Scripting languages are immensely popular in many domains. They are characterized by a number of features that make it easy to develop small applications quickly - flexible data structures, simple syntax and intuitive semantics. However they are less attractive at scale: scripting languages are harder to debug, difficult to refactor and suffers performance penalties. Many research projects have tackled the issue of safety and performance for existing scripting languages with mixed results: the considerable flexibility offered by their semantics also makes them significantly harder to analyze and optimize.
Previous research from our lab has led to the design of a typed scripting language built specifically to be flexible without losing static analyzability. In this dissertation, we present a framework to exploit this analyzability, with the aim of producing a more efficient implementation
Our approach centers around the concept of adaptive tags: specialized tags attached to values that represent how it is used in the current program. Our framework abstractly tracks the flow of deep structural types in the program, and thus can efficiently tag them at runtime. Adaptive tags allow us to tackle key issues at the heart of performance problems of scripting languages: the framework is capable of performing efficient dispatch in the presence of flexible structures.
Speaker Biography
Pottayil Harisanker Menon is a Ph.D. candidate in Computer Science at the Johns Hopkins University. He is advised by Prof. Scott Smith and is a member of the Programming Languages Lab. Hari’s current research focuses on creating flexible languages and making them run fast. His general research interests include the design of programming languages, type systems and compilers.