Wireless sensor networks (WSN), composed of large numbers of small devices that self-organize, are being investigated for a wide variety of applications. Two key advantages of these networks over more traditional sensor networks are that they can be dynamically and quickly deployed, and that they can provide fine-grained sensing. Applications, such as emergency response to natural or manmade disasters, detection and tracking, and fine grained sensing of the environment are key examples of applications that can benefit from these types of WSNs. Current research for these systems is widespread. However, many of the proposed solutions are developed with simplifying assumptions about wireless communication and the environment, even though the realities of wireless communication and environmental sensing are well known. Many of the solutions are evaluated only by simulation. In this talk I describe a fully implemented system consisting of a suite of more than 30 synthesized protocols. The system supports a power aware surveillance and tracking application running on 203 motes and evaluated in a realistic, large-area environment. Technical details and evaluations are presented for power management, dynamic group management, and for various system implementation issues. Several illustrations of how real world environments render some previous solutions unusable will also be given.
Speaker Biography
Professor John A. Stankovic is the BP America Professor in the Computer Science Department at the University of Virginia. He recently served as Chair of the department, completing two terms (8 years). He is a Fellow of both the IEEE and the ACM. He also won the IEEE Real-Time Systems Technical Committee’s Award for Outstanding Technical Contributions and Leadership. Professor Stankovic also served on the Board of Directors of the Computer Research Association for 9 years. Before joining the University of Virginia, Professor Stankovic taught at the University of Massachusetts where he won an outstanding scholar award. He has also held visiting positions in the Computer Science Department at Carnegie-Mellon University, at INRIA in France, and at the Scuola Superiore S. Anna in Pisa, Italy. He was the Editor-in-Chief for the IEEE Transactions on Distributed and Parallel Systems and is a founder and co-editor-in-chief for the Real-Time Systems Journal. He was also General Chair for ACM SenSys 2004 and will serve as General Chair for ACM/IEEE Information Processing in Sensor Networks (IPSN) 2006. His research interests are in distributed computing, real-time systems, operating systems, and wireless sensor networks. Prof. Stankovic received his PhD from Brown University.