Digital technologies are evolving with advanced capabilities. To function, these technologies rely on collecting and processing various types of sensitive data from their users. These data practices could expose users to a wide array of security and privacy risks. My research at the intersection of security, privacy, and human-computer interaction aims to help all people have safer interactions with digital technologies. In this talk, I will share results on people’s security and privacy preferences and attitudes toward technologies such as smart devices and remote communication tools. I will then describe a security and privacy transparency tool that I designed and evaluated to address consumers’ needs when purchasing and interacting with smart devices. I will end my talk by discussing emerging and future directions for my research to design equitable security and privacy tools and policies by studying and designing for the needs of diverse populations.
Speaker Biography
Pardis Emami-Naeini is a postdoctoral researcher in the Security and Privacy Research Lab at the University of Washington. Her research is broadly at the intersection of security and privacy, usability, and human-computer interaction. Her work has been published at flagship venues in security (IEEE S&P, SOUPS) and human-computer interaction and social sciences (CHI, CSCW) and covered by multiple outlets, including Wired and the Wall Street Journal. Her research has informed the National Institute of Standards and Technology (NIST), Consumer Reports, and World Economic Forum in their efforts toward designing usable and informative security and privacy labels for smart devices. Pardis received her B.Sc. degree in computer engineering from Sharif University of Technology in 2015 and her M.Sc. and Ph.D. degrees in computer science from Carnegie Mellon University in 2018 and 2020, respectively. She was selected as a Rising Star in electrical engineering and computer science in October 2019 and was awarded the 2019-2020 CMU CyLab Presidential Fellowship.