As a computer vision researcher, I believe that the advanced technologies of image motion analysis have great opportunities to help rapid advancement of biological discovery and its transition into new clinical therapies. In collaboration with biomedical engineers, my group has been developing a system for analyzing a time-lapse microscope-image sequence, typically from a phase-contrast or differential interference contrast (DIC) microscope that can precisely and individually track a large number of cells, while they undergo migration (translocation), mitosis (division), and apoptosis (death), and could construct complete cell lineages (mother-daughter relations) of the whole cell population. Such a capability of high-throughput spatiotemporal analysis of cell behaviors allows for “engineering individual cells” - directing the migration and proliferation of tissue cells in real time in Tissue Engineering for seeding and culturing cells with hormones to induce growth of tissue.
The low signal-to-noise ratio of microscopy images, high and varying densities of cell cultures, topological complexities of cell shapes, and occurrences of cell divisions, touching and overlapping pose significant challenges to existing image-based tracking techniques. I will present the challenges, results, and excitement of the new application area of motion image analysis.
Speaker Biography
Takeo Kanade is the U. A. and Helen Whitaker University Professor of Computer Science and Robotics and the director of Quality of Life Technology Engineering Research Center at Carnegie Mellon University. He is also the director of the Digital Human Research Center in Tokyo, which he founded in 2001. He received his Doctoral degree in Electrical Engineering from Kyoto University, Japan, in 1974. After holding a faculty position in the Department of Information Science, Kyoto University, he joined Carnegie Mellon University in 1980, where he was the Director of the Robotics Institute from 1992 to 2001. Dr. Kanade works in multiple areas of robotics: computer vision, multi-media, manipulators, autonomous mobile robots, medical robotics and sensors. He has written more than 350 technical papers and reports in these areas, and holds more than 30 patents. He has been the principal investigator of more than a dozen major vision and robotics projects at Carnegie Mellon. Dr. Kanade has been elected to the National Academy of Engineering; the American Academy of Arts and Sciences; a Fellow of the IEEE; a Fellow of the ACM, a Founding Fellow of American Association of Artificial Intelligence (AAAI). The awards he has received include the Franklin Institute Bower Prize, Okawa Award, C&C Award, Joseph Engelberger Award, IEEE Robotics and Automation Society Pioneer Award, and IEEE PAMI Azriel Rosenfeld Lifetime Accomplishment Award.