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Abstract

This paper analyses the Contrastive Divergence algorithm for learning
statistical parameters. We relate the agorithm to the stochastic approx-
imation literature. This enables us to specify conditions under which
the algorithm is guaranteed to converge to the optimal solution. Thisin-
cludes necessary and sufficient conditionsfor the solution to be unbiased.

Category: Learning Theory

1 Introduction

Contrastive divergences (CD) hasrecently been proposed by Hinton for statistical inference
of parameters[1]. Despite experimental evidence for the use of this approach [2] there has
been little theoretical analysis of its convergence[3,4].

This paper relates CD to the stochastic approximation literature [5,6] and hence derives
elementary conditions which ensure convergence. We conjecture that far stronger results
can be obtained by applying the advanced techniques used in this literature such as those
described by Younes [7]. We give necessary and sufficient conditions for the solution of
CD to be unbiased.

Section (2) describes CD and shows that it is closely related to a class of stochastic ap-
proximation algorithms for which convergence results have been obtained. In section (3)
we state and give a proof of a ssmple convergence theorem for stochastic approximation
algorithms. Section (4) applies the theorem to give sufficient conditionsfor convergence of
CD.

2 Contrastive Divergence and its Relations

CD is alearning agorithm [1] whose goal is to estimate the model parameters w* which
minimize the Kullback-Leibler divergence D (Py(z)||P(x|w)) between the observed data
Py(z) andthemodel P(z|w). Itisassumed that the model distributionisof form P(z|w) =

e—E(m:w)/z(w)_



The steepest descent equation to m|n|m|zeD( ( )||P(;r|w)) isgiven by:

Wip1 — W = Ye{— ZPO +ZP$| %} D

Unfortunately this equation is hard to implement because of the difficulty of computing
the second term (mainly because of the need to evaluate the normalization term Z(w) of
P(z|w)). Steepest descent also risks getting stuck in alocal minimum unless the distribu-
tion is of a specific form. For example, if E(z;w) = w - ¢(z), for some function ¢(z),
then D(Py(z)||P(x|w)) is convex and so steepest descent is guaranteed to converge to the
globa minimum.

CD approximates the second term in the steepest descent equation (1) by a stochastic term.
It selects aMarkov Chain Monte Carlo (MCMC) transition kernel K, (z, y) whose invari-
ant distribution is P(z|w) (i.e. ), P(z|w)K,(z,y) = P(ylw)). It replaces the steepest
descent equation (1) by the CD update equation:

werr —w = Ye{— Y Po(x) 8Emw ZQw 6Emw)}, ?

where Q) (x) isaset of samplesobtained by initializing the chain at the datasamples Py ()
and running the Markov chain forward for m steps (the value of m is a design choice).

We observethat CD is similar to a class of stochastic approximation algorithms (reviewed
in [7]) which use MCMC methods to approximate the second term in the steepest descent
equation (1). See[8] for an application of these algorithmsto learning probability distribu-
tions for modelling image textures. The algorithms introduce a state vector S (z), which
can be initialized by setting S*=°(z) = P,(x). Then St(z) and w; are updated sequen-
tially. S*(z) is obtained by sampling with the transition kernel K, (z, y) using St~ *(x)
as theinitial state for the chain. Then w;1 is computed by replacing the second term in
equation (1) by the expectation with respect to St (). We can obtain CD by having a state
vector St(x) (= Q. (x)) which getsre-initialized to P (z) at each time step.

This class of stochastic approximation algorithms, and its many variants, have been ex-
tensively studied and convergence results have been obtained (see [7]). The convergence
results are based on stochastic approximation theorems [6] whose history starts with the
analysis of the Robbins-Monro agorithm [5]. Precise conditions can be specified which
guarantee convergence in probability. In particular, Kushner [9] has proven convergence
to global optima. Orr and Leen [10] have studied the ability of these algorithms to escape
from local minima by basin hopping.

3 Stochastic Approximation Algorithmsand Convergence

The general stochastic approximation algorithm is of form:
W41 = Wt — %S(wt, Nt), ©)

where N, is a random variable sampled from a distribution P,,(N), -, is the damping
coefficient, and S(., .) isan arbitrary function.

We now state a theorem which gives sufficient conditions to ensure that the stochastic
approximation algorithm (3) converges to a (solution) state w *. The theorem is choosen
because of the simplicity of its proof (course notes, Prof. B. Van Roy, Stanford) and alarge
variety of other results are available, see[6,7,9] and the references they cite.

The theorem involves three basic concepts. Firstly, a function L(w) = (1/2)jw — w*|?
which is a measure of the distance of the current state w from the solution state w * (in the



next section we will require w* = argmin,, D(Py(z)||P(z|w))). Secondly, the expected
vaue )y P,(N)S(w, N) of the update term in the stochastic approximation algorith-
m (3). Thirdly, the expected squared magnitude < |S(w, N)|? > of the update term.

The theorem states that the algorithm will converge provided three sufficient conditions
are satisfied. These conditions are fairly intuitive. The first condition requires that the
expected update > \; P, (N)S(w, N) has alarge component towards the solution w™* (i.e.
in the direction of the negative gradient of L(w)). The second condition requires that the
expected squared magnitude < |S(w, N)|? > is bounded, so that the “noise” in the update
isnot too large. Thethird condition requiresthat the damping coefficients v ; decrease with
time, so that the algorithm eventually settles down into a fixed state. This condition is
setisfied by setting v; = 1/t, V¢ (which is the fastest fall off rate consistent with the SAC
theorem).

We now state the theorem and briefly sketch the proof which is based on martingal e theory
(for an introduction, see [11]).

Stochastic Approximation Convergence (SAC) Theorem. Consider the stochastic ap-
proximation algorithm, equation (3), and let L(w) = (1/2)|w — w*|?. Then the algorithm
will converge to w* provided: (1) —VL(w) - > n Pa(N)S(w,N) > K;L(w) for some
constant K1, (2) < |S(w, N)|? >;< Ka(1+ L(w)), where K is some constant and the ex-
pectation < . >, istaken with respect to all the data prior totime¢, and (3) >°,°, v; = oo
and >;° 77 < oo.

Proof. The proof is a conseguence of the supermartingale convergence theorem[11]. This
theorem states that if X;,Y;, Z; are positive random variables obeying >°;° Y, < oo
with probability oneand < X1 >< X; + Y; — Z;, Vt, then X, converges with prob-
ability 1 and )~,°, Z; < oo. To apply the theorem, set X; = (1/2)|w — w*|?, set
V; = (1/2)K»¢ and Z, = —X(Kay? — K1) (Zq is positive for sufficiently large
t). The result follows after some algebra. (course notes, Prof. B. Van Roy, Sanford.
www.stanford.edu/class/msande339/notes/lecture?.ps).

4 CD and SAC

The SAC theorem can be applied to the CD update equation and gives three sufficient
conditions for convergence. The third condition can be satisfied by setting v; = 1/t, Vt.
The second condition can be satisfied by putting restrictions on E(z; w) which ensure that
the gradient is bounded (weaker conditions, such as bounding the gradient of E(z; w), can
probably be obtained using the far more sophisticated martingale analysis described in [7].
Hence we concentrate on the first condition.

We express CD as a stochastic approximation algorithm by setting:

S(wt, Ne) = ZPO 8E (i) ZQ‘” 6E z; W); 4

where the “noise” V; correspondsto the way that @, (x) is obtained by the MCMC sam-
pling. The expected value of Q.,(z) is }-, Po(y) K[ (y, =) (using the superscript ™ to
indicate running the transition kernel m times).

Therefore the expected update of CD is given by:

ZPn(Nt) (we, Ny) = ZPO 3E (xz;w) ZPO aE(,(;: w)- )

We now expressthis expected CD update in two different ways, Results 1 and 2, which give



aternativeways of understandingit. We then proceed to Results 3 and 4 on the convergence
of CD. But we must first introduce some background material from Markov Chain theory
[12].

We choose the transition kernd K, (z,y) to satisfy detailed balance so that
P(z|lw)K, (z,y) = P(ylw)K,(y,z). Detailed balance is obeyed by many MCMC algo-
rithms and, in particular, is always satisfied by Metropolis-Hasting algorithms. It implies
that P(z|w) istheinvariant kernel of K, (z,y) sothat ) P(z|w)K, (z,y) = P(y|w) (al
transition kernels satisfy >, Ko (z,y) = 1, Va

Detailed balance implies that the matrix Q. (z,y) = P(z|w)'/?K,(z,y)P(y|lw)~"/? is
symmetric and hence has orthogonal eigenvectorsand eigenvalues{e (), A% }. Theeigen-
values are ordered by magnitude (largest to smallest). Thefirst eigenvalueis A! = 1 (so
M| < 1, p > 2). By standard linear algebra, we can write @, (z,y) in terms of its
eigenvectors and eigenvalues Q. (z,y) = >_, Meli()el(y), whlch|mpl|&ethatwecan
express the transition kernel applied m times by

K (z,y) Z{A“}m{P wlw)} el (@) {P(ylw) Y Zels(y) = DI} uls (2)vl (9),

(6)

wherethe {v/(z)} and {u* ()} aretheleft and right eigenvectors of the transition kernel
K, (z,y). They are defined by:

vii (@) = el () {P(lw)}'7?, uli(z) = el (2){P(z|w)} /%, Vp, @
and it can be verified that o8 (z) Ko (z,y) = Moh(y) Vuand 3, Ko (z,y)uli(y) =
Ayl (x) V. In addition, the left and right eigenvectors are mutually orthonormal so that

Y. vE(x)ul (x) = 6,,, where §,, isthe Kronecker delta function. Thisimplies that we
can express any function f(z) in equivalent expansions,

Z{Zf Jul (y) }oht(z Z{Zf oh(y)bul(x).  (8)

Moreover, thefirst left and right eigenvectors can be calculated explicity to give:

V() = P(zlw), uy(z) <1, A, =1, 9)
which follows because P(z|w) isthe (unique) invariant distribution of the transition kernel
K, (z,y) and henceis thefirst left eigenvector.

We now have sufficient background to state and prove our first result.

Result 1. The expected CD update corresponds to replacing the update term
OE(x;w) : : .
>, Pzlw) é—w) in the steepest descent equation (1) by:
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where {v#(z),ut(z)} are the left and right eigenvectors of K, (z,y) with eigenvalues
{An].

Proof. The expected CD update replaces ) P(z|w by
S yw Po(y) K (y, ) 2E252) | see equation (5). We use the eigenvector expansion of the

transition kernel, equation (6), to expressthisas 3", Po(y) {\%}™uft (y)uk () 2555
The result follows using the specific forms of the first eigenvectors, see equation (9).

)BEzw)



Result 1 shows that the expected update of CD is similar to the steepest descen-
t rule, see equations (1,10), but with a correction term >° _,{A\}™{>°, Po(y)uli(y)}

{3, vt (z) 2EE2) y that will be small provided the magnitudes of the eigenvalues {A* }
aresmall for A > 2 (or if the transition kernel can be choosensothat 3, Fo(y)ul; issmall
for > 2).

We now give a second form for the expected update rule. To do this, we define a new
variable g(z;w) choosenso that ) P(z|w)g(x;w) = 0 and the extrema of the Kullback-
Leibler divergence occur when 3~ Py(x)g(z;w) = 0.

Result 2. Let g(z;w) = 2EE@) _ 5™ P(]w) 229 then Y P(x|w)g(x;w) = 0, the
extrema of the Kullback- Le|bler d|vergence occur when >ow Pg( )g(z;w) = 0, and the
expected update rule can be written as:

W1 = Wi — %{Z Po(z)g(; Z Py(y ;x)g(z;w)}. (11)

Proof. The first result follows directly. The second follows because ) Po(z)g(z;w) =

S, P (2) 2Eze) S~ P(a]w) 2E2) 1o get the third we substitute the definition of
g(z;w) into t%e expected update equation (5) The result follows using the standard prop-
erty of transition kernelsthat 3, K.J'(z,y) =1, Va.

We now use Results 1 and 2 to understand the fixed points of the CD algorithm and its
biases.

Result 3. Thefixed pointsw™* of the CD algorithmwill betrue extrema of the KL divergence
(ie >, Po(z)g(z;w*) = 0)if, andonlyif, wealsohave . Po(y) K (y, z)g(z;w*) =
0. A sufficient condition is that Py(y) and g(z;w) lie in orthogonal eigenspaces of
K,«(y,z). This includes the (known) special case when there exists w* such that

P(z|w") = Po(z) (see[2].

Proof. Thefirst part follows directly from equation (11) in Result 2. The second part can be
obtained by the eigenspace analysisin Result 1. Suppose Py (z) = P(x|w®st). Recall that
vl.(z) = P(z|w*), and so >y, Po(y)u u"...(y) = 0 p # 1. Moreover, - vl.g(z;w*) =
0. Hence Py(z) and g(x; w*) I|e|n orthogonal eigenspacesof K« (y, x).

Result 3 shows that whether CD convergesto an unbiased estimate can depend on the spe-
cific form of the MCMC transition matrix K, (y,x). But thereis an intuitive argument
why the biasterm 3 . Po(y) Kk (y, z)g(z;w™) may tend to be small at places where

>, Po(z)g(z;w*) = 0. Thisis because for small m, >, Fo(y) K (y,z) ~ FPo(z)
which satisfies 3, Po(z)g(z;w*) = 0. Alternatively, for largem, 3 Po(y) Kk (y, z) ~
P(zlw*) andweadso have ) P(z|w*)g(z;w*) = 0.

Alternatively,  from Result 1, we can reexpress the bias term

S e oKL (y,2)g(30%) bY 3o (XSS, Poly)ulse () HE, v (2) 5 )

This will tend to be small provided the eigenvalue moduli |\ ". >
the standard conditions for awell defined Markov Chain). In general the bias term should
decrease exponentialy as |A\2.|™. Clearly it is also desirable to define the transition
kernels K, (x,y) so that the right eigenvectors {u/(y) : p© > 2} are as orthogonal as
possible to the observed data Py (y).

The practicality of CD depends on whether we can find an MCMC such that the bias ter-
m >, . Po(y) K (y, x)g(z;w*) = 0issmall for most w. If not, then the alternative
stochastic agorithms may be preferable.

We now give convergence conditionsfor CD by using the SAC theorem.

—



Result 4 CD will always converge provided . = 1/, % is bounded,

>y Do) KD (y, 2)g(z;0") = 0 where 3- Po(z)g(z;w*) = 0, and

(w—w") - {> Po(x)gw;w) = > Po(y) K (y, x)g(w;w)} > Ki|w —w**,  (12)

for some K.

Proof. This follows from the SAC theorem and Results 2 and 3. The boundedness of g—f
is required to ensure that the “ update noise” is bounded in order to satisfy the second
condition of the SAC theorem.

5 Conclusion

The goa of this paper was to relate the Contrastive Divergence (CD) algorithm to the
stochastic approximation literature. This enables us to give convergence conditions which
ensure that CD will converge to the parameters w* that minimize the Kullback-Leibler
divergence D (Py(z)|| P(x|w)). Theanalysis also gives necessary and sufficient conditions
to determine whether the solution is unbiased.

The results in this paper are elementary and preliminary. We conjecture that far more
powerful results can be obtained by adapting the convergence theorems in the literature
[6,7,9]. In particular, Younes[7] gives convergence results when the gradient of the energy
O0E(z;w)/0w is bounded by aterm that is linear in w (and hence unbounded). Heis also
able to analyze the asymptotic behaviour of these algorithms. But adapting his mathemati-
cal techniguesto Contrastive Divergence is beyond the scope of this paper.

Finaly, the analysis in this paper does not seem to capture many of the intuitions behind
Contrastive Divergence [1]. But we hope that the techniques described in this paper may
also stimulate research in this direction.
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