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Abstract 

We present a Bayesian model of causal learning that 
incorporates generic priors on distributions of weights 
representing potential powers to either produce or prevent an 
effect. These generic priors favor necessary and sufficient 
causes. Across three experiments, the model explains the 
systematic pattern of human judgments observed for questions 
regarding support for a causal link, for both generative and 
preventive causes.  
Keywords: causal learning; Bayesian inference 

Causal Inference in a Bayesian Framework 
Intelligent behavior in a complex and potentially hostile 
environment depends on acquiring and exploiting knowledge 
of “what causes what.” It is likely that the cognitive 
mechanisms for causal learning have deep evolutionary roots, 
a conjecture supported by many parallels between phenomena 
in animal conditioning and human causal learning (see 
Shanks, 2004). Ever since the philosopher David Hume, the 
fundamental question about causal knowledge has been how 
a learner can take non-causal inputs (notably, observations 
regarding temporal order and covariation) and induce cause-
effect relations as outputs.  Cheng (1997) developed a theory 
that integrates the Humean covariational view of causality 
with Kant’s conception of causal “powers”. Her power PC 
theory assumes that learners have a tacit understanding that 
causes in the world have powers (i.e., strengths) to produce or 
prevent effects, and use observations to infer unobservable 
causal powers (for a review see Cheng et al., in press). 

The view that learners have a tacit theory of causal powers 
can be incorporated into a Bayesian framework for inference. 
Griffiths and Tenenbaum (2005) developed a Bayesian 
model, closely related to the power PC theory, for inferring 
whether a causal link exists between cause C and effect E 
(i.e., model selection for the structure of the causal graph; 
Mackay, 2003). Their model addressed the simplest variant of 

elemental causal induction, in which the learner is using 
observations to decide between Graph 0 versus Graph 1 (Fig. 
1), where B is a constantly-present background cause that 
may generate E, and C is a candidate cause that may be either 
present or absent (varying from trial to trial).  

 
Figure 1. Graphs contrasting hypotheses that C causes E 
(Graph 1) or does not (Graph 0). B, C, and E are binary 
variables.  Weights w0 and w1 indicate causal strength of the 
background cause (B) and the candidate cause (C), 
respectively.  
 

A major strength of Bayesian inference is that it enables 
beliefs to be updated by integrating prior beliefs with new 
observations. Bayesian inference involves two basic 
components, likelihood probabilities and prior probabilities. 
Likelihoods assess the probability that particular observed 
data would be expected under some hypothesis, and are 
determined by the generating model for the data (e.g., how 
multiple independently-operating causes produce an effect). 
Priors assess beliefs about the world held before observing 
any particular data (e.g., beliefs about causal powers).  

One variant of the “causal support” model developed by 
Griffiths and Tenenbaum (2005) used a generating model 
proposed by Cheng (1997), based on a logical “noisy-OR” 
function (Eq. 4) for generative causes and “noisy-AND-
NOT” (Eq. 5) for preventive causes. (See Glymour, 2001, for 
a more general definition of what he termed “Cheng 
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models”.)  This causal-support variant yields causal power 
(Cheng, 1997) as the maximum likelihood estimate of a 
causal strength parameter. The value of causal support (Eq. 2) 
is a measure of whether a causal link exists. As Griffiths and 
Tenenbaum (2005) noted, “Speaking loosely, causal support 
is the Bayesian hypothesis test for which causal power is an 
effect size measure: it evaluates whether causal power is 
significantly different from zero” (p. 359).   

Necessity and Sufficiency as Generic Priors 
The second component of Bayesian inference, priors, will 

be especially important in guiding learning when data are 
sparse or noisy, as is often the case for naturalistic causal 
learning. In particular, the Bayesian formulation can take 
account of priors on the causal powers (i.e., w0 and w1). When 
learners have no obvious reason to have specific priors about 
weights (e.g., the power of a novel medicine to stop 
headaches), one might suppose that the priors are simply 
uniform (e.g., Griffiths & Tenenbaum, 2005). 

It is possible, however, that even when the inputs are 
entirely novel, learners may be guided by generic priors—
systematic assumptions about the abstract quantitative 
properties of a variable. In the case of motion perception, for 
example, human judgments of velocity are guided by the 
prior that motion tends to be slow and smooth.  This generic 
prior explains a wide range of visual illusions and motion 
perception phenomena (Lu & Yuille, 2006; Weiss, Simoncelli 
& Adelson, 2002; Yuille & Grzywacz, 1988). 

We propose that in the case of causal learning, people (and 
possibly other animals) have a prior favoring causes that are 
necessary and sufficient (e.g., a genetic defect on 
chromosome 4 is necessary and sufficient to cause 
Huntington’s disease). The importance of necessity and 
sufficiency in causal inference was first discussed by J. S. 
Mill (1843). Causal necessity is the focus of the “but for” 
condition in law, and of the concept of attributable risk in 
epidemiology. In psychology, some have placed particular 
emphasis on sufficiency (e.g., Mandel & Lehman, 1998). 
Pearl (2000) reinterpreted various well-known causally-
related measures in terms of probabilistic necessity and 
sufficiency (causal power as “probability of sufficiency”; 
attributable risk as “probability of necessity”; and !P as 
“probability of necessity and sufficiency”). Lien and Cheng 
(2000) proposed and provided evidence that a tacit goal of 
maximizing !P (i.e., necessity and sufficiency jointly), 
conditional on “no confounding”, guides human induction of 
categories and causal powers at multiple hierarchical levels. 
However, previous researchers have not considered the 
possibility that the goal of maximizing the necessity and 
sufficiency of causes may provide relational generic priors 
that guide elemental causal induction.  

Bayesian inference focuses on probabilistic rather than 
strictly deterministic relations. It would seem that most 
naturally-occurring causal relations are probabilistic, such 
that C is in fact neither necessary nor sufficient to produce E 
(e.g., the link between smoking and cancer). Nonetheless, a 
prior with weight peaks indicative of “approximately” 

necessary and sufficient causes (NS priors) would encourage 
causal networks that are inherently simple (ideally, one cause 
reliably predicts the effect). Such a prior would create a 
generic expectation in accord with what Holland, Holyoak, 
Nisbett and Thagard (1986, p. 160) termed “the “unusualness 
rule, unexpected events signal other unexpected events.” For 
example, rats often show initial conditioning to a novel cue 
that precedes shock, even though the cue is in fact 
uncorrelated with shock (Rescorla, 1972). Readiness to “jump 
to causal conclusions” consistent with NS priors (assuming 
they can be overturned if contradicted by later experience) 
may have important survival value in a natural environment. 

In the remainder of this paper we formulate the Bayesian 
model incorporating NS priors.  We then summarize three 
human experiments, and compare model predictions using 
NS versus uniform priors with human causal judgments. 

Bayesian Model with NS Priors 
A Bayesian decision can be formalized to infer causal 
structure by assessing whether a causal relationship exists 
between C and E after observing contingency data D. The 
decision variable is obtained from the posterior probability 
ratio of Graphs 1 and 0 by applying Bayes’ rule:  
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Griffiths and Tenenbaum (2005) defined the first term on the 
right of Eq. 1 (log likelihood ratio) as “causal support” (the 
second term, the log prior odds, is a constant). In general, 
support can be defined as the log posterior odds, 
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a measure of the evidence that data D provide in favor of 
Graph 1 over Graph 0. 

The likelihoods on graphs are computed by integrating out 
the unknown causal strengths w0  and w1, which are 
parameters in the range {0,1} associated with the powers of B 
and C, respectively,  
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where )1,,|( 10 GraphwwDP and )0,|( 0 GraphwDP are the 
likelihood probabilities of the observed data given specified 
causal strengths and structures. )1|,( 10 GraphwwP  and 

)0|( 0 GraphwP  are prior probabilities that model the learners’ 
beliefs about the values of causal strengths.  

The likelihood terms are derived using the generating 
functions specified by the power PC theory. Let "%& indicate 
the value of the variable to be 1 vs. 0. For a Cheng model 
(noisy-OR) in which B and C are both potential generative 
causes, the probability of observing E is given by 

cb wwwwcbeP )1()1(1),;,|( 1010 &&&#"            (4)  

}1,0{, 'cb varies with absence vs. presence of C (b is 
always 1). In the preventive case, B is assumed to be 

support 

(3)
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potentially generative (following the “no background 
preventers” assumption of the power PC theory) and C is 
potentially preventive. The resulting noisy-AND-NOT 
generating model for preventive causes is 

cb wwwwcbeP )1(),;,|( 1010 &#"                          (5) 
If data D is summarized by contingencies N(e,c), the 

number of cases for each combination of presence vs. absence 
of the effect and cause, then the likelihood given causal 
strengths (w0, w1) and structures (Graph 0,1) is 
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 denotes the number of ways of picking k 

unordered outcomes from n possibilities. 
The second component in Eq. 3 is the prior on causal 

strength, )1|,( 10 GraphwwP  and )0|( 0 GraphwP . Griffiths and 
Tenenbaum (2005) assumed that the priors on weights w0 and 
w1 follow a uniform distribution. Our guiding hypothesis is 
that generic priors will favor necessary and sufficient causes. 
Accordingly, we set priors favoring NS generative causes, 
with the prior distribution peaks for w0, w1 at 0,1 (C is an NS 
cause) and 1,0 (B is). We use the exponential formulation 
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where 0  is a parameter controlling how strongly necessary 
and sufficient causes are preferred, and Z is a normalizing 
term that ensures the sum of the prior probabilities equals 1. 
When 0 = 0, the prior follows a uniform distribution, 
indicating no preference to any values of causal strength. 
Griffiths and Tenenbaum’s (2005) support model is thus 
derived as a special case. The present formulation provides an 
analytic calculation of support values. 

)0|( 0 GraphwP  is obtained as the marginal of 

)1|,( 10 GraphwwP  by integrating out w1, 
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In the preventive case B is again assumed to be generative, 
hence only C could be a preventer (i.e., B and C do not 
compete). Evidence for C as an NS preventer will be clearest 
when B is a sufficient generative cause (w0 = 1), yielding a 
likelihood peak for w0, w1 at 1,1: 
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where 0  and Z  are defined as in Eq. 7. As in the generative 
case, )0|( 0 GraphwP  is obtained as the marginal of 

)1|,( 10 GraphwwP : 
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By substituting Eqs. 6 ~ 10 into Eq. 3, we can incorporate NS 
priors into computation of support for a causal link (Eq. 2). 
Fig. 2 depicts the prior distributions used in generative and 
preventive cases. 

 
 
Figure 2: Prior distributions over w0 and w1 with NS priors. 
Left: Generative case, 0 # 30  (peaks at 0,1 and 1,0); right: 
Preventive case, 30#0 (peak at 1,1). 

Overview of Experiments 1-3 

Methods 
Materials and procedure were very similar across all 3 
experiments. Experiments 1-2 are from Liljeholm (2006). A 
simultaneous presentation format, adapted from that used by 
Buehner, Cheng and Clifford (2003, Ex. 2), was used to 
minimize memory demands and other processing issues 
extraneous to causal inference (see Fig. 3). The cover story 
always involved a set of allergy patients who either did or did 
not have a headache (E), and either had or had not received a 
new allergy medicine (C); the query concerned whether as a 
side effect the medicine caused headache (generative 
conditions) or relieved headache (preventive conditions). 
Each patient was represented by a cartoon face    
that was either frowning (headache) or smiling (no headache). 
The data were divided into 2 subsets, each an  
array of faces. The top subset represented patients who had 
not received the medicine; the bottom subset represented 
patients after receiving the medicine.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Medicine A

No Medicine

When Medicine A was given to them,
t his is how t hey were:

When t hese pat ient s were not  given any
medicine, t his is how t hey were:

= headache Figure 3. Example 
of an experimental 
display, showing 
patients who had not 
(top) or had 
(bottom) received an 
allergy medicine, 
and who either had 
or had not developed 
headaches. 
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The specific contingency conditions in each experiment are 
shown in Figs. 4-5. The code in the figures indicates number 
of patients with headache out of number who had not 
received the medicine (i.e., base rate of the effect), and 
number with headache out of number who did receive the 
medicine. The number of cases in the sample was varied. In 
the figures and all analyses, generative and preventive 
conditions are identical except that the frequencies of 
headache and no headache are transposed. For example, the 
generative case 2/8, 8/8, where P(E!|C") = .25, P(E!|C!) = 1, 
power = 1, is matched to the symmetrical preventive case 6/8, 
0/8, where P(E!|C") = .75, P(E!|C!) = 0, power = 1. Ex. 1 
included a series of contingency conditions in which the 
causal power of the medicine was 1 but the base rate of 
headache was varied, plus additional conditions with lower 
causal power. 

The specific query regarding existence of a causal link 
varied across experiments. In Ex. 1 the query (generative 
conditions) was, ! How likely is it that this medicine 
produces headaches?" with the response being a numerical 
rating on a line marked in units of 10 from 0 (extremely 
unlikely) to 100 (extremely likely). For preventive conditions, 
!produces"  was replaced by relieves". The dependent 
measure was the rating in each condition.   In Ex. 2 the query 
was, "Does this medicine cause headache? Rate how 
confident you are that this medicine causes headache" on a 
100-point confidence scale.  The dependent measure was the 
rating in each condition.  In Ex. 3, the query was to select one 
of two alternatives: “This medicine has absolutely no 
influence on headache"  (no link) or ! This medicine 
produces headache" (link exists), rating confidence in the 
answer on a 100-point scale. The dependent measure was 
mean confidence that a link exists (treating the rating as 
negative when the answer was that no link exists). 

Participants were UCLA undergraduates in the Psychology 
Department subject pool. Generative versus preventive 
conditions in Ex. 1 was a between-subject variable. In Ex. 1-
2, contingency condition was a within-subjects variable, with 
order of presentation randomized. In Ex. 3 each participant 
evaluated a single condition. The data points for humans 
shown in Figs. 4-5 are each mean ratings based on responses 
from 20-33 participants. 

Judgment Patterns 
Before presenting the modeling results, it will help to 

characterize the major factors that influenced link judgments 
for both generative and preventive conditions (see Figs. 4-5). 
(1) Causal power: high power led to higher confidence there 
is a link. (2) Sample size: an overall larger sample tended to 
yield higher confidence (a surprisingly weak but statistically 
reliable factor in Ex. 1). (3) Base rate of effect, P(E"1C&): 
confidence was higher when the base rate was more optimal 
for revealing any influence of the candidate cause, where the 
optimal base rate is 0 for the generative case and 1 for the 
preventive case. More optimal base rates lead to a larger 

“virtual sample” (Liljeholm, 2006), defined as the number of 
cases in which C could potentially reveal its influence; the 
complementary maximally suboptimal base rates lead to 
ceiling effects such that the power of C cannot be determined 
from the data. (4) Direction of causation: In Ex. 1, there was 
evidence of a possible interaction between causal direction 
and contingency condition. In particular, for conditions where 
w1 = 1, preventive ratings tended to be higher than generative 
ratings when the base rate was far from optimal, with the 
difference diminishing as the base rate approached optimal. A 
comparison of the direction effect for the conditions in which 
the generative base rate was .75 (.25 preventive) vs. .25 (.75 
preventive) yielded a significant interaction, F(1, 51) = 4.71, 
p = .035. Similar differences between preventive and 
generative judgments have been observed for causal strength 
judgments (Liljeholm, 2006; Wang & Fu, 2005). 

Model Fits to Human Causal Judgments 
Data from all 3 experiments were fit using the Bayesian 
model with either NS or uniform priors. An 0 value of 30 for 
NS priors was selected using data from Ex. 1, and then held 
constant in fitting data from Ex. 2-3. The model with uniform 
priors (0 = 0) is identical to that of Griffiths and Tenenbaum 
(2005). For both NS and uniform priors, support values were 
scaled to human data (a 100-point confidence scale) using a 
best-fitting power transformation (the same procedure 
employed by Griffiths & Tenenbaum).  

Figs. 4-5 each show the data for human causal judgments 
(top) along with predictions based on NS priors (middle) and 
uniform priors (bottom). Ex. 1 tested 30 contingency 
conditions (15 generative and 15 preventive) with sample 
sizes of 32 (left side of Fig. 3) and 128 (right side). Although 
both Bayesian models fit the human data reasonably well, the 
overall correlation was substantially higher with NS priors (r 
= .94) than with uniform priors (r  = .71). 

Two qualitative aspects of the data favor the model with 
NS priors. First, NS priors capture the fact that human 
judgments of confidence in a causal link were more sensitive 
to causal power and P(E"1C&) (base rate of the effect; e.g., 
increasingly optimal across left 6 contingencies in Fig. 4) 
than to sample size. Uniform priors place relatively greater 
weight on sample size. Second, NS priors capture the 
apparent asymmetry between generative and preventive 
judgments for cases matched on causal power and optimality 
of the base rate. For the human data, for 9 of the 10 matched 
conditions in which the base rate is non-optimal, the 
preventive rating exceeds the generative case. The 
asymmetric NS priors (1 peak for preventive causes, 2 for 
generative) capture this subtle interaction between preventive 
and generative judgments. In contrast, the model with 
uniform priors (like all previous formal models of causal 
judgments) predicts strict equality of matched generative and 
preventive conditions. 
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Ex. 2 provided a further test of the relative potency of 

power and sample size as determinants of human causal 
judgments. This study employed two intermediate 
contingencies (powers of .4 and .67) at sample sizes 36 and 
72 (generative conditions only). As shown in Fig. 5A, NS 
priors provided a far better fit to the human data (r = .97) 
than did uniform priors (r = .20). As in Ex. 1, NS priors 
capture the greater potency of power relative to sample 
size, whereas uniform priors erroneously predict the 
opposite trade-off. 

 
Figure 5. Confidence in a causal link. A: Ex. 2. 
B: Ex. 3. See Fig. 4 caption for additional information.  

In the extreme, when the presented contingencies closely 
match the NS priors, the model with these generic priors 
predicts that people will be highly confident in the presence 
of a causal link after only a few observations. Ex. 3 was 
designed to test this prediction, comparing judgments for 
contingencies close to NS priors with a small sample size 
of 16 to contingencies far from NS priors with a 
substantially larger sample size of 128. As shown in Fig. 
5B, NS priors again provided a much better fit (r = .84) 
than did uniform priors (r = &215). As predicted, people 
placed much greater weight on match to NS priors than on 
sample size. In the most dramatic case, where the data fit 
the generative peak at w0 = 0, w1 = 1, human mean 
confidence was 85 on the 100-point scale after just 16 
observations. NS priors closely match the human level of 
high confidence, whereas uniform priors erroneously 
predict a confidence level below 50. Moreover, uniform 
priors generate the wrong ordinal ranking of this favorable 
contingency relative to the rightmost condition in Fig. 5B 
(a case of lower power with a much high sample size).  

Conclusions and Future Directions 
We have established that a Bayesian formulation of 

causal inference that incorporates (1) a theory of learners’ 
model of the generating model for binary causal variables 
and (2) generic priors favoring necessary and sufficient 
causes can explain the pattern of human causal judgments 
about existence of causal links. In contrast, a formulation 
assuming uniform priors (Griffiths & Tenenbaum, 2005) is 
unable to account for key findings. Humans place greater 
weight on match to NS priors than on size of the sample of 

Figure 4: Confidence in a 
causal link (Ex. 1). 
Numbers along top show 
stimulus contingencies for 
generative cases; those 
along bottom show 
contingencies for matched 
negative cases.  Top: Data 
from Ex. 1 (error bars 
indicate 1 standard error); 
middle: Predictions of 
Bayesian model with NS 
priors, 30#0 ; bottom: 
Predictions with uniform 
priors, 0#0 .  C
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observations, and their causal judgments reveal a 
systematic interaction between preventive and generative 
ratings. NS priors are a special case of a general preference 
for simplicity in causal networks (cf. Novick & Cheng, 
2004, p. 471). 

The present Bayesian formulation, like that of Griffiths 
and Tenenbaum (2005), is based on a noisy-OR and noisy-
AND-NOT generating model (Cheng model). Griffiths and 
Tenenbaum also discussed an alternative formulation based 
on a linear generating model that yields !P (i.e., P(E"1C"3& 
P(E"1C&)) as a strength measure. This model gives an 
incoherent account of independent causal influence (Cheng, 
1997; Cheng et al., in press). It is clear the linear model will 
fail for the data modeled in the present paper. To take one 
simple example, each contingency in Ex. 2 (Fig. 5A) is 
equated for !P (.33); accordingly for paired conditions at 
each sample size, values of P(E"1C&) and P(E"1C"43vary 
symmetrically around .5. Since generative priors (either 
uniform or NS) for w0 and w1 are also symmetrical around 
.5, for these contingencies the linear model with either set 
of priors will necessarily predict support values that vary 
only with sample size. Clearly, however, people’s 
confidence ratings varied with power within each sample-
size condition even though !P was constant.  

A major advantage of the Bayesian formulation of causal 
learning, when coupled with the concept of causal power, is 
that it is compositional: it allows the formulation of 
coherent answers to a wide variety of causal queries. Here 
we have focused on modeling support for a causal link, but 
the same formulation can also be used to model judgments 
of causal strength and confidence in strength judgments. 
Additional work will be required to extend the formulation 
to situations involving multiple candidate causes, potential 
interactive influences among causes, sequential 
presentation of data, and diagnostic inference from 
observed effects to possible causes. 
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