense: If two inputs pro-
duce identical outputs, they can not possibly be differentiated, so
the number of distinct outputs limits possible performance on the
task, regardless of estimation method.

Intuitively, one would expect extreme values of σ to produce
poor results: As σ approaches 0, G approaches an impulse, which
excites only the sensor element it falls on and does not allow any in-
ference about where within the element the force was applied based
on the response of adjacent elements. At the other extreme, G ap-
proaches a uniform response across all sensor elements, which is
even less informative. One would expect, therefore, that an optimal
value lies somewhere in between.

A Gaussian input, Gµ,σ was defined with µ initialized to 0, that
is centered on the left edge of the central sensing element. µ was
then increased in steps of 0.02f units. Space and force discretization
were applied, as in Equations 5-6, and the number of distinct sensor
outputs was recorded for 25 values each of f and σ , drawn from
a log scale. Figure 6a shows the (log of the) number of distinct
representations produced by the procedure described above, while
varying both the spread of the input and the level of discretization of
the output force values. For all levels of force discretization, there
is a prominent ridge in the graph around σ ≈ 0.3.

We used a similar approach for the two point discrimination task.
In this case, two Gaussian inputs were defined and initialized to
the same location, so that the result (by superposition) is a single
Gaussian of twice the amplitude. The two inputs were then gradu-
ally moved apart, maintaining the same center point, but increasing
a separation distance in increments again of 0.02f units. Again,
space and force discretization were applied according to Equations
5-6, and the separation distance between the two Gaussians was in-
cremented until the resulting discretized sensor output changed to
a distinct value. This was taken as a lower bound on the distance
between two such stimuli for them to be distinguished from a single
stimulus of twice the magnitude. This procedure was repeated for
10 different locations within the sensor element (offsets from the
edge in increments of 0.1) of the center of the two Gaussians, and
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Figure 6: Spatial acuity as a function of σ , the stdev of the Gaussian point spread function: (a) The number of distinct representations produced
by varying the location of the Gaussian over a single sensor element shows an optimum σ value around 0.3 for all force resolutions. (b) The
minimum distance between two Gaussians which will produce a distinct sensor response from a single Gaussian shows an optimum σ close to
0.35, also independent of force resolution.

the average minimum distance was recorded. Figure 6b shows the
minimum distance between the Gaussians at which that change to
a distinct sensor reading occurred, again as a function of the spread
of the two Gaussians and the force discretization. Once more, an
optimal value occurs at σ ≈ 0.3 for all force discretization levels.

Another important optimization criterion, however, is to avoid
aliasing in the output. Distinct sensor readings are only useful inso-
far as the shape of the sensor response remains uniform as the input
is translated across the sensor surface. The maximum frequency of
spatial variation we should be able to detect without aliasing is the
Nyquist rate of 2 sensor element widths.

A design criterion for avoiding aliasing would therefore be
to choose a σ which attenuates frequencies above the Nyquist
rate. Consider now the Fourier transform of a Gaussian PSF,

Fx[G0,σ (x)] = G (u) = e−2(πσu)2

. If we introduce a new variable,

σ ′ = 1/(2πσ), (8)

then this becomes G (u) = e−u2/(2σ ′2). The spatial Nyquist rate, in
sensor element units, is 1/2, and we desire 3σ ′ = 1/2. This corre-
sponds to a choice of σ ′ = 1/6. Substituting into equation 8 and
solving for σ yields σ ≈ 1.0. Since this is a lower bound on sigma,
it supersedes the value of 0.3 found above. By inverting Equation 4,
we see that this value is below the range of what is attainable with
our strips of polyurethane, but close to the σ = 1.36 given by our
thinnest available covering.

5 SIMULATION METHOD

The PSF-based modeling of tactile sensors lends itself to straight-
forward computational simulation. To simulate the response of the
sensor, we begin with a simple deformation model. The sensor and
the material covering it are viewed as a unit, and the sensor is con-
sidered to be a position-force transducer, where penetrations of the
covering material are considered the input displacements.

As shown in Figure 7, there are two planes of interest for de-
termining the sensor response: the surface of the sensing elements,
and that of the deformable material covering them. An object is
considered to be in contact with the sensor as soon as it collides

Figure 7: Simulation sensing model: a virtual camera detects dis-
tances to objects penetrating the sensor covering, then shaders con-
vert these measurements to force readings.

with the deformable material. The object is allowed to penetrate
this covering, and the penetration distance above each sensing el-
ement is then calculated. This process can be implemented effi-
ciently using standard graphical rendering techniques. The sensor
is modeled as a camera under orthographic projection, and with the
viewing volume defined by the deformable surface material. The
z-buffer of the rendering pipeline then provides the depth of pene-
tration for each sensor element.

The force response function is then modeled in two steps. First,
a Gaussian blur is applied to the computed penetration distances, to
simulate the point spread function associated with the covering ma-
terial. Then, a nonlinear function maps the resulting displacements
to forces measured by the sensor. In our simulation, we have imple-
mented these operations using OpenGL and GLSL shaders whose
parameters were determined by the experiments described in Sec-
tions 3 and 2.2, respectively. As a result, we are able to achieve
extremely rapid hardware rendering of tactile sensor images.
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indenter. (a) The H at several angles, all using the thinnest covering.
Angles are relative to vertical. (b) The H in the same vertical orienta-
tion with each of the 4 thicknesses shows the effect of the increasing
point spread. All images are scaled zero to one for readability.
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Figure 9: (a) Indenter used in comparison images of Figure 8a. (b)
View of 3D model of the same indenter in contact with simulated
sensors. The blue blocks represent the sensors. The translucent
yellow volume is their covering, which is being penetrated by the red
model of the H indenter.

A comparison between the modeled response and the response
of the actual sensor is depicted in Figure 8. An H-shaped indenter
(Figure 9) was applied to the sensors and a 3D model of the inden-
ter was applied to simulated sensors in the same configuration. The
outputs of each are shown side-by-side, normalized (each indepen-
dently) for readability. Figure 8a shows images that resulted when
the indenter is applied near the center of the sensor in several dif-
ferent orientations, using the thinnest covering (with the smallest
point-spread), and Figure 8b shows images of the indenter in the
same vertical orientation, but using each covering thickness. Note
the visible defocusing of the image as thickness increases, both in
the real and simulated images.

Figure 10 illustrates the extensibility of the simulator and the
effect of increasing the resolution of a tactile sensor. Here we com-
pare, in simulation, the resolution of the sensors characterized in
this work (PPS) with that of the human fingertip and that of an-
other tactile sensor system, model 5027 available from Tekscan,
Inc. [14]. The PPS sensors are shown as before, as an 8×6 arrange-
ment of sensing elements, with a density of 25 sensing elements per

PPS Human Tekscan

(a)

(b)

Figure 10: (a) Comparison of simulation of different-resolution sen-
sors depressed by complex objects. Row one shows the H indenter,
row two a wrench, and row three a miniature starship. Column one
corresponds to the resolution of the PPS sensors, column two to that
of the human finger, and column three to that of the Tekscan sen-
sors. (b) An external view of the wrench and starship inputs. The H
indenter input is shown in Figure 9b.

cm2. The other two systems are simulated as sensors with each of
their characteristic resolutions adapted to a similar aspect ratio. The
innervation of Merkel receptors in the skin of the human fingertip
is estimated at 70 sensors per cm2 [15], so human sensation is sim-
ulated with a resolution of 20× 14. Finally, the Tekscan system
features 248 sensing elements per cm2, and is represented by a res-
olution of 36× 26. All three have a point spread with a σ of one
sensor element width, and none have the per-element sensitivity ad-
justments applied in the previous simulations of the PPS sensors.

6 DISCUSSION AND CONCLUSIONS

Tactile sensors embedded beneath a compliant rubber-like cover-
ing were demonstrated to be well-approximated by a point-spread
function imaging model. The point spread approximation seems to
work well in the linear range of the sensor-covering system. For
very large deformations, however, the response does begin to grow
nonlinearly as the covering undergoes elastic hardening. Such large
deformations are not encountered in typical interactions with our
system. Further, the stiffness of the material used for the covering
can be selected to maximize the linear range of response for the
interaction forces expected.

Spatial acuity of tactile sensors was shown to be optimized by a
very small point spread. Other design considerations may lead one
to choose a larger spread. For example, spatial uniformity is im-
proved with a larger point spread, as it mitigates the discontinuity



effects at sensing element boundaries. Perhaps more importantly, a
larger range of object features can be imaged when using a thicker
covering. Even if the goal is not to recover the physical shape of the
covering surface, a thin covering limits the amount of information
available for other pattern recognition applications. The preceding
considerations are particularly applicable if spatial resolution is al-
ready available in abundance, as with [11] and similar sensors.

As demonstrated in Section 5, the simulation framework can be
used to simulate the response of any PSF-modeled tactile sensor.
Once a particular sensor has been characterized, any number of
identical sensors may be replicated in simulation by simply copying
the characterization parameters. Prototype algorithms can then be
investigated without the need to implement them on physical hard-
ware, or as a step in determining performance requirements on that
hardware. Alternatively, the manufacturing and/or economic lim-
itations of the current generation of tactile sensors need not apply
in simulation. Therefore, arbitrarily accurate tactile sensors could
be created in simulation, allowing the investigation of the effects
of spatial and force resolution on tactile image processing, tactile
object recognition, and tactile-based manipulation algorithms.

The ability to simulate sensor responses in real time enables a
number of interesting potential extensions, including the potential
to simulate active sensing of properties that may require motion to
sense, such as roughness or stiffness. We do, however, currently
ignore effects such as friction and other forces in directions orthog-
onal to the sensor surface. Additional modeling will be necessary
to incorporate these effects, which will be important in some ma-
nipulation tasks, such as grasp planning or accurate simulation of
surface following.
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