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Abstract— We propose a statistical approach to combining
edge cues at multiple scales using data driven probability
distributions. These distributions are learnt on the Sowerby
and South Florida datasets which include the ground truth
positions of edges. We evaluate our results using Chernoff
information and conditional entropy. Owur results demon-
strate the effectiveness of multi-scale processing and validate
previous heuristics such as coarse-to-fine edge tracking.
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I. INTRODUCTION

T is generally agreed that edge detection should be per-

formed at multiple scales, see [13] for a historical per-
spective. There is less agreement on precisely how to com-
bine the results of edge detectors at different scales.

In this paper, we propose a statistical approach for com-
bining edge detectors at different scales. This develops
from our previous work on evaluating the effectiveness of
different edge cues [10], [11], see also [2]. We use joint
probability distributions to combine edge cues at different
scales. In addition, we study the effectiveness of cues for
the localization task of determining how close pixels are to
an edge. We also explore how much information is lost
(if any) when we decimate images to perform multi-scale
processing. Our approach is developed and evaluated on
the Sowerby and South Florida datasets (see figure (14)
for examples of images and ground truth edges for these
datasets).

We also relate our work to two alternative methods for
combine edge cues based on: (i) coarse-to-fine tracking us-
ing scale-space, and (ii) logical operations. The next two
paragraphs give backgrounds on these two approaches.

One approach to combining edge cues at different scales
is to detect edges at coarse scales, where they are presum-
ably poorly localized, and then track the edges at finer
scales to determine the localization. This strategy has been
used both for edge detection and for algorithms for solving
the correspondence problem for binocular stereopsis, see
[13]. This strategy partially motivated the study of scale-
space [18], [9]. This study resulted in theorems which sup-
ported coarse-to-fine tracking by proving that edges which
existed at coarse scales would continue to exist at small
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scales [19],[1]. These results used Gaussian filters to per-
form multi-scale processing. They also concentrated on
the Laplacian of a Gaussian filter (for historical reasons)
which has since been shown to have weak empirical perfor-
mance, for example see [10]. More sophisticated methods
of multi-scale processing have also been proposed, most no-
tably non-linear diffusion [15]. These methods also enable
tracking of edges at different scales.

Another approach is to combine the results of edge detec-
tors at multiple scales using logical operations such as AND
or OR (often used in industrial applications, S. Geman —
personal communication). These approaches are intuitive
and simple to implement.

An advantage of our statistical approach is that it en-
ables us to get samples of images containing edges. We have
generated such samples in previous work using less realis-
tic edge models [20],[21] which have been used to evaluate
human ability to detect edges in images [8]. The more re-
alistic edge probabilities described in this paper will enable
us to generate more realistic images containing edges.

In section (IT), we give some background on our statisti-
cal approach to edge detection [10]. We describe the rela-
tionship to generative models in section (IIT). Section (IV)
gives empirical results of our approach and compares them
with methods based on logical combinations of cues. In
section (V), we extend our statistical approach to estimat-
ing the distances of pixels to the nearest edge (which sub-
sumes edge detection as a special case). This enables us to
relate our work to coarse-to-fine approaches. Section (VI)
demonstrates that little information is lost by decimating
the image when performing multi-scale processing (leading
to gains in computational efficiency).

II. BACKGROUND

The background material was first reported in [10], see
[12] for a more detailed version.
Statistical edge detection involves learning the condi-

tional probability distributions P(¢|on-edge) and P(¢|off-edge)

for the filter response ¢ conditioned on whether the filter
is evaluated on or off an edge. We can then use the log-
likelihood ratio test,

P(6(I())] on-edge)
8 B(o(I(x))] offedge) ~

(1)



to determine if a pixel x in image I(z) is an edge, where T'
is a suitable threshold.

We used two image datasets with ground truth specified.
The Sowerby dataset contains one hundred pre-segmented
colour images. The South Florida dataset contains fifty
grey-scale images. These datasets differ both by the nature
of the images and by the methods used to construct the
segmentations (the ground truth). The Sowerby dataset
consists of outdoor images of the English countryside. The
South Florida dataset consists largely of indoor images in
Florida supplemented with a few photographs of magazine
images. More detailed differences between the datasets are
described in [12].

We evaluate the effectiveness of different edge filters,
and their combinations, using performance criteria. This
requires representing the conditional probability distribu-
tions by adaptive non-parametric representations (e.g. his-
tograms), see [10]. The performance criteria are also used
to determine the adaptive non-parametric representations
by evaluating the effectiveness of the probability distribu-
tions induced by the different choices of bin boundaries.
For each edge filter, we choose those bin boundaries which
give highest performance, using six bins per filter dimen-
sion. Different edge cues were combined by their joint dis-
tributions. These were represented by multi-dimensional
histograms with bin boundaries determined for the indi-
vidual edge filters (as above).

Two performance criteria are used. The first criterion,
Chernoff Information C(p, q) [5] is a measure of the ease in
determining which of two distributions p(.) and ¢(.) gen-
erates a set of samples (all members of the set must be
sampled from the same distribution). It is given by

J
Clp.q) = —Orgrlgrgll1og{ZpA(yj)q1’*(yj)}- (2)

It arises in theoretical studies [20] of the difficulty of de-
tecting roads in aerial images [6]. The second criterion is
conditional entropy used in section (V) to determine the
effectiveness of our approach to localize pixels relative to
the nearest ground truth edge.

In addition, we used a decision tree method [16] to select
those bin boundary cuts which best help discrimination.
This enables us to understand the “guts” of the probabil-
ity distributions and to determine which aspects are most
important for segmentation. In this paper, for example, we
use decision trees to find the most effective scales for edge
detection. The decision tree approach was also used [12] to
prevent overlearning [17] since by restricting the number
of cuts we can acquire sufficient data to learn distributions
even for high-dimensional edge filters (cross-validation [16]
was used to determine if we were overgeneralizing).

III. RELATIONSHIP TO GENERATIVE MODELS

One advantage of our statistical approach to edge detec-
tion is that it enables us to generate sample images con-
taining edges [20], [21]. These sample images have been
used for psychophysics experiments to investigate the abil-
ity of human subjects to detect edges [8]. Visual inspection
of the sampled images helps determine whether there are
sufficient statistical cues to enable edges to be detected.

In more detail, Geman and Jedynak [6] proposed a
Bayesian model for detecting roads in aerial images. The
road was represented by a contour X. It was assumed
that this contour was generated by a prior probability dis-
tribution P(X) which imposed smoothness on the shape
of the road using a Markov model. The imaging model
assumed that filter responses were generated by distribu-
tions P(¢ = ylon) and P(¢ = y|of f) depending on whether
the filter ¢ was evaluated on or off the road. This gave a
probabilistic model P(Y|X) to generate the observed fil-
ter responses Y over the entire image conditioned on the
position of the contour X. The model assumed that filter
responses were independent, conditioned on the position X
of the road curve.

Yuille and Coughlan [20] analyzed the Geman and Je-
dynak model and showed that the detectability of curves
in the image depended on the Chernoff information be-
tween the distributions P(¢ = ylon) and P(¢ = yloff)
and the entropy of the prior distribution P(X). Edge de-
tection gets easier as the Chernoff information increases
and the entropy decreases. Yuille and Coughlan illustrated
these theoretical results by sampling from the distributions
P(Y|X)P(X). Kersten and Schrater used similar stimuli
to determine the ability of human observers to detect edges
in images and noted that observers are better at detecting
straight curves [8].

The empirical probability distributions P(¢|on), P(¢|of f)
reported in this paper can be used to generate more accu-
rate sample stimuli which can be used either to evaluate
human performance at curve detection or for generating
realistic images for other purposes.

IV. MULTISCALE EDGE DETECTION

This section studies the effectiveness of edge detection at
multiple scales. We concentrate mostly on using the magni-
tude of the gradient operator |V(.)| (which was among the
best of the filters evaluated in [10]), but other filters give
similar results [12]. The operators are applied at different
scales o by smoothing the image with a Gaussian filter of
variance o2. We apply the filters to the three colour bands
Y, I,Q for the Sowerby dataset and the single grey-scale
band Y for the South Florida dataset. In addition, we
study the grey-scale band Y of Sowerby and the chromi-
nance bands defined by I/Y,Q/Y where we have normal-
ized out the grey-scale Y.

We summarize our findings in the following results.



RESULT I. Multi-scale filtering is very effective. This
results is not surprising but is a pre-requisite for the rest of
the paper. This result is illustrated in figure (1) which was
first published in [10]. It shows that multi-scale filtering
gives a major improvement in performance for edge detec-
tion on the Sowerby dataset. This holds for full colour,
grey-scale, and chrominance. The improvement is less dra-
matic for the South Florida dataset where most of the im-
age structure seems to occur at a single (small) scale (and
the background of the image is less cluttered so edge detec-
tion is comparatively easy [12]). Multiscale is better able to
discriminate between texture edges (which should be dis-
counted) and the edges which correspond to boundaries. It
is also able to detect edges of different widths (which occur
in Sowerby but rarely in South Florida). The differential
operators are the magnitude of the image gradient |V/|, the
Nitzberg operator N [14], and the Laplacian V2 [13].
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Fig. 1. The advantages of using multi-scale filters on Sowerby (LEFT
THREE PANELS) and South Florida (RIGHT PANEL). The edge
detector operators are labelled by stars for (N1, N2), crosses for Ny,
triangles for |§|7 and diamonds for V2. The Chernoff information is
shown for: 1 the filter at scale o = 1, {1, 2} the coupled filter for scales
o = {1,2}, and {1,2,4} the coupled filter for scales o = {1,2,4}.
The Chernoff always increases as we add larger-scale filters. Decision
trees are required when applying filters V2, |ﬁ| to (Y, 1,Q) at scales
o = 1,2,4, and when applying (N1, N2) to chrominance at scales
o=1,2.
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Fig. 2. Left Panel: Decision tree for Sowerby in grey-scale,

|V]s=0,1,2,4(Y). Right Panel: Decision tree for Sowerby in full colour,
[V]e=0,1,2,4(Y; I, Q).

We now seek to understand the effectiveness of multi-
scale edge detection in more detail. Our intention is un-
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Fig. 3. The Chernoff for the magnitude of gradient operator asymp-
totes quickly with the number of decision cuts. South Florida dataset.

[ 0=2] o=4] c0=0] c=4] c=4]
[0.0082 | 0.0107 | 0.0020 | 0.0346 | 0.0145 | 0.0018 | 0.0067 ]

o=1] og=1]

TABLE 1
THE POSITIONS OF THE BIN BOUNDARIES FOR THE SOWERBY
DATASET. THE ORDERING IS FROM LEFT TO RIGHT (I.E. THE FIRST
BIN BOUNDARY CHOSEN IS AT THE EXTREME LEFT). THE VALUE OF o
LABELS THE SCALE AND THE NUMBER BELOW IT INDICATES THE
POSITION OF THE BIN BOUNDARY (IN TERMS OF THE LOG-LIKELIHOOD
RATIO).

derstand which scales convey most information and to com-
pare the results to more heuristic techniques such as com-
bining filters at different scales by taking thresholds at each
scale and then performing logical operations.

RESULT II: The Chernoff information rapidly asymp-
totes for a small number of decision cuts. This is shown
for Sowerby in figure (2) and for South Florida in figure (3).
A small number of cuts is sufficient to give much of the dis-
crimination performance. It is most effective to have one
cut per each scale but with a bias towards extra cuts at
the smaller scales. The positions of these cuts are given
in tables (IIT). This motivates a poor man’s multi-scale
edge detector where one can combine edge detector filters
at multiple-scales using decision tree cuts. Moreover, these
decision cuts can be determined empirically without need-
ing to learn the full joint probability distributions. It would
only require a simple learning stage to determine effective
positions for the cuts.

RESULT III: Intermediate filter scales are most effective
(when used alone). The effectiveness of different scales is
shown in figure (4) and the left panel of figure (6). The
intermediate scales are most effective. Too big is bad (due
to poor localization) and too small is bad (due to false
positives).

RESULT IV: Chrominance is most effective at large
scales. This is illustrated by figure (4). This result agrees
with studies of biological vision (eg. receptive fields for
colour are larger than those for grey-scale).

RESULT V: The absolute performance of logical AND or
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Fig. 4. Chernoffs for magnitude of gradient at a single scale for grey-
scale, chrominance, and full colour on the Sowerby dataset. Observe
that intermediate scales are most effective. Note also that the chromi-
nance is most effective at larger scales (in agreement with studies of
human vision). Sowerby dataset.
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Fig. 5. The logical AND and OR of filters at scales {0, 1,2,4} are
not very effective. Left Panel: grey-scale. Right Panel: chrominance.
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Fig. 6. Left Panel: the Chernoff for the magnitude of gradient op-
erator at a single scale for the South Florida dataset. Observe that,
in contrast to the results for Sowerby, the most effective scale is the
smallest one. Right Panel: the logical AND and the logical OR are
also not very effective on South Florida.

[ 0=0] 0=1] 0=1] 0=1] 0=2] 0=0] 0=0]
| 0.0331 | 0.0061 | 0.0509 | 0.0183 | 0.0027 | 0.0801 | 0.0140 |

TABLE II
THE POSITIONS OF THE BIN BOUNDARIES FOR SOUTH FLORIDA,
SIMILAR CONVENTIONS TO PREVIOUS FIGURE.

OR filters is comparatively disappointing. This is shown in
figure (5) and the right panel of figure (6). Better perfor-
mance can be obtained using a small number of decision
tree cuts, as described in RESULT II.

V. LOCALIZATION OF EDGES

To study the effectiveness of multi-scale edge detection
we now turn to the harder task of classifying all the pixels
in the image depending on their distance from the nearest
edge. We determine how effective the different scales are
at these tasks.

Estimating the localization of a pixel (relative to the
nearest edge) is a straightforward application of Bayesian
decision theory. For each pixel we compute the probability
that it is a specific number of pixels away from an edge.
From this, we compute the Chernoff information, and ob-
tain ROC curves, for binary decision tasks, such as whether
a pixel is less than, or more than, two pixels from an edge.
In addition, we use conditional entropy to evaluate the ef-
fectiveness of our filters for simultaneously classifying pix-
els into multiple classes based on their distance from the
nearest edge.

A. Binary Classification

In this subsection, we study edge localization by classi-
fying pixels depending on whether they are less than (or
equal to) or greater than w pixels from an edge. Let w(x)
be the distance of a pixel = to the nearest edge. For each
w, we classify pixels into the following two classes: (i)
ap =A{z:w(r) <w}, (il) a2 = {z: w(x) > w}.

We now learn the probability distributions P(¢ =
ylar), P(¢ = ylaz) exactly as we learnt P(.|on-edge) and
P(.|off-edge) in the previous sections (decision trees are
used if necessary). The priors P(«) for a = (ay, az) are
also learnt. We evaluate the distributions by their Cher-
noff information as in previous section. (The next section
evaluates these distributions for multiple classifications).

Our main findings are summarized by RESULTS VI-IX.
In addition, we found that RESULTS II,V on decision tree
cuts and on AND and OR filters are essentially unaltered,
see [12]. (L.e (i) the Chernoff reaches an asymptote very
quickly as a function of the number of decision cuts, and
(ii) the AND and OR rules give disappointing absolute per-
formance.)

RESULT VI: Localization is possible and higher scale in-
formation helps We obtain reasonable Chernoffs for local-
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Fig. 7. These figures show that edge localization to a specified degree
of accuracy is, not surprisingly, best performed by filters tuned to this
degree of localization. The results are for full colour (Top Panels),
grey-scale (Middle Panels), and chrominance (Bottom Panels). The
figures show the Chernoff for magnitude of gradient at a single scale
on the Sowerby dataset. Short scale filters (o = 0,1) are in the Left
Panels, mid-scale filters (¢ = 2,4) in the Center Panels, and large
scale filters (o = 8,16) in the Right Panels. The horizontal-axis is
accuracy of edge localization, in pixels (e.g., an edge localization of 2
means that the Chernoff information is calculated relative to whether
each pixel is within 2 pixels of an edge vs. greater than 2 pixels from

an edge.)
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Fig. 8. Chernoff for magnitude of gradient at a single scale, S.Florida
dataset. Same conventions as previous figure.
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Fig. 10. Justification for coarse-to-fine tracking on South Florida.
We plot the Chernoff for the multi-scale filter |V|s=1,2,4 and the
filter at scale o = 1 (the best single-scale filter for South Florida)
as functions of edge localization. Observe that the Chernoff for the
filter at scale o = 1 for localizing to width w = 1 is almost identical
to the Chernoff for multi-scale to localize the edge to width w = 0
(the white boxes indicate the relevant data points).
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ization, see figures (7, 8). This result is a pre-requisite for
the remaining results in this section. It implies that the
quality of the datasets and the ground truths are adequate
for our analysis. In addition, the quality of the localization
results improve as we add higher scales (particularly for
Sowerby), see figure (9).

RESULT VII: Localization to width w is best done by a
filter at scale w. This is illustrated by figures (7, 8). This
result is not surprising, but it has never been empirically
demonstrated.

RESULT VIII: Chrominance localization improves with
scale and approaches grey-scale localization at large scales.
This is shown in the lower two panels in figure (7). It is per-
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Fig. 11. Coarse-to-fine tracking on Sowerby with full colour (LEFT
PANEL), grey-scale (CENTRE PANEL), and chrominance (RIGHT
PANEL). The plots show the Chernoffs of the multi-scale filters
|V|s=1,2,4 and the filter at 0 = 4 (the best single-scale filter for
Sowerby) as functions of edge localization. Observe that for all pan-
els, the Chernoff for the filter at o = 4 for localizing to width w = 4
is almost identical to the Chernoff for the multi-scale filters localizing
to width w = 0, the square boxes indicate the relevant data points.

haps not surprising that chrominance localization improves
with scale (studies of biological vision suggest this). It is
unexpected that chrominance localization approaches grey-
scale localization at large scale (our definition of chromi-
nance has normalized out the grey-scale intensity).

RESULT IX: Justification for the strateqy of coarse-to-
fine edge tracking.. For both datasets there is an optimal
scale ¢*, which is ¢* = 4 for Sowerby and ¢* = 1 for
South Florida. In both cases, the Chernoffs for using the
filter at the optimal scale ¢* to localize the edge to width
w = o¢* is only slightly smaller than the Chernoff using
multi-scale filters to localize the edge precisely at w = 0,
see figures (10,11). This validates the strategy of detect-
ing the edge at a coarse scale ¢* with only approximate
localization, w = ¢*, and then “tracking” the edge by us-
ing smaller scale filters to localize it precisely. But observe
that the choice of coarse-scale is dataset dependent.

B. Multiple classification

We now estimate the localization of a pixel (relative to
the nearest edge) by computing the probability that it lies
within a set of distances from an edge. As in the previ-
ous subsection, we let w(x) be the distance of a pixel z to
the nearest edge. We classify pixels into the following five
classes: (i) oy = {z : w(z) = 0}, (ii) a2 = {z : w(x) = 1},
({fag={z:1<w(x) <2}, iv)as = {z:2 <w(x) <4},
(v) as = {z : w(z) > 4}.

For this multiple-classification task, using filter ¢, we
learn the conditional probability distributions P(¢ = y|a;)
and the priors P(a;) for ¢ = 1,...,5. We classify a pixel &
as o where

of = arg max P(¢(x)|as)P(o). (3)

To evaluate the performance of filter ¢, we use the con-

ditional entropy H(¢|y) [5] defined by:

5
H(dly) = — ZZP(ailaﬁ =y)P(y)log P(a;l¢ =y). (4)

We use Bayes rule to compute the posterior distributions
P(a;|¢ = y) from the likelihood functions P(¢ = y|a;) and
the priors P(a;).

The conditional entropy of a random variable « is a mea-
sure of how much uncertainty remains about its value after
an observation ¢ = y has been made (averaged over the
possible values of y). The smaller the conditional entropy,
the greater the certainly of the value of a after making the
observation. Hence we prefer filters with low conditional
entropy (the ideal filter would have zero conditional en-
tropy). The conditional entropy can be compared with the
entropy H = — 2?21 P(a;)log P(a;) of the prior distribu-
tion of « before any observations have been made. The
conditional entropy is always lower than the entropy be-
cause making the observation must, on average, decrease
the uncertainty of a.
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Fig. 12. The conditional entropy for the magnitude of gradient op-
erator on the Sowerby dataset for single-scale filters (LEFT PANEL)
and multi-scale filters (RIGHT PANEL). The horizontal axis is the
filter scale, e.g., a filter scale of 2 is the filter |V|s=2. The dotted line
is the entropy (observe that the entropies differ between the plots
because running certain large-scale filters requires a modification of
the images to remove boundary artifacts, which causes changes in the
prior distributions). The classification is localization of pixels to an
accuracy of being on-edge to within 0, 1, (1, 2], (2,4], > 4 pixels.

The results, see figures (12,13), show the advantages of
multi-scale filtering for both the Sowerby and South Florida
datasets. It can be shown [12] that these results mean that
we have a 55 percent chance of correctly classifying a pixel
into one of the five categories (for the Sowerby dataset).
This is compared to random guessing which would yield
20 percent accuracy. But overall, the results confirm the
well-established belief that edge detection is hard!
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VI. DECIMATION

Finally, we address the question of how to perform multi-
scale processing efficiently. Burt [3] proposed representing
an image by a pyramid constructed by repeatedly convolv-
ing the image by a Gaussian filter and sub-sampling. This
representation is very efficient. But it unclear whether we
lose information by performing edge detection on such a
pyramid. What are the trade-offs between the amount of
edge information we destroy by decimating the image and
the potential speed up in computation?

Our result in this section show that hardly any infor-
mation (eg. ability to detect edges) is lost if we perform
multi-scale analysis using a pyramid representation. This
has many computational advantages. Suppose we want to
detect a hand in an image by a deformable template (see,
for example, [4]). Each decimation (by a factor of 2x2) will
speed up the algorithm by a factor of 4. Moreover, we can
save memory by only storing the edge filter responses on
the decimated images.

To decimate an M x N image by a factor of k, we do a
simple average of each k x k pixel region. (Our results show,
somewhat surprisingly, that simple averaging is sufficient
and we do not need to smooth the image as we decimate
it). This gives the intensity values on the (M/k) x (N/k)
decimated image. We use k = 1,2,4,8,16 on Sowerby im-
ages and k = 1,2, 4,8 on South Florida (because the South
Florida images are smaller). To decimate the ground truth
for Sowerby by a factor of k, we define a pixel to be an edge
provided at least k out of the k x k pixels in the region are
labelled edges. For South Florida, we define a pixel to be
an edge provided at least k/2 out of the k x k pixels in the
region are labelled edges. We use a different procedure for
the two datasets because the edges in Sowerby tend to be
twice as thick as those in South Florida. The resulting edge
maps are checked visually, see figure (14), to ensure that
the resulting edges are plausible (i.e. thin and correctly

Fig. 14. Decimations of Sowerby and South Florida images. Far left,
a typical Sowerby image at five decimations. Centre left, its edge
maps for these decimations. Similarly for South Florida in centre
right and far right.



located).

Our results show that performing decimation at mul-
tiple scales loses very little information (so more sophis-
ticated decimation methods, involving image smoothing,
can hardly do any better). To understand this, let the
decimation factor be k and the filters have scale o) (for
or = 1,2,4). In a undecimated image this corresponds to
an effective scale o = k X 0. If no information is lost by
decimation, then we expect that filters with the same effec-
tive ¢ should have the same Chernoff information. This is
shown to be true in figure (15) where we plot the curves of
the Chernoff information as a function of edge localization.
The curves with a common effective scale are practically
identical regardless of the decimation.

Our results on how performance degrades as we decimate
the images shows different responses for Sowerby and South
Florida, see figure (16). Overall we see surprisingly good
Chernoff information even when the images are severely
decimated by factors of up to 8 or 16, at least for the
Sowerby dataset. For the Sowerby dataset, the informa-
tion content is roughly constant, or slightly increasing, with
increasing effective scale. In fact, the edges are approxi-
mately self-similar at each decimation level. This can be
seen by noting that the curves (left panel, figure (16)) are
essentially translated versions of each other. This means
that any edge on any decimated image (at least up to a
16 x 16 decimation) will look statistically like an edge in
the original (non-decimated) image. On the other hand, for
the South Florida dataset, the information content drops
sharply with increasing effective scale. For large decima-
tions, the edges become very difficult to detect. (This is
due to an inherent decrease in the information content, not
due to a poor decimation. As noted above, little or no in-
formation is lost due to the decimation.)

A surprising implication of this is that, for 4 x 4 deci-
mations or larger, the Sowerby dataset is actually easier to
segment (i.e., determine the edges) than the South Florida
dataset. For the largest scale we study (8x8 decimation),
edges in the South Florida dataset have an information
content of only around 0.125 — which is the limit of dis-
criminability, so edges will be very difficult to detect. This
occurs despite the large amount of texture in the Sowerby
dataset, and the relative lack in the South Florida dataset.

We see two reasons for this. Firstly, the Sowerby dataset
contains a lot of “texture edges” which make the images
harder to segment than the South Florida set. As the dec-
imation increases the texture edges start becoming weaker
(i.e., smoothed out) so the background for Sowerby be-
comes more distinct from edges faster than the background
for South Florida (where edges might start to get “washed
out”). Secondly, it appears that the ground truth segmen-
tation for South Florida segmentation shows great atten-
tion to precise localization of sharp edges but typically ig-
nores large-scale broad edges such as the folds in a carpet
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Fig. 15. The overlaying of these curves shows that little information
is lost by decimation. The curves plot the Chernoff information as
a function of the edge localization (measured in the undecimated
image). The filters are the magnitude of the gradient on the grey-
scale image. The o above each graph gives the effective scale. For each
effective scale o we plot all the combinations of decimation factors k
and scale o}, such that o = k X 0. For example, for scale = 4 we plot
the undecimated image at scale o = 4, the image decimated by 2 x 2
at scale o2 = 2, and the image decimated by 4 X 4 at scale 04 = 1.
Top two rows, Sowerby. Bottom two rows, South Florida.
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Fig. 16. This figure shows that for Sowerby there is more information
at high scales while the opposite is true for South Florida. Left panel:
for each effective scale (1,2,4,8,16,32,64 for Sowerby we plot the
Chernoff information as a function of edge localization. Right panel:
similarly for South Florida (with effective scales 1, 2,4, 8,16, 32).

or out-of-focus edges. In contrast, the Sowerby segmen-
tation does the opposite and appears to concentrate on
labelling all edges, including those which are broad and
hard to localize, at the cost of precise localization. The
first observation is an inherent feature of the two datasets,
and so would imply that differences are real. The second,
however, would mean that some of the differences in infor-
mation content is an artifact of how the ground truths of
the datasets were determined. It remains to be seen which
of these two effects is the more prominent effect.

VII. CONCLUSION

This paper introduced the idea of performing multi-scale
edge detection by statistical inference (by extending work
reported in [10]). We have summarized our main findings
in RESULTS I-IX and by our section on decimation.

Our work shows that edge cues can be combined by sta-
tistical inference and that this approach outperforms other
methods based on logical combination of cues. But we
also show that simple decision rules are often sufficient to
achieve close to optimal performance (subject to our eval-
uation criteria). Our work also gives some justification for
the coarse-to-fine strategy used in scale-space. We have
also evaluated the effectiveness of colour cues and of deci-

mating the image when performing multi-scale processing.

These empirical probability distributions P(¢|on-edge)
and P(¢|off-edge) can also be used to generate samples
of realistic edges which can be used to determine human
ability to detect edge contours [8] and determine how this
ability relates to theoretical limits [20],[21].
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