CS 600.442 — Modern Cryptography 10/10/2016
Lecture 9: Zero Knowledge Proofs (I)

Instructor: Abhishek Jain Scribe: Alishah Chator

1 What is a Proof?

Generally speaking, a proof is a demonstration of the veracity of statement through a line of
deductive reasoning. In the realm of mathematics, this involves reducing the statement into a
series of axioms and assumptions that are known to be valid.

Properties of Proofs. Here are two natural properties that a proof must satisfy: first, a verifier
should accept the proof if the statement is true. This is known as Correctness. Second, if the
statement is false, then any proof should be rejected by the verifier. This is known as Soundness.

It is also important that a proof can be efficiently verified. In particular, a proof that would
clearly show if a statement is true, but cannot be verified efficiently is not acceptable. For example,
consider the following proof for the existence of infinite primes: a list containing all primes. Clearly,
both the generation of the proof and the verification would take an undefined amount of time, so
this proof is not useful.

To ensure that proofs can be efficiently verified, we require that the verifier must be polynomial
time in the length of the statement.

Must a proof be non-interactive? In exploring the structure of a proof, an important question
that arises is whether a proof must be non-interactive? Or, can can a proof be in the form of a
conversation between a prover and verifier, where at the end of the conversation the verifier is
convinced.

Indeed, we will now formalize the notion of interactive proofs and show that they are extremely
powerful!

2 Interactive Protocols
We start by establishing some notation and definitions related to interactive protocols.

Definition 1 (Interactive Turing Machine) An interactive Turing machine (ITM) is a Turing
machine with two additional tapes: a read-only tape to receives messages and a write-only one to
send messages.

Definition 2 (Interactive Protocol) An interactive protocol is a pair of ITMs such that the read
tape of the first ITM is the send tape of the second and vice-versa. An interactive protocol proceeds
in rounds, where in each round only one ITM is active, while the other is idle. The protocol is
finished when both machines halt.

Definition 3 (Protocol execution) A (randomized) execution of an interactive protocol (M, Ma)

refers to the ITMs executing all the rounds of the protocol until they halt. An execution of (M1, M)
on inputs (x1,x2) and auziliary inputs (21, z2) is denoted as My (x1,21) <> Ma(x2, 22).

9-1

Definition 4 (Protocol Output) The output of M; in an execution e of (My, Ms) is denoted as
Outpy,(€)

Definition 5 (View of ITM) The view of M; in an execution e of (M1, Ms) consists of its input,
random tape, auziliary tape and all the protocol messages it sees. It is denoted as Viewyy,(e).

3 Interactive Proofs

Interactive proofs involve a pair of ITMs P and V', where P denotes the prover and V denotes the
verifier.

Definition 6 (Interactive Proofs) A pair of ITMs (P,V) is an interactive proof system for a
language L if V is a PPT machine and the following properties hold:

e Completeness: For every x € L,

PriOuty[P(z) < V(x)]=1] =1

e Soundness: There exists a negligible function v(-) s.t. Yo ¢ L and for all adversarial provers
P*,
PrlOuty[P*(z) + V(x)] = 1] < v(|z|)

Remark 1 In this definition, the prover does not have to be efficient. The restriction of efficient
provers will be visited later.

Remark 2 Note, however, that an adversarial prover can be unbounded

What this definition is saying is that to satisfy the Completeness property, the output of V in
the execution of the interactive protocol between P and V should always be accept as long as the
statement z is a valid member of the language L of statements. In order to met the Soundness
property, regardless of the adversarial prover P*’s strategy, if « is not a valid statement then, the
probability that the output of V' in the execution of the interactive protocol between P* and V is
accept must be negligible.

3.1 Why Interactive Proofs?

A natural question that we should ask at this point is, why should we consider interactive proofs?

Indeed, for languages that are in NP, for each statement in the language there exists a polynomial
sized witness. Specifically, for any NP language L with associated relation R and any statement
x € L, there exists a witness w s.t. checking R(z,w) = 1 confirms that x € L. This means that w
is a non-interactive proof for x.

Example. A simple example of non-interactive proofs using witnesses is Graph Isomorphism. Two
Graphs are isomorphic if there is a permutation that maps one graph to the other. In this situation
the permutation is the witness, as if a permutation can be shown then clearly a mapping must exist
between the two graphs.

In light of the above, the question is why even bother with interactive proofs? Why not always
use non-interactive proofs?
There are two main reasons for using interactive proofs:

9-2

e Proving statements for languages not known to be in NP (i.e., when a “short” witness is not
available).

e Achieving a privacy guarantee for the prover

In particular, here are some known results that establish the power of interaction:

e Shamir proved that IP = PSPACE. That is the space of languages with interactive proof
systems (with a single prover) is equivalent to the space of languages decidable in polynomial
space.

e Babai-Fortnow-Lund established that MIP = NEXP. That is the space of languages with
Multi-prover interactive proof systems is equivalent to the space of languages decidable in
non-deterministic exponential time.

e Goldwasser-Micali-Rackoff presented the notion of Zero Knowledge, where verifier learns noth-
ing from the proof beyond the validity of the statement.

In what follows, we will demonstrate the power of interaction by constructing interactive proofs
for a language in co-NP, and then later, we will formalize the notion of zero knowledge.
Below, we first establish some general notation for graphs that we will later use.

4 Notation for Graphs

Definition 7 (Graph) A Graph G = (V, E) where V is a set of vertices and E is a set of edges
st. |V =n, |E|] =m

Definition 8 II, is the set of all permutations ™ over n vertices.

Definition 9 (Graph Isomorphism) Gy = (Vo, Ey) and G1 = (Vi, E1) are isomorphic if there
exists a permutation T s.t:

o Vi ={r(v)lveVo}
o By ={(m(v1),7(v2))|(v1,02) € Eo}
Remark 3 We will also use the notation G1 = 7(Gg)

Graph Isomorphism is an NP problem, so even if we did not explain what the witness for this
problem is, we know it must have one and thus can be proved non-interactively. However, there
is a related problem that is not known to be in NP and thus cannot be efficiently proved using a
witness.

Definition 10 (Graph Non-Isomorphism) Gy and Gy are non-isomorphic if there exists no
permutation T € I, s.t. G1 = w(Gy)

9-3

5 Interactive Proof for Graph Non-Isomorphism

Suppose we want to prove that two graphs Gg and G are not isomorphic. Note that graph non-
isomorphism is in co-NP, and not known to be in NP.

A naive way to prove this is by enumerating all possible permutations over n vertices and
showing that there is no permutation m, G; # 7(Gp). Note, however, that this cannot be verified
efficiently.

Fortunately this is where the power of interaction comes in. We now demonstrate an interactive
proof system for graph non-isomorphism.

Common Input: = = (Go, G1)

Protocol (P,V): Repeat the following procedure n times using fresh randomness

Verifier Prover

Chooses a random b € {0, 1},
7 € II,,. Compute H = 7(Gp)

send H

Compute b’ s.t. H and Gy

are isomorphic

Send v/
V(x,b,b’): V outputs 1 if b’=b and 0 otherwise.

We now argue that protocol (P, V') is an interactive proof. As per the definition, we have to establish
that it satisfies the properties of Completeness and Soundness:

e Completeness: If Gy and G are not isomorphic, then an unbounded prover can always find
b’ s.t. b’=b. This is because H would only be isomorphic to one of the two graphs.

e Soundness: If Gy and GG7 are isomorphic, then H is isomorphic to both Gy and G7. Thus in
a single iteration, an unbounded prover can guess b with probability at most 1/2. Since each
iteration is independent, over n iterations, the probability of prover success is at most 277,
which is negligible.

e Additionally, the verifier is clearly efficient.

6 Interactive Proofs with Efficient Provers

Up until this point, the provers we were dealing with were inefficient. If there were not, then the
previous protocol would have established that graph non-isomorphism is in NP.

9-4

However, what if we want Interactive proofs with efficient provers? One reason for this is
because now, we can hope to implement prover strategies using standard computers or human
beings (who are PPT machines). Further, we can hope to construct interactive proofs that are also
zero knowledge.

In order to construct interactive proofs with efficient provers, we can only deal with languages
in NP. In particular, for any statement z, we will provide a witness w for x as a private input to
the prover. Then, we require that the prover strategy is be efficient when it is given a witness w
for the statement x that it attempts to prove.

Definition 11 An interactive proof system (P,V) for a language L witness relation R is said to
have an efficient prover if P is a PPT and the completeness condition holds for every w € R(X)

Remark 4 Even though honest P is efficient, we still require soundness guarantee against all
possible adversarial provers.

6.1 Interactive proof for Graph Isomorphism

We now construct an interactive proof for proving that two graphs Gg and G are isomorphic. At
first, this may seem a little strange since as discussed earlier, there exists a simple non-interactive
proof for the same: the prover simply sends the permutation that maps Gy to G to the verifier.
Indeed, if the prover is provided this permutation as input, then it is already efficient.

The problem, however, with this protocol is that V learns the permutation 7. Now using this
permutation, it is able to repeat the proof to someone else.

This raises the natural question whether there is a way to interactively prove isomorphism
without revealing the witness. Even better yet, can we construct construct a proof that reveals
nothing to V beyond the validity of the statement?

Below, we construct such an interactive proof system for graph isomorphism.

Common Input: = = (Go, G1)
P’s witness: G = 7(Gy)

Protocol (P,V): Repeat the following procedure n times using fresh randomness.

9-5

Prover Verifier

Chooses a random o € II,,,

Compute H = 7(Gy)

send H

Choose random bit b € {0,1}
send b

if b=0, sends o

else send ¢ = o - 77!

V(x,b,b"): V outputs 1 iff H = ¢(Gp)

Proof of Completeness: If Gy and G are isomorphic, then V always accepts since o(Gy) = H
and o(m~1(G1)) = 0(Go) = H.

Proof of Soundness: If Gy and G; are not isomorphic, then H is isomorphic to one of the graphs
but not both. Since b is chosen randomly after fixing H, H is not isomorphic to G with probability
1/2. Thus an unbounded adversarial prover can succeed with probability at most 1/2. Over n
independent iterations, the prover can succeed with probability at most 271

In this protocol, one can see that intuitively, V obtained no information other than a random
permutation of Gp. This is something he could have generated on its own, so intuitively, the
protocol does not reveal any information.

Below, we formalize the idea of zero knowledge and then later, we will prove that the graph
isomorphism protocol constructed above is in fact zero knowledge.

7 Zero Knowledge

Intuitively, a protocol is zero knowledge if the verifier does not “gain any knowledge” from inter-
acting with the prover besides the validity of the statement. Towards formalizing this idea, the
first natural question is how to formalize “does not gain any knowledge?”

Here are some rules to help in this direction:

e Rule 1: Randomness is for free
e Rule 2: Polynomial-time computation is for free

In other words, learning the result of a random process or a polynomial time computation gives
us no knowledge.

The next question, however, is what is knowledge? To answer this question, let us understand
when knowledge is conveyed.

9-6

e Scenario 1: Someone tells you he will sell you a 100-bit random string for $1000.

e Scenario 2: Someone tells you he will sell you the product of two prime numbers of your
choice for $1000.

e Scenario 3: Someone tells you he will sell you the output of an exponential time computation
(e.g., isomorphism between two graphs) for $1000.

Which of these offers should you accept?

Note that in the first scenario, we can generate a random string for free by flipping a coin.
The second scenario can also be obtained for free since multiplying is a polynomial-time operation.
However, since an exponential-time operation is hard to compute for a PPT machine, scenario 3 is
the best one to consider.

The moral of the story is that we do not gain any information from an interaction if we could
have performed it on our own. This leads us to the correct intuition for zero knowledge:

Intuition for Zero Knowledge: A protocol (P,V) is zero knowledge if V can generate a pro-
tocol transcript on its own, without talking to P. If this transcript is indistinguishable from a real
execution, then clearly V does not learn anything by talking to P.

To formalize this intuition, we will use the idea of a Simulator as we did when defining semantic
security for encryption.

Definition 12 (Honest Verifier Zero Knowledge) An interactive proof (P,) for a language L
with witness relation R is said to be honest verifier zero knowledge if there exists a PPT simulator
S s.t. for ever n. w. PPT distinguisher D, there exists a negligible function v(-) s.t. for every
x € Lyw € R(x),z € 0,1%, D distinguishes between the following distributions with probability at
most v(n):

o {Viewy[P(z,w) <> V(x,z)]}
o {S(1™,z,2)}

In other words what V sees throughout the protocol is something that could have come up with
on its own (by simply running the simulator with input x and z).

Remark 5 The auziliary input z to V captures any a priori information V may have about x.
Definition promises that V does not gain any other knowledge.

Issue. A problem with the above definition is that it promises security only of the verifier V follows
the protocol. What if V is malicious and deviates from the honest strategy? In this case, we need
a simulator S for every, possibly malicious (efficient) verifier strategy V*.

We now present a definition of zero-knowledge for this case. For technical reasons, we allow the
simulator to run in expected polynomial time.

Definition 13 (Zero Knowledge) An interactive proof (P,V) for a language L with witness re-
lation R is said to be zero knowledge if for every n.u. PPT adversary V*, there exists an expected
PPT simulator S s.t. for every n.u. PPT exists an expected PPT a negligible function v(-) s.t. for
every x € Lyw € R(x),z € 0,1%, D distinguishes between the following distributions with probability
at most v(n):

9-7

o {(Viewy-[P(z,w) <+ V*(z,2)]}
o {S(1™,z,2)}

Remark 6 If the distributions are statistically close, then we call it statistical zero knowledge. If
they are identical then it is know as perfect zero knowledge.

We see that in this revised definition, no matter the verifier’s strategy, the view of V* is
indistinguishable from the output of the simulator.

9-8

